

 Navigation

 	
 index

 	amqpclt 0.5 documentation

amqpclt

amqpclt 0.5 - versatile AMQP client

SYNOPSIS

amqpclt [OPTIONS]

DESCRIPTION

amqpclt is a versatile tool to interact with messaging brokers speaking
AMQP and/or message queues (see messaging.queue [https://messaging.readthedocs.org/en/latest/queue.html#messaging.queue]) on disk.

It receives messages (see messaging.message [https://messaging.readthedocs.org/en/latest/message.html#messaging.message]) from an incoming
module, optionally massaging them (i.e. filtering and/or modifying), and
sends them to an outgoing module. Depending on which modules are used,
the tool can perform different operations.

Here are the supported incoming modules:

	broker: connect to a messaging broker using AMQP, subscribe to one
or more queues and receive the messages sent by the broker

	queue: read messages from a message queue on disk
(see messaging.queue [https://messaging.readthedocs.org/en/latest/queue.html#messaging.queue])

Here are the supported outgoing modules:

	broker: connect to a messaging broker using AMQP and send the messages

	queue: store the messages in a message queue on disk
(see messaging.queue [https://messaging.readthedocs.org/en/latest/queue.html#messaging.queue])

Here are some frequently used combinations:

	incoming broker + outgoing queue: drain some destinations, storing
the messages on disk

	incoming queue + outgoing broker: (re-)send messages that have been
previously stored on disk, optionally with modifications (such as
altering the destination)

	incoming broker + outgoing broker: shovel messages from one broker
to another

See the “EXAMPLES” sections for concrete examples.

OPTIONS

	–callback-code CODE

	execute the Python code on each message, see the “CALLBACK” section for more information

	–callback-data VALUE,...

	pass this data to the user supplied callback code, see the “CALLBACK” section for more information

	–callback-path PATH

	execute the Python code in the given file on each message, see the “CALLBACK” section for more information

	–conf PATH

	use the given configuration file, see theconfigURATION FILE section for more information

	-c, –count INTEGER

	process at most the given number of messages; note: when using an incoming broker, to avoid consuming more messages, it is recommended to enable the –reliable option

	–daemon

	detach amqpclt so that it becomes a daemon running in the background

	–duration SECONDS

	process messages during at most the given number of seconds and then stop

	-h, –help

	print the help page

	–incoming-broker-auth STRING

	use this authentication string (see auth.credential [https://authcredential.readthedocs.org/en/latest/index.html#auth.credential]) to authenticate to the incoming broker

	–incoming-broker-module STRING

	module to use (pika|kombu)

	–incoming-broker-type STRING

	set the incoming broker type; this can be useful when using features which are broker specific

	–incoming-broker-uri URI

	use this authentication URI to connect to the incoming broker

	–incoming-queue KEY=VALUE...

	read incoming messages from the given message queue (see messaging.queue [https://messaging.readthedocs.org/en/latest/queue.html#messaging.queue])

	–lazy

	initialize the outgoing module only after having received the first message

	–log STRING

	select logging system, one of: stdout, syslog, file, null

	–logfile STRING

	select logging file if log system file is selected

	–loglevel STRING

	select logging level, one of: debug, info, warning and error

	–loop

	when using an incoming message queue, loop over it

	–outgoing-broker-auth STRING

	use this authentication string (see auth.credential [https://authcredential.readthedocs.org/en/latest/index.html#auth.credential]) to authenticate to the outgoing broker

	–outgoing-broker-module STRING

	module to use (pika|kombu)

	–outgoing-broker-type STRING

	set the outgoing broker type; this can be useful when using features which are broker specific

	–outgoing-broker-uri URI

	use this authentication URI to connect to the outgoing broker

	–outgoing-queue KEY=VALUE...

	store outgoing messages into the given message queue (see messaging.queue [https://messaging.readthedocs.org/en/latest/queue.html#messaging.queue])

	–pidfile PATH

	use this pid file

	–pod

	print the pod guide

	–prefetch INTEGER

	set the prefetch value (i.e. the maximum number of messages to received without acknowledging them) on the incoming broker

	–quit

	tell another instance of amqpclt (identified by its pid file, as specified by the –pidfile option) to quit

	–reliable

	use AMQP features for more reliable messaging (i.e. client side acknowledgments) at the cost of less performance

	–remove

	when using an incoming message queue, remove the processed messages

	–rst

	print the rst guide

	–statistics

	report statistics at the end of the execution

	–status

	get the status of another instance of amqpclt (identified by its pid file, as specified by the –pidfile option); the exit code will be zero if the instance is alive and non-zero otherwise

	–subscribe

	use these options in the AMQP subscription used with the incoming broker; this option can be given multiple times

	–timeout-connect SECONDS

	use this timeout when connecting to the broker; can be fractional

	–timeout-inactivity SECONDS

	use this timeout in the incoming module to stop amqpclt when no new messages have been received (aka drain mode); can be fractional

	–timeout-linger SECONDS

	when stopping amqpclt, use this timeout to finish interacting with the broker; can be fractional

	–version

	print the program version

	–window INTEGER

	keep at most the given number of not-yet-acknowledged messages in memory

CONFIGURATION FILE

amqpclt can read its options from a configuration file. For this,
the Perl Config::General module is used and the option names are the
same as on the command line. For instance:

daemon = true
pidfile = /var/run/amqpclt.pid
incoming-queue = path=/var/spool/amqpclt
outgoing-broker-uri = amqp://broker.acme.com:5672/virtual_host
outgoing-broker-auth = "plain name=guest pass=guest"

Alternatively, options can be nested:

<outgoing-broker>
 uri = amqp://broker.acme.com:5672/virtual_host
 auth = "plain name=guest pass=guest"
</outgoing-broker>

Or even:

<outgoing>
 <broker>
 uri = amqp://broker.acme.com:5672/virtual_host
 <auth>
 scheme = plain
 name = guest
 pass = guest
 </auth>
 </broker>
</outgoing>

The options specified on the command line have precedence over the
ones found in the configuration file.

CALLBACK

amqpclt can be given python code to execute on all processed messages.
This can be used for different purposes:

	massaging: the code can change any part of the message, including setting
or removing header fields

	filtering: the code can decide if the message must be given to the
outgoing module or not

	displaying: the code can print any part of the message

	copying: the code can store a copy of the message into files or
message queues

To use callbacks, the –callback-path or –callback-code option must be used.
The python code must provide functions with the following signature:

	start(self, DATA)
(optional) this will be called when the program starts, with the supplied
data (see the –callback-data option) as a list reference

	check(self, MESSAGE)
(mandatory) this will be called when the program has one message to process;
it will be given the message (see messaging.message.Message) and must return
either a message (it could be the same one or a new one) or a string
describing why the message has been dropped

	idle(self)
(optional) this will be called when the program has no message to process

	stop(self)
(optional) this will be called when the program stops

The code can be put in a file, on the command line or in the amqpclt
configuration file, using the “here document” syntax.

Here is an example (to be put in the amqpclt configuration file) that
prints on stdout a JSON array of messages:

callback-code = <<EOF
def start (self):
 self.count = 0
def check(self, msg):
 if self.count:
 sys.stdout.write(", ")
 else:
 sys.stdout.write("[")
 self.count += 1
 sys.stdout.write(msg.serialize())
 return msg
def stop(self):
 if self.count:
 sys.stdout.write("]\n")
 else:
 sys.stdout.write("[]\n")
EOF

For simple callback code that only needs the check subroutine, it is enough
to supply the “inside code”. If the function definition is missing,
the supplied code will be wrapped with:

def check(self, msg):
 hdr = msg.header
 ... your code goes here ...
 return msg

This allows for instance to remove the message-id header with something like:

$ amqpclt ... --callback-code 'del(hdr["foo"])'

EXAMPLES

SENDING

Here is an example of a configuration file for a message sender
daemon (from queue to broker), forcing the persistent header to true
(something which is highly recommended for reliable messaging) and
setting the destination:

define the source message queue
<incoming-queue>
 path = /var/spool/sender
</incoming-queue>
modify the message header on the fly
callback-code = <<EOF
 hdr["destination"] = "/queue/app1.data"
 hdr["persistent"] = "true"
EOF
define the destination broker
<outgoing-broker>
 uri = "amqp://broker.acme.com:5672/virtual_host"
</outgoing-broker>
miscellaneous options
reliable = true
pidfile = /var/run/sender.pid
daemon = true
loop = true
remove = true

SHOVELING

Here is an example of a configuration file for a message shoveler
(from broker to broker), clearing some headers on the fly so that messages
can be replayed safely:

define the source broker
<incoming-broker>
 uri = "amqp://broker.acme.com:5672/virtual_host"
</incoming-broker>
define the subscriptions
<subscribe>
 destination = /queue/app1.data
</subscribe>
<subscribe>
 destination = /queue/app2.data
</subscribe>
define the destination broker
<outgoing-broker>
 uri = "amqp://dev-broker.acme.com:5672/virtual_host"
</outgoing-broker>
modify the message destination
callback-code = <<EOF
 hdr["destination"] = "/queue/dest_to_be_replayed"
EOF

RECEIVING

Here is an example of a configuration file for a message receiver
(from broker to queue):

define the source broker
<incoming-broker>
 uri = "amqp://broker.acme.com:5672/virtual_host"
 <auth>
 scheme = plain
 name = receiver
 pass = secret
 </auth>
</incoming-broker>
define the subscriptions
<subscribe>
 destination = /queue/app1.data
</subscribe>
<subscribe>
 destination = /queue/app2.data
</subscribe>
define the destination message queue
<outgoing-queue>
 path = /var/spool/receiver
</outgoing-queue>
miscellaneous options
pidfile = /var/run/receiver.pid

To run it as a daemon:

$ amqpclt --conf test.conf --daemon

To use the configuration file above with some options
on the command line to drain the queues:

$ amqpclt --conf test.conf --timeout-inactivity 10

TAPPING

Callback code can also be used to tap messages, i.e. get a copy of all
messages processed by amqpclt. Here is some callback code for this purpose
that could for instance be merged with the shoveling code above.
It also shows how to use the –callback-data option:

callback-code = <<EOF
 def start(self, path, qtype="DQS"):
 self.tap_queue = queue.new({"path" : path, "type" : qtype})

 def check(self, msg):
 self.tap_queue.add_message(msg)
 return msg
EOF

Callback data must be given to specify which message queue to use:

$ amqpclt --conf tap.conf --callback-data "/tmp/tap,DQS"

AUTHOR

Massimo Paladin <massimo.paladin@gmail.com> - Copyright (C) 2013 CERN

 Copyright Copyright (C) 2013 CERN.
 Created using Sphinx 1.1.3.

 Navigation

 	
 index

 	amqpclt 0.5 documentation

Index

 Copyright Copyright (C) 2013 CERN.
 Created using Sphinx 1.1.3.

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		amqpclt 0.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Copyright (C) 2013 CERN.
 Created using Sphinx 1.1.3.

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

