

Site Contents

	Autobahn|Python
	Autobahn Features

	What can I do with Autobahn?

	Show me some code!

	Where to start

	Get in touch

	Contributing

	Release Testing

	Sitemap

	Installation
	Requirements
	Supported Configurations

	Performance Note

	Installing Autobahn
	Using Docker

	Install from PyPI

	Install from Sources

	Install Variants

	Windows Installation

	Check the Installation

	Depending on Autobahn

	Asynchronous Programming
	Introduction
	The asynchronous programming approach

	Other forms of Concurrency

	Twisted or asyncio?

	Resources
	Twisted Resources

	Asyncio Resources

	Asynchronous Programming Primitives
	Twisted Deferreds and inlineCallbacks

	Asyncio Futures and Coroutines

	WebSocket Programming
	Creating Servers
	Server Protocols

	Receiving Messages

	Sending Messages

	Running a Server

	Connection Lifecycle
	Opening Handshake

	Connection Open

	Closing a Connection

	Connection Close

	Creating Clients
	Client Protocols

	Running a Client

	WebSocket Options
	Common Options (server and client)

	Server-Only Options

	Client-Only Options

	Upgrading
	From < 0.7.0

	WAMP Programming
	Application Components
	Creating Components

	Running Components

	Running Subclass-Style Components

	Patterns for More Complicated Applications

	Longer Example

	Component Configuration Options
	transports=

	realm=

	session_factory=

	authentication=

	Running a WAMP Router

	Remote Procedure Calls
	Registering Procedures

	Calling Procedures

	Publish & Subscribe
	Subscribing to Topics

	Publishing Events

	Session Lifecycle

	Logging

	Upgrading
	From < 0.8.0

	From < 0.9.4

	WebSocket Examples
	Basic Examples
	Echo

	Slow Square

	Testee

	Additional Examples
	Secure WebSocket

	WebSocket and Twisted Web

	Twisted Web, WebSocket and WSGI

	Secure WebSocket and Twisted Web

	WebSocket Ping-Pong

	More

	WAMP Examples
	Overview of Examples

	Automatically Run All Examples

	Publish & Subscribe (PubSub)

	Remote Procedure Calls (RPC)

	I’m Confused, Just Tell Me What To Run

	Public API Reference
	Module autobahn.util

	Module autobahn.websocket
	WebSocket Interfaces

	WebSocket Types

	WebSocket Compression

	WebSocket Utilities

	Module autobahn.rawsocket
	RawSocket Utilities

	Module autobahn.wamp
	WAMP Interfaces

	WAMP Types

	WAMP Exceptions

	WAMP Authentication and Encryption

	Module autobahn.wamp.component
	Component

	Module autobahn.twisted
	Component

	WebSocket Protocols and Factories

	WAMP-over-WebSocket Protocols and Factories

	WAMP-over-RawSocket Protocols and Factories

	WAMP Sessions

	Module autobahn.asyncio
	Component

	WebSocket Protocols and Factories

	WAMP-over-WebSocket Protocols and Factories

	WAMP-over-RawSocket Protocols and Factories

	WAMP Sessions

	Changelog

Autobahn|Python

[image: Version] [https://pypi.python.org/pypi/autobahn] [image: Build Status] [https://travis-ci.org/crossbario/autobahn-python] [image: Coverage] [https://codecov.io/github/crossbario/autobahn-python] [image: Docs] [http://autobahn.readthedocs.org/en/latest/]

Open-source (MIT) real-time framework for Web, Mobile & Internet of Things.

Autobahn|Python is part of the Autobahn [http://crossbar.io/autobahn#python] project and provides open-source implementations of

	The WebSocket Protocol [http://tools.ietf.org/html/rfc6455]

	The Web Application Messaging Protocol (WAMP) [http://wamp.ws/]

in Python 2 and 3, running on Twisted [http://twistedmatrix.com/] or asyncio [http://docs.python.org/3.4/library/asyncio.html].

Autobahn Features

WebSocket [http://tools.ietf.org/html/rfc6455] allows bidirectional real-time messaging [http://crossbario.com/blog/post/websocket-why-what-can-i-use-it/] on the Web while WAMP [http://wamp-proto.org/] provides applications with high-level communication abstractions [http://wamp.ws/why/] (remote procedure calling and publish/subscribe) in an open standard WebSocket-based protocol.

Autobahn|Python features:

	framework for WebSocket [http://tools.ietf.org/html/rfc6455] and WAMP [http://wamp-proto.org/] clients

	compatible with Python 2.7 and 3.3+

	runs on CPython [http://python.org/], PyPy [http://pypy.org/] and Jython [http://jython.org/]

	runs under Twisted [http://twistedmatrix.com/] and asyncio [http://docs.python.org/3.4/library/asyncio.html]

	implements WebSocket RFC6455 [http://tools.ietf.org/html/rfc6455] (and draft versions Hybi-10+)

	implements WebSocket compression [http://tools.ietf.org/html/draft-ietf-hybi-permessage-compression]

	implements WAMP [http://wamp-proto.org/], the Web Application Messaging Protocol

	supports TLS (secure WebSocket) and proxies

	Open-source (MIT license [https://github.com/crossbario/autobahn-python/blob/master/LICENSE])

…and much more.

Further, Autobahn|Python is written with these goals:

	high-performance, fully asynchronous and scalable code

	best-in-class standards conformance and security

We do take those design and implementation goals quite serious. For example, Autobahn|Python has 100% strict passes with AutobahnTestsuite [http://crossbar.io/autobahn#testsuite], the quasi industry standard of WebSocket protocol test suites we originally created only to test Autobahn|Python ;)

For (hopefully) current test reports from the Testsuite see

	WebSocket client functionality [http://autobahn.ws/reports/clients/]

	WebSocket server functionality [http://autobahn.ws/reports/servers/]

Note

In the following, we will just refer to Autobahn instead of the
more precise term Autobahn|Python and there is no
ambiguity.

What can I do with Autobahn?

WebSocket is great for apps like chat, trading, multi-player games or real-time charts. It allows you to actively push information to clients as it happens. (See also Automatically Run All Examples)

[image: ascii-cast of all WAMP demos running]
Further, WebSocket allows you to real-time enable your Web user interfaces: always current information without reloads or polling. UIs no longer need to be a boring, static thing. Looking for the right communication technology for your next-generation Web apps? Enter WebSocket.

And WebSocket works great not only on the Web, but also as a protocol for wiring up the Internet-of-Things (IoT). Connecting a sensor or actor to other application components in real-time over an efficient protocol. Plus: you are using the same protocol to connect frontends like Web browsers.

While WebSocket already is quite awesome, it is still low-level. Which is why we have WAMP. WAMP allows you to compose your application from loosely coupled components that talk in real-time with each other - using nice high-level communication patterns (“Remote Procedure Calls” and “Publish & Subscribe”).

WAMP enables application architectures with application code distributed freely across processes and devices according to functional aspects. Since WAMP implementations exist for multiple languages, WAMP applications can be polyglot. Application components can be implemented in a language and run on a device which best fit the particular use case.

WAMP is a routed protocol, so you need a WAMP router. We suggest using Crossbar.io [http://crossbar.io], but there are also other implementations [http://wamp.ws/implementations/] available.

More:

	WebSocket - Why, what, and - can I use it? [http://crossbario.com/blog/post/websocket-why-what-can-i-use-it/]

	Why WAMP? [http://wamp.ws/why/]

Show me some code!

A sample WebSocket server:

from autobahn.twisted.websocket import WebSocketServerProtocol
or: from autobahn.asyncio.websocket import WebSocketServerProtocol

 class MyServerProtocol(WebSocketServerProtocol):

 def onConnect(self, request):
 print("Client connecting: {}".format(request.peer))

 def onOpen(self):
 print("WebSocket connection open.")

 def onMessage(self, payload, isBinary):
 if isBinary:
 print("Binary message received: {} bytes".format(len(payload)))
 else:
 print("Text message received: {}".format(payload.decode('utf8')))

 ## echo back message verbatim
 self.sendMessage(payload, isBinary)

 def onClose(self, wasClean, code, reason):
 print("WebSocket connection closed: {}".format(reason))

Complete example code:

	WebSocket Echo (Twisted-based) [https://github.com/crossbario/autobahn-python/tree/master/examples/twisted/websocket/echo]

	WebSocket Echo (Asyncio-based) [https://github.com/crossbario/autobahn-python/tree/master/examples/asyncio/websocket/echo]

Introduction to WebSocket Programming with Autobahn:

	WebSocket Programming

A sample WAMP application component implementing all client roles:

from autobahn.twisted.component import Component
or: from autobahn.asyncio.component import Component

demo = Component(
 transports=[u"wss://demo.crossbar.io/ws"],
)

1. subscribe to a topic
@demo.subscribe(u'com.myapp.hello')
def hello(msg):
 print("Got hello: {}".format(msg))

2. register a procedure for remote calling
@demo.register(u'com.myapp.add2')
def add2(x, y):
 return x + y

3. after we've authenticated, run some code
@demo.on_join
async def joined(session, details):
 # publish an event (won't go to "this" session by default)
 await session.publish('com.myapp.hello', 'Hello, world!')

 # 4. call a remote procedure
 result = await session.call('com.myapp.add2', 2, 3)
 print("com.myapp.add2(2, 3) = {}".format(result))

if __name__ == "__main__":
 run([demo])

Complete example code:

	Twisted Example [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/wamp/overview/]

	asyncio Example [https://github.com/crossbario/autobahn-python/blob/master/examples/asyncio/wamp/overview/]

Introduction to WAMP Programming with Autobahn:

	WAMP Programming

Where to start

To get started, jump to Installation.

For developers new to asynchronous programming, Twisted or asyncio, we’ve collected some useful pointers and information in Asynchronous Programming.

For WebSocket developers, WebSocket Programming explains all you need to know about using Autobahn as a WebSocket library, and includes a full reference for the relevant parts of the API.

WebSocket Examples lists WebSocket code examples covering a broader range of uses cases and advanced WebSocket features.

For WAMP developers, WAMP Programming gives an introduction for programming with WAMP in Python using Autobahn.

WAMP Examples lists WAMP code examples covering all features of WAMP.

Get in touch

Development of Autobahn takes place on the GitHub source repository [https://github.com/crossbario/autobahn-python].

Note

We are open for contributions, whether that’s code or documentation! Preferably via pull requests.

We also take bug reports at the issue tracker [https://github.com/crossbario/autobahn-python/issues].

The best place to ask questions is on the mailing list [https://groups.google.com/forum/#!forum/autobahnws]. We’d also love to hear about your project and what you are using Autobahn for!

Another option is StackOverflow [http://stackoverflow.com] where questions [http://stackoverflow.com/questions/tagged/autobahn?sort=newest] related to Autobahn are tagged “autobahn” [http://stackoverflow.com/tags/autobahn/info] (or “autobahnws” [http://stackoverflow.com/tags/autobahnws/info]).

The best way to Search the Web for related material is by using these (base) search terms:

	“autobahnpython” [https://www.google.com/search?q=autobahnpython]

	“autobahnws” [https://www.google.com/search?q=autobahnws]

You can also reach users and developers on IRC channel #autobahn at freenode.net [http://www.freenode.net/].

Finally, we are on Twitter [https://twitter.com/autobahnws].

Contributing

Autobahn is an open source project, and hosted on GitHub. The GitHub repository [https://github.com/crossbario/autobahn-python] includes the documentation.

We’re looking for all kinds of contributions - from simple fixes of typos in the code or documentation to implementation of new features and additions of tutorials.

If you want to contribute to the code or the documentation: we use the Fork & Pull Model.

This means that you fork the repo, make changes to your fork, and then make a pull request here on the main repo.

This article on GitHub [https://help.github.com/articles/using-pull-requests] gives more detailed information on how the process works.

In order to run the unit-tests, we use Tox [http://tox.readthedocs.org/en/latest/] to build the various test-environments. To run them all, simply run tox from the top-level directory of the clone.

For test-coverage, see the Makefile target test_coverage, which deletes the coverage data and then runs the test suite with various tox test-environments before outputting HTML annotated coverage to ./htmlcov/index.html and a coverage report to the terminal.

There are two environment variables the tests use: USE_TWISTED=1 or USE_ASYNCIO=1 control whether to run unit-tests that are specific to one framework or the other.

See tox.ini for details on how to run in the different environments.

Release Testing

Before pushing a new release, three levels of tests need to pass:

	the unit tests (see above)

	the [WebSocket level tests](wstest/README.md)

	the [WAMP level tests](examples/README.md) (*)

> (*): these will launch a Crossbar.io router for testing

Sitemap

Please see Site Contents for a full site-map.

Installation

This document describes the prerequisites and the installation of Autobahn.

Requirements

Autobahn runs on Python on top of these networking frameworks:

	Twisted [http://twistedmatrix.com/]

	asyncio [http://docs.python.org/3.4/library/asyncio.html]

You will need at least one of those.

Note

Most of Autobahn’s WebSocket and WAMP features are available on both Twisted and asyncio, so you are free to choose the underlying networking framework based on your own criteria.

For Twisted installation, please see here [http://twistedmatrix.com/]. Asyncio comes bundled with Python 3.4+. For Python 3.3, install it from here [https://pypi.python.org/pypi/asyncio]. For Python 2, trollius [https://pypi.python.org/pypi/trollius/] will work.

Supported Configurations

Here are the configurations supported by Autobahn:

	Python

	Twisted

	asyncio

	Notes

	CPython 2.7

	yes

	yes

	asyncio support via trollius [https://pypi.python.org/pypi/trollius/]

	CPython 3.3

	yes

	yes

	asyncio support via tulip [https://pypi.python.org/pypi/asyncio/]

	CPython 3.4+

	yes

	yes

	asyncio in the standard library

	PyPy 2.2+

	yes

	yes

	asyncio support via trollius [https://pypi.python.org/pypi/trollius/]

	Jython 2.7+

	yes

	?

	Issues: 1 [http://twistedmatrix.com/trac/ticket/3413], 2 [http://twistedmatrix.com/trac/ticket/6746]

Performance Note

Autobahn is portable, well tuned code. You can further accelerate performance by

	Running under PyPy [http://pypy.org/] (recommended!) or

	on CPython, install the native accelerators wsaccel [https://pypi.python.org/pypi/wsaccel/] and ujson [https://pypi.python.org/pypi/ujson/] (you can use the install variant acceleration for that - see below)

To give you an idea of the performance you can expect, here is a blog post [http://crossbario.com/blog/post/autobahn-pi-benchmark/] benchmarking Autobahn running on the RaspberryPi [http://www.raspberrypi.org/] (a tiny embedded computer) under PyPy [http://pypy.org/].

Installing Autobahn

Using Docker

We offer Docker Images [https://hub.docker.com/r/crossbario/autobahn-python/] with Autobahn pre-installed. To use this, if you have Docker already installed, just do

sudo docker run -it crossbario/autobahn-python:cpy2 python client.py --url ws://IP _of_WAMP_router:8080/ws --realm realm1

This starts up a Docker container and client.py, which connects to a Crossbar.io router at the given URL and to the given realm.

There are several docker images to choose from, depending on whether you are using Python 2, 3 or PyPy (Python 2 only for now).

There are the flavors which are based on the official Python 2, 3 and PyPy images, plus Python 2 and 3 versions using Alpine Linux, which have a smaller footprint. (Note: Footprint only matters for the download once per machine, after that the cached image is used. Containers off the same image/layers only take up space corresponding to how different from the image they are, so image size is relatively less important when using multiple containers.)

Install from PyPI

To install Autobahn from the Python Package Index [http://pypi.python.org/pypi/autobahn] using Pip [http://www.pip-installer.org/en/latest/installing.html]

pip install autobahn

You can also specify install variants (see below). E.g. to install Twisted automatically as a dependency

pip install autobahn[twisted]

And to install asyncio backports automatically when required

pip install autobahn[asyncio]

Install from Sources

To install from sources, clone the repository:

git clone git@github.com:crossbario/autobahn-python.git

checkout a tagged release:

cd AutobahnPython
git checkout v0.9.1

Warning

You should only use tagged releases, not master. The latest code from master might be broken, unfinished and untested. So you have been warned ;)

Then do:

cd autobahn
python setup.py install

You can also use pip for the last step, which allows to specify install variants (see below)

pip install -e .[twisted]

Install Variants

Autobahn has the following install variants:

	Variant

	Description

	twisted

	Install Twisted as a dependency

	asyncio

	Install asyncio as a dependency (or use stdlib)

	accelerate

	Install native acceleration packages on CPython

	compress

	Install packages for non-standard WebSocket compression methods

	serialization

	Install packages for additional WAMP serialization formats (currently MsgPack [http://msgpack.org])

Install variants can be combined, e.g. to install Autobahn with all optional packages for use with Twisted on CPython:

pip install autobahn[twisted,accelerate,compress,serialization]

Windows Installation

For convenience, here are minimal instructions to install both Python and Autobahn/Twisted on Windows:

	Go to the Python web site [https://www.python.org/downloads/] and install Python 2.7 32-Bit

	Add C:\Python27;C:\Python27\Scripts; to your PATH

	Download the Pip install script [https://bootstrap.pypa.io/get-pip.py] and double click it (or run python get-pip.py from a command shell)

	Open a command shell and run pip install autobahn[twisted]

Check the Installation

To check the installation, fire up the Python and run

>>> from autobahn import __version__
>>> print(__version__)
0.9.1

Depending on Autobahn

To require Autobahn as a dependency of your package, include the following in your setup.py script

install_requires = ["autobahn>=0.9.1"]

You can also depend on an install variant which automatically installs dependent packages

install_requires = ["autobahn[twisted]>=0.9.1"]

The latter will automatically install Twisted as a dependency.

Where to go

Now you’ve got Autobahn installed, depending on your needs, head over to

	Asynchronous Programming - An very short introduction plus pointers to good Web resources.

	WebSocket Programming - A guide to programming WebSocket applications with Autobahn

	WAMP Programming - A guide to programming WAMP applications with Autobahn

Asynchronous Programming

Introduction

The asynchronous programming approach

Autobahn is written according to a programming paradigm called asynchronous programming (or event driven programming) and implemented using non-blocking execution - and both go hand in hand.

A very good technical introduction to these concepts can be found in this chapter [http://krondo.com/?p=1209] of an “Introduction to Asynchronous Programming and Twisted”.

Here are two more presentations that introduce event-driven programming in Python

	Alex Martelli - Don’t call us, we’ll call you: callback patterns and idioms [https://www.youtube.com/watch?v=LCZRJStwkKM]

	Glyph Lefkowitz - So Easy You Can Even Do It in JavaScript: Event-Driven Architecture for Regular Programmers [http://www.pyvideo.org/video/1681/so-easy-you-can-even-do-it-in-javascript-event-d]

Another highly recommended reading is The Reactive Manifesto [http://www.reactivemanifesto.org] which describes guiding principles, motivations and connects the dots

Non-blocking means the ability to make continuous progress in order to for the application to be responsive at all times, even under failure and burst scenarios. For this all resources needed for a response—for example CPU, memory and network—must not be monopolized. As such it can enable both lower latency, higher throughput and better scalability.

—The Reactive Manifesto [http://www.reactivemanifesto.org]

The fact that Autobahn is implemented using asynchronous programming and non-blocking execution shouldn’t come as a surprise, since both Twisted [https://twistedmatrix.com/trac/] and asyncio [https://docs.python.org/3/library/asyncio.html] - the foundations upon which Autobahn runs - are asynchronous network programming frameworks.

On the other hand, the principles of asynchronous programming are independent of Twisted and asyncio. For example, other frameworks that fall into the same category are:

	NodeJS [http://nodejs.org/]

	Boost/ASIO [http://think-async.com/]

	Netty [http://netty.io/]

	Tornado [http://www.tornadoweb.org/]

	React [http://reactphp.org/]

Tip

While getting accustomed to the asynchronous way of thinking takes some time and effort, the knowledge and experience acquired can be translated more or less directly to other frameworks in the asynchronous category.

Other forms of Concurrency

Asynchronous programming is not the only approach to concurrency. Other styles of concurrency include

	OS Threads [http://en.wikipedia.org/wiki/Thread_%28computing%29]

	Green Threads [http://en.wikipedia.org/wiki/Green_threads]

	Actors [http://en.wikipedia.org/wiki/Actor_model]

	Software Transactional Memory (STM) [http://en.wikipedia.org/wiki/Software_transactional_memory]

Obviously, we cannot go into much detail with all of above. But here are some pointers for further reading if you want to compare and contrast asynchronous programming with other approaches.

With the Actor model a system is composed of a set of actors which are independently running, executing sequentially and communicate strictly by message passing. There is no shared state at all. This approach is used in systems like

	Erlang [http://www.erlang.org/]

	Akka [http://akka.io/]

	Rust [http://www.rust-lang.org/]

	C++ Actor Framework [http://actor-framework.org/]

Software Transactional Memory (STM) applies the concept of Optimistic Concurrency Control [http://en.wikipedia.org/wiki/Optimistic_concurrency_control] from the persistent database world to (transient) program memory. Instead of lettings programs directly modify memory, all operations are first logged (inside a transaction), and then applied atomically - but only if no conflicting transaction has committed in the meantime. Hence, it’s “optimistic” in that it assumes to be able to commit “normally”, but needs to handle the failing at commit time.

Green Threads is using light-weight, run-time level threads and thread scheduling instead of OS threads. Other than that, systems are implemented similar: green threads still block, and still do share state. Python has multiple efforts in this category:

	Eventlet [http://eventlet.net/]

	Gevent [http://gevent.org/]

	Stackless [http://www.stackless.com/]

Twisted or asyncio?

Since Autobahn runs on both Twisted and asyncio, which networking framework should you use?

Even more so, as the core of Twisted and asyncio is very similar and relies on the same concepts:

	Twisted

	asyncio

	Description

	Deferred

	Future

	abstraction of a value which isn’t available yet

	Reactor

	Event Loop

	waits for and dispatches events

	Transport

	Transport

	abstraction of a communication channel (stream or datagram)

	Protocol

	Protocol

	this is where actual networking protocols are implemented

	Protocol Factory

	Protocol Factory

	responsible for creating protocol instances

In fact, I’d say the biggest difference between Twisted and asyncio is Deferred vs Future. Although similar on surface, their semantics are different. Deferred supports the concept of chainable callbacks (which can mutate the return values), and separate error-backs (which can cancel errors). Future has just a callback, that always gets a single argument: the Future.

Also, asyncio is opinionated towards co-routines. This means idiomatic user code for asyncio is expected to use co-routines, and not plain Futures (which are considered too low-level for application code).

But anyway, with asyncio being part of the language standard library (since Python 3.4), wouldn’t you just always use asyncio? At least if you don’t have a need to support already existing Twisted based code.

The truth is that while the core of Twisted and asyncio are very similar, Twisted has a much broader scope: Twisted is “batteries included” for network programming.

So you get tons of actual network protocols already out-of-the-box - in production quality implementations!

asyncio does not include any actual application layer network protocols like HTTP. If you need those, you’ll have to look for asyncio implementations outside the standard library. For example, here [https://github.com/KeepSafe/aiohttp] is a HTTP server and client library for asyncio.

Over time, an ecosystem of protocols will likely emerge around asyncio also. But right now, Twisted has a big advantage here.

If you want to read more on this, Glyph (Twisted original author) has a nice blog post here [https://glyph.twistedmatrix.com/2014/05/the-report-of-our-death.html].

Resources

Below we are listing a couple of resources on the Web for Twisted and asyncio that you may find useful.

Twisted Resources

We cannot give an introduction to asynchronous programming with Twisted here. And there is no need to, since there is lots of great stuff on the Web. In particular we’d like to recommend the following resources.

If you have limited time and nevertheless want to have an in-depth view of Twisted, Jessica McKellar has a great presentation recording with Architecting an event-driven networking engine: Twisted Python [https://www.youtube.com/watch?v=3R4gP6Egh5M]. That’s 45 minutes. Highly recommended.

If you really want to get it, Dave Peticolas has written an awesome Introduction to Asynchronous Programming and Twisted [http://krondo.com/?page_id=1327]. This is a detailed, hands-on tutorial with lots of code examples that will take some time to work through - but you actually learn how to program with Twisted.

Then of course there is

	The Twisted Documentation [https://twisted.readthedocs.org/]

	The Twisted API Reference [https://twistedmatrix.com/documents/current/api/]

and lots and lots of awesome Twisted talks [http://www.pyvideo.org/search?models=videos.video&q=twisted] on PyVideo.

Asyncio Resources

asyncio is very new (August 2014). So the amount of material on the Web is still limited. Here are some resources you may find useful:

	Guido van Rossum’s Keynote at PyCon US 2013 [http://pyvideo.org/video/1667/keynote-1]

	Tulip: Async I/O for Python 3 [http://www.youtube.com/watch?v=1coLC-MUCJc]

	Python 3.4 docs - asyncio [http://docs.python.org/3.4/library/asyncio.html]

	PEP-3156 - Asynchronous IO Support Rebooted [http://www.python.org/dev/peps/pep-3156/]

	OSB 2015 - How Do Python Coroutines Work? - A. Jesse Jiryu Davis [http://www.youtube.com/watch?v=GSk0tIjDT10]

However, we quickly introduce core asynchronous programming primitives provided by Twisted [https://twistedmatrix.com/] and asyncio [https://docs.python.org/3.4/library/asyncio.html]:

Asynchronous Programming Primitives

In this section, we have a quick look at some of the asynchronous programming primitive provided by Twisted and asyncio to show similarities and differences.

Twisted Deferreds and inlineCallbacks

Documentation pointers:

	Introduction to Deferreds [https://twisted.readthedocs.org/en/latest/core/howto/defer-intro.html]

	Deferreds Reference [https://twisted.readthedocs.org/en/latest/core/howto/defer.html]

	Twisted inlineCallbacks [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.html#inlineCallbacks]

Programming with Twisted Deferreds involves attaching callbacks to Deferreds which get called when the Deferred finally either resolves successfully or fails with an error

d = some_function() # returns a Twisted Deferred ..

def on_success(res):
 print("result: {}".format(res))

def on_error(err):
 print("error: {}".format(err))

d.addCallbacks(on_success, on_error)

Using Deferreds offers the greatest flexibility since you are able to pass around Deferreds freely and can run code concurrently.

However, using plain Deferreds comes at a price: code in this style looks very different from synchronous/blocking code and the code can become hard to follow.

Now, Twisted inlineCallbacks [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.html#inlineCallbacks] let you write code in a sequential looking manner that nevertheless executes asynchronously and non-blocking under the hood.

So converting above snipped to inlineCallbacks the code will look like

try:
 res = yield some_function()
 print("result: {}".format(res))
except Exception as err:
 print("error: {}".format(err))

As you can see, this code looks very similar to regular synchronous/blocking Python code. The only difference (on surface) is the use of yield when calling a function that runs asynchronously. Otherwise, you process success result values and exceptions exactly as with regular code.

Note

We’ll only show basic usage here - for a more basic and complete introduction, please have a look at this chapter [http://krondo.com/?p=2441] from this tutorial [http://krondo.com/?page_id=1327].

Example

The following demonstrates basic usage of inlineCallbacks in a complete example you can run.

First, consider this program using Deferreds. We simulate calling a slow function by sleeping (without blocking) inside the function slow_square

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	from twisted.internet import reactor
from twisted.internet.defer import Deferred

def slow_square(x):
 d = Deferred()

 def resolve():
 d.callback(x * x)

 reactor.callLater(1, resolve)
 return d

def test():
 d = slow_square(3)

 def on_success(res):
 print(res)
 reactor.stop()

 d.addCallback(on_success)

test()
reactor.run()

This is just regular Twisted code - nothing exciting here:

	We create a Deferred to be returned by our slow_square function (line 5)

	We create a function resolve (a closure) in which we resolve the previously created Deferred with the result (lines 7-8)

	Then we ask the Twisted reactor to call resolve after 1 second (line 10)

	And we return the previously created Deferred to the caller (line 11)

What you can see even with this trivial example already is that the code looks quite differently from synchronous/blocking code. It needs some practice until such code becomes natural to read.

Now, when converted to inlineCallbacks, the code becomes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from twisted.internet import reactor
from twisted.internet.defer import inlineCallbacks, returnValue
from autobahn.twisted.util import sleep

@inlineCallbacks
def slow_square(x):
 yield sleep(1)
 returnValue(x * x)

@inlineCallbacks
def test():
 res = yield slow_square(3)
 print(res)
 reactor.stop()

test()
reactor.run()

Have a look at the highlighted lines - here is what we do:

	Decorating our squaring function with inlineCallbacks (line 5). Doing so marks the function as a coroutine which allows us to use this sequential looking coding style.

	Inside the function, we simulate the slow execution by sleeping for a second (line 7). However, we are sleeping in a non-blocking way (autobahn.twisted.util.sleep()). The yield will put the coroutine aside until the sleep returns.

	To return values from Twisted coroutines, we need to use returnValue (line 8).

Note

The reason returnValue is necessary goes deep into implementation details of Twisted and Python. In short: co-routines in Python 2 with Twisted are simulated using exceptions. Only Python 3.3+ has gotten native support for co-routines using the new yield from statement, Python 3.5+ use await statement and it is the new recommended method.

In above, we are using a little helper autobahn.twisted.util.sleep() for sleeping “inline”. The helper is really trivial:

from twisted.internet import reactor
from twisted.internet.defer import Deferred

def sleep(delay):
 d = Deferred()
 reactor.callLater(delay, d.callback, None)
 return d

The rest of the program is just for driving our test function and running a Twisted reactor.

Asyncio Futures and Coroutines

Asyncio Futures [http://docs.python.org/3.4/library/asyncio-task.html#future] like Twisted Deferreds encapsulate the result of a future computation. At the time of creation, the result is (usually) not yet available, and will only be available eventually.

On the other hand, asyncio futures are quite different from Twisted Deferreds. One difference is that they have no built-in machinery for chaining.

Asyncio Coroutines [http://docs.python.org/3.5/library/asyncio-task.html#coroutines] are (on a certain level) quite similar to Twisted inline callbacks. Here is the code corresponding to our example above:

Example

The following demonstrates basic usage of asyncio.coroutine in a complete example you can run.

First, consider this program using plain asyncio.Future. We simulate calling a slow function by sleeping (without blocking) inside the function slow_square

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	import asyncio

def slow_square(x):
 f = asyncio.Future()

 def resolve():
 f.set_result(x * x)

 loop = asyncio.get_event_loop()
 loop.call_later(1, resolve)

 return f

def test():
 f = slow_square(3)

 def done(f):
 res = f.result()
 print(res)

 f.add_done_callback(done)

 return f

loop = asyncio.get_event_loop()
loop.run_until_complete(test())
loop.close()

Using asyncio in this way is probably quite unusual. This is because asyncio is opinionated towards using coroutines from the beginning. Anyway, here is what above code does:

	We create a Future to be returned by our slow_square function (line 4)

	We create a function resolve (a closure) in which we resolve the previously created Future with the result (lines 6-7)

	Then we ask the asyncio event loop to call resolve after 1 second (line 10)

	And we return the previously created Future to the caller (line 12)

What you can see even with this trivial example already is that the code looks quite differently from synchronous/blocking code. It needs some practice until such code becomes natural to read.

Now, when converted to asyncio.coroutine, the code becomes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	import asyncio

async def slow_square(x):
 await asyncio.sleep(1)
 return x * x

async def test():
 res = await slow_square(3)
 print(res)

loop = asyncio.get_event_loop()
loop.run_until_complete(test())

The main differences (on surface) are:

	The declaration of the function with async keyword (line 3) in asyncio versus the decorator @defer.inlineCallbacks with Twisted

	The use of defer.returnValue in Twisted for returning values whereas in asyncio, you can use plain returns (line 6)

	The use of await in asyncio, versus yield in Twisted (line 5)

	The auxiliary code to get the event loop started and stopped

Most of the examples that follow will show code for both Twisted and asyncio, unless the conversion is trivial.

WebSocket Programming

This guide introduces WebSocket programming with Autobahn.

You’ll see how to create WebSocket server (“Creating Servers”) and client applications (“Creating Clients”).

Resources:

	Example Code for this Guide: Twisted-based [https://github.com/crossbario/autobahn-python/tree/master/examples/twisted/websocket/echo] or asyncio-based [https://github.com/crossbario/autobahn-python/tree/master/examples/asyncio/websocket/echo]

	More WebSocket Examples

Creating Servers

Using Autobahn you can create WebSocket servers that will be able to talk to any (compliant) WebSocket client, including browsers.

We’ll cover how to define the behavior of your WebSocket server by writing protocol classes and show some boilerplate for actually running a WebSocket server using the behavior defined in the server protocol.

Server Protocols

To create a WebSocket server, you need to write a protocol class to specify the behavior of the server.

For example, here is a protocol class for a WebSocket echo server that will simply echo back any WebSocket message it receives:

class MyServerProtocol(WebSocketServerProtocol):

 def onMessage(self, payload, isBinary):
 ## echo back message verbatim
 self.sendMessage(payload, isBinary)

This is just three lines of code, but we will go through each one carefully, since writing protocol classes like above really is core to WebSocket programming using Autobahn.

The first thing to note is that you derive your protocol class from a base class provided by Autobahn. Depending on whether you write a Twisted or a asyncio based application, here are the base classes to derive from:

	autobahn.twisted.websocket.WebSocketServerProtocol

	autobahn.asyncio.websocket.WebSocketServerProtocol

So a Twisted-based echo protocol would import the base protocol from autobahn.twisted.websocket and derive from autobahn.twisted.websocket.WebSocketServerProtocol

Twisted:

from autobahn.twisted.websocket import WebSocketServerProtocol

class MyServerProtocol(WebSocketServerProtocol):

 def onMessage(self, payload, isBinary):
 ## echo back message verbatim
 self.sendMessage(payload, isBinary)

while an asyncio echo protocol would import the base protocol from autobahn.asyncio.websocket and derive from autobahn.asyncio.websocket.WebSocketServerProtocol

asyncio:

from autobahn.asyncio.websocket import WebSocketServerProtocol

class MyServerProtocol(WebSocketServerProtocol):

 def onMessage(self, payload, isBinary):
 ## echo back message verbatim
 self.sendMessage(payload, isBinary)

Note

In this example, only the imports differ between the Twisted and the asyncio variant. The rest of the code is identical. However, in most real world programs you probably won’t be able to or don’t want to avoid using network framework specific code.

Receiving Messages

The second thing to note is that we override a callback onMessage which is called by Autobahn whenever the callback related event happens.

In case of onMessage, the callback will be called whenever a new WebSocket message was received. There are more WebSocket related callbacks, but for now the onMessage callback is all we need.

When our server receives a WebSocket message, the autobahn.websocket.interfaces.IWebSocketChannel.onMessage() will fire with the message payload received.

The payload is always a Python byte string. Since WebSocket is able to transmit text (UTF8) and binary payload, the actual payload type is signaled via the isBinary flag.

When the payload is text (isBinary == False), the bytes received will be an UTF8 encoded string. To process text payloads, the first thing you often will do is decoding the UTF8 payload into a Python string:

s = payload.decode('utf8')

Tip

You don’t need to validate the bytes for actually being valid UTF8 - Autobahn does that already when receiving the message.

When using WebSocket text messages with JSON payload, typical code for receiving and decoding messages into Python objects that works on both Python 2 and 3 would look like this:

import json
obj = json.loads(payload.decode('utf8'))

We are using the Python standard JSON module json [https://docs.python.org/3/library/json.html#module-json].

The payload (which is of type bytes on Python 3 and str on Python 2) is decoded from UTF8 into a native Python string, and then parsed from JSON into a native Python object.

Sending Messages

The third thing to note is that we use methods like sendMessage provided by the base class to perform WebSocket related actions, like sending a WebSocket message.

As there are more methods for performing other actions (like closing the connection), we’ll come back to this later, but for now, the sendMessage method is all we need.

autobahn.websocket.interfaces.IWebSocketChannel.sendMessage() takes the payload to send in a WebSocket message as Python bytes. Since WebSocket is able to transmit payloads of text (UTF8) and binary type, you need to tell Autobahn the actual type of the payload bytes. This is done using the isBinary flag.

Hence, to send a WebSocket text message, you will usually encode the payload to UTF8:

payload = s.encode('utf8')
self.sendMessage(payload, isBinary = False)

Warning

Autobahn will NOT validate the bytes of a text payload being sent for actually being valid UTF8. You MUST ensure that you only provide valid UTF8 when sending text messages. If you produce invalid UTF8, a conforming WebSocket peer will close the WebSocket connection due to the protocol violation.

When using WebSocket text messages with JSON payload, typical code for encoding and sending Python objects that works on both Python 2 and 3 would look like this:

import json
payload = json.dumps(obj, ensure_ascii = False).encode('utf8')

We are using the Python standard JSON module json [https://docs.python.org/3/library/json.html#module-json].

The ensure_ascii == False option allows the JSON serializer to use Unicode strings. We can do this since we are encoding to UTF8 afterwards anyway. And UTF8 can represent the full Unicode character set.

Running a Server

Now that we have defined the behavior of our WebSocket server in a protocol class, we need to actually start a server based on that behavior.

Doing so involves two steps:

	Create a Factory for producing instances of our protocol class

	Create a TCP listening server using the former Factory

Here is one way of doing that when using Twisted

Twisted:

if __name__ == '__main__':

 import sys

 from twisted.python import log
 from twisted.internet import reactor
 log.startLogging(sys.stdout)

 from autobahn.twisted.websocket import WebSocketServerFactory
 factory = WebSocketServerFactory()
 factory.protocol = MyServerProtocol

 reactor.listenTCP(9000, factory)
 reactor.run()

What we are doing here is

	Setup Twisted logging

	Create a autobahn.twisted.websocket.WebSocketServerFactory and set our MyServerProtocol on the factory (the highlighted lines)

	Start a server using the factory, listening on TCP port 9000

Similar, here is the asyncio way

asyncio:

if __name__ == '__main__':

 try:
 import asyncio
 except ImportError:
 ## Trollius >= 0.3 was renamed
 import trollius as asyncio

 from autobahn.asyncio.websocket import WebSocketServerFactory
 factory = WebSocketServerFactory()
 factory.protocol = MyServerProtocol

 loop = asyncio.get_event_loop()
 coro = loop.create_server(factory, '127.0.0.1', 9000)
 server = loop.run_until_complete(coro)

 try:
 loop.run_forever()
 except KeyboardInterrupt:
 pass
 finally:
 server.close()
 loop.close()

What we are doing here is

	Import asyncio, or the Trollius backport

	Create a autobahn.asyncio.websocket.WebSocketServerFactory and set our MyServerProtocol on the factory (the highlighted lines)

	Start a server using the factory, listening on TCP port 9000

Note

As can be seen, the boilerplate to create and run a server differ from Twisted, but the core code of creating a factory and setting our protocol (the highlighted lines) is identical (other than the differing import for the WebSocket factory).

You can find complete code for above examples here:

	WebSocket Echo (Twisted-based) [https://github.com/crossbario/autobahn-python/tree/master/examples/twisted/websocket/echo]

	WebSocket Echo (Asyncio-based) [https://github.com/crossbario/autobahn-python/tree/master/examples/asyncio/websocket/echo]

Connection Lifecycle

As we have seen above, Autobahn will fire callbacks on your protocol class whenever the event related to the respective callback occurs.

It is in these callbacks that you will implement application specific code.

The core WebSocket interface autobahn.websocket.interfaces.IWebSocketChannel provides the following callbacks:

	autobahn.websocket.interfaces.IWebSocketChannel.onConnect()

	autobahn.websocket.interfaces.IWebSocketChannel.onOpen()

	autobahn.websocket.interfaces.IWebSocketChannel.onMessage()

	autobahn.websocket.interfaces.IWebSocketChannel.onClose()

We have already seen the callback for Receiving Messages. This callback will usually fire many times during the lifetime of a WebSocket connection.

In contrast, the other three callbacks above each only fires once for a given connection.

Opening Handshake

Whenever a new client connects to the server, a new protocol instance will be created and the autobahn.websocket.interfaces.IWebSocketChannel.onConnect() callback fires as soon as the WebSocket opening handshake is begun by the client.

For a WebSocket server protocol, onConnect() will fire with
autobahn.websocket.protocol.ConnectionRequest providing information on the client wishing to connect via WebSocket.

class MyServerProtocol(WebSocketServerProtocol):

 def onConnect(self, request):
 print("Client connecting: {}".format(request.peer))

On the other hand, for a WebSocket client protocol, onConnect() will fire with
autobahn.websocket.protocol.ConnectionResponse providing information on the WebSocket connection that was accepted by the server.

class MyClientProtocol(WebSocketClientProtocol):

 def onConnect(self, response):
 print("Connected to Server: {}".format(response.peer))

In this callback you can do things like

	checking or setting cookies or other HTTP headers

	verifying the client IP address

	checking the origin of the WebSocket request

	negotiate WebSocket subprotocols

For example, a WebSocket client might offer to speak several WebSocket subprotocols. The server can inspect the offered protocols in onConnect() via the supplied instance of autobahn.websocket.protocol.ConnectionRequest. When the server accepts the client, it’ll chose one of the offered subprotocols. The client can then inspect the selected subprotocol in it’s onConnect() callback in the supplied instance of autobahn.websocket.protocol.ConnectionResponse.

Connection Open

The autobahn.websocket.interfaces.IWebSocketChannel.onOpen() callback fires when the WebSocket opening handshake has been successfully completed. You now can send and receive messages over the connection.

class MyProtocol(WebSocketProtocol):

 def onOpen(self):
 print("WebSocket connection open.")

Closing a Connection

The core WebSocket interface autobahn.websocket.interfaces.IWebSocketChannel provides the following methods:

	autobahn.websocket.interfaces.IWebSocketChannel.sendMessage()

	autobahn.websocket.interfaces.IWebSocketChannel.sendClose()

We’ve already seen one of above in Sending Messages.

The autobahn.websocket.interfaces.IWebSocketChannel.sendClose() will initiate a WebSocket closing handshake. After starting to close a WebSocket connection, no messages can be sent. Eventually, the autobahn.websocket.interfaces.IWebSocketChannel.onClose() callback will fire.

After a WebSocket connection has been closed, the protocol instance will get recycled. Should the client reconnect, a new protocol instance will be created and a new WebSocket opening handshake performed.

Connection Close

When the WebSocket connection has closed, the autobahn.websocket.interfaces.IWebSocketChannel.onClose() callback fires.

class MyProtocol(WebSocketProtocol):

 def onClose(self, wasClean, code, reason):
 print("WebSocket connection closed: {}".format(reason))

When the connection has closed, no messages will be received anymore and you cannot send messages also. The protocol instance won’t be reused. It’ll be garbage collected. When the client reconnects, a completely new protocol instance will be created.

Creating Clients

Note

Creating WebSocket clients using Autobahn works very similar to creating WebSocket servers. Hence you should have read through Creating Servers first.

As with servers, the behavior of your WebSocket client is defined by writing a protocol class.

Client Protocols

To create a WebSocket client, you need to write a protocol class to specify the behavior of the client.

For example, here is a protocol class for a WebSocket client that will send a WebSocket text message as soon as it is connected and log any WebSocket messages it receives:

class MyClientProtocol(WebSocketClientProtocol):

 def onOpen(self):
 self.sendMessage(u"Hello, world!".encode('utf8'))

 def onMessage(self, payload, isBinary):
 if isBinary:
 print("Binary message received: {0} bytes".format(len(payload)))
 else:
 print("Text message received: {0}".format(payload.decode('utf8')))

Similar to WebSocket servers, you derive your WebSocket client protocol class from a base class provided by Autobahn. Depending on whether you write a Twisted or a asyncio based application, here are the base classes to derive from:

	autobahn.twisted.websocket.WebSocketClientProtocol

	autobahn.asyncio.websocket.WebSocketClientProtocol

So a Twisted-based protocol would import the base protocol from autobahn.twisted.websocket and derive from autobahn.twisted.websocket.WebSocketClientProtocol

Twisted:

from autobahn.twisted.websocket import WebSocketClientProtocol

class MyClientProtocol(WebSocketClientProtocol):

 def onOpen(self):
 self.sendMessage(u"Hello, world!".encode('utf8'))

 def onMessage(self, payload, isBinary):
 if isBinary:
 print("Binary message received: {0} bytes".format(len(payload)))
 else:
 print("Text message received: {0}".format(payload.decode('utf8')))

while an asyncio-based protocol would import the base protocol from autobahn.asyncio.websocket and derive from autobahn.asyncio.websocket.WebSocketClientProtocol

asyncio:

from autobahn.asyncio.websocket import WebSocketClientProtocol

class MyClientProtocol(WebSocketClientProtocol):

 def onOpen(self):
 self.sendMessage(u"Hello, world!".encode('utf8'))

 def onMessage(self, payload, isBinary):
 if isBinary:
 print("Binary message received: {0} bytes".format(len(payload)))
 else:
 print("Text message received: {0}".format(payload.decode('utf8')))

Note

In this example, only the imports differs between the Twisted and the asyncio variant. The rest of the code is identical. However, in most real world programs you probably won’t be able to or don’t want to avoid using network framework specific code.

Receiving and sending WebSocket messages as well as connection lifecycle in clients works exactly the same as with servers. Please see

	Receiving Messages

	Sending Messages

	Connection Lifecycle

Running a Client

Now that we have defined the behavior of our WebSocket client in a protocol class, we need to actually start a client based on that behavior.

Doing so involves two steps:

	Create a Factory for producing instances of our protocol class

	Create a TCP connecting client using the former Factory

Here is one way of doing that when using Twisted

Twisted:

if __name__ == '__main__':

 import sys

 from twisted.python import log
 from twisted.internet import reactor
 log.startLogging(sys.stdout)

 from autobahn.twisted.websocket import WebSocketClientFactory
 factory = WebSocketClientFactory()
 factory.protocol = MyClientProtocol

 reactor.connectTCP("127.0.0.1", 9000, factory)
 reactor.run()

What we are doing here is

	Setup Twisted logging

	Create a autobahn.twisted.websocket.WebSocketClientFactory and set our MyClientProtocol on the factory (the highlighted lines)

	Start a client using the factory, connecting to localhost 127.0.0.1 on TCP port 9000

Similar, here is the asyncio way

asyncio:

if __name__ == '__main__':

 try:
 import asyncio
 except ImportError:
 ## Trollius >= 0.3 was renamed
 import trollius as asyncio

 from autobahn.asyncio.websocket import WebSocketClientFactory
 factory = WebSocketClientFactory()
 factory.protocol = MyClientProtocol

 loop = asyncio.get_event_loop()
 coro = loop.create_connection(factory, '127.0.0.1', 9000)
 loop.run_until_complete(coro)
 loop.run_forever()
 loop.close()

What we are doing here is

	Import asyncio, or the Trollius backport

	Create a autobahn.asyncio.websocket.WebSocketClientFactory and set our MyClientProtocol on the factory (the highlighted lines)

	Start a client using the factory, connecting to localhost 127.0.0.1 on TCP port 9000

Note

As can be seen, the boilerplate to create and run a client differ from Twisted, but the core code of creating a factory and setting our protocol (the highlighted lines) is identical (other than the differing import for the WebSocket factory).

You can find complete code for above examples here:

	WebSocket Echo (Twisted-based) [https://github.com/crossbario/autobahn-python/tree/master/examples/twisted/websocket/echo]

	WebSocket Echo (Asyncio-based) [https://github.com/crossbario/autobahn-python/tree/master/examples/asyncio/websocket/echo]

WebSocket Options

You can pass various options on both client and server side WebSockets; these are accomplished by calling autobahn.websocket.WebSocketServerFactory.setProtocolOptions() or autobahn.websocket.WebSocketClientFactory.setProtocolOptions() with keyword arguments for each option.

Common Options (server and client)

	logOctets: if True, log every byte

	logFrames: if True, log information about each frame

	trackTimings: if True, enable debug timing code

	utf8validateIncoming: if True (default), validate all incoming UTF8

	applyMask: if True (default) apply mask to frames, when available

	maxFramePayloadSize: if 0 (default), unlimited-sized frames allowed

	maxMessagePayloadSize: if 0 (default), unlimited re-assembled payloads

	autoFragmentSize: if 0 (default), don’t fragment

	failByDrop: if True (default), failed connections are terminated immediately

	echoCloseCodeReason: if True, echo back the close reason/code

	openHandshakeTimeout: timeout in seconds after which opening handshake will be failed (default: no timeout)

	closeHandshakeTimeout: timeout in seconds after which close handshake will be failed (default: no timeout)

	tcpNoDelay: if True (default), set NODELAY (Nagle) socket option

	autoPingInterval: if set, seconds between auto-pings

	autoPingTimeout: if set, seconds until a ping is considered timed-out

	autoPingSize: bytes of random data to send in ping messages (between 4 [default] and 125)

Server-Only Options

	versions: what versions to claim support for (default 8, 13)

	webStatus: if True (default), show a web page if visiting this endpoint without an Upgrade header

	requireMaskedClientFrames: if True (default), client-to-server frames must be masked

	maskServerFrames: if True, server-to-client frames must be masked

	perMessageCompressionAccept: if provided, a single-argument callable

	serveFlashSocketPolicy: if True, server a flash policy file (default: False)

	flashSocketPolicy: the actual flash policy to serve (default one allows everything)

	allowedOrigins: a list of origins to allow, with embedded *’s for wildcards; these are turned into regular expressions (e.g. https://*.example.com:443 becomes ^https://.*.example.com:443$). When doing the matching, the origin is always of the form scheme://host:port with an explicit port. By default, we match with * (that is, anything). To match all subdomains of example.com on any scheme and port, you’d need *://*.example.com:*

	maxConnections: total concurrent connections allowed (default 0, unlimited)

	trustXForwardedFor: number of trusted web servers (reverse proxies) in front of this server which set the X-Forwarded-For header

Client-Only Options

	version: which version we are (default: 18)

	acceptMaskedServerFrames: if True, accept masked server-to-client frames (default False)

	maskClientFrames: if True (default), mask client-to-server frames

	serverConnectionDropTimeout: how long (in seconds) to wait for server to drop the connection when closing (default 1)

	perMessageCompressionOffers:

	perMessageCompressionAccept:

Upgrading

From < 0.7.0

Starting with release 0.7.0, Autobahn now supports both Twisted and asyncio as the underlying network library. This required renaming some modules.

Hence, code for Autobahn < 0.7.0

from autobahn.websocket import WebSocketServerProtocol

should be modified for Autobahn >= 0.7.0 for (using Twisted)

from autobahn.twisted.websocket import WebSocketServerProtocol

or (using asyncio)

from autobahn.asyncio.websocket import WebSocketServerProtocol

Two more small changes:

	The method WebSocketProtocol.sendMessage had parameter binary renamed to isBinary (for consistency with onMessage)

	The ConnectionRequest object no longer provides peerstr, but only peer, and the latter is a plain, descriptive string (this was needed since we now support both Twisted and asyncio, and also non-TCP transports)

WAMP Programming

This guide gives an introduction to programming with WAMP [http://wamp.ws] in Python using Autobahn. (Go straight to WAMP Examples)

WAMP provides two communication patterns for application components to talk to each other

	Remote Procedure Calls

	Publish & Subscribe

and we will cover all four interactions involved in above patterns

	Registering Procedures for remote calling

	Calling Procedures remotely

	Subscribing to Topics for receiving events

	Publishing Events to topics

Note that WAMP is a “routed” protocol, and defines a Dealer and Broker role. Practically speaking, this means that any WAMP client needs a WAMP Router to talk to. We provide an open-source one called Crossbar [http://crossbar.io] (there are other routers [http://wamp.ws/implementations/#routers] available). See also the WAMP specification [http://wamp.ws/spec/] for more details

Tip

If you are new to WAMP or want to learn more about the design principles behind WAMP, we have a longer text here [http://wamp.ws/why/].

Application Components

WAMP is all about creating systems from loosely coupled application components. These application components are where your application-specific code runs.

A WAMP-based system consists of potentially many application components, which all connect to a WAMP router. The router is generic, which means, it does not run any application code, but only provides routing of events and calls.

These components use either Remote Procedure Calls (RPC) or Publish/Subscribe (PubSub) to communicate. Each component can do any mix of: register, call, subscribe or publish.

For RPC, an application component registers a callable method at a URI (“endpoint”), and other components call it via that endpoint.

In the Publish/Subscribe model, interested components subscribe to an event URI and when a publish to that URI happens, the event payload is routed to all subscribers:

Hence, to create a WAMP application, you:

	write application components

	connect the components to a router

Note that each component can do any mix of registering, calling, subscribing and publishing – it is entirely up to you to logically group functionality as suits your problem space.

Creating Components

There are two ways to create components using Autobahn. One is based on deriving from a particular class and overriding methods and the other is based on functions and decorators. The latter is the recommended approach (but note that many examples and existing code use the subclassing approach). Both are fine and end up calling the same code under the hood.

For both approaches you get to decide if you prefer to use Twisted or asyncio and express this through import. This is autobahn.twisted.* versus autobahn.asyncio.*

When using Twisted you import from autobahn.twisted.component:

from autobahn.twisted.component import Component

comp = Component(...)

@comp.on_join
def joined(session, details):
 print("session ready")

whereas when you are using asyncio:

 from autobahn.asyncio.component import Component

 comp = Component(...)

 @comp.on_join
 def joined(session, details):
 print("session ready")

As can be seen, the only difference between Twisted and asyncio is the import (line 1). The rest of the code is identical. For Twisted, you can use @inlineCallbacks or return Deferred from methods decorated with on_join; in Python 3 (with asyncio or Twisted) you would use coroutines (async def).

There are four “life cycle” events that Autobahn will trigger on your components: connect, join, leave, and disconnect. These all have corresponding decorators (or you can use code like comp.on('join', the_callback) if you prefer). We go over these events later.

Running Components

To actually make use of an application components, the component needs to connect to a WAMP router.
Autobahn includes a run() function that does the heavy lifting for you.

 from autobahn.twisted.component import Component
 from autobahn.twisted.component import run

 comp = Component(
 transports=u"ws://localhost:8080/ws",
 realm=u"realm1",
)

 @comp.on_join
 def joined(session, details):
 print("session ready")

 if __name__ == "__main__":
 run([comp])

and with asyncio:

 from autobahn.asyncio.component import Component
 from autobahn.asyncio.component import run

 comp = Component(
 transports=u"ws://localhost:8080/ws",
 realm=u"realm1",
)

 @comp.on_join
 async def joined(session, details):
 print("session ready")

 if __name__ == "__main__":
 run([comp])

As can be seen, the only difference between Twisted and asyncio is the import (line 1 and 2). The rest of the code is identical.

The configuration of the component is specified when you construct it; the above is the bare minimum – you can specify many transports (which will be tried and re-tried in order) as well as authentication options, the realm to join, re-connection parameters, etcetera. See Component Configuration Options for details. A single Python program can run many different Component instances at once and you can interconnect these as you see fit – so a single program can have multiple WAMP connections (e.g. to different Realms or different WAMP routers) at once.

Tip

A Realm is a routing namespace and an administrative domain for WAMP. For example, a single WAMP router can manage multiple Realms, and those realms are completely separate: an event published to topic T on a Realm R1 is NOT received by a subscribe to T on Realm R2.

Running Subclass-Style Components

You can use the same “component” APIs to run a component based on subclassing ApplicationSession. In older code it’s common to see autobahn.twisted.wamp.ApplicationRunner or autobahn.asyncio.wamp.ApplicationRunner. This runner lacks many of the options of the autobahn.twisted.component.run() or autobahn.asyncio.component.run() functions, so although it can still be useful you likely want to upgrade to run().

All you need to do is set the session_factory of a autobahn.twisted.component.Component instance to your autobahn.twisted.wamp.ApplicationSession subclass (or pass it as a kwarg when creating the Component)

comp = Component(
 session_factory=MyApplicationSession,
)

Patterns for More Complicated Applications

Many of the examples in this documentation use a decorator style with fixed, static WAMP URIs for registrations and subscriptions. If you have a more complex application, you might want to create URIs at run-time or link several Component instances together.

It is important to remember that Component handles re-connection – this implies there are times when your component is not connected. The on_join handlers are run whenever a fresh WAMP session is started, so this is the appropriate way to hook in “initialization”-style code (on_leave is where “un-initialization” code goes). Note that each new WAMP session will use a new instance of ApplicationSession.

Here’s a slightly more complex example that is a small Klein [https://github.com/twisted/klein] Web application that publishes to a WAMP session when a certian URL is requested (note that the Crossbario.io router supports various REST-style integrations [https://crossbar.io/docs/HTTP-Bridge/] already). Using a similar pattern, you could tie together two or more Component instances (even connecting to two or more different WAMP routers).

from autobahn.twisted.component import Component
from twisted.internet.defer import inlineCallbacks, Deferred
from twisted.internet.endpoints import TCP4ServerEndpoint
from twisted.web.server import Site
from twisted.internet.task import react

pip install klein
from klein import Klein

class WebApplication(object):
 """
 A simple Web application that publishes an event every time the
 url "/" is visited.
 """
 def __init__(self, app, wamp_comp):
 self._app = app
 self._wamp = wamp_comp
 self._session = None # "None" while we're disconnected from WAMP router

 # associate ourselves with WAMP session lifecycle
 self._wamp.on('join', self._initialize)
 self._wamp.on('leave', self._uninitialize)
 # hook up Klein routes
 self._app.route(u"/", branch=True)(self._render_slash)

 def _initialize(self, session, details):
 print("Connected to WAMP router")
 self._session = session

 def _uninitialize(self, session, reason):
 print(session, reason)
 print("Lost WAMP connection")
 self._session = None

 def _render_slash(self, request):
 if self._session is None:
 request.setResponseCode(500)
 return b"No WAMP session\n"
 self._session.publish(u"com.myapp.request_served")
 return b"Published to 'com.myapp.request_served'\n"

@inlineCallbacks
def main(reactor):
 component = Component(
 transports=u"ws://localhost:8080/ws",
 realm=u"crossbardemo",
)
 app = Klein()
 webapp = WebApplication(app, component)

 # have our Web site listen on 8090
 site = Site(app.resource())
 server_ep = TCP4ServerEndpoint(reactor, 8090)
 port = yield server_ep.listen(site)
 print("Web application on {}".format(port))

 # we don't *have* to hand over control of the reactor to
 # component.run -- if we don't want to, we call .start()
 # The Deferred it returns fires when the component is "completed"
 # (or errbacks on any problems).
 comp_d = component.start(reactor)

 # When not using run() we also must start logging ourselves.
 import txaio
 txaio.start_logging(level='info')

 # If the Component raises an exception we want to exit. Note that
 # things like failing to connect will be swallowed by the
 # re-connection mechanisms already so won't reach here.

 def _failed(f):
 print("Component failed: {}".format(f))
 done.errback(f)
 comp_d.addErrback(_failed)

 # wait forever (unless the Component raises an error)
 done = Deferred()
 yield done

if __name__ == '__main__':
 react(main)

Longer Example

Here is a more-complete example showing some of the options you can pass when setting up a Component. This example can be run against the Crossbar.io router configuration that comes with Autobahn – just run crossbar start in examples/router/ in your clone.

Twisted:

from autobahn.twisted.component import Component, run
from autobahn.twisted.util import sleep
from autobahn.wamp.types import RegisterOptions
from twisted.internet.defer import inlineCallbacks, returnValue

to see how this works on the Crossbar.io side, see the example
router configuration in:
https://github.com/crossbario/autobahn-python/blob/master/examples/router/.crossbar/config.json

component = Component(
 # you can configure multiple transports; here we use two different
 # transports which both exist in the demo router
 transports=[
 {
 u"type": u"websocket",
 u"url": u"ws://localhost:8080/auth_ws",
 u"endpoint": {
 u"type": u"tcp",
 u"host": u"localhost",
 u"port": 8080,
 },
 # you can set various websocket options here if you want
 u"options": {
 u"open_handshake_timeout": 100,
 }
 },
],
 # authentication can also be configured (this will only work on
 # the demo router on the first transport above)
 authentication={
 u"cryptosign": {
 u'authid': u'alice',
 # this key should be loaded from disk, database etc never burned into code like this...
 u'privkey': '6e3a302aa67d55ffc2059efeb5cf679470b37a26ae9ac18693b56ea3d0cd331c',
 }
 },
 # must provide a realm
 realm=u"crossbardemo",
)

@component.on_join
@inlineCallbacks
def join(session, details):
 print("joined {}: {}".format(session, details))
 yield sleep(1)
 print("Calling 'com.example'")
 res = yield session.call(u"example.foo", 42, something="nothing")
 print("Result: {}".format(res))
 yield session.leave()

@component.register(
 u"example.foo",
 options=RegisterOptions(details_arg='details'),
)
@inlineCallbacks
def foo(*args, **kw):
 print("foo called: {}, {}".format(args, kw))
 for x in range(5, 0, -1):
 print(" returning in {}".format(x))
 yield sleep(1)
 print("returning '42'")
 returnValue(42)

if __name__ == "__main__":
 run([component])

The Python3 / asyncio version of the same example is nearly identical except for some imports (and the use of async def instead of Twisted’s decorators):

asyncio:

from autobahn.asyncio.component import Component, run
from asyncio import sleep
from autobahn.wamp.types import RegisterOptions

to see how this works on the Crossbar.io side, see the example
router configuration in:
https://github.com/crossbario/autobahn-python/blob/master/examples/router/.crossbar/config.json

component = Component(
 # you can configure multiple transports; here we use two different
 # transports which both exist in the demo router
 transports=[
 {
 u"type": u"websocket",
 u"url": u"ws://localhost:8080/auth_ws",
 u"endpoint": {
 u"type": u"tcp",
 u"host": u"localhost",
 u"port": 8080,
 },
 # you can set various websocket options here if you want
 u"options": {
 u"open_handshake_timeout": 100,
 }
 },
],
 # authentication can also be configured (this will only work on
 # the demo router on the first transport above)
 authentication={
 u"cryptosign": {
 u'authid': u'alice',
 # this key should be loaded from disk, database etc never burned into code like this...
 u'privkey': '6e3a302aa67d55ffc2059efeb5cf679470b37a26ae9ac18693b56ea3d0cd331c',
 }
 },
 # must provide a realm
 realm=u"crossbardemo",
)

@component.on_join
async def join(session, details):
 print("joined {}: {}".format(session, details))
 await sleep(1)
 print("Calling 'com.example'")
 res = await session.call(u"example.foo", 42, something="nothing")
 print("Result: {}".format(res))
 await session.leave()

@component.register(
 u"example.foo",
 options=RegisterOptions(details_arg='details'),
)
async def foo(*args, **kw):
 print("foo called: {}, {}".format(args, kw))
 for x in range(5, 0, -1):
 print(" returning in {}".format(x))
 await sleep(1)
 print("returning '42'")
 return 42

if __name__ == "__main__":
 run([component])

Component Configuration Options

Most of the arguments given when creating a new Component are a series of dict instances containing “configuration”-style information. These are documented in autobahn.wamp.component.Component so we go through the most important ones here:

transports=

You may define any number of transports; these are tried in round-robin order when doing connections (and subsequent re-connections). If the is_fatal= predicate is used and returns True for any errors, that transport won’t be used any more (and when no transports remain, the Component has “failed”).

Each transport is defined similarly to “connecting transports” [https://crossbar.io/docs/WebSocket-Transport/#connecting-transports] in Crossbar.io but as a simplification a plain unicode URI may be used, for example transports=u"ws://example.com/ws" or transports=[u"ws://example.com/ws"]. If using a dict instead of a string you can specify the following keys:

	type: "websocket" (default) or "rawsocket"

	url: the URL of the router to connect to (very often, this will be the same as the “endpoint” host but not always)

	endpoint: (optional; can be inferred from above)
- type: "tcp" or "unix"
- host, port: only for type="tcp"
- path: only for type="unix"
- tls: bool (advanced Twisted users can pass CertificateOptions); this is also inferred from a wss: scheme.

In addition, each transport may have some options related to re-connections:

	max_retries: (default -1, “try forever”) or a hard limit.

	max_retry_delay: (default 300)

	initial_retry_delay: (default 1.5) how long we wait to re-connect the first time

	retry_delay_growth: (default 1.5) a multiplier expanding our delay each try (so the second re-connect we wait retry_delay_growth * initial_retry_delay seconds).

	retry_delay_jitter: (default 0.1) percent of total retry delay to add/subtract as jitter

After a successful connection, all re-connection values are set back to their original values.

realm=

Each WAMP Session is associated with precisely one realm, and so is each Component. A “realm” is a logically separated WAMP URI space (and is isolated from all other realms that may exist on a WAMP router). You must pass a unicode string here.

session_factory=

Leaving this as None should be fine for most users. You may pass an ApplicationSession subclass here (or even a callable that takes a single config argument and returns an instance implementing IApplicationSession) to create new session objects. This can be used by users of the “subclass”-style API who still want to take advantage of the configuration of Component and run(). The session argument passed in many of the callbacks will be an instance of this (see also Session Lifecycle).

authentication=

This contains a dict mapping an authenticator name to its configuration. You do not have to have any authentication information, in which case anonymous will be used. Currently valid authenticators are: anonymous, ticket, wampcra, cryptosign (experimental) and scram (experimental).

Typically the administrator of your WAMP router will decide which authentication methods are allowed. See for example Crossbar.io’s authentication documentation [https://crossbar.io/docs/Authentication/] for some discussion of the various methods.

anonymous accepts no options. Most methods accept options for:

	authextra: application-specific information

	authid: unicode username

	authrole: the desired role inside the realm

The other authentication methods take additional options as indicated
below:

	wampcra: also accepts secret (the password)

	cryptosign (experimental): also accepts privkey, the hex-encoded ed25519 private key

	scram (experimental): also requires nonce (hex-encoded), kdf ("argon2id-13" or "pbkdf2"), salt (hex-encoded), iterations (integer) and optionally memory (integer) and channel_binding (currently ignored).

	ticket: accepts only the ticket option

Running a WAMP Router

The component we’ve created attempts to connect to a WAMP router running locally which accepts connections on port 8080, and for a realm crossbardemo.

Our suggested way is to use Crossbar.io [http://crossbar.io] as your WAMP router. There are other WAMP routers [http://wamp.ws/implementations#routers] besides Crossbar.io as well.

Once you’ve installed Crossbar.io [http://crossbar.io/docs/Quick-Start/], run the example configuration from examples/router in your Autobahn clone. If you want to start fresh, you can instead do this:

crossbar init

This will create the default Crossbar.io node configuration ./.crossbar/config.json. You can then start Crossbar.io by doing:

crossbar start

Note: The defaults in the above will not work with the examples in the repository nor this documentation; please use the example router configuration that ships with Autobahn (in examples/router/.crossbar/).

Remote Procedure Calls

Remote Procedure Call (RPC) is a messaging pattern involving peers of three roles:

	Caller

	Callee

	Dealer

A Caller issues calls to remote procedures by providing the procedure URI and any arguments for the call. The Callee will execute the procedure using the supplied arguments to the call and return the result of the call to the Caller.

Callees register procedures they provide with Dealers. Callers initiate procedure calls first to Dealers. Dealers route calls incoming from Callers to Callees implementing the procedure called, and route call results back from Callees to Callers.

The Caller and Callee will usually run application code, while the Dealer works as a generic router for remote procedure calls decoupling Callers and Callees. Thus, the Caller can be in a separate process (even a separate implementation language) from the Callee.

Registering Procedures

To make a procedure available for remote calling, the procedure needs to be registered. Registering a procedure is done by calling ICallee.register from a session.

Here is an example using Twisted; note that we’ve eliminated the configuration of the Component for clarity; see above for full example.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from autobahn.twisted.component import Component, run

component = Component(...)

@component.on_join
@inlineCallbacks
def joined(session, details):
 print("session ready")

 def add2(x, y):
 return x + y

 try:
 yield session.register(add2, u'com.myapp.add2')
 print("procedure registered")
 except Exception as e:
 print("could not register procedure: {0}".format(e))

The procedure add2 is registered (line 14) under the URI u"com.myapp.add2" immediately in the on_join callback which fires when the session has connected to a Router and joined a Realm. Another way to arrange for procedures to be registered is with the @register decorator:

	1
2
3
4
5
6
7

	from autobahn.twisted.component import Component, run

component = Component(...)

@component.register
def add2(x, y):
 return x + y

Tip

You can register local functions like in above example, global functions as well as methods on class instances. Further, procedures can also be automatically registered using decorators.

When the registration succeeds, authorized callers will immediately be able to call the procedure (see Calling Procedures) using the URI under which it was registered (u"com.myapp.add2").

A registration may also fail, e.g. when a procedure is already registered under the given URI or when the session is not authorized to register procedures.

Using asyncio, the example looks identical except for the imports (note that add could be async def here if it needed to do other work).

	1
2
3
4
5
6
7

	from autobahn.asyncio.component import Component, run

component = Component(...)

@component.register
def add2(x, y):
 return x + y

The differences compared with the Twisted variant are:

	the import of ApplicationSession

	the use of async keyword to declare co-routines

	the use of await instead of yield

Calling Procedures

Calling a procedure (that has been previously registered) is done using autobahn.wamp.interfaces.ICaller.call().

Here is how you would call the procedure add2 that we registered in Registering Procedures under URI com.myapp.add2 in Twisted

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from autobahn.twisted.component import Component, run
from twisted.internet.defer import inlineCallbacks

component = Component(...)

@component.on_join
@inlineCallbacks
def joined(session, details):
 print("session ready")
 try:
 res = yield session.call(u'com.myapp.add2', 2, 3)
 print("call result: {}".format(res))
 except Exception as e:
 print("call error: {0}".format(e))

And here is the same done on asyncio

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	from autobahn.asyncio.component import Component, run

component = Component(...)

@component.on_join
async def joined(session, details):
 print("session ready")
 try:
 res = await session.call(u'com.myapp.add2', 2, 3)
 print("call result: {}".format(res))
 except Exception as e:
 print("call error: {0}".format(e))

Publish & Subscribe

Publish & Subscribe (PubSub) is a messaging pattern involving peers of three roles:

	Publisher

	Subscriber

	Broker

A Publisher publishes events to topics by providing the topic URI and any payload for the event. Subscribers of the topic will receive the event together with the event payload.

Subscribers subscribe to topics they are interested in with Brokers. Publishers initiate publication first at a Broker. Brokers route events incoming from Publishers to Subscribers that are subscribed to respective topics.

The Publisher and Subscriber will usually run application code, while the Broker works as a generic router for events thus decoupling Publishers from Subscribers. That is, there can be many Subscribers written in different languages on different machines which can all receive a single event published by an independant Publisher.

Subscribing to Topics

To receive events published to a topic, a session needs to first subscribe to the topic. Subscribing to a topic is done by calling autobahn.wamp.interfaces.ISubscriber.subscribe().

Here is a Twisted example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from autobahn.twisted.component import Component
from twisted.internet.defer import inlineCallbacks

component = Component(...)

@component.on_join
@inlineCallbacks
def joined(session, details):
 print("session ready")

 def oncounter(count):
 print("event received: {0}", count)

 try:
 yield session.subscribe(oncounter, u'com.myapp.oncounter')
 print("subscribed to topic")
 except Exception as e:
 print("could not subscribe to topic: {0}".format(e))

We create an event handler function oncounter (you can name that as you like) which will get called whenever an event for the topic is received.

To subscribe (line 15), we provide the event handler function (oncounter) and the URI of the topic to which we want to subscribe (u'com.myapp.oncounter').

When the subscription succeeds, we will receive any events published to u'com.myapp.oncounter'. Note that we won’t receive events published before the subscription succeeds.

The corresponding asyncio code looks like this

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from autobahn.twisted.component import Component

component = Component(...)

@component.on_join
async def joined(session, details):
 print("session ready")

 def oncounter(count):
 print("event received: {0}", count)

 try:
 yield session.subscribe(oncounter, u'com.myapp.oncounter')
 print("subscribed to topic")
 except Exception as e:
 print("could not subscribe to topic: {0}".format(e))

Again, nearly identical to Twisted. Note that when using the Component APIs we can use a shortcut to the above (e.g. perhaps there’s nothing else to do in on_join). This shortcut works similarly for Twisted, so we only show an asyncio example:

	1
2
3
4
5
6
7
8

	from autobahn.twisted.component import Component

component = Component(...)

@component.subscribe(u"com.myapp.oncounter")
def oncounter(count):
 print("event received: {0}", count)

Publishing Events

Publishing an event to a topic is done by calling autobahn.wamp.interfaces.IPublisher.publish().

Events can carry arbitrary positional and keyword based payload – as long as the payload is serializable in JSON.

Here is a Twisted example that will publish an event to topic u'com.myapp.oncounter' with a single (positional) payload being a counter that is incremented for each publish:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	from autobahn.twisted.component import Component
from autobahn.twisted.util import sleep
from twisted.internet.defer import inlineCallbacks

component = Component(...)

@component.on_join
@inlineCallbacks
def joined(session, details):
 print("session ready")

 counter = 0
 while True:
 # publish() only returns a Deferred if we asked for an acknowledgement
 session.publish(u'com.myapp.oncounter', counter)
 counter += 1
 yield sleep(1)

The corresponding asyncio code looks like this

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	from autobahn.asyncio.component import Component
from asyncio import sleep

component = Component(...)

@component.on_join
async def joined(session, details):
 print("session ready")

 counter = 0
 while True:
 # publish() is only async if we asked for an acknowledgement
 session.publish(u'com.myapp.oncounter', counter)
 counter += 1
 await sleep(1)

When publishing, you can pass an options= kwarg which is an instance of PublishOptions. Many of the options require support from the router.

	whitelisting and blacklisting (all the eligible* and exclude* options) can affect which subscribers receive the publish; see crossbar documentation [http://crossbar.io/docs/Subscriber-Black-and-Whitelisting/] for more information;

	retain= asks the router to retain the message;

	acknowledge= asks the router to notify you it received the publish (note that this does not wait for every subscriber to have received the publish) and causes publish() to return a Future/Deferred.

Tip

By default, a publisher will not receive an event it publishes even when the publisher is itself subscribed to the topic subscribed to. This behavior can be overridden; see PublishOptions and exclude_me=False.

Tip

By default, publications are unacknowledged. This means, a publish() may fail silently (like when the session is not authorized to publish to the given topic). This behavior can be overridden; see PublishOptions and acknowledge=True.

Session Lifecycle

A WAMP application component has this lifecycle:

	component created

	transport connected (ISession.onConnect called)

	authentication challenge received (only for authenticated WAMP sessions, ISession.onChallenge called)

	session established (realm joined, ISession.onJoin called)

	session closed (realm left, ISession.onLeave called)

	transport disconnected (ISession.onDisconnect called)

In the Component API, there are similar corresponding events. The biggest difference is the lack of “challenge” events (you pass authentication configuration instead) and the addition of a “ready” event. You can subscribe to these events directly using a “listener” style API or via decorators. The events are:

	“connect”: transport connected

	“join”: session has successfully joined a realm

	“ready”: indicates that the realm has been joined and all “join” handlers have completed (including async ones)

	“leave”: session has left a realm

	“disconnect”: transport has disconnected

You can use the method autobahn.wamp.component.Component.on() to subscribe directly to events with a listener-function. For example, component.on('ready', my_ready_listener). Note that on a single Component instance these callbacks can happen multiple times (e.g. if the component is disconnected and then reconnects, its connect message will fire again after the disconnect). However, they will always be in order (i.e. you can’t join until after a connect and ready always comes after join).

There is also still the older “subclassing” based API, which is still supported and can be used if you prefer. This API involves subclassing ApplicationSession and overriding methods corresponding to the events (see ISession for more information):

class CustomSession(ApplicationSession):
 def __init__(self, config=None):
 ApplicationSession.__init__(self, config)
 print("component created")

 def onConnect(self):
 print("transport connected")
 self.join(self.config.realm)

 def onChallenge(self, challenge):
 print("authentication challenge received")

 def onJoin(self, details):
 print("session joined")

 def onLeave(self, details):
 print("session left")

 def onDisconnect(self):
 print("transport disconnected")

Logging

Internally, Autobahn uses txaio [https://github.com/crossbario/txaio] as an abstraction layer over Twisted and asyncio APIs. txaio [https://github.com/crossbario/txaio] also provides an abstracted logging API, which is what both Autobahn and Crossbar [http://crossbar.io] use.

There is a txaio Programming Guide [http://txaio.readthedocs.org/en/latest/programming-guide.html#logging] which includes information on logging. If you are writing new code, you can choose the txaio [https://github.com/crossbario/txaio] APIs for maximum compatibility and runtime-efficiency (see below). If you prefer to write idiomatic logging code to “go with” the event-based frameword you’ve chosen, that’s possible as well. For asyncio [http://docs.python.org/3.4/library/asyncio.html] this is Python’s built-in logging [https://docs.python.org/3.5/library/logging.html] module; for Twisted it is the post-15.2.0 logging API [http://twistedmatrix.com/documents/current/core/howto/logger.html]. The logging system in txaio [https://github.com/crossbario/txaio] is able to interoperate with the legacy Twisted logging API as well.

The txaio [https://github.com/crossbario/txaio] API encourages a more structured approach while still achieving easily-rendered text logging messages. The basic idiom is to use new-style Python formatting strings and pass any “data” as kwargs. So a typical logging call might look like: self.log.info("Knob {frob.name} moved {degrees} right.", knob=an_obj, degrees=42) and if the “info” log level is not enabled, the string won’t be “interpolated” (i.e. str() will not be invoked on any of the args, and a new string won’t be produced). On top of that, logging observers may examine the kwargs and do things beyond “normal” logging. This is very much inspired by twisted.logger; you can read the Twisted logging documentation [http://twistedmatrix.com/documents/current/core/howto/logger.html] for more insight.

Before any logging happens of course you must activate the logging system. There is a convenience method in txaio [https://github.com/crossbario/txaio] called txaio.start_logging. This will use twisted.logger.globalLogBeginner on Twisted or logging.Logger.addHandler under asyncio and allows you to specify and output stream and/or a log level. Valid levels are the list of strings in txaio.interfaces.log_levels. If you’re using the high-level autobahn.twisted.component.run() or autobahn.asyncio.component.run() APIs, logging will be started for you.

If you have instead got your own log-starting code (e.g. twistd) or Twisted/asyncio specific log handlers (logging.Handler subclass on asyncio and ILogObserver implementer under Twisted) then you will still get Autobahn and Crossbar [http://crossbar.io] messages. Probably the formatting will be slightly different from what txaio.start_logging provides. In either case, do not depend on the formatting of the messages e.g. by “screen-scraping” the logs.

We very much recommend using the ``txaio.start_logging()`` method of activating the logging system, as we’ve gone to pains to ensure that over-level logs are a “no-op” and incur minimal runtime cost. We achieve this by re-binding all out-of-scope methods on any logger created by txaio.make_logger() to a do-nothing function (by saving weak-refs of all the loggers created); at least on PyPy [http://pypy.org/] this is very well optimized out. This allows us to be generous with .debug() or .trace() calls without incurring very much overhead. Your Milage May Vary using other methods. If you haven’t called txaio.start_logging() this optimization is not activated.

Upgrading

From < 0.8.0

Starting with release 0.8.0, Autobahn now supports WAMP v2, and also support both Twisted and asyncio. This required changing module naming for WAMP v1 (which is Twisted only).

Hence, WAMP v1 code for Autobahn < 0.8.0

from autobahn.wamp import WampServerFactory

should be modified for Autobahn >= 0.8.0 for (using Twisted)

from autobahn.wamp1.protocol import WampServerFactory

Warning

WAMP v1 will be deprecated with the 0.9 release of Autobahn which is expected in Q4 2014.

From < 0.9.4

Starting with release 0.9.4, all WAMP router code in Autobahn has been split out and moved to Crossbar.io [http://crossbar.io]. Please see the announcement here [https://groups.google.com/d/msg/autobahnws/bCj7O2G2sxA/6-pioJZ_S_MJ].

WebSocket Examples

Basic Examples

Note

The examples here demonstrate WebSocket programming with Autobahn and are available in Twisted and asyncio-based variants respectively.

Echo

Twisted [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo] / asyncio [https://github.com/crossbario/autobahn-python/blob/master/examples/asyncio/websocket/echo]

A simple WebSocket echo server and client.

Slow Square

Twisted [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/slowsquare] / asyncio [https://github.com/crossbario/autobahn-python/blob/master/examples/asyncio/websocket/slowsquare]

This example shows a WebSocket server that will receive a JSON encode float over WebSocket, slowly compute the square, and send back the result.
The example is intended to demonstrate how to use co-routines inside WebSocket handlers.

Testee

Twisted [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/testee] / asyncio [https://github.com/crossbario/autobahn-python/blob/master/examples/asyncio/websocket/testee]

The example implements a testee for testing against Autobahn|Testsuite [http://crossbar.io/autobahn#testsuite].

Additional Examples

Note

The examples here demonstrate various further features and aspects of WebSocket programming with Autobahn. However, these examples are currently only available for Twisted.

Secure WebSocket

Twisted [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo_tls]

How to run WebSocket over TLS (“wss”).

WebSocket and Twisted Web

Twisted [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo_site]

How to run WebSocket under Twisted Web. This is a very powerful feature, as it allows you to create a complete HTTP(S) resource hierarchy with different services like static file serving, REST and WebSocket combined under one server.

Twisted Web, WebSocket and WSGI

Twisted [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo_wsgi]

This example shows how to run Flask (or any other WSGI compliant Web thing) under Twisted Web and combine that with WebSocket.

Secure WebSocket and Twisted Web

Twisted [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo_site_tls]

A variant of the previous example that runs a HTTPS server with secure WebSocket on a subpath.

WebSocket Ping-Pong

Twisted [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/ping]

The example demonstrates how to trigger and process WebSocket pings and pongs.

More

	WebSocket Authentication with Mozilla Persona [https://github.com/crossbario/autobahn-python/tree/master/examples/twisted/websocket/auth_persona]

	Broadcasting over WebSocket [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/broadcast]

	WebSocket Compression [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo_compressed]

	WebSocket over Twisted Endpoints [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo_endpoints]

	Using HTTP Headers with WebSocket [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo_httpheaders]

	WebSocket on Multicore [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo_multicore]

	WebSocket as a Twisted Service [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo_service]

	WebSocket Echo Variants [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo_variants]

	WebSocket Fallbacks [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/echo_wsfallbacks]

	Using multiple WebSocket Protocols [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/multiproto]

	Streaming WebSocket [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/streaming]

	Wrapping Twisted Protocol/Factories over WebSocket [https://github.com/crossbario/autobahn-python/blob/master/examples/twisted/websocket/wrapping]

	Using wxPython with Autobahn [https://github.com/crossbario/autobahn-python/tree/master/examples/twisted/websocket/wxpython]

WAMP Examples

NOTE that for all examples you will need to run a router. We develop Crossbar.io [http://crossbar.io/docs] and there are other routers [http://wamp.ws/implementations/#routers] available as well. We include a working Crossbar.io [http://crossbar.io/docs] configuration in the examples/router/ subdirectory [https://github.com/crossbario/autobahn-python/tree/master/examples/router] as well as instructions on how to run it [https://github.com/crossbario/autobahn-python/blob/master/examples/running-the-examples.md].

Overview of Examples

The examples are organized between asyncio [https://docs.python.org/3.4/library/asyncio.html] and Twisted [https://www.twistedmatrix.com] at the top-level, with similarly-named examples demonstrating the same functionality with the respective framework.

Each example typically includes four things:

	frontend.py: the Caller or Subscriber, in Python

	backend.py: the Callee or Publisher, in Python

	frontend.js: JavaScript version of the frontend

	backend.js: JavaScript version of the backend

	*.html: boilerplate so a browser can run the JavaScript

So for each example, you start one backend and one frontend component (your choice). You can usually start multiple frontend components with no problem, but will get errors if you start two backends trying to register at the same procedure URI (for example).

Still, you are encouraged to try playing with mixing and matching the frontend and backend components, starting multiple front-ends, etc. to explore Crossbar and Autobahn’s behavior. Often the different examples use similar URIs for procedures and published events, so you can even try mixing between the examples.

The provided Crossbar.io [http://crossbar.io/docs] configuration will run a Web server that you can visit at http://localhost:8080 and includes links to the frontend/backend HTML for the javascript versions. Usually these just use console.log() so you’ll have to open up the JavaScript console in your browser to see it working.

Automatically Run All Examples

There is a script (./examples/run-all-examples.py) which runs all the WAMP examples for 5 seconds each, this asciicast [https://asciinema.org/a/9cnar155zalie80c9725nvyk7] shows you how (see comments for how to run it yourself):

 Public API Reference

Public API Reference

The following is a API reference of Autobahn generated from Python source code and docstrings.

Warning

This is a complete reference of the public API of Autobahn.
User code and applications should only rely on the public API, since internal APIs can (and will) change without any guarantees. Anything not listed here is considered a private API.

	Module autobahn.util

	Module autobahn.websocket
	WebSocket Interfaces

	WebSocket Types

	WebSocket Compression

	WebSocket Utilities

	Module autobahn.rawsocket
	RawSocket Utilities

	Module autobahn.wamp
	WAMP Interfaces

	WAMP Types

	WAMP Exceptions

	WAMP Authentication and Encryption

	Module autobahn.wamp.component
	Component

	Module autobahn.twisted
	Component

	WebSocket Protocols and Factories

	WAMP-over-WebSocket Protocols and Factories

	WAMP-over-RawSocket Protocols and Factories

	WAMP Sessions

	Module autobahn.asyncio
	Component

	WebSocket Protocols and Factories

	WAMP-over-WebSocket Protocols and Factories

	WAMP-over-RawSocket Protocols and Factories

	WAMP Sessions

 Module autobahn.util

Module autobahn.util

	
autobahn.util.encode_truncate(text, limit, encoding='utf8', return_encoded=True)

	Given a string, return a truncated version of the string such that
the UTF8 encoding of the string is smaller than the given limit.

This function correctly truncates even in the presence of Unicode code
points that encode to multi-byte encodings which must not be truncated
in the middle.

	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – The (Unicode) string to truncate.

	limit (int [https://docs.python.org/3/library/functions.html#int]) – The number of bytes to limit the UTF8 encoding to.

	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – Truncate the string in this encoding (default is utf-8).

	return_encoded (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, return the string encoded into bytes
according to the specified encoding, else return the string as a string.

	Returns

	The truncated string.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str] or bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
autobahn.util.xor(d1, d2)

	XOR two binary strings of arbitrary (equal) length.

	Parameters

	
	d1 (binary) – The first binary string.

	d2 (binary) – The second binary string.

	Returns

	XOR of the binary strings (XOR(d1, d2))

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
autobahn.util.utcstr(ts=None)

	Format UTC timestamp in ISO 8601 format.

Note: to parse an ISO 8601 formatted string, use the iso8601
module instead (e.g. iso8601.parse_date("2014-05-23T13:03:44.123Z")).

	Parameters

	ts (instance of datetime.datetime [https://docs.python.org/3/library/datetime.html#datetime.datetime] or None) – The timestamp to format.

	Returns

	Timestamp formatted in ISO 8601 format.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
autobahn.util.utcnow()

	Get current time in UTC as ISO 8601 string.

	Returns

	Current time as string in ISO 8601 format.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
autobahn.util.generate_token(char_groups, chars_per_group, chars=None, sep=None, lower_case=False)

	Generate cryptographically strong tokens, which are strings like M6X5-YO5W-T5IK.
These can be used e.g. for used-only-once activation tokens or the like.

The returned token has an entropy of
math.log(len(chars), 2.) * chars_per_group * char_groups
bits.

With the default charset and 4 characters per group, generate_token() produces
strings with the following entropy:

	character groups

	entropy (at least)

	recommended use

	2

	38 bits

	

	3

	57 bits

	one-time activation or pairing code

	4

	76 bits

	secure user password

	5

	95 bits

	

	6

	114 bits

	globally unique serial / product code

	7

	133 bits

	

Here are some examples:

	token(3): 9QXT-UXJW-7R4H

	token(4): LPNN-JMET-KWEP-YK45

	token(6): NXW9-74LU-6NUH-VLPV-X6AG-QUE3

	Parameters

	
	char_groups (int [https://docs.python.org/3/library/functions.html#int]) – Number of character groups (or characters if chars_per_group == 1).

	chars_per_group (int [https://docs.python.org/3/library/functions.html#int]) – Number of characters per character group (or 1 to return a token with no grouping).

	chars (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Characters to choose from. Default is 27 character subset
of the ISO basic Latin alphabet (see: DEFAULT_TOKEN_CHARS).

	sep (str [https://docs.python.org/3/library/stdtypes.html#str]) – When separating groups in the token, the separater string.

	lower_case (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, generate token in lower-case.

	Returns

	The generated token.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
autobahn.util.generate_activation_code()

	Generate a one-time activation code or token of the form u'W97F-96MJ-YGJL'.
The generated value is cryptographically strong and has (at least) 57 bits of entropy.

	Returns

	The generated activation code.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
autobahn.util.generate_user_password()

	Generate a secure, random user password of the form u'kgojzi61dn5dtb6d'.
The generated value is cryptographically strong and has (at least) 76 bits of entropy.

	Returns

	The generated password.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
autobahn.util.generate_serial_number()

	Generate a globally unique serial / product code of the form u'YRAC-EL4X-FQQE-AW4T-WNUV-VN6T'.
The generated value is cryptographically strong and has (at least) 114 bits of entropy.

	Returns

	The generated serial number / product code.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
autobahn.util.rtime()

	Precise, fast wallclock time.

	Returns

	The current wallclock in seconds. Returned values are only guaranteed
to be meaningful relative to each other.

	Return type

	float [https://docs.python.org/3/library/functions.html#float]

 Module autobahn.websocket

Module autobahn.websocket

WebSocket Interfaces

	
class autobahn.websocket.interfaces.IWebSocketChannel

	A WebSocket channel is a bidirectional, full-duplex, ordered, reliable message channel
over a WebSocket connection as specified in RFC6455.

This interface defines a message-based API to WebSocket plus auxiliary hooks
and methods.

	
onConnect(request_or_response)

	Callback fired during WebSocket opening handshake when a client connects (to a server with
request from client) or when server connection established (by a client with response from
server). This method may run asynchronous code.

	Parameters

	request_or_response (Instance of autobahn.websocket.types.ConnectionRequest
or autobahn.websocket.types.ConnectionResponse.) – Connection request (for servers) or response (for clients).

	Returns

	When this callback is fired on a WebSocket server, you may return either None (in
which case the connection is accepted with no specific WebSocket subprotocol) or
an str instance with the name of the WebSocket subprotocol accepted.
When the callback is fired on a WebSocket client, this method must return None.
To deny a connection, raise an Exception.
You can also return a Deferred/Future that resolves/rejects to the above.

	
onOpen()

	Callback fired when the initial WebSocket opening handshake was completed.
You now can send and receive WebSocket messages.

	
sendMessage(payload, isBinary)

	Send a WebSocket message over the connection to the peer.

	Parameters

	
	payload (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The WebSocket message to be sent.

	isBinary (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag indicating whether payload is binary or
UTF-8 encoded text.

	
onMessage(payload, isBinary)

	Callback fired when a complete WebSocket message was received.

	Parameters

	
	payload (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The WebSocket message received.

	isBinary (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag indicating whether payload is binary or
UTF-8 encoded text.

	
sendClose(code=None, reason=None)

	Starts a WebSocket closing handshake tearing down the WebSocket connection.

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – An optional close status code (1000 for normal close or 3000-4999 for
application specific close).

	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional close reason (a string that when present, a status
code MUST also be present).

	
onClose(wasClean, code, reason)

	Callback fired when the WebSocket connection has been closed (WebSocket closing
handshake has been finished or the connection was closed uncleanly).

	Parameters

	
	wasClean (bool [https://docs.python.org/3/library/functions.html#bool]) – True iff the WebSocket connection was closed cleanly.

	code (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Close status code as sent by the WebSocket peer.

	reason (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Close reason as sent by the WebSocket peer.

	
class autobahn.websocket.interfaces.IWebSocketServerChannelFactory(url=None, protocols=None, server=None, headers=None, externalPort=None)

	WebSocket server protocol factories implement this interface, and create
protocol instances which in turn implement
autobahn.websocket.interfaces.IWebSocketChannel.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WebSocket URL this factory is working for, e.g. ws://myhost.com/somepath.
For non-TCP transports like pipes or Unix domain sockets, provide None.
This will use an implicit URL of ws://localhost.

	protocols (list of str) – List of subprotocols the server supports. The subprotocol used is the first from the list of subprotocols announced by the client that is contained in this list.

	server (str [https://docs.python.org/3/library/stdtypes.html#str]) – Server as announced in HTTP response header during opening handshake.

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – An optional mapping of additional HTTP headers to send during the WebSocket opening handshake.

	externalPort (int [https://docs.python.org/3/library/functions.html#int]) – Optionally, the external visible port this server will be reachable under (i.e. when running behind a L2/L3 forwarding device).

	
setSessionParameters(url=None, protocols=None, server=None, headers=None, externalPort=None)

	Set WebSocket session parameters.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WebSocket URL this factory is working for, e.g. ws://myhost.com/somepath.
For non-TCP transports like pipes or Unix domain sockets, provide None.
This will use an implicit URL of ws://localhost.

	protocols (list of str) – List of subprotocols the server supports. The subprotocol used is the first from the list of subprotocols announced by the client that is contained in this list.

	server (str [https://docs.python.org/3/library/stdtypes.html#str]) – Server as announced in HTTP response header during opening handshake.

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – An optional mapping of additional HTTP headers to send during the WebSocket opening handshake.

	externalPort (int [https://docs.python.org/3/library/functions.html#int]) – Optionally, the external visible port this server will be reachable under (i.e. when running behind a L2/L3 forwarding device).

	
setProtocolOptions(versions=None, webStatus=None, utf8validateIncoming=None, maskServerFrames=None, requireMaskedClientFrames=None, applyMask=None, maxFramePayloadSize=None, maxMessagePayloadSize=None, autoFragmentSize=None, failByDrop=None, echoCloseCodeReason=None, openHandshakeTimeout=None, closeHandshakeTimeout=None, tcpNoDelay=None, perMessageCompressionAccept=None, autoPingInterval=None, autoPingTimeout=None, autoPingSize=None, serveFlashSocketPolicy=None, flashSocketPolicy=None, allowedOrigins=None, allowNullOrigin=False, maxConnections=None, trustXForwardedFor=0)

	Set WebSocket protocol options used as defaults for new protocol instances.

	Parameters

	
	versions (list of ints or None [https://docs.python.org/3/library/constants.html#None]) – The WebSocket protocol versions accepted by the server (default: autobahn.websocket.protocol.WebSocketProtocol.SUPPORTED_PROTOCOL_VERSIONS()).

	webStatus (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – Return server status/version on HTTP/GET without WebSocket upgrade header (default: True).

	utf8validateIncoming (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – Validate incoming UTF-8 in text message payloads (default: True).

	maskServerFrames (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – Mask server-to-client frames (default: False).

	requireMaskedClientFrames (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – Require client-to-server frames to be masked (default: True).

	applyMask (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – Actually apply mask to payload when mask it present. Applies for outgoing and incoming frames (default: True).

	maxFramePayloadSize (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Maximum frame payload size that will be accepted when receiving or 0 for unlimited (default: 0).

	maxMessagePayloadSize (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Maximum message payload size (after reassembly of fragmented messages) that will be accepted when receiving or 0 for unlimited (default: 0).

	autoFragmentSize (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Automatic fragmentation of outgoing data messages (when using the message-based API) into frames with payload length <= this size or 0 for no auto-fragmentation (default: 0).

	failByDrop – Fail connections by dropping the TCP connection without performing closing handshake (default: True).

	echoCloseCodeReason (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – Iff true, when receiving a close, echo back close code/reason. Otherwise reply with code == 1000, reason = “” (default: False).

	openHandshakeTimeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – Opening WebSocket handshake timeout, timeout in seconds or 0 to deactivate (default: 0).

	closeHandshakeTimeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – When we expect to receive a closing handshake reply, timeout in seconds (default: 1).

	tcpNoDelay (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – TCP NODELAY (“Nagle”) socket option (default: True).

	perMessageCompressionAccept (callable or None [https://docs.python.org/3/library/constants.html#None]) – Acceptor function for offers.

	autoPingInterval (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – Automatically send WebSocket pings every given seconds. When the peer does not respond
in autoPingTimeout, drop the connection. Set to 0 to disable. (default: 0).

	autoPingTimeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – Wait this many seconds for the peer to respond to automatically sent pings. If the
peer does not respond in time, drop the connection. Set to 0 to disable. (default: 0).

	autoPingSize (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Payload size for automatic pings/pongs. Must be an integer from [4, 125]. (default: 4).

	serveFlashSocketPolicy (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – Serve the Flash Socket Policy when we receive a policy file request on this protocol. (default: False).

	flashSocketPolicy (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The flash socket policy to be served when we are serving the Flash Socket Policy on this protocol
and when Flash tried to connect to the destination port. It must end with a null character.

	allowedOrigins (list [https://docs.python.org/3/library/stdtypes.html#list] or None [https://docs.python.org/3/library/constants.html#None]) – A list of allowed WebSocket origins (with ‘*’ as a wildcard character).

	allowNullOrigin (bool [https://docs.python.org/3/library/functions.html#bool]) – if True, allow WebSocket connections whose Origin: is “null”.

	maxConnections (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – Maximum number of concurrent connections. Set to 0 to disable (default: 0).

	trustXForwardedFor (int [https://docs.python.org/3/library/functions.html#int]) – Number of trusted web servers in front of this server that add their own X-Forwarded-For header (default: 0)

	
resetProtocolOptions()

	Reset all WebSocket protocol options to defaults.

	
class autobahn.websocket.interfaces.IWebSocketClientChannelFactory(url=None, origin=None, protocols=None, useragent=None, headers=None, proxy=None)

	WebSocket client protocol factories implement this interface, and create
protocol instances which in turn implement
autobahn.websocket.interfaces.IWebSocketChannel.

Note that you MUST provide URL either here or set using
autobahn.websocket.WebSocketClientFactory.setSessionParameters()
before the factory is started.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – WebSocket URL this factory will connect to, e.g. ws://myhost.com/somepath?param1=23.
For non-TCP transports like pipes or Unix domain sockets, provide None.
This will use an implicit URL of ws://localhost.

	origin (str [https://docs.python.org/3/library/stdtypes.html#str]) – The origin to be sent in WebSocket opening handshake or None (default: None).

	protocols (list of strings) – List of subprotocols the client should announce in WebSocket opening handshake (default: []).

	useragent (str [https://docs.python.org/3/library/stdtypes.html#str]) – User agent as announced in HTTP request header or None (default: AutobahnWebSocket/?.?.?).

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – An optional mapping of additional HTTP headers to send during the WebSocket opening handshake.

	proxy (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – Explicit proxy server to use; a dict with host and port keys

	
setSessionParameters(url=None, origin=None, protocols=None, useragent=None, headers=None, proxy=None)

	Set WebSocket session parameters.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – WebSocket URL this factory will connect to, e.g. ws://myhost.com/somepath?param1=23.
For non-TCP transports like pipes or Unix domain sockets, provide None.
This will use an implicit URL of ws://localhost.

	origin (str [https://docs.python.org/3/library/stdtypes.html#str]) – The origin to be sent in opening handshake.

	protocols (list of strings) – List of WebSocket subprotocols the client should announce in opening handshake.

	useragent (str [https://docs.python.org/3/library/stdtypes.html#str]) – User agent as announced in HTTP request header during opening handshake.

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – An optional mapping of additional HTTP headers to send during the WebSocket opening handshake.

	proxy (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – (Optional) a dict with host and port keys specifying a proxy to use

	
setProtocolOptions(version=None, utf8validateIncoming=None, acceptMaskedServerFrames=None, maskClientFrames=None, applyMask=None, maxFramePayloadSize=None, maxMessagePayloadSize=None, autoFragmentSize=None, failByDrop=None, echoCloseCodeReason=None, serverConnectionDropTimeout=None, openHandshakeTimeout=None, closeHandshakeTimeout=None, tcpNoDelay=None, perMessageCompressionOffers=None, perMessageCompressionAccept=None, autoPingInterval=None, autoPingTimeout=None, autoPingSize=None)

	Set WebSocket protocol options used as defaults for _new_ protocol instances.

	Parameters

	
	version (int [https://docs.python.org/3/library/functions.html#int]) – The WebSocket protocol spec (draft) version to be used (default: autobahn.websocket.protocol.WebSocketProtocol.SUPPORTED_PROTOCOL_VERSIONS()).

	utf8validateIncoming (bool [https://docs.python.org/3/library/functions.html#bool]) – Validate incoming UTF-8 in text message payloads (default: True).

	acceptMaskedServerFrames (bool [https://docs.python.org/3/library/functions.html#bool]) – Accept masked server-to-client frames (default: False).

	maskClientFrames (bool [https://docs.python.org/3/library/functions.html#bool]) – Mask client-to-server frames (default: True).

	applyMask (bool [https://docs.python.org/3/library/functions.html#bool]) – Actually apply mask to payload when mask it present. Applies for outgoing and incoming frames (default: True).

	maxFramePayloadSize (int [https://docs.python.org/3/library/functions.html#int]) – Maximum frame payload size that will be accepted when receiving or 0 for unlimited (default: 0).

	maxMessagePayloadSize (int [https://docs.python.org/3/library/functions.html#int]) – Maximum message payload size (after reassembly of fragmented messages) that will be accepted when receiving or 0 for unlimited (default: 0).

	autoFragmentSize (int [https://docs.python.org/3/library/functions.html#int]) – Automatic fragmentation of outgoing data messages (when using the message-based API) into frames with payload length <= this size or 0 for no auto-fragmentation (default: 0).

	failByDrop – Fail connections by dropping the TCP connection without performing closing handshake (default: True).

	echoCloseCodeReason (bool [https://docs.python.org/3/library/functions.html#bool]) – Iff true, when receiving a close, echo back close code/reason. Otherwise reply with code == 1000, reason = “” (default: False).

	serverConnectionDropTimeout (float [https://docs.python.org/3/library/functions.html#float]) – When the client expects the server to drop the TCP, timeout in seconds (default: 1).

	openHandshakeTimeout (float [https://docs.python.org/3/library/functions.html#float]) – Opening WebSocket handshake timeout, timeout in seconds or 0 to deactivate (default: 0).

	closeHandshakeTimeout (float [https://docs.python.org/3/library/functions.html#float]) – When we expect to receive a closing handshake reply, timeout in seconds (default: 1).

	tcpNoDelay (bool [https://docs.python.org/3/library/functions.html#bool]) – TCP NODELAY (“Nagle”): bool socket option (default: True).

	perMessageCompressionOffers (list of instance of subclass of PerMessageCompressOffer) – A list of offers to provide to the server for the permessage-compress WebSocket extension. Must be a list of instances of subclass of PerMessageCompressOffer.

	perMessageCompressionAccept (callable) – Acceptor function for responses.

	autoPingInterval (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – Automatically send WebSocket pings every given seconds. When the peer does not respond
in autoPingTimeout, drop the connection. Set to 0 to disable. (default: 0).

	autoPingTimeout (float [https://docs.python.org/3/library/functions.html#float] or None [https://docs.python.org/3/library/constants.html#None]) – Wait this many seconds for the peer to respond to automatically sent pings. If the
peer does not respond in time, drop the connection. Set to 0 to disable. (default: 0).

	autoPingSize (int [https://docs.python.org/3/library/functions.html#int]) – Payload size for automatic pings/pongs. Must be an integer from [4, 125]. (default: 4).

	
resetProtocolOptions()

	Reset all WebSocket protocol options to defaults.

WebSocket Types

	
class autobahn.websocket.types.ConnectionRequest(peer, headers, host, path, params, version, origin, protocols, extensions)

	Thin-wrapper for WebSocket connection request information provided in
autobahn.websocket.protocol.WebSocketServerProtocol.onConnect() when
a WebSocket client want to establish a connection to a WebSocket server.

	Parameters

	
	peer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Descriptor of the connecting client (e.g. IP address/port
in case of TCP transports).

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – HTTP headers from opening handshake request.

	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – Host from opening handshake HTTP header.

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Path from requested HTTP resource URI. For example, a resource URI of
/myservice?foo=23&foo=66&bar=2 will be parsed to /myservice.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Query parameters (if any) from requested HTTP resource URI.
For example, a resource URI of /myservice?foo=23&foo=66&bar=2 will be
parsed to {'foo': ['23', '66'], 'bar': ['2']}.

	version (int [https://docs.python.org/3/library/functions.html#int]) – The WebSocket protocol version the client announced (and will be
spoken, when connection is accepted).

	origin (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WebSocket origin header or None. Note that this only
a reliable source of information for browser clients!

	protocols (list [https://docs.python.org/3/library/stdtypes.html#list]) – The WebSocket (sub)protocols the client announced. You must
select and return one of those (or None) in
autobahn.websocket.WebSocketServerProtocol.onConnect().

	extensions (list [https://docs.python.org/3/library/stdtypes.html#list]) – The WebSocket extensions the client requested and the
server accepted, and thus will be spoken, once the WebSocket connection
has been fully established.

	
class autobahn.websocket.types.ConnectionResponse(peer, headers, version, protocol, extensions)

	Thin-wrapper for WebSocket connection response information provided in
autobahn.websocket.protocol.WebSocketClientProtocol.onConnect() when
a WebSocket server has accepted a connection request by a client.

Constructor.

	Parameters

	
	peer (str [https://docs.python.org/3/library/stdtypes.html#str]) – Descriptor of the connected server (e.g. IP address/port in case of TCP transport).

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – HTTP headers from opening handshake response.

	version (int [https://docs.python.org/3/library/functions.html#int]) – The WebSocket protocol version that is spoken.

	protocol (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WebSocket (sub)protocol in use.

	extensions (list of str) – The WebSocket extensions in use.

	
class autobahn.websocket.types.ConnectionAccept(subprotocol=None, headers=None)

	Used by WebSocket servers to accept an incoming WebSocket connection.
If the client announced one or multiple subprotocols, the server MUST
select one of the subprotocols announced by the client.

	Parameters

	
	subprotocol (unicode or None [https://docs.python.org/3/library/constants.html#None]) – The WebSocket connection is accepted with the
this WebSocket subprotocol chosen. The value must be a token
as defined by RFC 2616.

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – Additional HTTP headers to send on the WebSocket
opening handshake reply, e.g. cookies. The keys must be unicode,
and the values either unicode or tuple/list. In the latter case
a separate HTTP header line will be sent for each item in
tuple/list.

	
exception autobahn.websocket.types.ConnectionDeny(code, reason=None)

	Throw an instance of this class to deny a WebSocket connection
during handshake in autobahn.websocket.protocol.WebSocketServerProtocol.onConnect().

	Parameters

	
	code (int [https://docs.python.org/3/library/functions.html#int]) – HTTP error code.

	reason (unicode) – HTTP error reason.

WebSocket Compression

	
class autobahn.websocket.compress.PerMessageDeflateOffer(accept_no_context_takeover=True, accept_max_window_bits=True, request_no_context_takeover=False, request_max_window_bits=0)

	Set of extension parameters for permessage-deflate WebSocket extension
offered by a client to a server.

	Parameters

	
	accept_no_context_takeover (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, the client accepts the “no context takeover” feature.

	accept_max_window_bits (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, the client accepts setting “max window size”.

	request_no_context_takeover (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, the client request the “no context takeover” feature.

	request_max_window_bits (int [https://docs.python.org/3/library/functions.html#int]) – When non-zero, the client requests the given “max window size” (must be
and integer from the interval [8..15]).

	
class autobahn.websocket.compress.PerMessageDeflateOfferAccept(offer, request_no_context_takeover=False, request_max_window_bits=0, no_context_takeover=None, window_bits=None, mem_level=None, max_message_size=None)

	Set of parameters with which to accept an permessage-deflate offer
from a client by a server.

	Parameters

	
	offer (Instance of autobahn.compress.PerMessageDeflateOffer.) – The offer being accepted.

	request_no_context_takeover (bool [https://docs.python.org/3/library/functions.html#bool]) – When True, the server requests the “no context takeover” feature.

	request_max_window_bits – When non-zero, the server requests the given “max window size” (must be
and integer from the interval [8..15]).

	request_max_window_bits – int

	no_context_takeover (bool [https://docs.python.org/3/library/functions.html#bool]) – Override server (“server-to-client direction”) context takeover (this must
be compatible with the offer).

	window_bits (int [https://docs.python.org/3/library/functions.html#int]) – Override server (“server-to-client direction”) window size (this must be
compatible with the offer).

	mem_level (int [https://docs.python.org/3/library/functions.html#int]) – Set server (“server-to-client direction”) memory level.

	
class autobahn.websocket.compress.PerMessageDeflateResponse(client_max_window_bits, client_no_context_takeover, server_max_window_bits, server_no_context_takeover)

	Set of parameters for permessage-deflate responded by server.

	Parameters

	
	client_max_window_bits (int [https://docs.python.org/3/library/functions.html#int]) – FIXME

	client_no_context_takeover (bool [https://docs.python.org/3/library/functions.html#bool]) – FIXME

	server_max_window_bits (int [https://docs.python.org/3/library/functions.html#int]) – FIXME

	server_no_context_takeover (bool [https://docs.python.org/3/library/functions.html#bool]) – FIXME

	
class autobahn.websocket.compress.PerMessageDeflateResponseAccept(response, no_context_takeover=None, window_bits=None, mem_level=None, max_message_size=None)

	Set of parameters with which to accept an permessage-deflate response
from a server by a client.

	Parameters

	
	response (Instance of autobahn.compress.PerMessageDeflateResponse.) – The response being accepted.

	no_context_takeover (bool [https://docs.python.org/3/library/functions.html#bool]) – Override client (“client-to-server direction”) context takeover (this must be compatible with response).

	window_bits (int [https://docs.python.org/3/library/functions.html#int]) – Override client (“client-to-server direction”) window size (this must be compatible with response).

	mem_level (int [https://docs.python.org/3/library/functions.html#int]) – Set client (“client-to-server direction”) memory level.

WebSocket Utilities

WebSocket utilities that do not depend on the specific networking framework being used (Twisted or asyncio).

	
autobahn.websocket.util.create_url(hostname, port=None, isSecure=False, path=None, params=None)

	Create a WebSocket URL from components.

	Parameters

	
	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) – WebSocket server hostname (for TCP/IP sockets) or
filesystem path (for Unix domain sockets).

	port (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – For TCP/IP sockets, WebSocket service port or None (to select default
ports 80 or 443 depending on isSecure. When hostname=="unix",
this defines the path to the Unix domain socket instead of a TCP/IP network socket.

	isSecure (bool [https://docs.python.org/3/library/functions.html#bool]) – Set True for secure WebSocket (wss scheme).

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – WebSocket URL path of addressed resource (will be
properly URL escaped). Ignored for RawSocket.

	params (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – A dictionary of key-values to construct the query
component of the addressed WebSocket resource (will be properly URL
escaped). Ignored for RawSocket.

	Returns

	Constructed WebSocket URL.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
autobahn.websocket.util.parse_url(url)

	Parses as WebSocket URL into it’s components and returns a tuple:

	isSecure is a flag which is True for wss URLs.

	host is the hostname or IP from the URL.

and for TCP/IP sockets:

	tcp_port is the port from the URL or standard port derived from
scheme (rs => 80, rss => 443).

or for Unix domain sockets:

	uds_path is the path on the local host filesystem.

	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid WebSocket URL, i.e. ws://localhost:9000 for TCP/IP sockets or
ws://unix:/tmp/file.sock for Unix domain sockets (UDS).

	Returns

	A 6-tuple (isSecure, host, tcp_port, resource, path, params) (TCP/IP) or
(isSecure, host, uds_path, resource, path, params) (UDS).

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

 Module autobahn.rawsocket

Module autobahn.rawsocket

WAMP-RawSocket is an alternative WAMP transport that has less overhead compared to WebSocket, and is vastly simpler to implement. It can run over any stream based underlying transport, such as TCP or Unix domain socket. However, it does NOT run into the browser.

RawSocket Utilities

RawSocket utilities that do not depend on the specific networking framework being used (Twisted or asyncio).

	
autobahn.rawsocket.util.create_url(hostname, port=None, isSecure=False)

	Create a RawSocket URL from components.

	Parameters

	
	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) – RawSocket server hostname (for TCP/IP sockets) or
filesystem path (for Unix domain sockets).

	port (int [https://docs.python.org/3/library/functions.html#int] or str [https://docs.python.org/3/library/stdtypes.html#str]) – For TCP/IP sockets, RawSocket service port or None (to select default
ports 80 or 443 depending on isSecure. When hostname=="unix",
this defines the path to the Unix domain socket instead of a TCP/IP network socket.

	isSecure (bool [https://docs.python.org/3/library/functions.html#bool]) – Set True for secure RawSocket (rss scheme).

	Returns

	Constructed RawSocket URL.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
autobahn.rawsocket.util.parse_url(url)

	Parses as RawSocket URL into it’s components and returns a tuple:

	isSecure is a flag which is True for rss URLs.

	host is the hostname or IP from the URL.

and for TCP/IP sockets:

	tcp_port is the port from the URL or standard port derived from
scheme (rs => 80, rss => 443).

or for Unix domain sockets:

	uds_path is the path on the local host filesystem.

	Parameters

	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – A valid RawSocket URL, i.e. rs://localhost:9000 for TCP/IP sockets or
rs://unix:/tmp/file.sock for Unix domain sockets (UDS).

	Returns

	A 3-tuple (isSecure, host, tcp_port) (TCP/IP) or (isSecure, host, uds_path) (UDS).

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

 Module autobahn.wamp

Module autobahn.wamp

WAMP Interfaces

	
class autobahn.wamp.interfaces.IObjectSerializer

	Raw Python object serialization and deserialization. Object serializers are
used by classes implementing WAMP serializers, that is instances of
autobahn.wamp.interfaces.ISerializer.

	
BINARY

	Flag (read-only) to indicate if serializer requires a binary clean
transport or if UTF8 transparency is sufficient.

	
serialize(obj)

	Serialize an object to a byte string.

	Parameters

	obj (any (serializable type)) – Object to serialize.

	Returns

	Serialized bytes.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
unserialize(payload)

	Unserialize objects from a byte string.

	Parameters

	payload (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Objects to unserialize.

	Returns

	List of (raw) objects unserialized.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
class autobahn.wamp.interfaces.ISerializer

	WAMP message serialization and deserialization.

	
MESSAGE_TYPE_MAP

	Mapping of WAMP message type codes to WAMP message classes.

	
SERIALIZER_ID

	The WAMP serialization format ID.

	
serialize(message)

	Serializes a WAMP message to bytes for sending over a transport.

	Parameters

	message (object implementing autobahn.wamp.interfaces.IMessage) – The WAMP message to be serialized.

	Returns

	A pair (payload, isBinary).

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
unserialize(payload, isBinary)

	Deserialize bytes from a transport and parse into WAMP messages.

	Parameters

	
	payload (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – Byte string from wire.

	is_binary (bool [https://docs.python.org/3/library/functions.html#bool]) – Type of payload. True if payload is a binary string, else
the payload is UTF-8 encoded Unicode text.

	Returns

	List of a.w.m.Message objects.

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]

	
class autobahn.wamp.interfaces.IMessage

	
	
MESSAGE_TYPE

	WAMP message type code.

	
serialize(serializer)

	Serialize this object into a wire level bytes representation and cache
the resulting bytes. If the cache already contains an entry for the given
serializer, return the cached representation directly.

	Parameters

	serializer (object implementing autobahn.wamp.interfaces.ISerializer) – The wire level serializer to use.

	Returns

	The serialized bytes.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
uncache()

	Resets the serialization cache for this message.

	
class autobahn.wamp.interfaces.ITransport

	A WAMP transport is a bidirectional, full-duplex, reliable, ordered,
message-based channel.

	
send(message)

	Send a WAMP message over the transport to the peer. If the transport is
not open, this raises autobahn.wamp.exception.TransportLost.
Returns a deferred/future when the message has been processed and more
messages may be sent. When send() is called while a previous deferred/future
has not yet fired, the send will fail immediately.

	Parameters

	message (object implementing autobahn.wamp.interfaces.IMessage) – The WAMP message to send over the transport.

	Returns

	obj – A Deferred/Future

	
isOpen()

	Check if the transport is open for messaging.

	Returns

	True, if the transport is open.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
close()

	Close the transport regularly. The transport will perform any
closing handshake if applicable. This should be used for any
application initiated closing.

	
abort()

	Abort the transport abruptly. The transport will be destroyed as
fast as possible, and without playing nice to the peer. This should
only be used in case of fatal errors, protocol violations or possible
detected attacks.

	
get_channel_id()

	Return the unique channel ID of the underlying transport. This is used to
mitigate credential forwarding man-in-the-middle attacks when running
application level authentication (eg WAMP-cryptosign) which are decoupled
from the underlying transport.

The channel ID is only available when running over TLS (either WAMP-WebSocket
or WAMP-RawSocket). It is not available for non-TLS transports (plain TCP or
Unix domain sockets). It is also not available for WAMP-over-HTTP/Longpoll.
Further, it is currently unimplemented for asyncio (only works on Twisted).

The channel ID is computed as follows:

	for a client, the SHA256 over the “TLS Finished” message sent by the client
to the server is returned.

	for a server, the SHA256 over the “TLS Finished” message the server expected
the client to send

Note: this is similar to tls-unique as described in RFC5929, but instead
of returning the raw “TLS Finished” message, it returns a SHA256 over such a
message. The reason is that we use the channel ID mainly with WAMP-cryptosign,
which is based on Ed25519, where keys are always 32 bytes. And having a channel ID
which is always 32 bytes (independent of the TLS ciphers/hashfuns in use) allows
use to easily XOR channel IDs with Ed25519 keys and WAMP-cryptosign challenges.

WARNING: For safe use of this (that is, for safely binding app level authentication
to the underlying transport), you MUST use TLS, and you SHOULD deactivate both
TLS session renegotiation and TLS session resumption.

References:

	https://tools.ietf.org/html/rfc5056

	https://tools.ietf.org/html/rfc5929

	http://www.pyopenssl.org/en/stable/api/ssl.html#OpenSSL.SSL.Connection.get_finished

	http://www.pyopenssl.org/en/stable/api/ssl.html#OpenSSL.SSL.Connection.get_peer_finished

	Returns

	The channel ID (if available) of the underlying WAMP transport. The
channel ID is a 32 bytes value.

	Return type

	binary or None [https://docs.python.org/3/library/constants.html#None]

	
class autobahn.wamp.interfaces.ITransportHandler

	
	
transport

	When the transport this handler is attached to is currently open, this property
can be read from. The property should be considered read-only. When the transport
is gone, this property is set to None.

	
onOpen(transport)

	Callback fired when transport is open. May run asynchronously. The transport
is considered running and is_open() would return true, as soon as this callback
has completed successfully.

	Parameters

	transport (object implementing autobahn.wamp.interfaces.ITransport) – The WAMP transport.

	
onMessage(message)

	Callback fired when a WAMP message was received. May run asynchronously. The callback
should return or fire the returned deferred/future when it’s done processing the message.
In particular, an implementation of this callback must not access the message afterwards.

	Parameters

	message (object implementing autobahn.wamp.interfaces.IMessage) – The WAMP message received.

	
onClose(wasClean)

	Callback fired when the transport has been closed.

	Parameters

	wasClean (bool [https://docs.python.org/3/library/functions.html#bool]) – Indicates if the transport has been closed regularly.

	
class autobahn.wamp.interfaces.ISession(config=None)

	Interface for WAMP sessions.

	Parameters

	config (instance of autobahn.wamp.types.ComponentConfig.) – Configuration for session.

	
onUserError(fail, msg)

	This is called when we try to fire a callback, but get an
exception from user code – for example, a registered publish
callback or a registered method. By default, this prints the
current stack-trace and then error-message to stdout.

ApplicationSession-derived objects may override this to
provide logging if they prefer. The Twisted implemention does
this. (See autobahn.twisted.wamp.ApplicationSession)

	Parameters

	
	fail (instance implementing txaio.IFailedFuture) – The failure that occurred.

	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – an informative message from the library. It is
suggested you log this immediately after the exception.

	
onConnect()

	Callback fired when the transport this session will run over has been established.

	
join(realm, authmethods=None, authid=None, authrole=None, authextra=None, resumable=None, resume_session=None, resume_token=None)

	Attach the session to the given realm. A session is open as soon as it is attached to a realm.

	
onChallenge(challenge)

	Callback fired when the peer demands authentication.

May return a Deferred/Future.

	Parameters

	challenge (Instance of autobahn.wamp.types.Challenge.) – The authentication challenge.

	
onWelcome(welcome_msg)

	Callback fired after the peer has successfully authenticated. If
this returns anything other than None/False, the session is
aborted and the return value is used as an error message.

May return a Deferred/Future.

	Parameters

	welcome_msg – The WELCOME message received from the server

	Returns

	None, or an error message

	
onJoin(details)

	Callback fired when WAMP session has been established.

May return a Deferred/Future.

	Parameters

	details (Instance of autobahn.wamp.types.SessionDetails.) – Session information.

	
leave(reason=None, message=None)

	Actively close this WAMP session.

	Parameters

	
	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional URI for the closing reason. If you
want to permanently log out, this should be wamp.close.logout

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional (human readable) closing message, intended for
logging purposes.

	Returns

	may return a Future/Deferred that fires when we’ve disconnected

	
onLeave(details)

	Callback fired when WAMP session has is closed

	Parameters

	details (Instance of autobahn.wamp.types.CloseDetails.) – Close information.

	
disconnect()

	Close the underlying transport.

	
onDisconnect()

	Callback fired when underlying transport has been closed.

	
is_connected()

	Check if the underlying transport is connected.

	
is_attached()

	Check if the session has currently joined a realm.

	
set_payload_codec(payload_codec)

	Set a payload codec on the session. To remove a previously set payload codec,
set the codec to None.

Payload codecs are used with WAMP payload transparency mode.

	Parameters

	payload_codec (object
implementing autobahn.wamp.interfaces.IPayloadCodec or None) – The payload codec that should process application
payload of the given encoding.

	
get_payload_codec()

	Get the current payload codec (if any) for the session.

Payload codecs are used with WAMP payload transparency mode.

	Returns

	The current payload codec or None if no codec is active.

	Return type

	object implementing
autobahn.wamp.interfaces.IPayloadCodec or None

	
define(exception, error=None)

	Defines an exception for a WAMP error in the context of this WAMP session.

	Parameters

	
	exception (A class that derives of Exception.) – The exception class to define an error mapping for.

	error (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URI (or URI pattern) the exception class should be mapped for.
Iff the exception class is decorated, this must be None.

	
call(procedure, *args, **kwargs)

	Call a remote procedure.

This will return a Deferred/Future, that when resolved, provides the actual result
returned by the called remote procedure.

	If the result is a single positional return value, it’ll be returned “as-is”.

	If the result contains multiple positional return values or keyword return values,
the result is wrapped in an instance of autobahn.wamp.types.CallResult.

	If the call fails, the returned Deferred/Future will be rejected with an instance
of autobahn.wamp.exception.ApplicationError.

If kwargs contains an options keyword argument that is an instance of
autobahn.wamp.types.CallOptions, this will provide specific options for
the call to perform.

When the Caller and Dealer implementations support canceling of calls, the call may
be canceled by canceling the returned Deferred/Future.

	Parameters

	
	procedure (unicode) – The URI of the remote procedure to be called, e.g. u"com.myapp.hello".

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – Any positional arguments for the call.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Any keyword arguments for the call.

	Returns

	A Deferred/Future for the call result -

	Return type

	instance of twisted.internet.defer.Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] / asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future]

	
register(endpoint, procedure=None, options=None, prefix=None)

	Register a procedure for remote calling.

When endpoint is a callable (function, method or object that implements __call__),
then procedure must be provided and an instance of
twisted.internet.defer.Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] (when running on Twisted) or an instance
of asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] (when running on asyncio) is returned.

	If the registration succeeds the returned Deferred/Future will resolve to
an object that implements autobahn.wamp.interfaces.IRegistration.

	If the registration fails the returned Deferred/Future will reject with an
instance of autobahn.wamp.exception.ApplicationError.

When endpoint is an object, then each of the object’s methods that is decorated
with autobahn.wamp.register() is automatically registered and a (single)
DeferredList or Future is returned that gathers all individual underlying Deferreds/Futures.

	Parameters

	
	endpoint (callable or object [https://docs.python.org/3/library/functions.html#object]) – The endpoint called under the procedure.

	procedure (unicode) – When endpoint is a callable, the URI (or URI pattern)
of the procedure to register for. When endpoint is an object,
the argument is ignored (and should be None).

	options (instance of autobahn.wamp.types.RegisterOptions.) – Options for registering.

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – if not None, this specifies a prefix to prepend
to all URIs registered for this class. So if there was an
@wamp.register(‘method_foo’) on a method and
prefix=’com.something.’ then a method
‘com.something.method_foo’ would ultimately be registered.

	Returns

	A registration or a list of registrations (or errors)

	Return type

	instance(s) of twisted.internet.defer.Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] / asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future]

	
publish(topic, *args, **kwargs)

	Publish an event to a topic.

If kwargs contains an options keyword argument that is an instance of
autobahn.wamp.types.PublishOptions, this will provide
specific options for the publish to perform.

Note

By default, publications are non-acknowledged and the publication can
fail silently, e.g. because the session is not authorized to publish
to the topic.

When publication acknowledgement is requested via options.acknowledge == True,
this function returns a Deferred/Future:

	If the publication succeeds the Deferred/Future will resolve to an object
that implements autobahn.wamp.interfaces.IPublication.

	If the publication fails the Deferred/Future will reject with an instance
of autobahn.wamp.exception.ApplicationError.

	Parameters

	
	topic (unicode) – The URI of the topic to publish to, e.g. u"com.myapp.mytopic1".

	args (list [https://docs.python.org/3/library/stdtypes.html#list]) – Arbitrary application payload for the event (positional arguments).

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Arbitrary application payload for the event (keyword arguments).

	Returns

	Acknowledgement for acknowledge publications - otherwise nothing.

	Return type

	None or instance of twisted.internet.defer.Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] / asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future]

	
subscribe(handler, topic=None, options=None)

	Subscribe to a topic for receiving events.

When handler is a callable (function, method or object that implements __call__),
then topic must be provided and an instance of
twisted.internet.defer.Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] (when running on Twisted) or an instance
of asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] (when running on asyncio) is returned.

	If the subscription succeeds the Deferred/Future will resolve to an object
that implements autobahn.wamp.interfaces.ISubscription.

	If the subscription fails the Deferred/Future will reject with an instance
of autobahn.wamp.exception.ApplicationError.

When handler is an object, then each of the object’s methods that is decorated
with autobahn.wamp.subscribe() is automatically subscribed as event handlers,
and a list of Deferreds/Futures is returned that each resolves or rejects as above.

	Parameters

	
	handler (callable or object [https://docs.python.org/3/library/functions.html#object]) – The event handler to receive events.

	topic (unicode) – When handler is a callable, the URI (or URI pattern)
of the topic to subscribe to. When handler is an object, this
value is ignored (and should be None).

	options (An instance of autobahn.wamp.types.SubscribeOptions.) – Options for subscribing.

	Returns

	A single Deferred/Future or a list of such objects

	Return type

	instance(s) of twisted.internet.defer.Deferred [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html] / asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future]

	
class autobahn.wamp.interfaces.IPayloadCodec

	WAMP payload codecs are used with WAMP payload transparency mode.

In payload transparency mode, application payloads are transmitted “raw”,
as binary strings, without any processing at the WAMP router.

Payload transparency can be used eg for these use cases:

	end-to-end encryption of application payloads (WAMP-cryptobox)

	using serializers with custom user types, where the serializer and
the serializer implementation has native support for serializing
custom types (such as CBOR)

	transmitting MQTT payloads within WAMP, when the WAMP router is
providing a MQTT-WAMP bridge

	
encode(is_originating, uri, args=None, kwargs=None)

	Encodes application payload.

	Parameters

	
	is_originating (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag indicating whether the encoding
is to be done from an originator (a caller or publisher).

	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WAMP URI associated with the WAMP message for which
the payload is to be encoded (eg topic or procedure).

	args (list [https://docs.python.org/3/library/stdtypes.html#list] or None [https://docs.python.org/3/library/constants.html#None]) – Positional application payload.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – Keyword-based application payload.

	Returns

	The encoded application payload or None to
signal no encoding should be used.

	Return type

	instance of autobahn.wamp.types.EncodedPayload

	
decode(is_originating, uri, encoded_payload)

	Decode application payload.

	Parameters

	
	is_originating (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag indicating whether the encoding
is to be done from an originator (a caller or publisher).

	uri (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WAMP URI associated with the WAMP message for which
the payload is to be encoded (eg topic or procedure).

	payload (instance of autobahn.wamp.types.EncodedPayload) – The encoded application payload to be decoded.

	Returns

	A tuple with the decoded positional and keyword-based
application payload: (uri, args, kwargs)

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

WAMP Types

	
class autobahn.wamp.types.ComponentConfig(realm=None, extra=None, keyring=None, controller=None, shared=None)

	WAMP application component configuration. An instance of this class is
provided to the constructor of autobahn.wamp.protocol.ApplicationSession.

	Parameters

	
	realm (str [https://docs.python.org/3/library/stdtypes.html#str]) – The realm the session would like to join or None to let the router
auto-decide the realm (if the router is configured and allowing to do so).

	extra (arbitrary) – Optional user-supplied object with extra configuration.
This can be any object you like, and is accessible in your
ApplicationSession subclass via self.config.extra. dict is
a good default choice. Important: if the component is to be hosted
by Crossbar.io, the supplied value must be JSON serializable.

	keyring (obj implementing IKeyRing or None [https://docs.python.org/3/library/constants.html#None]) – A mapper from WAMP URIs to “from”/”to” Ed25519 keys. When using
WAMP end-to-end encryption, application payload is encrypted using a
symmetric message key, which in turn is encrypted using the “to” URI (topic being
published to or procedure being called) public key and the “from” URI
private key. In both cases, the key for the longest matching URI is used.

	controller (instance of ApplicationSession or None [https://docs.python.org/3/library/constants.html#None]) – A WAMP ApplicationSession instance that holds a session to
a controlling entity. This optional feature needs to be supported by a WAMP
component hosting run-time.

	shared (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – A dict object to exchange user information or hold user objects shared
between components run under the same controlling entity. This optional feature
needs to be supported by a WAMP component hosting run-time. Use with caution, as using
this feature can introduce coupling between components. A valid use case would be
to hold a shared database connection pool.

	
class autobahn.wamp.types.HelloReturn

	Base class for HELLO return information.

	
class autobahn.wamp.types.Accept(realm=None, authid=None, authrole=None, authmethod=None, authprovider=None, authextra=None)

	Information to accept a HELLO.

	Parameters

	
	realm (str [https://docs.python.org/3/library/stdtypes.html#str]) – The realm the client is joined to.

	authid (str [https://docs.python.org/3/library/stdtypes.html#str]) – The authentication ID the client is assigned, e.g. "joe" or "joe@example.com".

	authrole (str [https://docs.python.org/3/library/stdtypes.html#str]) – The authentication role the client is assigned, e.g. "anonymous", "user" or "com.myapp.user".

	authmethod (str [https://docs.python.org/3/library/stdtypes.html#str]) – The authentication method that was used to authenticate the client, e.g. "cookie" or "wampcra".

	authprovider (str [https://docs.python.org/3/library/stdtypes.html#str]) – The authentication provider that was used to authenticate the client, e.g. "mozilla-persona".

	authextra (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Application-specific authextra to be forwarded to the client in WELCOME.details.authextra.

	
class autobahn.wamp.types.Deny(reason=u'wamp.error.not_authorized', message=None)

	Information to deny a HELLO.

	Parameters

	
	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – The reason of denying the authentication (an URI, e.g. u'wamp.error.not_authorized')

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – A human readable message (for logging purposes).

	
class autobahn.wamp.types.Challenge(method, extra=None)

	Information to challenge the client upon HELLO.

	Parameters

	
	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The authentication method for the challenge (e.g. "wampcra").

	extra (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Any extra information for the authentication challenge. This is
specific to the authentication method.

	
class autobahn.wamp.types.HelloDetails(realm=None, authmethods=None, authid=None, authrole=None, authextra=None, session_roles=None, pending_session=None, resumable=None, resume_session=None, resume_token=None)

	Provides details of a WAMP session while still attaching.

	Parameters

	
	realm (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The realm the client wants to join.

	authmethods (list of str or None [https://docs.python.org/3/library/constants.html#None]) – The authentication methods the client is willing to perform.

	authid (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The authid the client wants to authenticate as.

	authrole (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The authrole the client wants to authenticate as.

	authextra (arbitrary or None [https://docs.python.org/3/library/constants.html#None]) – Any extra information the specific authentication method requires the client to send.

	session_roles (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – The WAMP session roles and features by the connecting client.

	pending_session (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The session ID the session will get once successfully attached.

	resumable (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) –

	resume_session (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The session the client would like to resume.

	resume_token (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The secure authorisation token to resume the session.

	
class autobahn.wamp.types.SessionDetails(realm, session, authid=None, authrole=None, authmethod=None, authprovider=None, authextra=None, resumed=None, resumable=None, resume_token=None)

	Provides details for a WAMP session upon open.

See also

autobahn.wamp.interfaces.ISession.onJoin()

	Parameters

	
	realm (str [https://docs.python.org/3/library/stdtypes.html#str]) – The realm this WAMP session is attached to.

	session (int [https://docs.python.org/3/library/functions.html#int]) – WAMP session ID of this session.

	resumed (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – Whether the session is a resumed one.

	resumable (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – Whether this session can be resumed later.

	resume_token (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The secure authorisation token to resume the session.

	
class autobahn.wamp.types.SessionIdent(session=None, authid=None, authrole=None)

	WAMP session identification information.

A WAMP session joined on a realm on a WAMP router is identified technically
by its session ID (session) already.

The permissions the session has are tied to the WAMP authentication role (authrole).

The subject behind the session, eg the user or the application component is identified
by the WAMP authentication ID (authid). One session is always authenticated under/as
one specific authid, but a given authid might have zero, one or many sessions
joined on a router at the same time.

	Parameters

	
	session (int [https://docs.python.org/3/library/functions.html#int]) – WAMP session ID of the session.

	authid (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WAMP authid of the session.

	authrole (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WAMP authrole of the session.

	
class autobahn.wamp.types.CloseDetails(reason=None, message=None)

	Provides details for a WAMP session upon close.

See also

autobahn.wamp.interfaces.ISession.onLeave()

	Parameters

	
	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – The close reason (an URI, e.g. wamp.close.normal)

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – Closing log message.

	
class autobahn.wamp.types.SubscribeOptions(match=None, details=None, details_arg=None, get_retained=None, correlation_id=None, correlation_uri=None, correlation_is_anchor=None, correlation_is_last=None)

	Used to provide options for subscribing in
autobahn.wamp.interfaces.ISubscriber.subscribe().

	Parameters

	
	match (str [https://docs.python.org/3/library/stdtypes.html#str]) – The topic matching method to be used for the subscription.

	details (bool [https://docs.python.org/3/library/functions.html#bool]) – When invoking the handler, provide event details in a keyword
parameter details.

	details_arg (str [https://docs.python.org/3/library/stdtypes.html#str]) – DEPCREATED (use “details” flag). When invoking the handler
provide event details in this keyword argument to the callable.

	get_retained (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – Whether the client wants the retained message we may have along with the subscription.

	
class autobahn.wamp.types.EventDetails(subscription, publication, publisher=None, publisher_authid=None, publisher_authrole=None, topic=None, retained=None, enc_algo=None, forward_for=None)

	Provides details on an event when calling an event handler
previously registered.

	Parameters

	
	subscription (instance of autobahn.wamp.request.Subscription) – The (client side) subscription object on which this event is delivered.

	publication (int [https://docs.python.org/3/library/functions.html#int]) – The publication ID of the event (always present).

	publisher (None [https://docs.python.org/3/library/constants.html#None] or int [https://docs.python.org/3/library/functions.html#int]) – The WAMP session ID of the original publisher of this event.
Only filled when publisher is disclosed.

	publisher_authid (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The WAMP authid of the original publisher of this event.
Only filled when publisher is disclosed.

	publisher_authrole (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The WAMP authrole of the original publisher of this event.
Only filled when publisher is disclosed.

	topic (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – For pattern-based subscriptions, the actual topic URI being published to.
Only filled for pattern-based subscriptions.

	retained (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – Whether the message was retained by the broker on the topic, rather than just published.

	enc_algo (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Payload encryption algorithm that
was in use (currently, either None or u'cryptobox').

	forward_for (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – When this Event is forwarded for a client (or from an intermediary router).

	
class autobahn.wamp.types.PublishOptions(acknowledge=None, exclude_me=None, exclude=None, exclude_authid=None, exclude_authrole=None, eligible=None, eligible_authid=None, eligible_authrole=None, retain=None, forward_for=None, correlation_id=None, correlation_uri=None, correlation_is_anchor=None, correlation_is_last=None)

	Used to provide options for subscribing in
autobahn.wamp.interfaces.IPublisher.publish().

	Parameters

	
	acknowledge (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, acknowledge the publication with a success or
error response.

	exclude_me (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – If True, exclude the publisher from receiving the event, even
if he is subscribed (and eligible).

	exclude (int [https://docs.python.org/3/library/functions.html#int] or list of int or None [https://docs.python.org/3/library/constants.html#None]) – A single WAMP session ID or a list thereof to exclude from receiving this event.

	exclude_authid (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str or None [https://docs.python.org/3/library/constants.html#None]) – A single WAMP authid or a list thereof to exclude from receiving this event.

	exclude_authrole (list of str or None [https://docs.python.org/3/library/constants.html#None]) – A single WAMP authrole or a list thereof to exclude from receiving this event.

	eligible (int [https://docs.python.org/3/library/functions.html#int] or list of int or None [https://docs.python.org/3/library/constants.html#None]) – A single WAMP session ID or a list thereof eligible to receive this event.

	eligible_authid (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str or None [https://docs.python.org/3/library/constants.html#None]) – A single WAMP authid or a list thereof eligible to receive this event.

	eligible_authrole (str [https://docs.python.org/3/library/stdtypes.html#str] or list of str or None [https://docs.python.org/3/library/constants.html#None]) – A single WAMP authrole or a list thereof eligible to receive this event.

	retain (bool [https://docs.python.org/3/library/functions.html#bool] or None [https://docs.python.org/3/library/constants.html#None]) – If True, request the broker retain this event.

	forward_for (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – When this Event is forwarded for a client (or from an intermediary router).

	
class autobahn.wamp.types.RegisterOptions(match=None, invoke=None, concurrency=None, details_arg=None, force_reregister=None, correlation_id=None, correlation_uri=None, correlation_is_anchor=None, correlation_is_last=None)

	Used to provide options for registering in
autobahn.wamp.interfaces.ICallee.register().

	Parameters

	
	match – Type of matching to use on the URI (exact, prefix or wildcard)

	invoke – Type of invoke mechanism to use (single, first, last, roundrobin, random)

	concurrency – if used, the number of times a particular
endpoint may be called concurrently (e.g. if this is 3, and
there are already 3 calls in-progress a 4th call will receive
an error)

	details_arg (str [https://docs.python.org/3/library/stdtypes.html#str]) – When invoking the endpoint, provide call details
in this keyword argument to the callable.

	force_reregister – if True, any other session that has
already registered this URI will be ‘kicked out’ and this
session will become the one that’s registered (the previous
session must have used force_reregister=True as well)

	
class autobahn.wamp.types.CallDetails(registration, progress=None, caller=None, caller_authid=None, caller_authrole=None, procedure=None, enc_algo=None, forward_for=None)

	Provides details on a call when an endpoint previously
registered is being called and opted to receive call details.

	Parameters

	
	registration (instance of autobahn.wamp.request.Registration) – The (client side) registration object this invocation is delivered on.

	progress (callable or None [https://docs.python.org/3/library/constants.html#None]) – A callable that will receive progressive call results.

	caller (int [https://docs.python.org/3/library/functions.html#int] or None [https://docs.python.org/3/library/constants.html#None]) – The WAMP session ID of the caller, if the latter is disclosed.
Only filled when caller is disclosed.

	caller_authid (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The WAMP authid of the original caller of this event.
Only filled when caller is disclosed.

	caller_authrole (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – The WAMP authrole of the original caller of this event.
Only filled when caller is disclosed.

	procedure (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – For pattern-based registrations, the actual procedure URI being called.

	enc_algo (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – Payload encryption algorithm that
was in use (currently, either None or “cryptobox”).

	forward_for (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – When this Call is forwarded for a client (or from an intermediary router).

	
class autobahn.wamp.types.CallOptions(on_progress=None, timeout=None, forward_for=None, correlation_id=None, correlation_uri=None, correlation_is_anchor=None, correlation_is_last=None)

	Used to provide options for calling with autobahn.wamp.interfaces.ICaller.call().

	Parameters

	
	on_progress (callable) – A callback that will be called when the remote endpoint
called yields interim call progress results.

	timeout (float [https://docs.python.org/3/library/functions.html#float]) – Time in seconds after which the call should be automatically canceled.

	forward_for (list [https://docs.python.org/3/library/stdtypes.html#list][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – When this Call is forwarded for a client (or from an intermediary router).

	
class autobahn.wamp.types.CallResult(*results, **kwresults)

	Wrapper for remote procedure call results that contain multiple positional
return values or keyword-based return values.

	Parameters

	
	results (list [https://docs.python.org/3/library/stdtypes.html#list]) – The positional result values.

	kwresults (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The keyword result values.

	
class autobahn.wamp.types.EncodedPayload(payload, enc_algo, enc_serializer=None, enc_key=None)

	Wrapper holding an encoded application payload when using WAMP payload transparency.

	Parameters

	
	payload (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The encoded application payload.

	enc_algo (str [https://docs.python.org/3/library/stdtypes.html#str]) – The payload transparency algorithm identifier to check.

	enc_serializer (str [https://docs.python.org/3/library/stdtypes.html#str]) – The payload transparency serializer identifier to check.

	enc_key (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – If using payload transparency with an encryption algorithm, the payload encryption key.

WAMP Exceptions

	
exception autobahn.wamp.exception.Error

	Base class for all exceptions related to WAMP.

	
exception autobahn.wamp.exception.SessionNotReady

	The application tried to perform a WAMP interaction, but the
session is not yet fully established.

	
exception autobahn.wamp.exception.SerializationError

	Exception raised when the WAMP serializer could not serialize the
application payload (args or kwargs for CALL, PUBLISH, etc).

	
exception autobahn.wamp.exception.ProtocolError

	Exception raised when WAMP protocol was violated. Protocol errors
are fatal and are handled by the WAMP implementation. They are
not supposed to be handled at the application level.

	
exception autobahn.wamp.exception.TransportLost

	Exception raised when the transport underlying the WAMP session
was lost or is not connected.

	
exception autobahn.wamp.exception.ApplicationError(error, *args, **kwargs)

	Base class for all exceptions that can/may be handled
at the application level.

	Parameters

	error (str [https://docs.python.org/3/library/stdtypes.html#str]) – The URI of the error that occurred, e.g. wamp.error.not_authorized.

	
error_message()

	Get the error message of this exception.

	Returns

	The error message.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

WAMP Authentication and Encryption

	
autobahn.wamp.auth.generate_totp_secret(length=10)

	Generates a new Base32 encoded, random secret.

See also

http://en.wikipedia.org/wiki/Base32

	Parameters

	length (int [https://docs.python.org/3/library/functions.html#int]) – The length of the entropy used to generate the secret.

	Returns

	The generated secret in Base32 (letters A-Z and digits 2-7).
The length of the generated secret is length * 8 / 5 octets.

	Return type

	unicode

	
autobahn.wamp.auth.compute_totp(secret, offset=0)

	Computes the current TOTP code.

	Parameters

	
	secret (unicode) – Base32 encoded secret.

	offset (int [https://docs.python.org/3/library/functions.html#int]) – Time offset (in steps, use eg -1, 0, +1 for compliance with RFC6238)
for which to compute TOTP.

	Returns

	TOTP for current time (+/- offset).

	Return type

	unicode

	
autobahn.wamp.auth.pbkdf2(data, salt, iterations=1000, keylen=32, hashfunc=None)

	Returns a binary digest for the PBKDF2 hash algorithm of data
with the given salt. It iterates iterations time and produces a
key of keylen bytes. By default SHA-256 is used as hash function,
a different hashlib hashfunc can be provided.

	Parameters

	
	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The data for which to compute the PBKDF2 derived key.

	salt (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The salt to use for deriving the key.

	iterations (int [https://docs.python.org/3/library/functions.html#int]) – The number of iterations to perform in PBKDF2.

	keylen (int [https://docs.python.org/3/library/functions.html#int]) – The length of the cryptographic key to derive.

	hashfunc (callable) – The hash function to use, e.g. hashlib.sha1.

	Returns

	The derived cryptographic key.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
autobahn.wamp.auth.derive_key(secret, salt, iterations=1000, keylen=32)

	Computes a derived cryptographic key from a password according to PBKDF2.

See also

http://en.wikipedia.org/wiki/PBKDF2

	Parameters

	
	secret (bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or unicode) – The secret.

	salt (bytes [https://docs.python.org/3/library/stdtypes.html#bytes] or unicode) – The salt to be used.

	iterations (int [https://docs.python.org/3/library/functions.html#int]) – Number of iterations of derivation algorithm to run.

	keylen (int [https://docs.python.org/3/library/functions.html#int]) – Length of the key to derive in bytes.

	Returns

	The derived key in Base64 encoding.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
autobahn.wamp.auth.generate_wcs(length=14)

	Generates a new random secret for use with WAMP-CRA.

The secret generated is a random character sequence drawn from

	upper and lower case latin letters

	digits

	

	Parameters

	length (int [https://docs.python.org/3/library/functions.html#int]) – The length of the secret to generate.

	Returns

	The generated secret. The length of the generated is length octets.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
autobahn.wamp.auth.compute_wcs(key, challenge)

	Compute an WAMP-CRA authentication signature from an authentication
challenge and a (derived) key.

	Parameters

	
	key (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The key derived (via PBKDF2) from the secret.

	challenge (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The authentication challenge to sign.

	Returns

	The authentication signature.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
class autobahn.wamp.cryptobox.EncodedPayload(payload, enc_algo, enc_serializer=None, enc_key=None)

	Wrapper holding an encoded application payload when using WAMP payload transparency.

	Parameters

	
	payload (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The encoded application payload.

	enc_algo (str [https://docs.python.org/3/library/stdtypes.html#str]) – The payload transparency algorithm identifier to check.

	enc_serializer (str [https://docs.python.org/3/library/stdtypes.html#str]) – The payload transparency serializer identifier to check.

	enc_key (str [https://docs.python.org/3/library/stdtypes.html#str] or None [https://docs.python.org/3/library/constants.html#None]) – If using payload transparency with an encryption algorithm, the payload encryption key.

 Module autobahn.wamp.component

Module autobahn.wamp.component

Component

This is common code for both Twisted and asyncio components; see either autobahn.twisted.component.Component or autobahn.asyncio.component.Component for the concrete implementations.

	
class autobahn.wamp.component.Component(main=None, transports=None, config=None, realm=u'default', extra=None, authentication=None, session_factory=None, is_fatal=None)

	A WAMP application component. A component holds configuration for
(and knows how to create) transports and sessions.

	Parameters

	
	main (callable taking 2 args: reactor, ISession) – After a transport has been connected and a session
has been established and joined to a realm, this (async)
procedure will be run until it finishes – which signals that
the component has run to completion. In this case, it usually
doesn’t make sense to use the on_* kwargs. If you do not
pass a main() procedure, the session will not be closed
(unless you arrange for .leave() to be called).

	transports (None [https://docs.python.org/3/library/constants.html#None] or unicode or list of dicts) – Transport configurations for creating
transports. Each transport can be a WAMP URL, or a dict
containing the following configuration keys:

	type (optional): websocket (default) or rawsocket

	url: the router URL

	
	endpoint (optional, derived from URL if not provided):

	
	type: “tcp” or “unix”

	host, port: only for TCP

	path: only for unix

	timeout: in seconds

	tls: True or (under Twisted) an
twisted.internet.ssl.IOpenSSLClientComponentCreator
instance (such as returned from
twisted.internet.ssl.optionsForClientTLS) or
CertificateOptions instance.

	realm (unicode) – the realm to join

	authentication (dict mapping auth_type to dict) – configuration of authenticators

	session_factory (callable) – if None, ApplicationSession is
used, otherwise a callable taking a single config argument
that is used to create a new ApplicationSession instance.

	is_fatal (callable taking one arg, or None [https://docs.python.org/3/library/constants.html#None]) – a callable taking a single argument, an
Exception instance. The callable should return True if
this error is “fatal”, meaning we should not try connecting to
the current transport again. The default behavior (on None) is
to always return False

 Module autobahn.twisted

Module autobahn.twisted

Autobahn Twisted specific classes. These are used when Twisted is run as the underlying networking framework.

Component

The component API provides a high-level funcional style method of defining and running WAMP components including authentication configuration

	
class autobahn.twisted.component.Component(main=None, transports=None, config=None, realm=u'default', extra=None, authentication=None, session_factory=None, is_fatal=None)

	A component establishes a transport and attached a session
to a realm using the transport for communication.

The transports a component tries to use can be configured,
as well as the auto-reconnect strategy.

	Parameters

	
	main (callable taking 2 args: reactor, ISession) – After a transport has been connected and a session
has been established and joined to a realm, this (async)
procedure will be run until it finishes – which signals that
the component has run to completion. In this case, it usually
doesn’t make sense to use the on_* kwargs. If you do not
pass a main() procedure, the session will not be closed
(unless you arrange for .leave() to be called).

	transports (None [https://docs.python.org/3/library/constants.html#None] or unicode or list of dicts) – Transport configurations for creating
transports. Each transport can be a WAMP URL, or a dict
containing the following configuration keys:

	type (optional): websocket (default) or rawsocket

	url: the router URL

	
	endpoint (optional, derived from URL if not provided):

	
	type: “tcp” or “unix”

	host, port: only for TCP

	path: only for unix

	timeout: in seconds

	tls: True or (under Twisted) an
twisted.internet.ssl.IOpenSSLClientComponentCreator
instance (such as returned from
twisted.internet.ssl.optionsForClientTLS) or
CertificateOptions instance.

	realm (unicode) – the realm to join

	authentication (dict mapping auth_type to dict) – configuration of authenticators

	session_factory (callable) – if None, ApplicationSession is
used, otherwise a callable taking a single config argument
that is used to create a new ApplicationSession instance.

	is_fatal (callable taking one arg, or None [https://docs.python.org/3/library/constants.html#None]) – a callable taking a single argument, an
Exception instance. The callable should return True if
this error is “fatal”, meaning we should not try connecting to
the current transport again. The default behavior (on None) is
to always return False

	
session_factory

	alias of autobahn.twisted.wamp.Session

	
autobahn.twisted.component.run(components, log_level='info')

	High-level API to run a series of components.

This will only return once all the components have stopped
(including, possibly, after all re-connections have failed if you
have re-connections enabled). Under the hood, this calls
twisted.internet.reactor.run() – if you wish to manage the
reactor loop yourself, use the
autobahn.twisted.component.Component.start() method to start
each component yourself.

	Parameters

	
	components (Component or list of Components) – the Component(s) you wish to run

	log_level (string) – a valid log-level (or None to avoid calling start_logging)

WebSocket Protocols and Factories

Classes for WebSocket clients and servers using Twisted.

	
class autobahn.twisted.websocket.WebSocketServerProtocol

	Base class for Twisted-based WebSocket server protocols.

Implements autobahn.websocket.interfaces.IWebSocketChannel.

	
class autobahn.twisted.websocket.WebSocketClientProtocol

	Base class for Twisted-based WebSocket client protocols.

Implements autobahn.websocket.interfaces.IWebSocketChannel.

	
class autobahn.twisted.websocket.WebSocketServerFactory(*args, **kwargs)

	Base class for Twisted-based WebSocket server factories.

Implements autobahn.websocket.interfaces.IWebSocketServerChannelFactory

Note

In addition to all arguments to the constructor of
autobahn.websocket.interfaces.IWebSocketServerChannelFactory(),
you can supply a reactor keyword argument to specify the
Twisted reactor to be used.

	
class autobahn.twisted.websocket.WebSocketClientFactory(*args, **kwargs)

	Base class for Twisted-based WebSocket client factories.

Implements autobahn.websocket.interfaces.IWebSocketClientChannelFactory

Note

In addition to all arguments to the constructor of
autobahn.websocket.interfaces.IWebSocketClientChannelFactory(),
you can supply a reactor keyword argument to specify the
Twisted reactor to be used.

WAMP-over-WebSocket Protocols and Factories

Classes for WAMP-WebSocket clients and servers using Twisted.

	
class autobahn.twisted.websocket.WampWebSocketServerProtocol

	Twisted-based WAMP-over-WebSocket server protocol.

Implements:

	autobahn.wamp.interfaces.ITransport

	
class autobahn.twisted.websocket.WampWebSocketClientProtocol

	Twisted-based WAMP-over-WebSocket client protocol.

Implements:

	autobahn.wamp.interfaces.ITransport

	
class autobahn.twisted.websocket.WampWebSocketServerFactory(factory, *args, **kwargs)

	Twisted-based WAMP-over-WebSocket server protocol factory.

	Parameters

	
	factory (callable) – A callable that produces instances that implement
autobahn.wamp.interfaces.ITransportHandler

	serializers (list of objects implementing
autobahn.wamp.interfaces.ISerializer) – A list of WAMP serializers to use (or None
for all available serializers).

	
protocol

	alias of WampWebSocketServerProtocol

	
class autobahn.twisted.websocket.WampWebSocketClientFactory(factory, *args, **kwargs)

	Twisted-based WAMP-over-WebSocket client protocol factory.

	Parameters

	
	factory (callable) – A callable that produces instances that implement
autobahn.wamp.interfaces.ITransportHandler

	serializer (object implementing autobahn.wamp.interfaces.ISerializer) – The WAMP serializer to use (or None for
“best” serializer, chosen as the first serializer available from
this list: CBOR, MessagePack, UBJSON, JSON).

	
protocol

	alias of WampWebSocketClientProtocol

WAMP-over-RawSocket Protocols and Factories

Classes for WAMP-RawSocket clients and servers using Twisted.

	
class autobahn.twisted.rawsocket.WampRawSocketServerProtocol

	Twisted-based WAMP-over-RawSocket server protocol.

Implements:

	autobahn.wamp.interfaces.ITransport

	
class autobahn.twisted.rawsocket.WampRawSocketClientProtocol

	Twisted-based WAMP-over-RawSocket client protocol.

Implements:

	autobahn.wamp.interfaces.ITransport

	
class autobahn.twisted.rawsocket.WampRawSocketServerFactory(factory, serializers=None)

	Twisted-based WAMP-over-RawSocket server protocol factory.

	Parameters

	
	factory (callable) – A callable that produces instances that implement
autobahn.wamp.interfaces.ITransportHandler

	serializers (list of objects implementing
autobahn.wamp.interfaces.ISerializer) – A list of WAMP serializers to use (or None
for all available serializers).

	
protocol

	alias of WampRawSocketServerProtocol

	
class autobahn.twisted.rawsocket.WampRawSocketClientFactory(factory, serializer=None)

	Twisted-based WAMP-over-RawSocket client protocol factory.

	Parameters

	
	factory (callable) – A callable that produces instances that implement
autobahn.wamp.interfaces.ITransportHandler

	serializer (object implementing autobahn.wamp.interfaces.ISerializer) – The WAMP serializer to use (or None for
“best” serializer, chosen as the first serializer available from
this list: CBOR, MessagePack, UBJSON, JSON).

	
protocol

	alias of WampRawSocketClientProtocol

WAMP Sessions

Classes for WAMP sessions using Twisted.

	
class autobahn.twisted.wamp.ApplicationSession(config=None)

	WAMP application session for Twisted-based applications.

Implements:

	autobahn.wamp.interfaces.ITransportHandler

	autobahn.wamp.interfaces.ISession

Implements autobahn.wamp.interfaces.ISession()

	
class autobahn.twisted.wamp.ApplicationRunner(url, realm=None, extra=None, serializers=None, ssl=None, proxy=None, headers=None, max_retries=None, initial_retry_delay=None, max_retry_delay=None, retry_delay_growth=None, retry_delay_jitter=None)

	This class is a convenience tool mainly for development and quick hosting
of WAMP application components.

It can host a WAMP application component in a WAMP-over-WebSocket client
connecting to a WAMP router.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WebSocket URL of the WAMP router to connect to (e.g. ws://somehost.com:8090/somepath)

	realm (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WAMP realm to join the application session to.

	extra (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Optional extra configuration to forward to the application component.

	serializers (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of WAMP serializers to use (or None for default serializers).
Serializers must implement autobahn.wamp.interfaces.ISerializer.

	ssl (twisted.internet.ssl.CertificateOptions) – (Optional). If specified this should be an
instance suitable to pass as sslContextFactory to
twisted.internet.endpoints.SSL4ClientEndpoint` such
as twisted.internet.ssl.CertificateOptions. Leaving
it as None will use the result of calling Twisted’s
twisted.internet.ssl.platformTrust() which tries to use
your distribution’s CA certificates.

	proxy (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – Explicit proxy server to use; a dict with host and port keys

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional headers to send (only applies to WAMP-over-WebSocket).

	max_retries (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of reconnection attempts. Unlimited if set to -1.

	initial_retry_delay (float [https://docs.python.org/3/library/functions.html#float]) – Initial delay for reconnection attempt in seconds (Default: 1.0s).

	max_retry_delay (float [https://docs.python.org/3/library/functions.html#float]) – Maximum delay for reconnection attempts in seconds (Default: 60s).

	retry_delay_growth (float [https://docs.python.org/3/library/functions.html#float]) – The growth factor applied to the retry delay between reconnection attempts (Default 1.5).

	retry_delay_jitter (float [https://docs.python.org/3/library/functions.html#float]) – A 0-argument callable that introduces nose into the delay. (Default random.random)

	
stop()

	Stop reconnecting, if auto-reconnecting was enabled.

	
run(make, start_reactor=True, auto_reconnect=False, log_level='info')

	Run the application component.

	Parameters

	
	make (callable) – A factory that produces instances of autobahn.twisted.wamp.ApplicationSession
when called with an instance of autobahn.wamp.types.ComponentConfig.

	start_reactor – When True (the default) this method starts
the Twisted reactor and doesn’t return until the reactor
stops. If there are any problems starting the reactor or
connect()-ing, we stop the reactor and raise the exception
back to the caller.

	Returns

	None is returned, unless you specify
start_reactor=False in which case the Deferred that
connect() returns is returned; this will callback() with
an IProtocol instance, which will actually be an instance
of WampWebSocketClientProtocol

 Module autobahn.asyncio

Module autobahn.asyncio

Autobahn asyncio specific classes. These are used when asyncio is run as the underlying networking framework.

Component

The component API provides a high-level funcional style method of defining and running WAMP components including authentication configuration

	
class autobahn.asyncio.component.Component(main=None, transports=None, config=None, realm=u'default', extra=None, authentication=None, session_factory=None, is_fatal=None)

	A component establishes a transport and attached a session
to a realm using the transport for communication.

The transports a component tries to use can be configured,
as well as the auto-reconnect strategy.

	Parameters

	
	main (callable taking 2 args: reactor, ISession) – After a transport has been connected and a session
has been established and joined to a realm, this (async)
procedure will be run until it finishes – which signals that
the component has run to completion. In this case, it usually
doesn’t make sense to use the on_* kwargs. If you do not
pass a main() procedure, the session will not be closed
(unless you arrange for .leave() to be called).

	transports (None [https://docs.python.org/3/library/constants.html#None] or unicode or list of dicts) – Transport configurations for creating
transports. Each transport can be a WAMP URL, or a dict
containing the following configuration keys:

	type (optional): websocket (default) or rawsocket

	url: the router URL

	
	endpoint (optional, derived from URL if not provided):

	
	type: “tcp” or “unix”

	host, port: only for TCP

	path: only for unix

	timeout: in seconds

	tls: True or (under Twisted) an
twisted.internet.ssl.IOpenSSLClientComponentCreator
instance (such as returned from
twisted.internet.ssl.optionsForClientTLS) or
CertificateOptions instance.

	realm (unicode) – the realm to join

	authentication (dict mapping auth_type to dict) – configuration of authenticators

	session_factory (callable) – if None, ApplicationSession is
used, otherwise a callable taking a single config argument
that is used to create a new ApplicationSession instance.

	is_fatal (callable taking one arg, or None [https://docs.python.org/3/library/constants.html#None]) – a callable taking a single argument, an
Exception instance. The callable should return True if
this error is “fatal”, meaning we should not try connecting to
the current transport again. The default behavior (on None) is
to always return False

	
session_factory

	alias of autobahn.asyncio.wamp.Session

	
autobahn.asyncio.component.run(components, log_level='info')

	High-level API to run a series of components.

This will only return once all the components have stopped
(including, possibly, after all re-connections have failed if you
have re-connections enabled). Under the hood, this calls

XXX fixme for asyncio

– if you wish to manage the loop loop yourself, use the
autobahn.asyncio.component.Component.start() method to start
each component yourself.

	Parameters

	
	components (Component or list of Components) – the Component(s) you wish to run

	log_level (string) – a valid log-level (or None to avoid calling start_logging)

WebSocket Protocols and Factories

Classes for WebSocket clients and servers using asyncio.

	
class autobahn.asyncio.websocket.WebSocketServerProtocol

	Base class for asyncio-based WebSocket server protocols.

Implements:

	autobahn.websocket.interfaces.IWebSocketChannel

	
class autobahn.asyncio.websocket.WebSocketClientProtocol

	Base class for asyncio-based WebSocket client protocols.

Implements:

	autobahn.websocket.interfaces.IWebSocketChannel

	
class autobahn.asyncio.websocket.WebSocketServerFactory(*args, **kwargs)

	Base class for asyncio-based WebSocket server factories.

Implements:

	autobahn.websocket.interfaces.IWebSocketServerChannelFactory

Note

In addition to all arguments to the constructor of
autobahn.websocket.interfaces.IWebSocketServerChannelFactory(),
you can supply a loop keyword argument to specify the
asyncio event loop to be used.

	
protocol

	alias of WebSocketServerProtocol

	
class autobahn.asyncio.websocket.WebSocketClientFactory(*args, **kwargs)

	Base class for asyncio-based WebSocket client factories.

Implements:

	autobahn.websocket.interfaces.IWebSocketClientChannelFactory

Note

In addition to all arguments to the constructor of
autobahn.websocket.interfaces.IWebSocketClientChannelFactory(),
you can supply a loop keyword argument to specify the
asyncio event loop to be used.

WAMP-over-WebSocket Protocols and Factories

Classes for WAMP-WebSocket clients and servers using asyncio.

	
class autobahn.asyncio.websocket.WampWebSocketServerProtocol

	asyncio-based WAMP-over-WebSocket server protocol.

Implements:

	autobahn.wamp.interfaces.ITransport

	
class autobahn.asyncio.websocket.WampWebSocketClientProtocol

	asyncio-based WAMP-over-WebSocket client protocols.

Implements:

	autobahn.wamp.interfaces.ITransport

	
class autobahn.asyncio.websocket.WampWebSocketServerFactory(factory, *args, **kwargs)

	asyncio-based WAMP-over-WebSocket server factory.

	Parameters

	
	factory (callable) – A callable that produces instances that implement
autobahn.wamp.interfaces.ITransportHandler

	serializers (list of objects implementing
autobahn.wamp.interfaces.ISerializer) – A list of WAMP serializers to use (or None
for all available serializers).

	
protocol

	alias of WampWebSocketServerProtocol

	
class autobahn.asyncio.websocket.WampWebSocketClientFactory(factory, *args, **kwargs)

	asyncio-based WAMP-over-WebSocket client factory.

	Parameters

	
	factory (callable) – A callable that produces instances that implement
autobahn.wamp.interfaces.ITransportHandler

	serializer (object implementing autobahn.wamp.interfaces.ISerializer) – The WAMP serializer to use (or None for
“best” serializer, chosen as the first serializer available from
this list: CBOR, MessagePack, UBJSON, JSON).

	
protocol

	alias of WampWebSocketClientProtocol

WAMP-over-RawSocket Protocols and Factories

Classes for WAMP-RawSocket clients and servers using asyncio.

	
class autobahn.asyncio.rawsocket.WampRawSocketServerProtocol

	asyncio-based WAMP-over-RawSocket server protocol.

Implements:

	autobahn.wamp.interfaces.ITransport

	
class autobahn.asyncio.rawsocket.WampRawSocketClientProtocol

	asyncio-based WAMP-over-RawSocket client protocol.

Implements:

	autobahn.wamp.interfaces.ITransport

	
class autobahn.asyncio.rawsocket.WampRawSocketServerFactory(factory, serializers=None)

	asyncio-based WAMP-over-RawSocket server protocol factory.

	Parameters

	
	factory (callable) – A callable that produces instances that implement
autobahn.wamp.interfaces.ITransportHandler

	serializers (list of objects implementing
autobahn.wamp.interfaces.ISerializer) – A list of WAMP serializers to use (or None
for all available serializers).

	
protocol

	alias of WampRawSocketServerProtocol

	
class autobahn.asyncio.rawsocket.WampRawSocketClientFactory(factory, serializer=None)

	asyncio-based WAMP-over-RawSocket client factory.

	Parameters

	
	factory (callable) – A callable that produces instances that implement
autobahn.wamp.interfaces.ITransportHandler

	serializer (object implementing autobahn.wamp.interfaces.ISerializer) – The WAMP serializer to use (or None for
“best” serializer, chosen as the first serializer available from
this list: CBOR, MessagePack, UBJSON, JSON).

	
protocol

	alias of WampRawSocketClientProtocol

WAMP Sessions

Classes for WAMP sessions using asyncio.

	
class autobahn.asyncio.wamp.ApplicationSession(config=None)

	WAMP application session for asyncio-based applications.

Implements:

	autobahn.wamp.interfaces.ITransportHandler

	autobahn.wamp.interfaces.ISession

Implements autobahn.wamp.interfaces.ISession()

	
class autobahn.asyncio.wamp.ApplicationRunner(url, realm=None, extra=None, serializers=None, ssl=None, proxy=None, headers=None)

	This class is a convenience tool mainly for development and quick hosting
of WAMP application components.

It can host a WAMP application component in a WAMP-over-WebSocket client
connecting to a WAMP router.

	Parameters

	
	url (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WebSocket URL of the WAMP router to connect to (e.g. ws://somehost.com:8090/somepath)

	realm (str [https://docs.python.org/3/library/stdtypes.html#str]) – The WAMP realm to join the application session to.

	extra (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Optional extra configuration to forward to the application component.

	serializers (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of WAMP serializers to use (or None for default serializers).
Serializers must implement autobahn.wamp.interfaces.ISerializer.

	ssl (ssl.SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] or bool) – An (optional) SSL context instance or a bool. See
the documentation for the loop.create_connection asyncio
method, to which this value is passed as the ssl
keyword parameter.

	proxy (dict [https://docs.python.org/3/library/stdtypes.html#dict] or None [https://docs.python.org/3/library/constants.html#None]) – Explicit proxy server to use; a dict with host and port keys

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Additional headers to send (only applies to WAMP-over-WebSocket).

	
stop()

	Stop reconnecting, if auto-reconnecting was enabled.

	
run(make, start_loop=True, log_level='info')

	Run the application component. Under the hood, this runs the event
loop (unless start_loop=False is passed) so won’t return
until the program is done.

	Parameters

	
	make (callable) – A factory that produces instances of autobahn.asyncio.wamp.ApplicationSession
when called with an instance of autobahn.wamp.types.ComponentConfig.

	start_loop (bool [https://docs.python.org/3/library/functions.html#bool]) – When True (the default) this method
start a new asyncio loop.

	Returns

	None is returned, unless you specify
start_loop=False in which case the coroutine from calling
loop.create_connection() is returned. This will yield the
(transport, protocol) pair.

 Changelog

Changelog

18.11.1

	new: forward_for WAMP message attribute (for Crossbar.io Router-to-Router federation)

	new: support RawSocket URLs (eg “rs://localhost:5000” or “rs://unix:/tmp/file.sock”)

	new: support WAMP-over-Unix sockets for WAMP components (“new API”)

	fix: use same WAMP serializer construction code for WAMP components (“new API”) and ApplicationSession/Runner

	fix: memory leak with Twisted/WebSocket, dropConnection and producer

18.10.1

	Don’t eat Component.stop() request when crossbar not connected (#1066)

	handle async on_progress callbacks properly (#1061)

	fix attribute error when ConnectionResetError does not contain “reason” attribute (#1059)

	infer rawsocket host, port from URL (#1056)

	fix error on connection lost if no reason (reason = None) (#1055)

	fixed typo on class name (#1054)

18.9.2

	fix: TLS error logging (#1052)

18.9.1

	new: Interrupt has Options.reason to signal detailed origin of call cancelation (active cancel vs passive timeout)

	fix: Cancel and Interrupt gets "killnowait" mode

	new: Cancel and Interrupt no longer have ABORT/"abort"

18.8.2

	new: WAMP call cancel support

	fix: getting started documentation and general docs improvements

	fix: WebSocket auto-reconnect on opening handshake failure

	fix: more Python 3.7 compatibility and CI

	fix: Docker image building using multi-arch, size optimizations and more

	fix: asyncio failed to re-connect under some circumstances (#1040,
#1041, #1010, #1030)

18.8.1

	fix: Python 3.7 compatibility

	fix: remove Python 2.6 support leftovers

	new: getting started docker-based examples in matching with docs

18.7.1

	new: Python 3.7 supported and integrated into CI

	new: WAMP-SCRAM examples

	fix: glitches in WAMP-SCRAM

18.6.1

	fix: implement abort argument for asyncio in WebSocketAdapterProtocol._closeConnection (#1012)

18.5.2

	fix: security (DoS amplification): a WebSocket server with
permessage-deflate turned on could be induced to waste extra memory
through a “zip-bomb” style attack. Setting a max-message-size will
now stop deflating compressed data when the max is reached (instead
of consuming all compressed data first). This could be used by a
malicious client to make the server waste much more memory than the
bandwidth the client uses.

18.5.1

	fix: asyncio/rawsocket buffer processing

	fix: example failures due to pypy longer startup time (#996)

	fix: add on_welcome for AuthWampCra (#992)

	fix: make run() of multiple components work on Windows (#986)

	new: max_retries now defaults to -1 (“try forever”)

18.4.1

	new: WAMP-SCRAM authentication

	new: native vector extensions (NVX)

	fix: improve choosereactor (#965, #963)

	new: lots of new and improved documentation, component API and more

	new: Docker image tooling now in this repo

	fix: “fatal errors” in Component (#977)

	fix: AIO/Component: create a new loop if already closed

	fix: kwarg keys sometimes are bytes on Python2 (#980)

	fix: various improvements to new component API

18.3.1

	fix: endpoint configuration error messages (#942)

	fix: various improvements to the new components API (including retries)

	fix: pass unregisterProducer through to twisted to complement WebSocketAdapterProtocol.registerProducer (#875)

17.10.1

	fix: proxy support (#918)

	fix: ensure that a future is not done before rejecting it (#919)

	fix: don’t try to reject cancelled futures within pending requests when closing the session

17.9.3

Published 2017-09-23 [https://pypi.python.org/pypi/autobahn/17.9.3]

	new: user configurable backoff policy

	fix: close aio loop on exit

	fix: some component API cleanups

	fix: cryptosign on py2

	new: allow setting correlation_is_last message marker in WAMP messages from user code

17.9.2

Published 2017-09-12 [https://pypi.python.org/pypi/autobahn/17.9.2]

	new: allow setting correlation URI and anchor flag in WAMP messages from user code

	fix: WebSocket proxy connect on Python 3 (unicode vs bytes bug)

17.9.1

Published 2017-09-04 [https://pypi.python.org/pypi/autobahn/17.9.1]

	new: allow setting correlation ID in WAMP messages from user code

	fix: distribute LICENSE file in all distribution formats (using setup.cfg metadata)

17.8.1

Published 2017-08-15 [https://pypi.python.org/pypi/autobahn/17.8.1]

	new: prefix= kwarg now available on ApplicationSession.register for runtime method names

	new: @wamp.register(None) will use the function-name as the URI

	new: correlation and uri attributes for WAMP message tracing

17.7.1

Published 2017-07-21 [https://pypi.python.org/pypi/autobahn/17.7.1]

	new: lots of improvements of components API, including asyncio support

17.6.2

Published 2017-06-24 [https://pypi.python.org/pypi/autobahn/17.6.2]

	new: force register option when joining realms

	fix: TLS options in components API

17.6.1

Published 2017-06-07 [https://pypi.python.org/pypi/autobahn/17.6.1]

	new: allow components to pass WebSocket/RawSocket options

	fix: register/subscribe decorators support different URI syntax from what session.register and session.subscribe support

	new: allow for standard Crossbar a.c..d style pattern URIs to be used with Pattern

	new: dynamic authorizer example

	new: configurable log level in ApplicationRunner.run for asyncio

	fix: forward reason of hard dropping WebSocket connection in wasNotCleanReason

17.5.1

Published 2017-05-01 [https://pypi.python.org/pypi/autobahn/17.5.1]

	new: switched to calendar-based release/version numbering

	new: WAMP event retention example and docs

	new: WAMP subscribe/register options on WAMP decorators

	fix: require all TLS dependencies on extra_require_encryption setuptools

	new: support for X-Forwarded-For HTTP header

	fix: ABC interface definitions where missing “self”

0.18.2

Published 2017-04-14 [https://pypi.python.org/pypi/autobahn/0.18.2]

	new: payload codec API

	fix: make WAMP-cryptobox use new payload codec API

	fix: automatic binary conversation for JSON

	new: improvements to experimental component API

0.18.1

Published 2017-03-28 [https://pypi.python.org/pypi/autobahn/0.18.1]

	fix: errback all user handlers for all WAMP requests still outstanding when session/transport is closed/lost

	fix: allow WebSocketServerProtocol.onConnect to return a Future/Deferred

	new: allow configuration of RawSocket serializer

	new: test all examples on both WebSocket and RawSocket

	fix: revert to default arg for Deny reason

	new: WAMP-RawSocket and WebSocket default settings for asyncio

	new: experimental component based API and new WAMP Session class

0.18.0

Published 2017-03-26 [https://pypi.python.org/pypi/autobahn/0.18.0]

	fix: big docs cleanup and polish

	fix: docs for publisher black-/whitelisting based on authid/authrole

	fix: serialization for publisher black-/whitelisting based on authid/authrole

	new: allow to stop auto-reconnecting for Twisted ApplicationRunner

	fix: allow empty realms (router decides) for asyncio ApplicationRunner

0.17.2

Published 2017-02-25 [https://pypi.python.org/pypi/autobahn/0.17.2]

	new: WAMP-cryptosign elliptic curve based authentication support for asyncio

	new: CI testing on Twisted 17.1

	new: controller/shared attributes on ComponentConfig

0.17.1

Published 2016-12-29 [https://pypi.python.org/pypi/autobahn/0.17.1]

	new: demo MQTT and WAMP clients interoperating via Crossbar.io

	new: WAMP message attributes for message resumption

	new: improvements to experimental WAMP components API

	fix: Python 3.4.4+ when using asyncio

0.17.0

Published 2016-11-30 [https://pypi.python.org/pypi/autobahn/0.17.0]

	new: WAMP PubSub event retention

	new: WAMP PubSub last will / testament

	new: WAMP PubSub acknowledged delivery

	fix: WAMP Session lifecycle - properly handle asynchronous ApplicationSession.onConnect for asyncio

0.16.1

Published 2016-11-07 [https://pypi.python.org/pypi/autobahn/0.16.1]

	fix: inconsistency between PublishOptions and Publish message

	new: improve logging with dropped connections (eg due to timeouts)

	fix: various smaller asyncio fixes

	new: rewrite all examples for new Python 3.5 async/await syntax

	fix: copyrights transferred from Tavendo GmbH to Crossbar.io Technologies GmbH

0.16.0

Published 2016-08-14 [https://pypi.python.org/pypi/autobahn/0.16.0]

	new: new autobahn.wamp.component API in experimental stage

	new: Ed25519 OpenSSH and OpenBSD signify key support

	fix: allow Py2 and async user code in onConnect callback of asyncio

0.15.0

Published 2016-07-19 [https://pypi.python.org/pypi/autobahn/0.15.0]

	new: WAMP AP option: register with maximum concurrency

	new: automatic reconnect for WAMP clients ApplicationRunner on Twisted

	new: RawSocket support in WAMP clients using ApplicationRunner on Twisted

	new: Set WebSocket production settings on WAMP clients using ApplicationRunner on Twisted

	fix: #715 [https://github.com/crossbario/autobahn-python/issues/715] Py2/Py3 issue with WebSocket traffic logging

	new: allow WAMP factories to take classes OR instances of ApplicationSession

	fix: make WebSocketResource working on Twisted 16.3

	fix: remove some minified AutobahnJS from examples (makes distro packagers happy)

	new: WAMP-RawSocket transport for asyncio

	fix: #691 [https://github.com/crossbario/autobahn-python/issues/691] (security) If the allowedOrigins websocket option was set, the resulting matching was insufficient and would allow more origins than intended

0.14.1

Published 2016-05-26 [https://pypi.python.org/pypi/autobahn/0.14.1]

	fix: unpinned Twisted version again

	fix: remove X-Powered-By header

	fix: removed decrecated args to ApplicationRunner

0.14.0

Published 2016-05-01 [https://pypi.python.org/pypi/autobahn/0.14.0]

	new: use of batched/chunked timers to massively reduce CPU load with WebSocket auto-ping/pong

	new: support new UBJSON WAMP serialization format

	new: publish universal wheels

	fix: replaced msgpack-python with u-msgpack-python

	fix: some glitches with eligible / exlude when used with authid / authrole

	fix: some logging glitches

	fix: pin Twisted at 16.1.1 (for now)

0.13.1

Published 2016-04-09 [https://pypi.python.org/pypi/autobahn/0.13.1]

	moved helper funs for WebSocket URL handling to autobahn.websocket.util

	fix: marshal WAMP options only when needed

	fix: various smallish examples fixes

0.13.0

Published 2016-03-15 [https://pypi.python.org/pypi/autobahn/0.13.0]

	fix: better traceback logging (#613 [https://github.com/crossbario/autobahn-python/pull/613])

	fix: unicode handling in debug messages (#606 [https://github.com/crossbario/autobahn-python/pull/606])

	fix: return Deferred from run() (#603 [https://github.com/crossbario/autobahn-python/pull/603]).

	fix: more debug logging improvements

	fix: more Pattern tests, fix edge case (#592 [https://github.com/crossbario/autobahn-python/pull/592]).

	fix: better logging from asyncio ApplicationRunner

	new: disclose becomes a strict router-side feature (#586 [https://github.com/crossbario/autobahn-python/issues/586]).

	new: subscriber black/whitelisting using authid/authrole

	new: asyncio websocket testee

	new: refine Observable API (#593 [https://github.com/crossbario/autobahn-python/pull/593]).

0.12.1

Published 2016-01-30 [https://pypi.python.org/pypi/autobahn/0.12.0]

	new: support CBOR serialization in WAMP

	new: support WAMP payload transparency

	new: beta version of WAMP-cryptosign authentication method

	new: alpha version of WAMP-cryptobox end-to-end encryption

	new: support user provided authextra data in WAMP authentication

	new: support WAMP channel binding

	new: WAMP authentication util functions for TOTP

	fix: support skewed time leniency for TOTP

	fix: use the new logging system in WAMP implementation

	fix: some remaining Python 3 issues

	fix: allow WAMP prefix matching register/subscribe with dot at end of URI

0.11.0

Published 2015-12-09 [https://pypi.python.org/pypi/autobahn/0.11.0]

0.10.9

Published 2015-09-15 [https://pypi.python.org/pypi/autobahn/0.10.8]

	fixes regression #500 introduced with commit 9f68749

0.10.8

Published 2015-09-13 [https://pypi.python.org/pypi/autobahn/0.10.8]

	maintenance release with some issues fixed

0.10.7

Published 2015-09-06 [https://pypi.python.org/pypi/autobahn/0.10.7]

	fixes a regression in 0.10.6

0.10.6

Published 2015-09-05 [https://pypi.python.org/pypi/autobahn/0.10.6]

	maintenance release with nearly two dozen fixes

	improved Python 3, error logging, WAMP connection mgmt, ..

0.10.5

Published 2015-08-06 [https://pypi.python.org/pypi/autobahn/0.10.5]

	maintenance release with lots of smaller bug fixes

0.10.4

Published 2015-05-08 [https://pypi.python.org/pypi/autobahn/0.10.4]

	maintenance release with some smaller bug fixes

0.10.3

Published 2015-04-14 [https://pypi.python.org/pypi/autobahn/0.10.3]

	new: using txaio package

	new: revised WAMP-over-RawSocket specification implemented

	fix: ignore unknown attributes in WAMP Options/Details

0.10.2

Published 2015-03-19 [https://pypi.python.org/pypi/autobahn/0.10.2]

	fix: Twisted 11 lacks IPv6 address class

	new: various improvements handling errors from user code

	new: add parameter to limit max connections on WebSocket servers

	new: use new-style classes everywhere

	new: moved package content to repo root

	new: implement router revocation signaling for registrations/subscriptions

	new: a whole bunch of more unit tests / coverage

	new: provide reason/message when transport is lost

	fix: send WAMP errors upon serialization errors

0.10.1

Published 2015-03-01 [https://pypi.python.org/pypi/autobahn/0.10.1]

	support for pattern-based subscriptions and registrations

	support for shared registrations

	fix: HEARTBEAT removed

0.10.0

Published 2015-02-19 [https://pypi.python.org/pypi/autobahn/0.10.0]

	Change license from Apache 2.0 to MIT

	fix file line endings

	add setuptools test target

	fix Python 2.6

0.9.6

Published 2015-02-13 [https://pypi.python.org/pypi/autobahn/0.9.6]

	PEP8 code conformance

	PyFlakes code quality

	fix: warning for xrange on Python 3

	fix: parsing of IPv6 host headers

	add WAMP/Twisted service

	fix: handle connect error in ApplicationRunner (on Twisted)

0.9.5

Published 2015-01-11 [https://pypi.python.org/pypi/autobahn/0.9.5]

	do not try to fire onClose on a session that never existed in the first place (fixes #316)

	various doc fixes

	fix URI decorator component handling (PR #309)

	fix “standalone” argument to ApplicationRunner

0.9.4

Published 2014-12-15 [https://pypi.python.org/pypi/autobahn/0.9.4]

	refactor router code to Crossbar.io

	fix: catch error when Nagle cannot be set on stream transport (UDS)

	fix: spelling in doc strings / docs

	fix: WAMP JSON serialization of Unicode for ujson

	fix: Twisted plugins issue

0.9.3-2

Published 2014-11-15 [https://pypi.python.org/pypi/autobahn/0.9.3-2]

	maintenance release with some smaller bug fixes

	use ujson for WAMP when available

	reduce WAMP ID space to [0, 2**31-1]

	deactivate Twisted plugin cache recaching in setup.py

0.9.3

Published 2014-11-10 [https://pypi.python.org/pypi/autobahn/0.9.3]

	feature: WebSocket origin checking

	feature: allow to disclose caller transport level info

	fix: Python 2.6 compatibility

	fix: handling of WebSocket close frame in a corner-case

0.9.2

Published 2014-10-17 [https://pypi.python.org/pypi/autobahn/0.9.2]

	fix: permessage-deflate “client_max_window_bits” parameter handling

	fix: cancel opening handshake timeouts also for WebSocket clients

	feature: add more control parameters to Flash policy file factory

	feature: update AutobahnJS in examples

	feature: allow to set WebSocket HTTP headers via dict

	fix: ayncio imports for Python 3.4.2

	feature: added reconnecting WebSocket client example

0.9.1

Published 2014-09-22 [https://pypi.python.org/pypi/autobahn/0.9.1]

	maintenance release with some smaller bug fixes

0.9.0

Published 2014-09-02 [https://pypi.python.org/pypi/autobahn/0.9.0]

	all WAMP v1 code removed

	migrated various WAMP examples to WAMP v2

	improved unicode/bytes handling

	lots of code quality polishment

	more unit test coverage

0.8.15

Published 2014-08-23 [https://pypi.python.org/pypi/autobahn/0.8.15]

	docs polishing

	small fixes (unicode handling and such)

0.8.14

Published 2014-08-14 [https://pypi.python.org/pypi/autobahn/0.8.14]

	add automatic WebSocket ping/pong (#24)

	WAMP-CRA client side (beta!)

0.8.13

Published 2014-08-05 [https://pypi.python.org/pypi/autobahn/0.8.13]

	fix Application class (#240)

	support WSS for Application class

	remove implicit dependency on bzip2 (#244)

0.8.12

Published 2014-07-23 [https://pypi.python.org/pypi/autobahn/0.8.12]

	WAMP application payload validation hooks

	added Tox based testing for multiple platforms

	code quality fixes

0.8.11

Published [https://pypi.python.org/pypi/autobahn/0.8.11]

	hooks and infrastructure for WAMP2 authorization

	new examples: Twisted Klein, Crochet, wxPython

	improved WAMP long-poll transport

	improved stats tracker

0.8.10

Published [https://pypi.python.org/pypi/autobahn/0.8.10]

	WAMP-over-Long-poll (preliminary)

	WAMP Authentication methods CR, Ticket, TOTP (preliminary)

	WAMP App object (preliminary)

	various fixes

0.8.9

Published [https://pypi.python.org/pypi/autobahn/0.8.9]

	maintenance release

0.8.8

Published [https://pypi.python.org/pypi/autobahn/0.8.8]

	initial support for WAMP on asyncio

	new WAMP examples

	WAMP ApplicationRunner

0.8.7

Published [https://pypi.python.org/pypi/autobahn/0.8.7]

	maintenance release

0.8.6

Published [https://pypi.python.org/pypi/autobahn/0.8.6]

	started reworking docs

	allow factories to operate without WS URL

	fix behavior on second protocol violation

0.8.5

Published [https://pypi.python.org/pypi/autobahn/0.8.5]

	support WAMP endpoint/handler decorators

	new examples for endpoint/handler decorators

	fix excludeMe pubsub option

0.8.4

Published [https://pypi.python.org/pypi/autobahn/0.8.4]

	initial support for WAMP v2 authentication

	various fixes/improvements to WAMP v2 implementation

	new example: WebSocket authentication with Mozilla Persona

	polish up documentation

0.8.3

Published [https://pypi.python.org/pypi/autobahn/0.8.3]

	fix bug with closing router app sessions

0.8.2

Published [https://pypi.python.org/pypi/autobahn/0.8.2]

	compatibility with latest WAMP v2 spec (“RC-2, 2014/02/22”)

	various smaller fixes

0.8.1

Published [https://pypi.python.org/pypi/autobahn/0.8.1]

	WAMP v2 basic router (broker + dealer) implementation

	WAMP v2 example set

	WAMP v2: decouple transports, sessions and routers

	support explicit (binary) subprotocol name for wrapping WebSocket factory

	fix dependency on MsgPack

0.8.0

Published [https://pypi.python.org/pypi/autobahn/0.8.0]

	new: complete WAMP v2 protocol implementation and API layer

	new: basic WAMP v2 router implementation

	existing WAMP v1 implementation renamed

0.7.4

Published [https://pypi.python.org/pypi/autobahn/0.7.4]

	fix WebSocket server HTML status page

	fix close reason string handling

	new “slowsquare” example

	Python 2.6 fixes

0.7.3

Published [https://pypi.python.org/pypi/autobahn/0.7.3]

	support asyncio on Python 2 (via “Trollius” backport)

0.7.2

Published [https://pypi.python.org/pypi/autobahn/0.7.2]

	really fix setup/packaging

0.7.1

Published [https://pypi.python.org/pypi/autobahn/0.7.1]

	setup fixes

	fixes for Python2.6

0.7.0

Published [https://pypi.python.org/pypi/autobahn/0.7.0]

	asyncio support

	Python 3 support

	support WebSocket (and WAMP) over Twisted stream endpoints

	support Twisted stream endpoints over WebSocket

	twistd stream endpoint forwarding plugin

	various new examples

	fix Flash policy factory

0.6.5

Published [https://pypi.python.org/pypi/autobahn/0.6.5]

	Twisted reactor is no longer imported on module level (but lazy)

	optimize pure Python UTF8 validator (10-20% speedup on PyPy)

	opening handshake traffic stats (per-open stats)

	add multi-core echo example

	fixes with examples of streaming mode

	fix zero payload in streaming mode

0.6.4

Published [https://pypi.python.org/pypi/autobahn/0.6.4]

	support latest permessage-deflate draft

	allow controlling memory level for zlib / permessage-deflate

	updated reference, moved docs to “Read the Docs”

	fixes #157 (a WAMP-CRA timing attack very, very unlikely to be exploitable, but anyway)

0.6.3

Published [https://pypi.python.org/pypi/autobahn/0.6.3]

	symmetric RPCs

	WebSocket compression: client and server, permessage-deflate, permessage-bzip2 and permessage-snappy

	onConnect is allowed to return Deferreds now

	custom publication and subscription handler are allowed to return Deferreds now

	support for explicit proxies

	default protocol version now is RFC6455

	option to use salted passwords for authentication with WAMP-CRA

	automatically use ultrajson acceleration package for JSON processing when available

	automatically use wsaccel acceleration package for WebSocket masking and UTF8 validation when available

	allow setting and getting of custom HTTP headers in WebSocket opening handshake

	various new code examples

	various documentation fixes and improvements

0.5.14

Published [https://pypi.python.org/pypi/autobahn/0.5.14]

	base version when we started to maintain a changelog

 Python Module Index

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 autobahn	

 	
 	
 autobahn.rawsocket.util	

 	
 	
 autobahn.util	

 	
 	
 autobahn.wamp.auth	

 	
 	
 autobahn.wamp.cryptobox	

 	
 	
 autobahn.wamp.cryptosign	

 	
 	
 autobahn.wamp.exception	

 	
 	
 autobahn.wamp.interfaces	

 	
 	
 autobahn.wamp.types	

 	
 	
 autobahn.websocket.compress	

 	
 	
 autobahn.websocket.types	

 	
 	
 autobahn.websocket.util	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | J
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W
 | X

A

 	
 	abort() (autobahn.wamp.interfaces.ITransport method)

 	Accept (class in autobahn.wamp.types)

 	ApplicationError

 	ApplicationRunner (class in autobahn.asyncio.wamp)

 	(class in autobahn.twisted.wamp)

 	ApplicationSession (class in autobahn.asyncio.wamp)

 	(class in autobahn.twisted.wamp)

 	autobahn.rawsocket.util (module)

 	autobahn.util (module)

 	
 	autobahn.wamp.auth (module)

 	autobahn.wamp.cryptobox (module)

 	autobahn.wamp.cryptosign (module)

 	autobahn.wamp.exception (module)

 	autobahn.wamp.interfaces (module)

 	autobahn.wamp.types (module)

 	autobahn.websocket.compress (module)

 	autobahn.websocket.types (module)

 	autobahn.websocket.util (module)

B

 	
 	BINARY (autobahn.wamp.interfaces.IObjectSerializer attribute)

C

 	
 	call() (autobahn.wamp.interfaces.ISession method)

 	CallDetails (class in autobahn.wamp.types)

 	CallOptions (class in autobahn.wamp.types)

 	CallResult (class in autobahn.wamp.types)

 	Challenge (class in autobahn.wamp.types)

 	close() (autobahn.wamp.interfaces.ITransport method)

 	CloseDetails (class in autobahn.wamp.types)

 	Component (class in autobahn.asyncio.component)

 	(class in autobahn.twisted.component)

 	(class in autobahn.wamp.component)

 	
 	ComponentConfig (class in autobahn.wamp.types)

 	compute_totp() (in module autobahn.wamp.auth)

 	compute_wcs() (in module autobahn.wamp.auth)

 	ConnectionAccept (class in autobahn.websocket.types)

 	ConnectionDeny

 	ConnectionRequest (class in autobahn.websocket.types)

 	ConnectionResponse (class in autobahn.websocket.types)

 	create_url() (in module autobahn.rawsocket.util)

 	(in module autobahn.websocket.util)

D

 	
 	decode() (autobahn.wamp.interfaces.IPayloadCodec method)

 	define() (autobahn.wamp.interfaces.ISession method)

 	
 	Deny (class in autobahn.wamp.types)

 	derive_key() (in module autobahn.wamp.auth)

 	disconnect() (autobahn.wamp.interfaces.ISession method)

E

 	
 	encode() (autobahn.wamp.interfaces.IPayloadCodec method)

 	encode_truncate() (in module autobahn.util)

 	EncodedPayload (class in autobahn.wamp.cryptobox)

 	(class in autobahn.wamp.types)

 	
 	Error

 	error_message() (autobahn.wamp.exception.ApplicationError method)

 	EventDetails (class in autobahn.wamp.types)

G

 	
 	generate_activation_code() (in module autobahn.util)

 	generate_serial_number() (in module autobahn.util)

 	generate_token() (in module autobahn.util)

 	generate_totp_secret() (in module autobahn.wamp.auth)

 	
 	generate_user_password() (in module autobahn.util)

 	generate_wcs() (in module autobahn.wamp.auth)

 	get_channel_id() (autobahn.wamp.interfaces.ITransport method)

 	get_payload_codec() (autobahn.wamp.interfaces.ISession method)

H

 	
 	HelloDetails (class in autobahn.wamp.types)

 	
 	HelloReturn (class in autobahn.wamp.types)

I

 	
 	IMessage (class in autobahn.wamp.interfaces)

 	IObjectSerializer (class in autobahn.wamp.interfaces)

 	IPayloadCodec (class in autobahn.wamp.interfaces)

 	is_attached() (autobahn.wamp.interfaces.ISession method)

 	is_connected() (autobahn.wamp.interfaces.ISession method)

 	ISerializer (class in autobahn.wamp.interfaces)

 	
 	ISession (class in autobahn.wamp.interfaces)

 	isOpen() (autobahn.wamp.interfaces.ITransport method)

 	ITransport (class in autobahn.wamp.interfaces)

 	ITransportHandler (class in autobahn.wamp.interfaces)

 	IWebSocketChannel (class in autobahn.websocket.interfaces)

 	IWebSocketClientChannelFactory (class in autobahn.websocket.interfaces)

 	IWebSocketServerChannelFactory (class in autobahn.websocket.interfaces)

J

 	
 	join() (autobahn.wamp.interfaces.ISession method)

L

 	
 	leave() (autobahn.wamp.interfaces.ISession method)

M

 	
 	MESSAGE_TYPE (autobahn.wamp.interfaces.IMessage attribute)

 	
 	MESSAGE_TYPE_MAP (autobahn.wamp.interfaces.ISerializer attribute)

O

 	
 	onChallenge() (autobahn.wamp.interfaces.ISession method)

 	onClose() (autobahn.wamp.interfaces.ITransportHandler method)

 	(autobahn.websocket.interfaces.IWebSocketChannel method)

 	onConnect() (autobahn.wamp.interfaces.ISession method)

 	(autobahn.websocket.interfaces.IWebSocketChannel method)

 	onDisconnect() (autobahn.wamp.interfaces.ISession method)

 	onJoin() (autobahn.wamp.interfaces.ISession method)

 	
 	onLeave() (autobahn.wamp.interfaces.ISession method)

 	onMessage() (autobahn.wamp.interfaces.ITransportHandler method)

 	(autobahn.websocket.interfaces.IWebSocketChannel method)

 	onOpen() (autobahn.wamp.interfaces.ITransportHandler method)

 	(autobahn.websocket.interfaces.IWebSocketChannel method)

 	onUserError() (autobahn.wamp.interfaces.ISession method)

 	onWelcome() (autobahn.wamp.interfaces.ISession method)

P

 	
 	parse_url() (in module autobahn.rawsocket.util)

 	(in module autobahn.websocket.util)

 	pbkdf2() (in module autobahn.wamp.auth)

 	PerMessageDeflateOffer (class in autobahn.websocket.compress)

 	PerMessageDeflateOfferAccept (class in autobahn.websocket.compress)

 	PerMessageDeflateResponse (class in autobahn.websocket.compress)

 	PerMessageDeflateResponseAccept (class in autobahn.websocket.compress)

 	protocol (autobahn.asyncio.rawsocket.WampRawSocketClientFactory attribute)

 	(autobahn.asyncio.rawsocket.WampRawSocketServerFactory attribute)

 	(autobahn.asyncio.websocket.WampWebSocketClientFactory attribute)

 	(autobahn.asyncio.websocket.WampWebSocketServerFactory attribute)

 	(autobahn.asyncio.websocket.WebSocketServerFactory attribute)

 	(autobahn.twisted.rawsocket.WampRawSocketClientFactory attribute)

 	(autobahn.twisted.rawsocket.WampRawSocketServerFactory attribute)

 	(autobahn.twisted.websocket.WampWebSocketClientFactory attribute)

 	(autobahn.twisted.websocket.WampWebSocketServerFactory attribute)

 	
 	ProtocolError

 	publish() (autobahn.wamp.interfaces.ISession method)

 	PublishOptions (class in autobahn.wamp.types)

R

 	
 	register() (autobahn.wamp.interfaces.ISession method)

 	RegisterOptions (class in autobahn.wamp.types)

 	resetProtocolOptions() (autobahn.websocket.interfaces.IWebSocketClientChannelFactory method)

 	(autobahn.websocket.interfaces.IWebSocketServerChannelFactory method)

 	
 	rtime() (in module autobahn.util)

 	run() (autobahn.asyncio.wamp.ApplicationRunner method)

 	(autobahn.twisted.wamp.ApplicationRunner method)

 	(in module autobahn.asyncio.component)

 	(in module autobahn.twisted.component)

S

 	
 	send() (autobahn.wamp.interfaces.ITransport method)

 	sendClose() (autobahn.websocket.interfaces.IWebSocketChannel method)

 	sendMessage() (autobahn.websocket.interfaces.IWebSocketChannel method)

 	SerializationError

 	serialize() (autobahn.wamp.interfaces.IMessage method)

 	(autobahn.wamp.interfaces.IObjectSerializer method)

 	(autobahn.wamp.interfaces.ISerializer method)

 	SERIALIZER_ID (autobahn.wamp.interfaces.ISerializer attribute)

 	session_factory (autobahn.asyncio.component.Component attribute)

 	(autobahn.twisted.component.Component attribute)

 	SessionDetails (class in autobahn.wamp.types)

 	
 	SessionIdent (class in autobahn.wamp.types)

 	SessionNotReady

 	set_payload_codec() (autobahn.wamp.interfaces.ISession method)

 	setProtocolOptions() (autobahn.websocket.interfaces.IWebSocketClientChannelFactory method)

 	(autobahn.websocket.interfaces.IWebSocketServerChannelFactory method)

 	setSessionParameters() (autobahn.websocket.interfaces.IWebSocketClientChannelFactory method)

 	(autobahn.websocket.interfaces.IWebSocketServerChannelFactory method)

 	stop() (autobahn.asyncio.wamp.ApplicationRunner method)

 	(autobahn.twisted.wamp.ApplicationRunner method)

 	subscribe() (autobahn.wamp.interfaces.ISession method)

 	SubscribeOptions (class in autobahn.wamp.types)

T

 	
 	transport (autobahn.wamp.interfaces.ITransportHandler attribute)

 	
 	TransportLost

U

 	
 	uncache() (autobahn.wamp.interfaces.IMessage method)

 	unserialize() (autobahn.wamp.interfaces.IObjectSerializer method)

 	(autobahn.wamp.interfaces.ISerializer method)

 	
 	utcnow() (in module autobahn.util)

 	utcstr() (in module autobahn.util)

W

 	
 	WampRawSocketClientFactory (class in autobahn.asyncio.rawsocket)

 	(class in autobahn.twisted.rawsocket)

 	WampRawSocketClientProtocol (class in autobahn.asyncio.rawsocket)

 	(class in autobahn.twisted.rawsocket)

 	WampRawSocketServerFactory (class in autobahn.asyncio.rawsocket)

 	(class in autobahn.twisted.rawsocket)

 	WampRawSocketServerProtocol (class in autobahn.asyncio.rawsocket)

 	(class in autobahn.twisted.rawsocket)

 	WampWebSocketClientFactory (class in autobahn.asyncio.websocket)

 	(class in autobahn.twisted.websocket)

 	WampWebSocketClientProtocol (class in autobahn.asyncio.websocket)

 	(class in autobahn.twisted.websocket)

 	
 	WampWebSocketServerFactory (class in autobahn.asyncio.websocket)

 	(class in autobahn.twisted.websocket)

 	WampWebSocketServerProtocol (class in autobahn.asyncio.websocket)

 	(class in autobahn.twisted.websocket)

 	WebSocketClientFactory (class in autobahn.asyncio.websocket)

 	(class in autobahn.twisted.websocket)

 	WebSocketClientProtocol (class in autobahn.asyncio.websocket)

 	(class in autobahn.twisted.websocket)

 	WebSocketServerFactory (class in autobahn.asyncio.websocket)

 	(class in autobahn.twisted.websocket)

 	WebSocketServerProtocol (class in autobahn.asyncio.websocket)

 	(class in autobahn.twisted.websocket)

X

 	
 	xor() (in module autobahn.util)

_images/wamp-demos.png
nike@antle:~/autobahn-python$ # running 11 the Autobahn WAWP examples
nike@uantle: ~/autobahn-pythons # with 3 Twisted script

nikeguantle:

nike@uantle:

Running crossbar.io instance

Stale Crosshar.io PID file /hone/mike/uork-tavendo/sr/autabahn-pythan/exanples/router/ .crossbar/node. pid (pointing to non-existing proc
55 with PID 14273) renoved

20150617 18:07:00-0600 (Controller 13229] Log apened.
2015-06-17 18:07:00-0600 (Controller 18229] Crosstar 10

20150617 15:67:00-0500 [Controller 18229] Crossbar.io 6.10.4 starting

2015.06-17 18:07:00-0600 (Controller 13229] Funning on CPython using EPallReactor reactor

2015-06-17 18:07:00-0600 (Controller 18229] Starting from node darectory /hone/mike/work- tavendo/sre/autabhn-pythan/exanples;/router/ .c
rosshar

20150617 15:67:00-0500 [Controller 18229] Starting from local configuration *fhose/nike/work- tavendo/src/autobahn-python/exanples/rou
ters_crossar/config. json®

2015-06-17 18:07:00-0800 (Controller 18229 Warning, could not set process title (setproctitle not installed)

20150617 18:07:00-0600 (Controller 18220 Warning! process utilities not available

20150617 15:67:00-0600 [Controller 18220] Rauter created for reals “crossbar

20150617 18:07:00.0600 [Controller 18229] No WAWPlets detected in environent

2015-06-17 18, (Controller 18229] Starting Router with ID "workerl’

2015-06-17 15:67:00-0600 [Controller 18229] Entering reactor event loop

20150617 15:07:00-000 (Router 13238] Log opened.

20150617 18:07:00-0600 (Router 13238] Warning: could not set worker process title (setpractitle not installed)

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Site Contents

 		
 Autobahn|Python

 		
 Autobahn Features

 		
 What can I do with Autobahn?

 		
 Show me some code!

 		
 Where to start

 		
 Get in touch

 		
 Contributing

 		
 Release Testing

 		
 Sitemap

 		
 Installation

 		
 Requirements

 		
 Supported Configurations

 		
 Performance Note

 		
 Installing Autobahn

 		
 Using Docker

 		
 Install from PyPI

 		
 Install from Sources

 		
 Install Variants

 		
 Windows Installation

 		
 Check the Installation

 		
 Depending on Autobahn

 		
 Asynchronous Programming

 		
 Introduction

 		
 The asynchronous programming approach

 		
 Other forms of Concurrency

 		
 Twisted or asyncio?

 		
 Resources

 		
 Twisted Resources

 		
 Asyncio Resources

 		
 Asynchronous Programming Primitives

 		
 Twisted Deferreds and inlineCallbacks

 		
 Asyncio Futures and Coroutines

 		
 WebSocket Programming

 		
 Creating Servers

 		
 Server Protocols

 		
 Receiving Messages

 		
 Sending Messages

 		
 Running a Server

 		
 Connection Lifecycle

 		
 Opening Handshake

 		
 Connection Open

 		
 Closing a Connection

 		
 Connection Close

 		
 Creating Clients

 		
 Client Protocols

 		
 Running a Client

 		
 WebSocket Options

 		
 Common Options (server and client)

 		
 Server-Only Options

 		
