

Argh: The Natural CLI

[image: https://img.shields.io/coveralls/neithere/argh.svg]
 [https://coveralls.io/r/neithere/argh][image: https://img.shields.io/travis/neithere/argh.svg]
 [https://travis-ci.org/neithere/argh][image: https://img.shields.io/pypi/format/argh.svg]
 [https://pypi.python.org/pypi/argh][image: https://img.shields.io/pypi/status/argh.svg]
 [https://pypi.python.org/pypi/argh][image: https://img.shields.io/pypi/v/argh.svg]
 [https://pypi.python.org/pypi/argh][image: https://img.shields.io/pypi/pyversions/argh.svg]
 [https://pypi.python.org/pypi/argh][image: https://img.shields.io/pypi/dd/argh.svg]
 [https://pypi.python.org/pypi/argh][image: https://readthedocs.org/projects/argh/badge/?version=stable]
 [http://argh.readthedocs.org/en/stable/][image: https://readthedocs.org/projects/argh/badge/?version=latest]
 [http://argh.readthedocs.org/en/latest/]Building a command-line interface? Found yourself uttering “argh!” while
struggling with the API of argparse? Don’t like the complexity but need
the power?

Everything should be made as simple as possible, but no simpler.

 Tutorial

Tutorial

Argh is a small library that provides several layers of abstraction on top
of argparse. You are free to use any layer that fits given task best.
The layers can be mixed. It is always possible to declare a command with
the highest possible (and least flexible) layer and then tune the behaviour
with any of the lower layers including the native API of argparse.

Dive In

Assume we need a CLI application which output is modulated by arguments:

$./greet.py
Hello unknown user!

$./greet.py --name John
Hello John!

This is our business logic:

def main(name='unknown user'):
 return 'Hello {0}!'.format(name)

That was plain Python, nothing CLI-specific.
Let’s convert the function into a complete CLI application:

argh.dispatch_command(main)

Done. Dead simple.

What about multiple commands? Easy:

argh.dispatch_commands([load, dump])

And then call your script like this:

$./app.py dump
$./app.py load fixture.json
$./app.py load fixture.yaml --format=yaml

I guess you get the picture. The commands are ordinary functions
with ordinary signatures:

	Declare them somewhere, dispatch them elsewhere. This ensures loose
coupling of components in your application.

	They are natural and pythonic. No fiddling with the parser and the related
intricacies like action='store_true' which you could never remember.

Still, there’s much more to commands than this.

The examples above raise some questions, including:

	do we have to return, or print and yield are also supported?

	what’s the difference between dispatch_command()
and dispatch_commands()? What’s going on under the hood?

	how do I add help for each argument?

	how do I access the parser to fine-tune its behaviour?

	how to keep the code as DRY as possible?

	how do I expose the function under custom name and/or define aliases?

	how do I have values converted to given type?

	can I use a namespace object instead of the natural way?

Just read on.

Declaring Commands

The Natural Way

You’ve already learned the natural way of declaring commands before even
knowing about argh:

def my_command(alpha, beta=1, gamma=False, *delta):
 return

When executed as app.py my-command --help, such application prints:

usage: app.py my-command [-h] [-b BETA] [-g] alpha [delta [delta ...]]

positional arguments:
 alpha
 delta

optional arguments:
 -h, --help show this help message and exit
 -b BETA, --beta BETA
 -g, --gamma

The same result can be achieved with this chunk of argparse code (with the
exception that in argh you don’t immediately modify a parser but rather
declare what’s to be added to it later):

parser.add_argument('alpha')
parser.add_argument('-b', '--beta', default=1, type=int)
parser.add_argument('-g', '--gamma', default=False, action='store_true')
parser.add_argument('delta', nargs='*')

Verbose, hardly readable, requires learning another API.

Argh allows for more expressive and pythonic code because:

	everything is inferred from the function signature;

	arguments without default values are interpreted as required positional
arguments;

	arguments with default values are interpreted as options;
	options with a bool as default value are considered flags and their
presence triggers the action store_true (or store_false);

	values of options that don’t trigger actions are coerced to the same type
as the default value;

	the *args entry (function’s positional arguments) is interpreted as
a single argument with 0..n values.

Hey, that’s a lot for such a simple case! But then, that’s why the API feels
natural: argh does a lot of work for you.

Well, there’s nothing more elegant than a simple function. But simplicity
comes at a cost in terms of flexibility. Fortunately, argh doesn’t stay in
the way and offers less natural but more powerful tools.

Documenting Your Commands

The function’s docstring is automatically included in the help message.
When the script is called as ./app.py my-command --help, the docstring
is displayed along with a short overview of the arguments.

However, in many cases it’s a good idea do add extra documentation per argument.

In Python 3 it’s easy:

def load(path : 'file to load', format : 'json or yaml' = 'yaml'):
 "Loads given file as YAML (unless other format is specified)"
 return loaders[format].load(path)

Python 2 does not support annotations so the above example would raise a
SyntaxError. You would need to add help via argparse API:

parser.add_argument('path', help='file to load')

...which is far from DRY and very impractical if the functions are dispatched
in a different place. This is when extended declarations become useful.

Extended Argument Declaration

When function signature isn’t enough to fine-tune the argument declarations,
the arg decorator comes in handy:

@arg('path', help='file to load')
@arg('--format', help='json or yaml')
def load(path, format='yaml'):
 return loaders[format].load(path)

In this example we have declared a function with arguments path and format
and then extended their declarations with help messages.

The decorator mostly mimics argparse‘s add_argument [http://docs.python.org/dev/library/argparse.html#argparse.ArgumentParser.add_argument]. The name_or_flags
argument must match function signature, that is:

	path and --format map to func(path) and func(format='x')
respectively (short name like -f can be omitted);

	a name that doesn’t map to anything in function signature is not allowed.

The decorator doesn’t modify the function’s behaviour in any way.

Sometimes the function is not likely to be used other than as a CLI command
and all of its arguments are duplicated with decorators. Not very DRY.
In this case **kwargs can be used as follows:

@arg('number', default=0, help='the number to increment')
def increment(**kwargs):
 return kwargs['number'] + 1

In other words, if **something is in the function signature, extra
arguments are allowed to be specified via decorators; they all go into that
very dictionary.

Mixing **kwargs with straightforward signatures is also possible:

@arg('--bingo')
def cmd(foo, bar=1, *maybe, **extra):
 return ...

Note

It is not recommended to mix *args with extra positional arguments
declared via decorators because the results can be pretty confusing (though
predictable). See argh tests for details.

Namespace Objects

The default approach of argparse is similar to **kwargs: the function
expects a single object and the CLI arguments are defined elsewhere.

In order to dispatch such “argparse-style” command via argh, you need to
tell the latter that the function expects a namespace object. This is done by
wrapping the function into the expects_obj() decorator:

@expects_obj
def cmd(args):
 return args.foo

This way arguments cannot be defined in the Natural Way but the
arg decorator works as usual.

Note

In both cases — **kwargs-only and @expects_obj — the arguments
must be declared via decorators or directly via the argparse API.
Otherwise the command has zero arguments (apart from --help).

Assembling Commands

Note

Argh decorators introduce a declarative mode for defining commands. You
can access the argparse API after a parser instance is created.

After the commands are declared, they should be assembled within a single
argument parser. First, create the parser itself:

parser = argparse.ArgumentParser()

Add a couple of commands via add_commands():

argh.add_commands(parser, [load, dump])

The commands will be accessible under the related functions’ names:

$./app.py {load,dump}

Subcommands

If the application has too many commands, they can be grouped into namespaces:

argh.add_commands(parser, [serve, ping], namespace='www',
 title='Web-related commands')

The resulting CLI is as follows:

$./app.py www {serve,ping}

See Subparsers for the gory details.

Dispatching Commands

The last thing is to actually parse the arguments and call the relevant command
(function) when our module is called as a script:

if __name__ == '__main__':
 argh.dispatch(parser)

The function dispatch() uses the parser to obtain the
relevant function and arguments; then it converts arguments to a form
digestible by this particular function and calls it. The errors are wrapped
if required (see below); the output is processed and written to stdout
or a given file object. Special care is given to terminal encoding. All this
can be fine-tuned, see API docs.

A set of commands can be assembled and dispatched at once with a shortcut
dispatch_commands() which isn’t as flexible as the
full version described above but helps reduce the code in many cases.
Please refer to the API documentation for details.

Modular Application

As you can see, with argh the CLI application consists of three parts:

	declarations (functions and their arguments);

	assembling (a parser is constructed with these functions);

	dispatching (input → parser → function → output).

This clear separation makes a simple script just a bit more readable,
but for a large application this is extremely important.

Also note that the parser is standard.
It’s OK to call dispatch() on a custom subclass
of argparse.ArgumentParser.

By the way, argh ships with ArghParser which
integrates the assembling and dispatching functions for DRYness.

Entry Points

New in version 0.25.

The normal way is to declare commands, then assemble them into an entry
point and then dispatch.

However, It is also possible to first declare an entry point and then
register the commands with it right at command declaration stage.

The commands are assembled together but the parser is not created until
dispatching.

To do so, use EntryPoint:

from argh import EntryPoint

app = EntryPoint('my cool app')

@app
def foo():
 return 'hello'

@app
def bar():
 return 'bye'

if __name__ == '__main__':
 app()

Single-command application

There are cases when the application performs a single task and it perfectly
maps to a single command. The method above would require the user to type a
command like check_mail.py check --now while check_mail.py --now would
suffice. In such cases add_commands() should be replaced
with set_default_command():

def main():
 return 1

argh.set_default_command(parser, main)

There’s also a nice shortcut dispatch_command().
Please refer to the API documentation for details.

Subcommands + Default Command

New in version 0.26.

It’s possible to augment a single-command application with nested commands:

p = ArghParser()
p.add_commands([foo, bar])
p.set_default_command(foo) # could be a `quux`

However, this will raise an exception on assembling stage unless you have
at least Python ≥ 3.4. The reason is a bug in argparse. Alright, what
should you do then? This is a simple workaround:

p = argh.ArghParser()
p.add_commands([foo, bar])
try:
 p.set_default_command(quux)
except argh.AssemblingError:
 print('Please upgrade to Python 3.4 or higher')
 p.add_commands([quux])

Note

If you are using argh with barebones ArgumentParser, make sure that
the parse_args() method gets ArghNamespace
as the namespace object, otherwise the correct choice of function cannot
be guaranteed. The reason is that a higher-level parser has higher
priority than its nested ones when argparse picks a default dest from
defaults, which includes the function mapped to a certain endpoint.

Generated help

Argparse takes care of generating nicely formatted help for commands and
arguments. The usage information is displayed when user provides the switch
--help. However argparse does not provide a help command.

Argh always adds the command help automatically:

	help shell → shell --help

	help web serve → web serve --help

See also #documenting-your-commands.

Returning results

Most commands print something. The traditional straightforward way is this:

def foo():
 print('hello')
 print('world')

However, this approach has a couple of flaws:

	it is difficult to test functions that print results: you are bound to
doctests or need to mess with replacing stdout;

	terminals and pipes frequently have different requirements for encoding,
so Unicode output may break the pipe (e.g. $ foo.py test | wc -l). Of
course you don’t want to do the checks on every print statement.

Good news: if you return a string, Argh will take care of the encoding:

def foo():
 return 'привет'

But what about multiple print statements? Collecting the output in a list
and bulk-processing it at the end would suffice. Actually you can simply
return a list and Argh will take care of it:

def foo():
 return ['hello', 'world']

Note

If you return a string, it is printed as is. A list or tuple is iterated
and printed line by line. This is how dispatcher works.

This is fine, but what about non-linear code with if/else, exceptions and
interactive prompts? Well, you don’t need to manage the stack of results within
the function. Just convert it to a generator and Argh will do the rest:

def foo():
 yield 'hello'
 yield 'world'

Syntactically this is exactly the same as the first example, only with yield
instead of print. But the function becomes much more flexible.

Hint

If your command is likely to output Unicode and be used in pipes, you
should definitely use the last approach.

Exceptions

Usually you only want to display the traceback on unexpected exceptions. If you
know that something can be wrong, you’ll probably handle it this way:

def show_item(key):
 try:
 item = items[key]
 except KeyError as error:
 print(e) # hide the traceback
 sys.exit() # bail out (unsafe!)
 else:
 ... do something ...
 print(item)

This works, but the print-and-exit tasks are repetitive; moreover, there are
cases when you don’t want to raise SystemExit and just need to collect the
output in a uniform way. Use CommandError:

def show_item(key):
 try:
 item = items[key]
 except KeyError as error:
 raise CommandError(error) # bail out, hide traceback
 else:
 ... do something ...
 return item

Argh will wrap this exception and choose the right way to display its
message (depending on how dispatch() was called).

Decorator wrap_errors() reduces the code even further:

@wrap_errors([KeyError]) # catch KeyError, show the message, hide traceback
def show_item(key):
 return items[key] # raise KeyError

Of course it should be used with care in more complex commands.

The decorator accepts a list as its first argument, so multiple commands can be
specified. It also allows plugging in a preprocessor for the caught errors:

@wrap_errors(processor=lambda excinfo: 'ERR: {0}'.format(excinfo))
def func():
 raise CommandError('some error')

The command above will print ERR: some error.

Packaging

So, you’ve done with the first version of your Argh-powered app. The next
step is to package it for distribution. How to tell setuptools to create
a system-wide script? A simple example sums it up:

from setuptools import setup, find_packages

setup(
 name = 'myapp',
 version = '0.1',
 entry_points = {'console_scripts': ['myapp = myapp:main']},
 packages = find_packages(),
 install_requires = ['argh'],
)

This creates a system-wide myapp script that imports the myapp module and
calls a myapp.main function.

More complex examples can be found in this contributed repository:
https://github.com/illumin-us-r3v0lution/argh-examples

 API Reference

API Reference

Command decorators

	
argh.decorators.aliases(*names)

	Defines alternative command name(s) for given function (along with its
original name). Usage:

@aliases('co', 'check')
def checkout(args):
 ...

The resulting command will be available as checkout, check and co.

Note

This decorator only works with a recent version of argparse (see Python
issue 9324 [http://bugs.python.org/issue9324] and Python rev 4c0426 [http://hg.python.org/cpython/rev/4c0426261148/]). Such version ships with
Python 3.2+ and may be available in other environments as a separate
package. Argh does not issue warnings and simply ignores aliases if
they are not supported. See SUPPORTS_ALIASES.

New in version 0.19.

	
argh.decorators.named(new_name)

	Sets given string as command name instead of the function name.
The string is used verbatim without further processing.

Usage:

@named('load')
def do_load_some_stuff_and_keep_the_original_function_name(args):
 ...

The resulting command will be available only as load. To add aliases
without renaming the command, check aliases().

New in version 0.19.

	
argh.decorators.arg(*args, **kwargs)

	Declares an argument for given function. Does not register the function
anywhere, nor does it modify the function in any way.

The signature of the decorator matches that of
argparse.ArgumentParser.add_argument(), only some keywords are not
required if they can be easily guessed (e.g. you don’t have to specify type
or action when an int or bool default value is supplied).

Typical use cases:

	In combination with expects_obj() (which is not recommended);

	in combination with ordinary function signatures to add details that
cannot be expressed with that syntax (e.g. help message).

Usage:

from argh import arg

@arg('path', help='path to the file to load')
@arg('--format', choices=['yaml','json'])
@arg('-v', '--verbosity', choices=range(0,3), default=2)
def load(path, something=None, format='json', dry_run=False, verbosity=1):
 loaders = {'json': json.load, 'yaml': yaml.load}
 loader = loaders[args.format]
 data = loader(args.path)
 if not args.dry_run:
 if verbosity < 1:
 print('saving to the database')
 put_to_database(data)

In this example:

	path declaration is extended with help;

	format declaration is extended with choices;

	dry_run declaration is not duplicated;

	verbosity is extended with choices and the default value is
overridden. (If both function signature and @arg define a default
value for an argument, @arg wins.)

Note

It is recommended to avoid using this decorator unless there’s no way
to tune the argument’s behaviour or presentation using ordinary
function signatures. Readability counts, don’t repeat yourself.

	
argh.decorators.wrap_errors(errors=None, processor=None, *args)

	Decorator. Wraps given exceptions into
CommandError. Usage:

@wrap_errors([AssertionError])
def foo(x=None, y=None):
 assert x or y, 'x or y must be specified'

If the assertion fails, its message will be correctly printed and the
stack hidden. This helps to avoid boilerplate code.

	Parameters:	
	errors – A list of exception classes to catch.

	processor – A callable that expects the exception object and returns a string.
For example, this renders all wrapped errors in red colour:

from termcolor import colored

def failure(err):
 return colored(str(err), 'red')

@wrap_errors(processor=failure)
def my_command(...):
 ...

	
argh.decorators.expects_obj(func)

	Marks given function as expecting a namespace object.

Usage:

@arg('bar')
@arg('--quux', default=123)
@expects_obj
def foo(args):
 yield args.bar, args.quux

This is equivalent to:

def foo(bar, quux=123):
 yield bar, quux

In most cases you don’t need this decorator.

Assembling

Functions and classes to properly assemble your commands in a parser.

	
argh.assembling.SUPPORTS_ALIASES = False

	Calculated on load. If True, current version of argparse supports
alternative command names (can be set via aliases()).

	
argh.assembling.set_default_command(parser, function)

	Sets default command (i.e. a function) for given parser.

If parser.description is empty and the function has a docstring,
it is used as the description.

Note

An attempt to set default command to a parser which already has
subparsers (e.g. added with add_commands())
results in a AssemblingError.

Note

If there are both explicitly declared arguments (e.g. via
arg()) and ones inferred from the function
signature (e.g. via command()), declared ones
will be merged into inferred ones. If an argument does not conform
function signature, AssemblingError is raised.

Note

If the parser was created with add_help=True (which is by default),
option name -h is silently removed from any argument.

	
argh.assembling.add_commands(parser, functions, namespace=None, namespace_kwargs=None, func_kwargs=None, title=None, description=None, help=None)

	Adds given functions as commands to given parser.

	Parameters:	
	parser – an argparse.ArgumentParser instance.

	functions – a list of functions. A subparser is created for each of them.
If the function is decorated with arg(), the
arguments are passed to argparse.ArgumentParser.add_argument.
See also dispatch() for requirements
concerning function signatures. The command name is inferred from the
function name. Note that the underscores in the name are replaced with
hyphens, i.e. function name “foo_bar” becomes command name “foo-bar”.

	namespace – an optional string representing the group of commands. For example, if
a command named “hello” is added without the namespace, it will be
available as “prog.py hello”; if the namespace if specified as “greet”,
then the command will be accessible as “prog.py greet hello”. The
namespace itself is not callable, so “prog.py greet” will fail and only
display a help message.

	func_kwargs – a dict of keyword arguments to be passed to each nested ArgumentParser
instance created per command (i.e. per function). Members of this
dictionary have the highest priority, so a function’s docstring is
overridden by a help in func_kwargs (if present).

	namespace_kwargs – a dict of keyword arguments to be passed to the nested ArgumentParser
instance under given namespace.

Deprecated params that should be moved into namespace_kwargs:

	Parameters:	
	title – passed to argparse.ArgumentParser.add_subparsers() as title.

Deprecated since version 0.26.0: Please use namespace_kwargs instead.

	description – passed to argparse.ArgumentParser.add_subparsers() as
description.

Deprecated since version 0.26.0: Please use namespace_kwargs instead.

	help – passed to argparse.ArgumentParser.add_subparsers() as help.

Deprecated since version 0.26.0: Please use namespace_kwargs instead.

Note

This function modifies the parser object. Generally side effects are
bad practice but we don’t seem to have any choice as ArgumentParser is
pretty opaque.
You may prefer add_commands for a bit
more predictable API.

Note

An attempt to add commands to a parser which already has a default
function (e.g. added with set_default_command())
results in AssemblingError.

	
argh.assembling.add_subcommands(parser, namespace, functions, **namespace_kwargs)

	A wrapper for add_commands().

These examples are equivalent:

add_commands(parser, [get, put], namespace='db',
 namespace_kwargs={
 'title': 'database commands',
 'help': 'CRUD for our silly database'
 })

add_subcommands(parser, 'db', [get, put],
 title='database commands',
 help='CRUD for our silly database')

Dispatching

	
argh.dispatching.dispatch(parser, argv=None, add_help_command=True, completion=True, pre_call=None, output_file=<open file '<stdout>', mode 'w'>, errors_file=<open file '<stderr>', mode 'w'>, raw_output=False, namespace=None, skip_unknown_args=False)

	Parses given list of arguments using given parser, calls the relevant
function and prints the result.

The target function should expect one positional argument: the
argparse.Namespace object. However, if the function is decorated with
plain_signature(), the positional and named
arguments from the namespace object are passed to the function instead
of the object itself.

	Parameters:	
	parser – the ArgumentParser instance.

	argv – a list of strings representing the arguments. If None, sys.argv
is used instead. Default is None.

	add_help_command – if True, converts first positional argument “help” to a keyword
argument so that help foo becomes foo --help and displays usage
information for “foo”. Default is True.

	output_file – A file-like object for output. If None, the resulting lines are
collected and returned as a string. Default is sys.stdout.

	errors_file – Same as output_file but for sys.stderr.

	raw_output – If True, results are written to the output file raw, without adding
whitespaces or newlines between yielded strings. Default is False.

	completion – If True, shell tab completion is enabled. Default is True. (You
will also need to install it.) See argh.completion.

	skip_unknown_args – If True, unknown arguments do not cause an error
(ArgumentParser.parse_known_args is used).

	namespace – An argparse.Namespace-like object. By default an
ArghNamespace object is used. Please note that support for
combined default and nested functions may be broken if a different
type of object is forced.

By default the exceptions are not wrapped and will propagate. The only
exception that is always wrapped is CommandError
which is interpreted as an expected event so the traceback is hidden.
You can also mark arbitrary exceptions as “wrappable” by using the
wrap_errors() decorator.

	
argh.dispatching.dispatch_command(function, *args, **kwargs)

	A wrapper for dispatch() that creates a one-command parser.
Uses PARSER_FORMATTER.

This:

dispatch_command(foo)

...is a shortcut for:

parser = ArgumentParser()
set_default_command(parser, foo)
dispatch(parser)

This function can be also used as a decorator.

	
argh.dispatching.dispatch_commands(functions, *args, **kwargs)

	A wrapper for dispatch() that creates a parser, adds commands to
the parser and dispatches them.
Uses PARSER_FORMATTER.

This:

dispatch_commands([foo, bar])

...is a shortcut for:

parser = ArgumentParser()
add_commands(parser, [foo, bar])
dispatch(parser)

	
class argh.dispatching.EntryPoint(name=None, parser_kwargs=None)

	An object to which functions can be attached and then dispatched.

When called with an argument, the argument (a function) is registered
at this entry point as a command.

When called without an argument, dispatching is triggered with all
previously registered commands.

Usage:

from argh import EntryPoint

app = EntryPoint('main', dict(description='This is a cool app'))

@app
def ls():
 for i in range(10):
 print i

@app
def greet():
 print 'hello'

if __name__ == '__main__':
 app()

Interaction

	
argh.interaction.confirm(action, default=None, skip=False)

	A shortcut for typical confirmation prompt.

	Parameters:	
	action – a string describing the action, e.g. “Apply changes”. A question mark
will be appended.

	default – bool or None. Determines what happens when user hits Enter
without typing in a choice. If True, default choice is “yes”. If
False, it is “no”. If None the prompt keeps reappearing until user
types in a choice (not necessarily acceptable) or until the number of
iteration reaches the limit. Default is None.

	skip – bool; if True, no interactive prompt is used and default choice is
returned (useful for batch mode). Default is False.

Usage:

def delete(key, silent=False):
 item = db.get(Item, args.key)
 if confirm('Delete '+item.title, default=True, skip=silent):
 item.delete()
 print('Item deleted.')
 else:
 print('Operation cancelled.')

Returns None on KeyboardInterrupt event.

	
argh.interaction.safe_input(prompt)

	Prompts user for input. Correctly handles prompt message encoding.

Shell completion

Command and argument completion is a great way to reduce the number of
keystrokes and improve user experience.

To display suggestions when you press tab, a shell must obtain choices
from your program. It calls the program in a specific environment and expects
it to return a list of relevant choices.

Argparse does not support completion out of the box. However, there are
3rd-party apps that do the job, such as argcomplete [https://github.com/kislyuk/argcomplete] and
python-selfcompletion [https://github.com/dbarnett/python-selfcompletion].

Argh supports only argcomplete [https://github.com/kislyuk/argcomplete] which doesn’t require subclassing
the parser and monkey-patches it instead. Combining Argh
with python-selfcompletion [https://github.com/dbarnett/python-selfcompletion] isn’t much harder though: simply use
SelfCompletingArgumentParser instead of vanilla ArgumentParser.

See installation details and gotchas in the documentation of the 3rd-party app
you’ve chosen for the completion backend.

Argh automatically enables completion if argcomplete [https://github.com/kislyuk/argcomplete] is available
(see COMPLETION_ENABLED). If completion is undesirable in given app by
design, it can be turned off by setting completion=False
in argh.dispatching.dispatch().

Note that you don’t have to add completion via Argh; it doesn’t matter
whether you let it do it for you or use the underlying API.

Argument-level completion

Argcomplete [https://github.com/kislyuk/argcomplete] supports custom “completers”. The documentation suggests adding
the completer as an attribute of the argument parser action:

parser.add_argument("--env-var1").completer = EnvironCompleter

However, this doesn’t fit the normal Argh-assisted workflow.
It is recommended to use the arg() decorator:

@arg('--env-var1', completer=EnvironCompleter)
def func(...):
 ...

	
argh.completion.autocomplete(parser)

	Adds support for shell completion via argcomplete [https://github.com/kislyuk/argcomplete] by patching given
argparse.ArgumentParser (sub)class.

If completion is not enabled, logs a debug-level message.

	
argh.completion.COMPLETION_ENABLED = False

	Dynamically set to True on load if argcomplete [https://github.com/kislyuk/argcomplete] was successfully imported.

Helpers

	
class argh.helpers.ArghParser(*args, **kwargs)

	A subclass of ArgumentParser with support for and a couple
of convenience methods.

All methods are but wrappers for stand-alone functions
add_commands(),
autocomplete() and
dispatch().

Uses PARSER_FORMATTER.

	
add_commands(*args, **kwargs)

	Wrapper for add_commands().

	
autocomplete()

	Wrapper for autocomplete().

	
dispatch(*args, **kwargs)

	Wrapper for dispatch().

	
parse_args(args=None, namespace=None)

	Wrapper for argparse.ArgumentParser.parse_args(). If namespace
is not defined, argh.dispatching.ArghNamespace is used.
This is required for functions to be properly used as commands.

	
set_default_command(*args, **kwargs)

	Wrapper for set_default_command().

Exceptions

	
exception argh.exceptions.AssemblingError

	Raised if the parser could not be configured due to malformed
or conflicting command declarations.

	
exception argh.exceptions.CommandError

	Intended to be raised from within a command. The dispatcher wraps this
exception by default and prints its message without traceback.

Useful for print-and-exit tasks when you expect a failure and don’t want
to startle the ordinary user by the cryptic output.

Consider the following example:

def foo(args):
 try:
 ...
 except KeyError as e:
 print(u'Could not fetch item: {0}'.format(e))
 return

It is exactly the same as:

def bar(args):
 try:
 ...
 except KeyError as e:
 raise CommandError(u'Could not fetch item: {0}'.format(e))

This exception can be safely used in both print-style and yield-style
commands (see Tutorial).

	
exception argh.exceptions.DispatchingError

	Raised if the dispatching could not be completed due to misconfiguration
which could not be determined on an earlier stage.

Output Processing

	
argh.io.dump(raw_data, output_file)

	Writes given line to given output file.
See encode_output() for details.

	
argh.io.encode_output(value, output_file)

	Encodes given value so it can be written to given file object.

Value may be Unicode, binary string or any other data type.

The exact behaviour depends on the Python version:

Python 3.x

sys.stdout is a _io.TextIOWrapper instance that accepts str
(unicode) and breaks on bytes.

It is OK to simply assume that everything is Unicode unless special
handling is introduced in the client code.

Thus, no additional processing is performed.

Python 2.x

sys.stdout is a file-like object that accepts str (bytes)
and breaks when unicode is passed to sys.stdout.write().

We can expect both Unicode and bytes. They need to be encoded so as
to match the file object encoding.

The output is binary if the object doesn’t explicitly require Unicode.

	
argh.io.safe_input(prompt)

	Prompts user for input. Correctly handles prompt message encoding.

Utilities

	
argh.utils.get_arg_spec(function)

	Returns argument specification for given function. Omits special
arguments of instance methods (self) and static methods (usually cls
or something like this).

	
argh.utils.get_subparsers(parser, create=False)

	Returns the argparse._SubParsersAction instance for given
ArgumentParser instance as would have been returned by
ArgumentParser.add_subparsers(). The problem with the latter is that
it only works once and raises an exception on the second attempt, and the
public API seems to lack a method to get existing subparsers.

	Parameters:	create – If True, creates the subparser if it does not exist. Default if
False.

 Cookbook

Cookbook

Multiple values per argument

Use nargs from argparse by amending the function signature with the
arg() decorator:

@argh.arg('-p', '--patterns', nargs='*')
def cmd(patterns=None):
 distros = ('abc', 'xyz')
 return [d for d in distros if not patterns
 or any(p in d for p in patterns)]

Resulting CLI:

$ app
abc
xyz

$ app --patterns
abc
xyz

$ app -p a
abc

$ app -p ab yz
abc
xyz

Note that you need to specify both short and long names of the argument because
@arg turns off the “smart” mechanism.

 Similar projects

Similar projects

Obviously, Argh is not the only CLI helper library in the Python world.
It was created when some similar solutions already existed; more appeared
later on. There are valid reasons behind maintaining most projects.

The list below is nowhere near exhausting; certain items are yet to be
reviewed; the comments should have been more structured. However, it gives
a picture of the alternatives.

Ideally, we’d need a table with the following columns: supports argparse;
has integrated parser; requires subclassing; supports nested commands;
is bound to an unrelated piece of software; involves “magic” (i.e. undermines
clarity); depends on outdated libraries; has simple API; has unobtrusive API;
supports Python3. Not every “yes” in this table would count as pro.

	argdeclare [http://code.activestate.com/recipes/576935-argdeclare-declarative-interface-to-argparse/] requires additional classes and lacks support for nested
commands.

	argparse-cli [http://code.google.com/p/argparse-cli/] requires additional classes.

	django-boss [https://github.com/zacharyvoase/django-boss/tree/master/src/] seems to lack support for nested commands and is strictly
Django-specific.

	entrypoint [http://pypi.python.org/pypi/entrypoint/] is lightweight but involves a lot of magic and seems to lack
support for nested commands.

	opster [http://pypi.python.org/pypi/opster/] and finaloption [http://pypi.python.org/pypi/finaloption/] support nested commands but are based on the
outdated optparse library and therefore reimplement some features available
in argparse. They also introduce decorators that don’t just decorate
functions but change their behaviour, which is bad practice.

	simpleopt [http://pypi.python.org/pypi/simpleopt/] has an odd API and is rather a simple replacement for standard
libraries than an extension.

	opterator [https://github.com/buchuki/opterator/] is based on the outdated optparse and does not support nested
commands.

	clap [http://pypi.python.org/pypi/Clap/] ships with its own parser and therefore is incompatible with
clap-agnostic code.

	plac [http://micheles.googlecode.com/hg/plac/doc/plac.html] is a very powerful alternative to argparse. I’m not sure if it’s
worth migrating but it is surely very flexible and easy to use.

	baker [http://pypi.python.org/pypi/Baker/]

	plumbum [http://plumbum.readthedocs.org/en/latest/cli.html]

	docopt [http://docopt.org]

	aaargh [http://pypi.python.org/pypi/aaargh]

	cliff [http://pypi.python.org/pypi/cliff]

	cement [http://builtoncement.com/2.0/]

 Real-life usage

Real-life usage

Below are some examples of applications using argh, grouped by supported
version of Python.

Python 3:

	Aurifere [https://github.com/madjar/aurifere]

Python 2 and 3:

	Watchdog [https://github.com/gorakhargosh/watchdog/]

Python 2:

	Tool [http://pypi.python.org/pypi/tool]

	Poni [https://github.com/melor/poni/commit/14e8ccbb50e9e17b95a2f2a0d2cd0af5d90ca22b]

	Pyg [https://github.com/rubik/pyg/commit/a201de1d70536e7e4637a6079f03174b7b493ffa]

	Barman [http://pgbarman.org]

	Timetra [https://bitbucket.org/timetra/timetra]

...and more. Well, there’s probably no need to keep a complete
and up-to-date list. Still, please let me know anyway if you use argh
in your project. I’ll be glad to know. :-)

 Subparsers

Subparsers

The statement parser.add_commands([bar, quux]) builds two subparsers named
bar and quux. A “subparser” is an argument parser bound to a namespace. In
other words, it works with everything after a certain positional argument.
Argh implements commands by creating a subparser for every function.

Again, here’s how we create two subparsers for commands foo and bar:

parser = ArghParser()
parser.add_commands([bar, quux])
parser.dispatch()

The equivalent code without Argh would be:

import argparse

parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers()

foo_parser = subparsers.add_parser('foo')
foo_parser.set_defaults(function=foo)

bar_parser = subparsers.add_parser('bar')
bar_parser.set_defaults(function=bar)

args = parser.parse_args()
print args.function(args)

Now consider this expression:

parser = ArghParser()
parser.add_commands([bar, quux], namespace='foo')
parser.dispatch()

It produces a command hierarchy for the command-line expressions foo bar
and foo quux. This involves “subsubparsers”. Without Argh you would need
to write something like this (generic argparse API):

import sys
import argparse

parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers()

foo_parser = subparsers.add_parser('foo')
foo_subparsers = foo_parser.add_subparsers()

foo_bar_parser = foo_subparsers.add_parser('bar')
foo_bar_parser.set_defaults(function=bar)

foo_quux_parser = foo_subparsers.add_parser('quux')
foo_quux_parser.set_defaults(function=quux)

args = parser.parse_args()
print args.function(args)

Note

You don’t have to use ArghParser; the standard
argparse.ArgumentParser will do. You will just need to call
stand-alone functions add_commands() and
dispatch() instead of ArghParser
methods.

 Contributors

Contributors

Here is an inevitably incomplete list of contributors, i.e. people who have
suggested features, reported bugs, submitted patches, wrote packaging scripts
and generally made Argh better:

	Andrey Mikhaylenko:

	 	Author, Maintainer

	Gora Khargosh:	Bug reports

	Mika Eloranta:	Patches

	Fabien Devaux:	ArchLinux package

	Hannu Valtonen:	Debian package

	Georges Dubus:	Python3 support fixes

	Roman Ovchinnikov:

	 	Debian package

	thethomasw:	Python2.6 bug reports

	Tuk Bredsdorff:	List of similar projects

	Mike Gilbert:	Gentoo package; patch

	Marco Nenciarini:

	 	Patch for shell completion and more

	Matt Black:	Patch re TTY

	Tony Narlock:	Adaptation of README to GitHub

	Oskari Saarenmaa:

	 	Compatibility improvements

	Denis Lisov:	Support for keyword-only arguments (Python 3)

	Jörg Doppler:	Defaults in argument help message, raw docstrings

	Paul Jacobson:	Defaults in argument help message, raw docstrings

	Chuck Blake:	Support for Cython

	invl:	Idea and basic implementation of EntryPoint

	illumin-us-r3v0lution:

	 	Questions and examples of setuptools integration

	Joseph McCullough:

	 	Patch for dev environ

	Jason Dusek:	Patch for EntryPoint

	Felix Yan:	Fix missing test dependencies

	David Warde-Farley:

	 	Bugfix

	Jakub Wilk:	Fix spelling in docs

	Brian Lee:	Support for signatures of funcs behind @wraps deco

	...you? :-)

	Patches, ideas and any feedback is highly appreciated.

Acknowledgements

Early versions were somewhat inspired by Alexander Solovyov’s opster [http://pypi.python.org/pypi/opster].

Thanks to the authors of argparse [http://docs.python.org/dev/library/argparse.html] for the excellent library for which Argh
is merely a wrapper.

Thanks to Andrey Kislyuk for writing argcomplete [http://pypi.python.org/pypi/argcomplete] and thus allowing Argh
to remain compact.

Thanks to the authors of py.test [http://pypi.python.org/pypi/pytest], tox [http://pypi.python.org/pypi/tox], virtualenv [http://pypi.python.org/pypi/virtualenv], mock [http://pypi.python.org/pypi/mock] and related
projects (or ideas) for automating the routine and letting the developer focus
on the task and enjoy TDD.

Thanks to Bitbucket [https://bitbucket.org] team for the not-too-commercial approach to the excellent
tools they provide.

 Changelog

Changelog

Version 0.26.3-dev

Backward incompatible changes:

	Dropped support for Python 2.6.

Enhancements:

	Added support for Python 3.5.

	Support introspection of function signature behind the @wraps decorator
(issue #111).

Fixed bugs:

	When command function signature contained **kwargs and positionals
without defaults and with underscores in their names, a weird behaviour could
be observed (issue #104).

Other changes:

	Include the license files in manifest (PR #112).

Version 0.26.2

	Removed official support for Python 3.4, added for 3.5.

	Various tox-related improvements for development.

	Improved documentation.

Version 0.26.1

Fixed bugs:

	The undocumented (and untested) argument dispatch(..., pre_call=x)
was broken; fixing because at least one important app depends on it
(issue #63).

Version 0.26

This release is intended to be the last one before 1.0. Therefore a major
cleanup was done. This breaks backward compatibility. If your code is
really outdated, please read this list carefully and grep your code.

	Removed decorator @alias (deprecated since v.0.19).

	Removed decorator @plain_signature (deprecated since v.0.20).

	Dropped support for old-style functions that implicitly expected namespace
objects (deprecated since v.0.21). The @expects_obj decorator is now
mandatory for such functions.

	Removed decorator @command (deprecated since v.0.21).

	The @wrap_errors decorator now strictly requires that the error classes
are given as a list (old behaviour was deprecated since v.0.22).

	The allow_warnings argument is removed from
argh.completion.autocomplete(). Debug-level logging is used instead.
(The warnings were deprecated since v.0.25).

Some more stuff has been scheduled to be purged before 1.0:

	Deprecated arguments title, help and description in add_commands()
helper function. See documentation and issue #60.

Other changes:

	Improved representation of default values in the help.

	Dispatcher can be configured to skip unknown arguments (issue #57).

	Added add_subcommands() helper function (a convenience wrapper
for add_commands()).

	EntryPoint now stores kwargs for the parser.

	Added support for default command with nested commands (issue #78).

This only works with Python 3.4+ due to incorrect behaviour or earlier
versions of Argparse (including the stand-alone one as of 1.2.1).

Due to argparse peculiarities the function assignment technique relies
on a special ArghNamespace object. It is used by default in ArghParser
and the shortcuts, but if you call the vanilla ArgumentParser.parse_args()
method, you now have to supply the proper namespace object.

Fixed bugs:

	Help formatter was broken for arguments with empty strings as default values
(issue #76).

Version 0.25

	Added EntryPoint class as another way to assemble functions (issue #59).

	Added support for Python 3.4; dropped support for Python 3.3
(this doesn’t mean that Argh is necessarily broken under 3.3,
it’s just that I’m not testing against it anymore).

	Shell completion warnings are now deprecated in favour of logging.

	The command help now displays default values of all arguments (issue #64).

	Function docstrings are now displayed verbatim in the help (issue #64).

	Argh’s dispatching now should work properly in Cython.

 Python Module Index

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 argh	

 	
 	
 argh.assembling	

 	
 	
 argh.completion	

 	
 	
 argh.decorators	

 	
 	
 argh.dispatching	

 	
 	
 argh.exceptions	

 	
 	
 argh.helpers	

 	
 	
 argh.interaction	

 	
 	
 argh.io	

 	
 	
 argh.utils	

 Index

Index

 A
 | C
 | D
 | E
 | G
 | N
 | P
 | S
 | W

A

 	
 	add_commands() (argh.helpers.ArghParser method)

 	(in module argh.assembling)

 	add_subcommands() (in module argh.assembling)

 	aliases() (in module argh.decorators)

 	arg() (in module argh.decorators)

 	argh (module)

 	argh.assembling (module)

 	argh.completion (module)

 	argh.decorators (module)

 	
 	argh.dispatching (module)

 	argh.exceptions (module)

 	argh.helpers (module)

