

Welcome to Alignak’s documentation!

Project version:

Main version: 2.0, release: 2.0.0

Documentation contents:

	Alignak Project

	Alignak installation
	System requirements

	Installation with system packages

	Installation with pip or from source

	Installation for development

	Check Alignak configuration

	How does it work
	Daemons and how they work together

	Running Alignak

	Environment variables

	Log files

	Alignak framework configuration
	Logger configuration

	Core configuration

	Alignak configuration variables

	Default configuration

	SSL inter-daemon communication

	Monitored objects configuration
	Monitored objects configuration

	Objects inheritance

	Time-Saving tricks for objects definition

	Custom Object Variables

	Extending Alignak
	Updating default configuration

	Installing checks

	Alignak backend

	Alignak modules

	Alignak WebUI

	Monitoring features
	Monitoring basics

	Services checks

	Hosts checks

	Alignak checks logic

	State Types

	Determining state and reachability of network hosts

	Notifications

	Time Periods

	Problems, acknowledgements and downtimes

	Host / service state Flapping detection

	State stalking

	Defining advanced service dependencies

	Volatile services

	Event Handlers

	Snapshots

	Macros

	External Commands

	Alignak features
	Monitoring log

	Web service API

	Alignak Statistics

	Realms

	Monitoring a DMZ

	Business rules

	Notifications and escalations

	Time period modulations

	Problems and impacts correlation management

	Cached Checks

	Integrated protocols

	Internal Checks

	Inner modules

	How to contribute
	Useful links

	How to contribute

	A step by step contribution example

	Alignak modules and checks packages

	Annexes
	Standard Macros in Alignak

	External Commands list

	Alignak check plugins API

	Command Definition

	Time Period Definition

	Realm Definition

	Contact Definition

	Host Definition

	Service Definition

	Contact Group Definition

	Hostgroup Definition

	Service Group Definition

	Host Dependency Definition

	Service Dependency Definition

	Host Escalation Definition

	Service Escalation Definition

	Notification Way Definition

Indices and tables

	Index

	Module Index

	Search Page

Alignak Project

Alignak is an open source monitoring framework written in Python under the terms of the GNU Affero General Public License [http://www.gnu.org/licenses/agpl.txt] .
The project started in 2015 from a fork of the Shinken project. Since the project creation, we achieved a huge code documentation and cleaning, we tested the application in several environments and we developed some new features.

Alignak has its own website [http://alignak.net] which is more general presentation oriented than this documentation. If you are reading this documentation, you probably already know about this website, else you are invited to have a look [http://alignak.net].

The main idea when developing Alignak is the flexibility which is our definition of framework. We target the following goals:

	
	Easy to install: we will always deliver packages (OS and Python) installation.

	You can install Alignak with OSes packages, Python PIP packages or setup.py directly, see Alignak installation.

	
	Easy for new users: this documentation should help you to discover Alignak.

	This documentation shows simple use-cases and helps building more complex configurations.

	
	Easy to migrate from Nagios: Nagios flat-files configuration and plugins will work with Alignak.

	We try to keep as much as possible an ascending compatibility with former Nagios configuration…

	
	Multi-platform: python is available in a lot of Operating Systems.

	We try to write generic code to keep this possible. However, Linux and FreeBSD are the most tested OSes so far.
As of now, Alignak is tested with Python 2.7, 3.5 and 3.6 versions but will work with Pypy in the future.

	
	UTF-8 compliant: whatever your language, we take care of it.

	We are testing Alignak I/O with several languages and take care of localization.

	
	Independent from other monitoring solution:

	Alignak is a framework that can integrate with other applications through standard interfaces.
Flexibility first!

	
	Flexible: in an architecture point of view.

	Alignak may be distributed across several servers, datacenters to suit the monitoring needs and constraints.
It is our scalability wish!

	
	Scalable: no server overloading,

	You just have to set-up new daemons on another server and load balancing is done.

	
	Extensible: Alignak provides extension packs and modules

	For a large number of services :

	Databases (MySQL, Oracle, Microsoft SQL Server, Memcached, MongoDB, InfluxDB etc.)

	Routers, Switches (Cisco, Nortel, HP ProCurve etc.)

	OSes (Linux, Windows, AIX, HP-UX etc.)

	Hypervisors (VMware, vSphere)

	Protocols (HTTP, SSH, LDAP, DNS, IMAP, FTP, etc.)

	Application (WebLogic, Exchange, Active Directory, Tomcat, Asterisk, etc.)

	Storage (IBM-DS, SafeKit, HACMP, etc.)

	Smart NRPE polling : The NRPE Booster module is a must have to improve NRPE checks performance.

	Smart SNMP polling : The SNMP Booster module is a must have if you have a huge infrastructure of routers and switches.

	
	Easy to contribute: contribution has to be an easy process.

	Alignak follow pycodestyle (former pep8), pylint and pep257 coding standards to ease code readability.
Step by step help to contribute to the project can be found in Contributing

This is basically what Alignak is made of. May be add the keep it simple Linux principle and it’s perfect.

But Alignak is even more :

	Realm concept: you can monitor independent environments / customers

	DMZ monitoring: some daemons have passive facilities so that firewall don’t block monitoring protocols.

	Business impact: Alignak can differentiate impact of a critical alert on a toaster versus the web store

	Efficient correlation between parent-child relationship and business process rules

	High availability: daemons can have spare instances.

	Business rules: For a higher level of monitoring. Alignak can notify you only if 3 out 5 of your server are down

	Very open-minded team: help is always welcome, there is job for everyone :)

There is nothing we don’t want, we consider every features / ideas and we really appreciate discussing about monitoring stuff! Feel free to join by mail, on the IRC [http://webchat.freenode.net/?channels=%23alignak], on gitter chat room [https://gitter.im/Alignak-monitoring/alignak?utm_source=share-link&utm_medium=link&utm_campaign=share-link] to discuss with us or ask for more information

Alignak installation

Installing Alignak is an easy process thanks to the different packages and available procedures.

Alignak is a Python application. Despite the excellent pip Python installing tool, the recommended way for installation is using the system packages… Some packages are available for the main Linux distros, see DEB / RPM installation chapters to install with packages.

	System requirements
	User account

	Python version

	Python pip

	Installation with system packages
	On Debian-like Linux

	On RHEL-like Linux

	On BSD-like Unix

	Installation with pip or from source
	Installation with pip

	Installation from the source

	Installation for development
	Requirements

	Installation from the git repository

	Check Alignak configuration
	Check installation

	Troubleshooting daemons start

To be updated:
A complete tutorial exists in the Alignak demo repository [https://github.com/Alignak-monitoring-contrib/alignak-demo] or on the SysAdmin.cool web site [http://sysadmin.cool/]. The Alignak demo repository is maintained up-to-date with the most recent Alignak developments whereas the tutorial is mode dedicated to a production environment.

System requirements

Some system requirements are needed to install Alignak:

	python 2.7 or 3.5/3.6

	python pip

The Python pip tool is necessary to install the Python dependencies needed by Alignak. Installing Python pip on different systems is documented here.

Note

for sure, the required Python packages should be made available in the Alignak repositories, but it is quite a lot of work and we do not have enough time for this… any help appreciated for this;)

User account

Alignak is an application started from a privileged user account and it needs to use a low privileged user account. We recommend creating a user account identified as (in the default shipped configuration) alignak member of a group alignak.

Create alignak system user/group for Alignak application
sudo addgroup --system alignak
sudo adduser --system alignak --ingroup alignak

Note

the post installation Alignak script installed with distro packaging will create a default alignak user account if it does not yet exist on your system.

If you intend to use the Nagios checks plugins and if they are installed on your system, you should invite the user alignak into the nagios group. Most often, the installation of the Nagios checks plugins create a nagios user member of the nagios group…

sudo usermod -a -G nagios alignak

Python version

If you intend to use Python 3, follow these recommendations.

Install the pip for Python 3:

For Debian-like
$ sudo apt install python3-pip
$ pip -V
pip 8.1.1 from /usr/lib/python3/dist-packages (python 3.5)

For CentOS-like
$ sudo yum install python34-pip

As defined in some PEP, the python command is mapped to Python 2. This may be a little tricky to use Python 3 per default. Thanks to update-alternatives it is easy to choose the default Python interpreter:

Nothing configured (it is often the case...)
update-alternatives --list python
update-alternatives: error: no alternatives for python

$ sudo update-alternatives --install /usr/bin/python python /usr/bin/python2.7 1
update-alternatives: using /usr/bin/python2.7 to provide /usr/bin/python (python) in auto mode

$ sudo update-alternatives --install /usr/bin/python python /usr/bin/python3.5 2
update-alternatives: using /usr/bin/python3.5 to provide /usr/bin/python (python) in auto mode

$ update-alternatives --list python
/usr/bin/python2.7
/usr/bin/python3.5

Python 3.5 is now the default one!
$ python --version
Python 3.5.2

Change this
$ update-alternatives --config python
There are 2 choices for the alternative python (providing /usr/bin/python).

 Selection Path Priority Status
--
* 0 /usr/bin/python3.5 2 auto mode
 1 /usr/bin/python2.7 1 manual mode
 2 /usr/bin/python3.5 2 manual mode

Press <enter> to keep the current choice[*], or type selection number:

Back to Python 2.7 if you choose 1
$ python --version
Python 2.7.12

Note

that you may need to choose Python 2 as the default interpreter for some operations on your system :/

Warning

update-alternatives is not easy to manage with CentOS7. You would rather choose a python version and get stucked with this version!

Python pip

If your system does not yet include the Python pip tool, here is an installation reminder.

	For Debian-like Linux

	# Python 2
sudo apt install python-pip

Python 3
sudo apt install python3-pip

For RHEL-like Linux

On a RHEL (CentOS, Oracle Linux,…), the Python pip installer tool is not included in the standard RHEL repositories but it is part of the EPEL repository. You must enable EPEL repository to install pip.

sudo yum install epel-release
sudo yum -y update

Python 2
sudo yum install python-pip

Python 3
sudo yum install python3-pip

On some older versions, it may be necessary to install extra compiler tools for the python *psutil* package::
sudo yum install gcc python-devel

For FreeBSD:

Python 2.7
sudo pkg install py27-pip

Python 3.6
sudo pkg install py36-pip

Installation with system packages

Alignak system requirements are documented in this chapter. Make sure that your system is complying before trying to install;)

Alignak packaging and download repositories for Linux/Unix is done thanks to the Bintray software distribution [https://bintray.com/alignak/]. Check the Alignak Bintray home page [https://bintray.com/alignak] for all the available repositories and their packages.

On Debian-like Linux

Installing Alignak for a Debian based Linux distribution (eg. Debian, Ubuntu, etc.) is using deb packages and it is the recommended way. You can find packages in the Alignak dedicated repositories.

To proceed with installation, you must register the alignak repository and store its public key on your system. This script is an example (for Ubuntu 16) to be adapted to your system.

Create the file /etc/apt/sources.list.d/alignak.list with the following content:

Alignak DEB stable packages
sudo echo deb https://dl.bintray.com/alignak/alignak-deb-stable xenial main | sudo tee -a /etc/apt/sources.list.d/alignak.list

If your system complains about missing GPG key, you can add the publib BinTray GPG key:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv D401AB61

If you wish to use the non-stable versions (eg. current develop or any other specific branch), you can also add the repository source for the test versions:

Alignak DEB testing packages
sudo echo deb https://dl.bintray.com/alignak/alignak-deb-testing xenial main | sudo tee -a /etc/apt/sources.list.d/alignak.list

Note

According to your OS, replace {xenial} in the former script example:

	Debian 9: stretch

	Debian 8: jessie

	Ubuntu 16.04: xenial

	Ubuntu 14.04: trusty

	Ubuntu 12.04: precise

And then update the repositories list:

sudo apt-get update

The Alignak packages repositories contain several version of the application. Some information about the versioning scheme are available on this page.

Once the download sources are set, you can simply use the standard package tool to have more information about Alignak packages and available versions:

apt-cache search --full alignak
 Package: alignak
 Version: 1.1.0rc5-test
 License: AGPL
 Vendor: Alignak Team (contact@alignak.net)
 Architecture: all
 Maintainer: Alignak Team (contact@alignak.net)
 Installed-Size: 3247
 Section: default
 Priority: extra
 Homepage: http://alignak.net
 Description: Alignak, modern Nagios compatible monitoring framework
 Description-md5: 74f94d855b20459eaf2949fb24bf78bb
 Filename: alignak_1.1.0rc5-test_all.deb
 SHA1: 8a5d18a048ca6a146f9010a6efd3aebab40f161a
 SHA256: 9c400ea3a7293a6331badcd1d9ed26d16c2fd0c95db79910eda7703e93886ad5
 Size: 837996

Or you can simply use the standard package tool to install Alignak:

For Python 2
sudo apt install python-alignak

For Python 3
sudo apt install python3-alignak

Check Alignak installation
It copied the default shipped files and sample configuration.
ll /usr/local/share/alignak/
 total 24
 drwxrwxr-x 4 root root 4096 juin 19 19:53 ./
 drwxr-xr-x 9 root root 4096 juin 19 19:53 ../
 drwxrwxr-x 5 root root 4096 juin 19 19:53 bin/
 drwxrwxr-x 6 root root 4096 juin 19 19:53 etc/
 -rwxrwxr-x 1 root root 531 juin 19 09:49 post-install.sh*
 -rw-rw-r-- 1 root root 1889 juin 19 09:49 requirements.txt

Install the man pages
sudo cp /usr/local/share/alignak/bin/manpages/manpages/* /usr/share/man/man8

It installed the Alignak systemctl services
ll /lib/systemd/system/alignak*
 -rw-r--r-- 1 root root 777 juin 19 09:50 /lib/systemd/system/alignak-arbiter@.service
 -rw-r--r-- 1 root root 770 juin 19 09:50 /lib/systemd/system/alignak-broker@.service
 -rw-r--r-- 1 root root 770 juin 19 09:50 /lib/systemd/system/alignak-poller@.service
 -rw-r--r-- 1 root root 805 juin 19 09:50 /lib/systemd/system/alignak-reactionner@.service
 -rw-r--r-- 1 root root 784 juin 19 09:50 /lib/systemd/system/alignak-receiver@.service
 -rw-r--r-- 1 root root 791 juin 19 09:50 /lib/systemd/system/alignak-scheduler@.service
 -rw-r--r-- 1 root root 1286 juin 19 09:50 /lib/systemd/system/alignak.service

Alignak service status
sudo systemctl status alignak
● alignak.service - Alignak daemons instance
 Loaded: loaded (/lib/systemd/system/alignak.service; enabled; vendor preset: enabled)
 Active: inactive (dead) since mar. 2018-06-19 19:53:33 CEST; 7min ago
 Process: 13321 ExecStart=/bin/echo Starting Alignak daemons... (code=exited, status=0/SUCCESS)
 Process: 13318 ExecStartPre=/bin/chown -R alignak:alignak /usr/local/var/run/alignak (code=exited, status=0/SUCCESS)
 Process: 13310 ExecStartPre=/bin/mkdir -p /usr/local/var/run/alignak (code=exited, status=0/SUCCESS)
 Process: 13293 ExecStartPre=/bin/chown -R alignak:alignak /usr/local/var/log/alignak (code=exited, status=0/SUCCESS)
 Process: 13275 ExecStartPre=/bin/mkdir -p /usr/local/var/log/alignak/monitoring-log (code=exited, status=0/SUCCESS)
Main PID: 13321 (code=exited, status=0/SUCCESS)

Note

that immediately after the installation the alignak service is enabled and started! This is a side effect of the packaging tool that is used (fpm).

Note

more information about the default shipped configuration is available on this page.

A post-installation script (repository bin/post-install.sh) is started at the end of the installation procedure to install the required Python packages. This script is copied during the installation in the default installation directory: /usr/local/share/alignak. It is using the Python pip tool to get the Python packages listed in the default installation directory requirements.txt file.

Note

as stated formerly in this document, this hack is necessary to be sure that we use the expected versions of the needed Python libraries…

Once you achieved this tricky part, running Alignak daemons is easy. All you need is to inform the Alignak daemons where they will find the configuration to use and start the alignak system service. All this is explained in this chapter.

On RHEL-like Linux

Installing Alignak for an RPM based Linux distribution (eg. RHEL, CentOS, etc.) is using rpm packages and it is the recommended way. You can find packages in the Alignak dedicated repositories.

To proceed with installation, you must register the alignak repositories on your system.

Create the file /etc/yum.repos.d/alignak-stable.repo with the following content:

[Alignak-rpm-stable]
name=Alignak RPM stable packages
baseurl=https://dl.bintray.com/alignak/alignak-rpm-stable
gpgcheck=0
repo_gpgcheck=0
enabled=1

And then update the repositories list:

sudo yum repolist

If you wish to use the non-stable versions (eg. current develop or any other specific branch), you can also create a repository source for the test versions. Then create a file /etc/yum.repos.d/alignak-testing.repo with the following content:

[Alignak-rpm-testing]
name=Alignak RPM testing packages
baseurl=https://dl.bintray.com/alignak/alignak-rpm-testing
gpgcheck=0
repo_gpgcheck=0
enabled=1

The Alignak packages repositories contain several version of the application. Some information about the versioning scheme are :ref:`available on this page <contributing/release_cycle>`_.

Once the download sources are set, you can simply use the standard package tool to have more information about Alignak packages and available versions.

yum search alignak
Note that it exists some Alignak packages in the EPEL repository but it is an old version. Contact us for more information...
 Loaded plugins: fastestmirror
 Loading mirror speeds from cached hostfile
 * base: mirrors.atosworldline.com
 * epel: mirror.speedpartner.de
 * extras: mirrors.atosworldline.com
 * updates: mirrors.standaloneinstaller.com
 === N/S matched: alignak ===
 alignak.noarch : Alignak, modern Nagios compatible monitoring framework
 alignak-all.noarch : Meta-package to pull in all alignak
 alignak-arbiter.noarch : Alignak Arbiter
 alignak-broker.noarch : Alignak Broker
 alignak-common.noarch : Alignak Common
 alignak-poller.noarch : Alignak Poller
 alignak-reactionner.noarch : Alignak Reactionner
 alignak-receiver.noarch : Alignak Poller
 alignak-scheduler.noarch : Alignak Scheduler

 Name and summary matches only, use "search all" for everything.

yum info alignak
 Loaded plugins: fastestmirror
 Loading mirror speeds from cached hostfile
 * base: mirrors.atosworldline.com
 * epel: mirror.speedpartner.de
 * extras: mirrors.atosworldline.com
 * updates: mirrors.standaloneinstaller.com
 Available Packages
 Name : alignak
 Arch : noarch
 Version : 1.1.0rc5_test
 Release : 1
 Size : 816 k
 Repo : alignak-testing
 Summary : Alignak, modern Nagios compatible monitoring framework
 URL : http://alignak.net
 License : AGPL
 Description : Alignak, modern Nagios compatible monitoring framework

Or you can simply use the standard package tool to install Alignak and its dependencies.

For Python 2
sudo yum install python-alignak

For Python 3
sudo yum install python3-alignak

Check Alignak installation
It copied the default shipped files and sample configuration.
ll /usr/local/share/alignak/
 total 8
 drwxr-xr-x. 5 root root 49 May 24 17:52 bin
 drwxr-xr-x. 6 root root 144 May 24 17:52 etc
 -rwxrwxr-x. 1 root root 2179 Jun 22 2018 post-install.sh
 -rw-rw-r--. 1 root root 1889 Jun 22 2018 requirements.txt

Warning

on some CentOS versions, the installation of the setproctitle Python library is raising an error and requiring gcc! To cope with this problem, you must ` sudo yum install python-devel` and then ` sudo yum reinstall python-alignak` !

Note

any help for a correct RPM packaging will be much appreciated ;)

Contrary to the debian installer, no system services are installed. You must then follow this procedure.

On BSD-like Unix

There is not yet any package available for BSD based systems. You can install Alignak from the source code or with pip, … see this procedure.

The alignak repository contains an rc.d script that allows running Alignak daemons as system services. See the bin/rc.d/alignak-daemon file in the project repository.

To install the system service startup script you must:

sudo cp /usr/local/share/alignak/bin/rc.d/alignak /usr/local/etc/rc.d/

You can also run the post-installation script that is shipped with the application. Run:

sudo /usr/local/share/alignak/post-install.sh

Once you achieved the installation part, you need to configure the Alignak daemon startup script before starting the daemons. This configuration is explained in this chapter.

Installation with pip or from source

Alignak system requirements are documented in this chapter. Make sure that your system is complying before trying to install;)

Installation with pip

The installation from the PyPi repository is very simple, use this command:

Python 2
sudo pip install alignak
Python 3
sudo pip3 install alignak

This will get and install the most recent alignak package found on your default PyPi configuration.

After the installation, some files are shipped in the /usr/local/share/alignak directory: a default configuration, system service units files, man pages, …

Note

If you wish a specific version, specify the version requirements on the command line: sudo pip install alignak==2.0.0rc3

No matter why, but you may need to reinstall all the Python Alignak dependencies. You can easily do it with this command line:

sudo pip install -r /usr/local/share/alignak/requirements.txt

Tip

The Alignak project team maintains Alignak and all the Alignak related stuff on its PyPI page [https://pypi.org/user/Alignak/]. All the published versions are available on the PyPI repository [https://pypi.org/search/?q=alignak] and are tagged alignak.

Note

because of some pip specific behavior, installing Alignak requires to be connected as a user (and not as root) to run the pip command. If you really need to install from a root account, use pip install . -v --install-option='--prefix=/usr/local'

Note

the only downside with the pip installation is that the system services are not automatically installed but you can install a posteriori because all necessary files are shipped in the /usr/local/share/alignak/bin directory

Installation from the source

Get the source archive on the project GitHub releases page [https://github.com/Alignak-monitoring/alignak/releases] and uncompress the downloaded file then install with python pip.

As an exemple, for a version tagged as "1.1.0"
Use the most recent version from the project releases page ;)
wget https://github.com/Alignak-monitoring/alignak/archive/1.1.0.tar.gz
tar -xvf 1.1.0.tar.gz
cd alignak-1.1.0

sudo pip install -r requirements.txt
sudo pip install .
...
...
Successfully installed

To start Alignak as system services, you must install the shipped service units. The procedure is documented here.

Note

because of some pip specific behavior, installing Alignak requires to be connected as a user (and not as root) to run the pip command. If you really need to install from a root account, use pip install . -v --install-option='--prefix=/usr/local'

Note

the only downside with the pip installation is that the system services are not automatically installed but you can install a posteriori because all necessary files are shipped in the /usr/local/share/alignak/bin directory

Installation for development

Requirements

The requirements listed for a pip installation are also applicable. See this page.

Installation from the git repository

This procedure is the recommended one if you want to be able to hack the code base. For only installing, see this page.

	Clone the Alignak repository:

$ git clone https://github.com/Alignak-monitoring/alignak
$ cd alignak

	Install with python pip (sudo needed):

Install requirements for development and tests
$ sudo ./tests/setup_test.sh

Install Alignak in develop mode
$ sudo pip install . -e
 ...
 ...
 Successfully installed ...

Note

that installing with root/sudo credentials is needed because some scripts are created in the /usr/local/bin directory. The drawback is that some files are owned by the root user…

Check Alignak configuration

Check installation

Note

the /usr/local directory prefix is the Python prefix and it may be different according to a specific configuration. Please adapt the following examples if needed…

The installation process installs the alignak python library in the system global Python packages. To check a correct Python installation:

Get the alignak version
$ python -c 'from alignak.version import VERSION; print(VERSION)'

It also installs some startup scripts:

Some startup scripts for the Alignak dameons
$ ll /usr/local/bin/alignak*
 -rwxr-xr-x 1 root root 166 janv. 30 09:30 /usr/local/bin/alignak-arbiter*
 -rwxr-xr-x 1 root root 165 janv. 30 09:30 /usr/local/bin/alignak-broker*
 -rwxr-xr-x 1 root root 170 janv. 30 09:30 /usr/local/bin/alignak-environment*
 -rwxr-xr-x 1 root root 165 janv. 30 09:30 /usr/local/bin/alignak-poller*
 -rwxr-xr-x 1 root root 170 janv. 30 09:30 /usr/local/bin/alignak-reactionner*
 -rwxr-xr-x 1 root root 167 janv. 30 09:30 /usr/local/bin/alignak-receiver*
 -rwxr-xr-x 1 root root 168 janv. 30 09:30 /usr/local/bin/alignak-scheduler*

Some help scripts and a default configuration are shipped with the application. They are located in the /usr/local/share/alignak/ directory:

Check Alignak installation
It copied the default shipped files and sample configuration.
ll /usr/local/share/alignak/
 total 27
 -rw-r--r-- 1 root wheel 124 Jul 28 11:05 alignak-log-rotate
 -rw-r--r-- 1 root wheel 2846 Jul 28 11:05 alignak.ico
 drwxr-xr-x 6 root wheel 6 Jul 28 11:05 bin/
 drwxr-xr-x 6 root wheel 10 Jul 28 11:05 etc/
 -rwxr-xr-x 1 root wheel 4285 Jul 28 11:05 post-install.sh*
 -rw-r--r-- 1 root wheel 1859 Jul 28 11:05 requirements.txt

The post-install.sh script is used by the system packaging installation to prepare using the Alignak application. This script will:

	install the required python packages,

	create the alignak user account if it does not exist,

	create some directories and set appropriate credentials for the user account on some directories

You can run this script with some parameters: a user account name and a python prefix. Default parameters are alignak and /usr/local.

The default configuration is shipped in the /usr/local/share/alignak/etc directory:

ll /usr/local/share/alignak/etc/
 total 52
 -rw-r--r-- 1 root wheel 691 Jul 28 11:05 README
 -rw-r--r-- 1 root wheel 1944 Jul 28 11:05 alignak-logger.json
 -rw-r--r-- 1 root wheel 2024 Jul 28 11:05 alignak.cfg
 drwxr-xr-x 2 root wheel 8 Jul 28 11:05 alignak.d/
 -rw-r--r-- 1 root wheel 24321 Jul 28 11:05 alignak.ini
 drwxr-xr-x 7 root wheel 7 Jul 28 11:05 arbiter/
 drwxr-xr-x 2 root wheel 6 Jul 28 11:05 certs/
 drwxr-xr-x 3 root wheel 4 Jul 28 11:05 sample/

The alignak.ini is the main configuration file that must be provided as a parameter to any launched daemon. See the Alignak configuration chapter for more information on this file and its content.

To verify that the configuration provided to Alignak is correct and will allow starting the application, you can run the Alignak arbiter daemon in verify mode using the -V parameter:

Verify the default shipped configuration
alignak-arbiter -V -e /usr/local/share/alignak/etc/alignak.ini
 Loading configuration files: ['/usr/local/share/alignak/etc/alignak.ini', '/usr/local/share/alignak/etc/alignak.d/daemons.ini', '/usr/local/share/alignak/etc/alignak.d/modules.ini']
 Daemon 'arbiter-master' logger configuration file: /usr/local/etc/alignak/alignak-logger.json
 Error message: Daemon directory '/usr/local/var/log/alignak' did not exist, and I could not create.'. Exception: [Errno 13] Permission denied: '/usr/local/var/log'
 Error message: Daemon directory '/usr/local/var/log/alignak/monitoring-log' did not exist, and I could not create.'. Exception: [Errno 13] Permission denied: '/usr/local/var/log'
 Daemon 'arbiter-master' pid file: /usr/local/var/run/alignak/arbiter-master.pid
 Error message: Daemon directory '/usr/local//var/run/alignak' did not exist, and I could not create.'. Exception: [Errno 13] Permission denied: '/usr/local//var/run'
 Error message: Error changing to working directory: /usr/local//var/run/alignak. Error: [Errno 2] No such file or directory: '/usr/local//var/run/alignak'. Check the existence of /usr/local//var/run/alignak and the alignak/alignak account permissions on this directory.

Note

You may have some errors when running the Alignak arbiter from the command line. This is almost often because you current user account is not allowed to use the default configured directories!

Troubleshooting daemons start

Configured user account

You get this error:

sudo alignak-arbiter -V -e /usr/local/share/alignak/etc/alignak.ini
 Loading configuration files: ['/usr/local/share/alignak/etc/alignak.ini', '/usr/local/share/alignak/etc/alignak.d/daemons.ini', '/usr/local/share/alignak/etc/alignak.d/modules.ini']
 Daemon 'arbiter-master' logger configuration file: /usr/local/etc/alignak/alignak-logger.json
 Created the directory: /usr/local/var/log/alignak, stat: posix.stat_result(st_mode=16877, st_ino=141828, st_dev=2049, st_nlink=2, st_uid=0, st_gid=0, st_size=4096, st_atime=1529552405, st_mtime=1529552405, st_ctime=1529552405)
 Created the directory: /usr/local/var/log/alignak/monitoring-log, stat: posix.stat_result(st_mode=16877, st_ino=141829, st_dev=2049, st_nlink=2, st_uid=0, st_gid=0, st_size=4096, st_atime=1529552405, st_mtime=1529552405, st_ctime=1529552405)
 Daemon 'arbiter-master' pid file: /usr/local/var/run/alignak/arbiter-master.pid
 Error message: You want the application to run with the root account credentials? It is not a safe configuration! If you really want it, set: 'idontcareaboutsecurity=1' in the configuration file.

This is because you are starting the Alignak arbiter as a root user and you did not configured the user and group variables in the alignak.ini file.

Solutions:

	confirm that you really need to start the Alignak arbiter as a root user. Are you sure you need this?

	configure the user and group variables with a user account in the alignak.ini configuration file.

	or define the ALIGNAK_USER and ALIGNAK_GROUP environment variables

Directory missing

You get this error:

alignak-arbiter -V -e /usr/local/share/alignak/etc/alignak.ini
 Loading configuration files: ['/usr/local/share/alignak/etc/alignak.ini', '/usr/local/share/alignak/etc/alignak.d/daemons.ini', '/usr/local/share/alignak/etc/alignak.d/modules.ini']
 Daemon 'arbiter-master' logger configuration file: /usr/local/etc/alignak/alignak-logger.json
 Error message: Daemon directory '/usr/local/var/log/alignak' did not exist, and I could not create.'. Exception: [Errno 13] Permission denied: '/usr/local/var/log'
 Error message: Daemon directory '/usr/local/var/log/alignak/monitoring-log' did not exist, and I could not create.'. Exception: [Errno 13] Permission denied: '/usr/local/var/log'
 Daemon 'arbiter-master' pid file: /usr/local/var/run/alignak/arbiter-master.pid
 Error message: Daemon directory '/usr/local//var/run/alignak' did not exist, and I could not create.'. Exception: [Errno 13] Permission denied: '/usr/local//var/run'
 Error message: Error changing to working directory: /usr/local//var/run/alignak. Error: [Errno 2] No such file or directory: '/usr/local//var/run/alignak'. Check the existence of /usr/local//var/run/alignak and the alignak/alignak account permissions on this directory.

Alignak arbiter is trying to create some directories (/usr/local/var/log/alignak and * /usr/local/var/run/alignak*) but it is not allowed to because of the current user account credentials.

If you are usually using the Alignak system services, you should already have some existing directories: /var/log/alignak and /var/run/alignak. You only have to update the configuration file accordingly:

_dist_RUN=/var/run/alignak
_dist_LOG=/var/log/alignak

Else, you should create the directories and make sure that the current user account is allowed to write in those directories. The best solution is to:

sudo mkdir /usr/local/var/run/alignak
sudo chown alignak:wheel /usr/local/var/run/alignak
sudo chmod 775 /usr/local/var/run/alignak
sudo mkdir /usr/local/var/log/alignak
chown alignak:wheel /usr/local/var/log/alignak
chmod 775 /usr/local/var/log/alignak

Because your current user account is sudo enabled, use the wheel group. Else, set appropriate acces rights.

Directory access rights

You get this error:

alignak-arbiter -V -e /usr/local/share/alignak/etc/alignak.ini
 Loading configuration files: ['/usr/local/share/alignak/etc/alignak.ini', '/usr/local/share/alignak/etc/alignak.d/daemons.ini', '/usr/local/share/alignak/etc/alignak.d/modules.ini']
 Daemon 'arbiter-master' logger configuration file: /usr/local/share/alignak/etc/./alignak-logger.json
 Daemon 'arbiter-master' pid file: /usr/local/var/run/alignak/arbiter-master.pid
 Cannot call the additional groups setting with initgroups: Operation not permitted
 Error message: Error opening pid file: /usr/local/var/run/alignak/arbiter-master.pid. Error: [Errno 13] Permission denied: '/usr/local/var/run/alignak/arbiter-master.pid'. Check the fred:fred account permissions to write this file.

 Alignak arbiter is trying to create some directories (*/usr/local/var/log/alignak* and * /usr/local/var/run/alignak*) but it is not allowed to because of the current user account credentials.

Checking the directory:

ll /usr/local/var/run/
 total 12
 drwxr-xr-x 3 root root 4096 août 21 08:21 ./
 drwxr-xr-x 4 root root 4096 août 21 08:21 ../
 drwxrwxr-x 2 alignak alignak 4096 août 21 08:21 alignak/

Solutions:

Your current user account is probably not a member of the alignak users group. Set it as a member:

sudo usermod -a -G alignak my_user
Do not forget to logout and login again... ;)

How does it work

	Daemons and how they work together

	Running Alignak

	Environment variables

	Log files

Daemons and how they work together

Daemons

Alignak framework is designed to set up easily and smartly a distributed monitoring application for network services and resources.

It is made of 6 daemons which features may be extended thanks to modules. Each daemon type has its own role in the monitoring process.

A picture says a thousand words:

[image: Alignak daemons architecture]
Alignak framework daemons synthetic view.

Arbiter

The Arbiter daemon role:

	Loading the Alignak own configuration (daemons, behavior, …)

	Loading the monitored system objects configuration (hosts, services, contacts, …), loaded from Nagios legacy configuration files or from the Alignak backend database

	Dispatching the whole framework configuration to the other daemons

	Managing daemons connections and monitoring the state of the other daemons

	Forwarding failed daemons configuration to spare daemons

	Receiving external commands

	Collecting the monitoring events log

	Reporting Alignak state

There can have only one active Arbiter, other arbiters (if they exist in the configuration) are acting as standby spares.

Scheduler

The Scheduler daemon role:

	scheduling the checks to launch

	determines action to execute (notifications, acknowledges, …)

	dispatches the checks and actions to execute to the pollers and reactionners

There can have many schedulers for load-balancing; each scheduler is managing its own hosts list.

Poller

The Poller runs the active checks required by the Scheduler.

There can have many pollers for load-balancing.

Receiver

The Receiver daemon receives the passive checks and external commands.

There can have many receivers for load-balancing.

Broker

The Broker daemon gets all the broks from the other daemons. It propagates the events to its specialized modules (eg. Alignak backend database storage, …)

There can have many brokers for load-balancing.

Reactionner

The Reactionner daemon runs the event handlers and sends the notifications to the users.

There can have many reactionners for load-balancing.

Running Alignak

Note

this documentation is assuming that the Alignak configuration used for running is the default shipped configuration. Thus all examples are using /usr/local/share/alignak directory… please adapt the example scripts to your own configuration.

Systemd services

If your system is a recent Linux distribution (Debian 7, Ubuntu 16, CentOS 7) using systemd, and you installed from the distro packaging, you should have installed some system services that allow starting Alignak daemons with the standard systemctl command.

Installing systemd units

The Alignak installation process ships some systemd unit files in the /usr/local/share/alignak/bin directory. To install the services, if not yet installed), you must:

Install the man pages
sudo cp /usr/local/share/alignak/bin/manpages/manpages/* /usr/share/man/man8

Copy the systemd units
sudo cp /usr/local/share/alignak/bin/systemd/alignak* /etc/systemd/system

ll /etc/systemd/system
 -rw-r--r--. 1 root root 777 May 24 17:48 /lib/systemd/system/alignak-arbiter@.service
 -rw-r--r--. 1 root root 770 May 24 17:48 /lib/systemd/system/alignak-broker@.service
 -rw-r--r--. 1 root root 770 May 24 17:48 /lib/systemd/system/alignak-poller@.service
 -rw-r--r--. 1 root root 805 May 24 17:48 /lib/systemd/system/alignak-reactionner@.service
 -rw-r--r--. 1 root root 784 May 24 17:48 /lib/systemd/system/alignak-receiver@.service
 -rw-r--r--. 1 root root 791 May 24 17:48 /lib/systemd/system/alignak-scheduler@.service
 -rw-r--r--. 1 root root 1286 May 24 17:48 /lib/systemd/system/alignak.service

sudo systemctl enable alignak
 Created symlink from /etc/systemd/system/multi-user.target.wants/alignak.service to /usr/lib/systemd/system/alignak.service.

Note

more information about the default shipped configuration is available :ref: on this page <configuration/default_configuration>.

Once you achieved this tricky part, running Alignak daemons is easy. All you need is to inform the Alignak daemons where they will find the configuration to use and start the alignak system service. All this is explained in this chapter.

Configuring Alignak

You need to inform Alignak daemons where they should find the main configuration file. Using the ALIGNAK_CONFIGURATION_FILE environment variable is the simplest solution.

This variable is configured, as default, in each Alignak service unit file:

[Service]
Environment variables - may be overriden in the /etc/default/alignak
Environment=ALIGNAK_CONFIGURATION_FILE=/usr/local/share/alignak/etc/alignak.ini
Environment=ALIGNAK_USER=alignak
Environment=ALIGNAK_GROUP=alignak
EnvironmentFile=-/etc/default/alignak

To change its value, you need to create an environment configuration file: /etc/default/alignak:

ALIGNAK_CONFIGURATION_FILE=/usr/local/etc/my-alignak.ini
ALIGNAK_USER=my-alignak
ALIGNAK_GROUP=my-alignak

Note

that the Alignak user/group information are also configurable thanks to this feature. If you did not created the default proposed user account, you must update the default information.

To make Alignak start automatically when the system boots up:

Enable Alignak on system start
sudo systemctl enable alignak.service

And to manage Alignak services:

Start Alignak daemons
sudo systemctl start alignak

Stop Alignak daemons
sudo systemctl stop alignak

Alignak daemons

The target and templating features of systemctl are used to declare all the daemons that need to be started before starting the Arbiter. See the service units installed files in /lib/systemd/system/ for more information and configuration.

Note

the alignak.service defines the daemons that will be involved in the monitoring configuration. Especially, this file allows to define several instances of each daemon that use each daemon type service template.

FreeBSD services

The alignak repository contains an rc.d script that allows running Alignak daemons as system services. See the bin/rc.d directory in the project repository. the alignak file is commented to explain about its installation and usage. This script is able to operate on several alignak daemons instances. Defining which daemon is to be started is made thanks to configuration variables.

The alignak file is shipped by the installation process in the /usr/local/share/alignak/bin/rc.d directory.Its header is commented to explain which configuration variables are available and what they are made for:

#!/bin/sh

Configuration settings for an alignak-daemon instance in /etc/rc.conf:
$FreeBSD$
#
PROVIDE: alignak
REQUIRE: LOGIN
KEYWORD: shutdown
#
alignak_enable (bool):
Default value: "NO"
Flag that determines whether Alignak is enabled.
#
alignak_prefix (string):
Default value: "/usr/local"
Alignak default installation prefix
#
alignak_user (string):
Default value: "alignak"
Alignak default user - if set an ALIGNAK_USER environment variable will be defined
Set a value to override the user configured in the Alignak configuration file
If you are using the FreeBSD daemon, it will use this value to start the Alignak daemon
#
alignak_group (string):
Default value: "alignak"
Alignak default user group - same as the user variable
#
alignak_configuration (string):
Default value: "/usr/local/share/alignak/etc/alignak.ini"
Alignak configuration file name
#
alignak_log_file (string):
Default value: "/tmp/alignak.log"
Alignak default log file name (used for configuration check reporting)
#
alignak_pid_file (string):
Default value: "/tmp/alignak.pid"
Alignak default pid file name (used for configuration check reporting)
#
alignak_daemonize (bool):
Default value: "NO"
Use the daemon FreeBSD utility to start the Alignak daemons
#
alignak_daemon (bool):
Default value: "YES"
Start in daemon mode - each deamon will fork itself to daemonize
#
alignak_replace (bool):
Default value: "YES"
Start in replace mode - replaces an existing daemon if a stale pid file exists
#
alignak_flags (string):
Default value: ""
Extra parameters to be provided to the started script
#
alignak_alignak_name (string):
Default value: ""
Alignak instance name
Default is empty to get this parameter in the configuration file
#
alignak_host (string):
Default value: ""
Interface listened to by the Alignak arbiter.
Default is empty to get this parameter in the configuration file
#
alignak_port (integer):
Default value:
Port listened to by the Alignak arbiter.
Default is empty to get this parameter in the configuration file
#

alignak rc.d script is able to operate on several alignak daemons instances
Defining which daemons are to be started is made thanks to these configuration variables:
#
alignak_types (string list):
Defines the daemons types to be started
Default is all the daemon types: arbiter scheduler poller broker receiver reactionner
#
alignak_arbiter_instances (string list):
Defines the daemon instances to be started
Default is all only one master instance: arbiter-master
#
alignak_scheduler_instances (string list):
Defines the daemon instances to be started
Default is all only one master instance: scheduler-master
#
alignak_broker_instances (string list):
Defines the daemon instances to be started
#
alignak_poller_instances (string list):
Defines the daemon instances to be started
Default is all only one master instance: poller-master
#
alignak_reactionner_instances (string list):
Defines the daemon instances to be started
Default is all only one master instance: reactionner-master
#
alignak_receiver_instances (string list):
Defines the daemon instances to be started
Default is all only one master instance: receiver-master
#

Defining a specific Alignak daemons configuration is quite easy:
1- define the daemons instances list
alignak_types="scheduler broker receiver"
2- define each daemon instance for each daemons type
alignak_scheduler_instances="scheduler-realm-1 scheduler-realm-2"
alignak_broker_instances="broker-realm-1"
alignak_receiver_instances="receiver-realm-1 receiver-realm-2"
3- define each daemon instance specific parameters
alignak_scheduler_realm_1_flags="-n scheduler-realm-1 -p 10000"
alignak_scheduler_realm_2_flags="-n scheduler-realm-2 -p 10001"
alignak_broker_realm_1_flags="-n broker-realm-1 -p 10002"
alignak_broker_realm_2_flags="-n broker-realm-2 -p 10003"
alignak_receiver_realm_1_flags="-n receiver-realm-1 -p 10004"
alignak_receiver_realm_2_flags="-n receiver-realm-2 -p 10005"

The default configuration is to have one instance for each daemon type:
alignak_types="broker poller reactionner receiver scheduler arbiter"
alignak_arbiter_instances="arbiter-master"
alignak_scheduler_instances="scheduler-master"
alignak_broker_instances="broker-master"
alignak_poller_instances="poller-master"
alignak_reactionner_instances="reactionner-master"
alignak_receiver_instances="receiver-master"

Each daemon instance has its own specific port
alignak_arbiter_arbiter_master_port="7770"
alignak_scheduler_scheduler_master_port="7768"
alignak_broker_broker_master_port="7772"
alignak_poller_poller_master_port="7771"
alignak_reactionner_reactionner_master_port="7769"
alignak_receiver_receiver_master_port="7773"

#

When types and instances are specified, the non-type specific parameters defined
previously (upper) become the default values for the type/instance specific parameters.
#
Example:
If no specific "alignak_arbiter_arbiter_master_host" variable is defined then the default
"alignak_host" variable value will be used the the arbiter arbiter-master daemon host
variable.

Configure the alignak system service in the /etc/rc.conf file:

Simply use the default parameters
echo 'alignak="YES"' >> /etc/rc.conf
And define your own configuration file
echo 'alignak_configuration="/usr/local/etc/my_alignak_configuration.ini"' >> /etc/rc.conf

As an example, the content of an /etc/rc.conf.d/alignak:

#rc_debug="YES"
Information in the service script
rc_info="YES"
alignak_enable="YES"
No /usr/local prefix (eg. /var/log/alignak for the log files)
alignak_prefix=""
alignak_config="/usr/local/share/alignak/etc/alignak.ini"
Declare 3 schedulers
alignak_scheduler_instances="scheduler-master scheduler-master-2 scheduler-master-3"
alignak_scheduler_scheduler_master_port="7768"
alignak_scheduler_scheduler_master_2="17768"
alignak_scheduler_scheduler_master_3="27768"
Declare 2 receivers
alignak_receiver_instances="receiver-master receiver-nsca"
alignak_receiver_receiver_nsca="17773"

Tip

rather than updating the /etc/rc.conf file, you can create an /etc/rc.conf.d/alignak file for all the configuration variables!

Tip

configure rc_info=YES in the /etc/rc.conf file to have some information message on the console and in the system log. You can also configure the rc_debug=YES to have more detailed information about each alignak daemon configuration!

To manage Alignak services:

Start Alignak daemons
sudo service alignak start

Stop Alignak daemons
sudo service alignak stop

Check Alignak configuration
sudo service alignak check
Creates a /tmp/alignak/log file with the configuration parsing result

Shell script

Starting each daemon individually is the old plain start method inherited from Shinken and from the very first Alignak version.

Running all the Alignak daemons:

$ alignak-broker -n broker-master -e /usr/local/etc/alignak/alignak.ini
$ alignak-scheduler -n scheduler-master -e /usr/local/etc/alignak/alignak.ini
$ alignak-poller -n poller-master -e /usr/local/etc/alignak/alignak.ini
$ alignak-reactionner -n reactionner-master -e /usr/local/etc/alignak/alignak.ini
$ alignak-receiver -n receiver-master -e /usr/local/etc/alignak/alignak.ini

And the last, but not the least...
$ alignak-arbiter -e /usr/local/etc/alignak/alignak.ini

This, because the default shipped configuration file is built in a manner that it considers all the other the daemons are still started when the arbiter starts.

It is possible to start only the arbiter and make it start all the other daemons by itself. Edit the alignak.ini configuration file and set the alignak_launched variable to 1. This can be configured for all the daemons or on a per-daemon basis … see core configuration for more information.

When the arbiter is started with the alignak_launched variable set, it will start / stop the other configured daemons. While it is running the arbiter daemon will check if all the other daemons processes are still running and it will restart them if they exit. As such, running the Alignak framework is only:

$ alignak-arbiter -e /usr/local/etc/alignak/alignak.ini

Starting a daemon

As an example, starting a daemon from the shell:

[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] -----
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] Alignak 1.1.0rc5 - scheduler-master daemon
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] Copyright (c) 2015-2018: Alignak Team
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] License: AGPL
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] -----
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] My pid: 10948
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] Daemon 'scheduler-master' is started with an environment file: /usr/local/share/alignak/etc/alignak.ini
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] Daemon 'scheduler-master' pid file: /usr/local/var/run/alignak/scheduler-master.pid
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] Using working directory: /usr/local/var/run/alignak
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] Daemonizing...
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] Do not close fd: 3
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] We are now fully daemonized :) pid=10948
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] Setting up HTTP daemon (0.0.0.0:7768), 32 threads
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.http.daemon] Configured HTTP server on http://0.0.0.0:7768, 32 threads
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] Starting http_daemon thread
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] HTTP daemon thread started
[2018-06-18 14:42:02] INFO: [scheduler-master.alignak.daemon] Waiting for initial configuration

After a first initialization phase, the daemon stops its execution unitl it receives a configuration sent by the arbiter. Once received, the daemon loads the configuration:

[2018-06-18 14:42:03] INFO: [scheduler-master.alignak.scheduler] Disabling the scheduling loop...
[2018-06-18 14:42:03] INFO: [scheduler-master.alignak.http.generic_interface] My Arbiter wants me to wait for a new configuration.
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemon] Got initial configuration, waited for: 2.01
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.satellite] Received a new configuration (arbiters / schedulers)
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.satellite] My Alignak instance: My Alignak
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] Monitored configuration <Config Config_2 - Alignak global configuration (0) /> received at 1529325724. Un-serialized in 0 secs
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] Scheduler received configuration : <Config Config_2 - Alignak global configuration (0) />
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] - received PollerLink_1 - poller: poller-master
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] I got a new pollers satellite: <PollerLink_1 - poller/poller-master, http//127.0.0.1:7771, rid: 0, spare: False, managing: () />
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] - received ReactionnerLink_1 - reactionner: reactionner-master
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] I got a new reactionners satellite: <ReactionnerLink_1 - reactionner/reactionner-master, http//127.0.0.1:7769, rid: 0, spare: False, managing: () />
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] - received BrokerLink_1 - broker: broker-master
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] I got a new brokers satellite: <BrokerLink_1 - broker/broker-master, http//127.0.0.1:7772, rid: 0, spare: False, managing: () />
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] Modules configuration: []
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] I do not have modules
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] Loading configuration...
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.scheduler] Scheduling loop reset
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.scheduler] loading my configuration (SchedulerLink_1 / Config_2):
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.scheduler] Set my scheduler instance: SchedulerLink_1 - scheduler-master - None
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] Loaded: <Config Config_2 - Alignak global configuration (0) />
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.scheduler] Retention data loaded: 0.00 seconds
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] Initializing connection with my satellites:
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] - : broker/broker-master
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.objects.satellitelink] get the running identifier for broker broker-master.
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.objects.satellitelink] -> got the running identifier for broker broker-master: 1529325722.54579368.
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] - : poller/poller-master
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.objects.satellitelink] get the running identifier for poller poller-master.
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.objects.satellitelink] -> got the running identifier for poller poller-master: 1529325722.43028172.
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] - : reactionner/reactionner-master
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.objects.satellitelink] get the running identifier for reactionner reactionner-master.
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.objects.satellitelink] -> got the running identifier for reactionner reactionner-master: 1529325722.78737948.
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] Loaded: <Config Config_2 - Alignak global configuration (0) />
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.scheduler] Enabling the scheduling loop...
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemon] pause duration: 0.50
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemon] maximum expected loop duration: 1.00
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.scheduler] Disabling the scheduling loop...
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemon] starting main loop: 1529325724.44
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] First scheduling launched
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemons.schedulerdaemon] First scheduling done
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.scheduler] Enabling the scheduling loop...

Then, the daemon start its background loop:

[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.daemon] Daemon scheduler-master is living: loop #1 ;)

[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.http.scheduler_interface] A new broker just connected : broker-master
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.scheduler] Filling initial broks for: broker-master (7478fa0a-4549-4bfe-9522-7683fe1e36e5)
[2018-06-18 14:42:04] INFO: [scheduler-master.alignak.scheduler] Created 7 initial broks for broker-master

On stop request, the daemon runs its ending phase:

[2018-06-18 14:44:35] INFO: [scheduler-master.alignak.daemon] received a signal: SIGINT
[2018-06-18 14:44:35] INFO: [scheduler-master.alignak.daemon] request to stop the daemon
[2018-06-18 14:44:35] INFO: [scheduler-master.alignak.daemon] Someone asked us to stop now
[2018-06-18 14:44:35] INFO: [scheduler-master.alignak.scheduler] Retention data saved: 0.00 seconds
[2018-06-18 14:44:35] INFO: [scheduler-master.alignak.daemon] Stopping scheduler-master...
[2018-06-18 14:44:35] INFO: [scheduler-master.alignak.daemon] Shutting down synchronization manager...
[2018-06-18 14:44:35] INFO: [scheduler-master.alignak.daemon] received a signal: SIGINT
[2018-06-18 14:44:35] INFO: [scheduler-master.alignak.daemon] request to stop the daemon
[2018-06-18 14:44:35] INFO: [scheduler-master.alignak.daemon] Shutting down modules manager...
[2018-06-18 14:44:35] INFO: [scheduler-master.alignak.modulesmanager] Shutting down modules...
[2018-06-18 14:44:35] INFO: [scheduler-master.alignak.daemon] Shutting down HTTP daemon...
[2018-06-18 14:44:40] INFO: [scheduler-master.alignak.daemon] Checking HTTP thread...
[2018-06-18 14:44:40] INFO: [scheduler-master.alignak.daemon] Stopped scheduler-master.

Daemons command line parameters

All the Alignak daemons have a startup script that can be launched with command line parameters. These scripts have been installed by the Python installation process (or the distro packaging).

All the Alignak daemons need to be started with high privileges (root or sudo) that they will downgrade to a configured user/group account. The user they will use will need to have some permissions on the daemon working directory. See core configuration for more information.

The only necessary configuration to provide to the daemons when they get started is:

	the daemon name for the daemon to be able to find out its configuration (-n)

	the alignak.ini file installed by the setup process (-e).

Where to find the alignak.ini file:

	in the /usr/local/etc/alignak (or /etc/alignak) directory

Except for the environment file and the daemon name, all other command line parameters are optional because default values are used by the daemon when it starts.

The daemon will get its configuration parameters from the alignak.ini environment file in the section named as [daemon.daemon-name]. The daemon will also use some default values if they are not defined:

	it will create its pid (daemon-name.pid) and log (daemon-name.log) file in the current working directory.

	it will also use a default port to listen to the other daemons (arbiter: 7770, scheduler: 7768, broker: 7772, poller: 7771, reactionner: 7769, receiver: 7773).

For all the daemons (broker, poller, receiver, reactionner, scheduler):

$ alignak-broker -h
 usage: alignak-broker [-h] -n DAEMON_NAME [-c CONFIG_FILE] [-d] [-r] [-vv]
 [-v] [-o HOST] [-p PORT] [-l LOG_FILENAME]
 [-i PID_FILENAME] -e ENV_FILE

 Alignak daemon launching

 optional arguments:
 -h, --help show this help message and exit
 -n DAEMON_NAME, --name DAEMON_NAME
 Daemon unique name. Must be unique for the same daemon
 type.
 -c CONFIG_FILE, --config CONFIG_FILE
 Daemon configuration file. Deprecated parameter, do
 not use it anymore!
 -d, --daemon Run as a daemon. Fork the launched process and
 daemonize.
 -r, --replace Replace previous running daemon if any pid file is
 found.
 -vv, --debug Set log level to debug mode (DEBUG)
 -v, --verbose Set log level to verbose mode (INFO)
 -o HOST, --host HOST Host interface used by the daemon. Default is 0.0.0.0
 (all interfaces).
 -p PORT, --port PORT Port used by the daemon. Default is set according to
 the daemon type.
 -l LOG_FILENAME, --log_file LOG_FILENAME
 File used for the daemon log. Set as empty to disable
 log file.
 -i PID_FILENAME, --pid_file PID_FILENAME
 File used to store the daemon pid
 -e ENV_FILE, --environment ENV_FILE
 Alignak global environment file. This file defines all
 the daemons of this Alignak instance and their
 configuration. Each daemon configuration is defined in
 a specifc section of this file.

 And that's it!

The arbiter is slightly different because it manages some extra parameters:

$ alignak-arbiter -h
 usage: alignak-arbiter [-h] [-a LEGACY_CFG_FILES] [-V] [-k ALIGNAK_NAME]
 [-n DAEMON_NAME] [-c CONFIG_FILE] [-d] [-r] [-vv] [-v]
 [-o HOST] [-p PORT] [-l LOG_FILENAME] [-i PID_FILENAME]
 -e ENV_FILE

 Alignak daemon launching

 optional arguments:
 -h, --help show this help message and exit
 -a LEGACY_CFG_FILES, --arbiter LEGACY_CFG_FILES
 Legacy configuration file(s). This option is still
 available but is is preferable to declare the Nagios-
 like objects files in the alignak-configuration
 section of the environment file specified with the -e
 option.Multiple -a can be used to include several
 configuration files.
 -V, --verify-config Verify the configuration file(s) and exit
 -k ALIGNAK_NAME, --alignak-name ALIGNAK_NAME
 Set the name of the Alignak instance. If not set, the
 arbiter name will be used in place. Note that if an
 alignak_name variable is defined in the configuration,
 it will overwrite this parameter.For a spare arbiter,
 this parameter must contain its name!
 -n DAEMON_NAME, --name DAEMON_NAME
 Daemon unique name. Must be unique for the same daemon
 type.
 -c CONFIG_FILE, --config CONFIG_FILE
 Daemon configuration file. Deprecated parameter, do
 not use it anymore!
 -d, --daemon Run as a daemon. Fork the launched process and
 daemonize.
 -r, --replace Replace previous running daemon if any pid file is
 found.
 -vv, --debug Set log level to debug mode (DEBUG)
 -v, --verbose Set log level to verbose mode (INFO)
 -o HOST, --host HOST Host interface used by the daemon. Default is 0.0.0.0
 (all interfaces).
 -p PORT, --port PORT Port used by the daemon. Default is set according to
 the daemon type.
 -l LOG_FILENAME, --log_file LOG_FILENAME
 File used for the daemon log. Set as empty to disable
 log file.
 -i PID_FILENAME, --pid_file PID_FILENAME
 File used to store the daemon pid
 -e ENV_FILE, --environment ENV_FILE
 Alignak global environment file. This file defines all
 the daemons of this Alignak instance and their
 configuration. Each daemon configuration is defined in
 a specifc section of this file.

 And that's it!

As a sump up:

	All daemons:

	‘-n’, “–name”:

Set the name of the daemon to pick in the configuration files.

This allows the daemon to find its own configuration in the whole Alignak configuration
Using this parameter is mandatory for all the daemons except for the arbiter (defaults to arbiter-master). If several arbiters are existing in the configuration this will allow to determine which one is the master/spare. The spare arbiter must be launched with this parameter!

‘-e’, ‘–environment’:

Alignak environment file - the most important and mandatory parameter to define the name of the alignak.ini configuration file

‘-c’, ‘–config’:

Old daemon configuration file (ini file) - deprecated! This parameter is still managed to alert about its deprecation and to maintain compatibility with former daemon startup scripts.

‘-v’, ‘–verbose’:

Set the daemon log to level INFO

‘-vv’, ‘–debug’:

Set the daemon log to level DEBUG

‘-d’, ‘–daemon’:

Run as a daemon. The launched process will fork itself to run as a system daemon

‘-r’, ‘–replace’:

Replace previous running daemon if it exists. Read the PID file end kills the corresponding process

‘-o’, ‘–host’: interface the daemon will listen to
‘-p’, ‘–port’: port the daemon will listen to
‘-l’, ‘–log_file’: set the daemon log file name
‘-i’, ‘–pid_file’: set the daemon pid file name

These parameters allow to override the one defined in the Alignak configuration file

	Arbiter only:

	“-a”, “–arbiter”: Legacy configuration file(s),

(multiple -a can be used, and they will be concatenated to make a global configuration file)

Note that this parameter is not necessary anymore because the Nagios legacy configuration files may be defined in the alignak.ini configuration file

“-V”, “–verify-config”: Verify configuration file(s) and exit

This is very useful to check the configuration file after some modificationsand before starting Alignak.

Arbiter daemon exit codes

The arbiter dameon has some process exit code. Their meaning is:

	0: everything ok. Arbiter requested to stop and stopped as expected

	1: provided configuration parsing error detected and the arbiter stopped

	2: some necessary files declared in the configuration are missing

	3: an error was raised during the daemon initialization/fork

	4: running daemons connection problems when checking daemon communication or dispatching the configuration

	99: the provided environment configuration file is not available

Alignak processes list

The daemons involved in Alignak are starting several processes in the system. All the processes started have a process title set by Alignak to help the user know which is which. Several processes types are present in the system processes list:

	
	the main daemon process

	There will always be one process for each Alignak daemon type. The process title is built with the daemon type and the daemon name (eg. alignak-arbiter arbiter-master, alignak-scheduler scheduler-other,…)

	
	the main daemon forked process.

	Each Alignak daemon forks a new process instance for each daemon instance existing in the configuration. If you defined several schedulers you will get a process for each scheduler instance. Each daemon instance process has a title built with the instance name (eg. alignak-scheduler scheduler-master)

	
	the external modules processes

	The daemons that have some external modules attached, like brokers or receivers, launch new processes for their modules. These processes titles are made of the daemon instance name and the module alias (eg. alignak-receiver-master module: nsca)

	
	the satellite workers processes

	The satellites daemons that need some worker processes (pollers and reactionners) launch several worker processes to execute their actions (checks, event handlers or notifications). These worker processes have a title made of the daemon instance name and the worker label (eg. alignak-poller-master worker)

Each daemon is also starting some threads for its HTTP interface.

As an example, the processes list of an Alignak configuration with one instance of each daemon started in daemonized mode:

11921 alignak 20 0 983360 46752 5004 S 0,4 2,3 0:01.96 `- alignak-receiver receiver-master 1
11923 alignak 20 0 171564 39836 3588 S 0,0 1,9 0:00.00 `- alignak-receiver receiver-master 11921
11924 alignak 20 0 984632 52236 5460 S 0,7 2,5 0:03.90 `- alignak-arbiter arbiter-master 1
11927 alignak 20 0 171636 39156 2860 S 0,0 1,9 0:00.00 `- alignak-arbiter arbiter-master 11924
11925 alignak 20 0 984212 49528 5040 S 1,2 2,4 0:04.95 `- alignak-scheduler scheduler-master 1
11931 alignak 20 0 171588 39368 2956 S 0,0 1,9 0:00.00 `- alignak-scheduler scheduler-master 11925
11932 alignak 20 0 983768 49152 5196 S 1,7 2,4 0:07.44 `- alignak-broker broker-master 1
11933 alignak 20 0 171576 39296 3016 S 0,0 1,9 0:00.00 `- alignak-broker broker-master 11932
11935 alignak 20 0 983640 49160 5076 S 0,9 2,4 0:03.67 `- alignak-poller poller-master 1
11938 alignak 20 0 171568 39748 3504 S 0,0 1,9 0:00.00 `- alignak-poller poller-master 11935
12152 alignak 20 0 983384 47100 3128 S 0,0 2,3 0:00.06 `- alignak-poller-master worker fork_1 11935
11939 alignak 20 0 983636 49248 4996 S 0,9 2,4 0:03.78 `- alignak-reactionner reactionner-master 1
11975 alignak 20 0 171564 39748 3512 S 0,0 1,9 0:00.00 `- alignak-reactionner reactionner-master 11939
12153 alignak 20 0 983380 47572 3444 S 0,0 2,3 0:00.06 `- alignak-reactionner-master worker fork_1 11939

Note

the parent PI (PPID) of the main process of each daemon is 1!

As an example, here is the processes list of an Alignak configuration with several daemons of each type and some modules attached to some of the deamons:

$ ps -aux | grep alignak-
alignak 3432 10.2 0.5 1063940 64728 pts/2 Sl+ 13:57 0:02 alignak-arbiter arbiter-master
alignak 3441 0.0 0.3 265972 44132 pts/2 S+ 13:57 0:00 alignak-arbiter arbiter-master

alignak 3510 5.7 0.4 1061692 60000 pts/2 Sl+ 13:57 0:01 alignak-receiver receiver-master
alignak 3608 0.1 0.3 397196 44904 pts/2 Sl+ 13:57 0:00 alignak-receiver receiver-master
alignak 3505 5.6 0.4 1061664 59920 pts/2 Sl+ 13:57 0:01 alignak-receiver receiver-master2
alignak 3596 0.0 0.3 397044 44904 pts/2 Sl+ 13:57 0:00 alignak-receiver receiver-master2
alignak 3768 0.4 0.4 1062540 50072 pts/2 S+ 13:57 0:00 alignak-receiver-master module: web-services
alignak 3784 0.2 0.4 1062540 50068 pts/2 S+ 13:57 0:00 alignak-receiver-master2 module: web-services

alignak 3513 6.1 0.4 1061428 59420 pts/2 Sl+ 13:57 0:01 alignak-reactionner reactionner-master
alignak 3633 0.0 0.3 265676 44096 pts/2 S+ 13:57 0:00 alignak-reactionner reactionner-master
alignak 3720 0.0 0.3 1061004 47280 pts/2 S+ 13:57 0:00 alignak-reactionner-master worker fork_1
alignak 3721 0.0 0.3 1061016 47296 pts/2 S+ 13:57 0:00 alignak-reactionner-master worker fork_2
alignak 3722 0.0 0.3 1061164 47304 pts/2 S+ 13:57 0:00 alignak-reactionner-master worker fork_3

alignak 3520 5.7 0.4 1061416 59300 pts/2 Sl+ 13:57 0:01 alignak-poller poller-master
alignak 3619 0.0 0.3 265676 44128 pts/2 S+ 13:57 0:00 alignak-poller poller-master
alignak 3756 0.0 0.3 1061004 47480 pts/2 S+ 13:57 0:00 alignak-poller-master worker fork_1
alignak 3757 0.0 0.3 1061016 47812 pts/2 S+ 13:57 0:00 alignak-poller-master worker fork_2
alignak 3758 0.0 0.3 1061028 47500 pts/2 S+ 13:57 0:00 alignak-poller-master worker fork_3
alignak 3527 6.1 0.4 1061424 59320 pts/2 Sl+ 13:57 0:01 alignak-poller poller-other
alignak 3672 0.0 0.3 265676 44128 pts/2 S+ 13:57 0:00 alignak-poller poller-other
alignak 3737 0.0 0.3 1061004 47580 pts/2 S+ 13:57 0:00 alignak-poller-other worker fork_1
alignak 3738 0.0 0.3 1061016 47984 pts/2 S+ 13:57 0:00 alignak-poller-other worker fork_2
alignak 3739 0.0 0.3 1061028 47800 pts/2 S+ 13:57 0:00 alignak-poller-other worker fork_3

alignak 3549 6.2 0.5 1062340 61128 pts/2 Sl+ 13:57 0:01 alignak-scheduler scheduler-master
alignak 3684 0.0 0.3 266364 44380 pts/2 S+ 13:57 0:00 alignak-scheduler scheduler-master
alignak 3542 6.3 0.5 1062472 62944 pts/2 Sl+ 13:57 0:01 alignak-scheduler scheduler-master2
alignak 3660 0.0 0.3 266364 44400 pts/2 S+ 13:57 0:00 alignak-scheduler scheduler-master2
alignak 3556 6.2 0.5 1062340 61384 pts/2 Sl+ 13:57 0:01 alignak-scheduler scheduler-other
alignak 3708 0.0 0.3 266364 44396 pts/2 S+ 13:57 0:00 alignak-scheduler scheduler-other

alignak 3690 0.4 0.3 618216 45064 pts/2 Sl+ 13:57 0:00 alignak-broker broker-master
alignak 3538 7.5 0.4 1062252 60076 pts/2 Sl+ 13:57 0:01 alignak-broker broker-master
alignak 3764 0.5 0.4 1062320 50300 pts/2 S+ 13:57 0:00 alignak-broker-master module: backend_broker
alignak 3786 0.1 0.4 1062060 49568 pts/2 S+ 13:57 0:00 alignak-broker-master module: logs
alignak 3530 6.5 0.4 1061668 59836 pts/2 Sl+ 13:57 0:01 alignak-broker broker-other
alignak 3632 0.2 0.3 617960 44540 pts/2 Sl+ 13:57 0:00 alignak-broker broker-other
alignak 3729 0.4 0.4 1061808 49176 pts/2 S+ 13:57 0:00 alignak-broker-other module: backend_broker

Alignak system signals

The Alignak daemons listen some system signals:

	
	SIGHUP

	configuration reload

	
	SIGKILL

	daemon forced stop

	
	SIGTERM

	daemon stop

	
	SIGUSR1

	Alignak environment dump. The daemon receiving the SIGUSR1 signal will dump its loaded environment to a file in the system temporary files directory. the file name is formated as dump-env-%s-%s-%d.ini with the daemon type, daemon name and a timestamp.

Note

that all the daemons should write a file with the same content;)

	
	SIGUSR2

	The scheduler daemon receiving the SIGUSR2 signal will dump its monitored objects to a file in the system temporary files directory. The file name is formated as dump-cfg-scheduler-%s-%d.ini with the daemon name and a timestamp.

The scheduler daemon will dump its inner objects (checks, actions) to a file in the system temporary files directory. The file name is formated as dump-obj-scheduler-%s-%d.json file with the daemon name and a timestamp.

Note

that the scheduler daemons are the only concerned daemons

Environment variables

Alignak uses some environment variables. These variables, if defined, always take precedence over the usual configuration parameters.

Alignak main configuration file

An environment variable exist to define the Alignak main configuration file:

	ALIGNAK_CONFIGURATION_FILE

	the main ini environment configuration file

When Alignak is started with system services, see how to declare this variable.

Alignak running user/group

Environment variables exist to define the Alignak user/group running account:

	ALIGNAK_USER and ALIGNAK_GROUP

	the user account used to run Alignak daemons

When Alignak is started with system services, see how to declare these variables.

These variables override the corresponding user and group configuration variables.

Alignak logger configuration

An environment variable exist to define the Alignak logger configuration file:

	ALIGNAK_LOGGER_CONFIGURATION

	the Json formatted logger configuration file

This variable overrides the corresponding logger_configuration configuration variable.

Alignak internal metrics

When the Alignak internal metrics are sent to Graphite, the daemons will send the metrics to Graphite in bulk mode. A flushing happens periodically but the metrics are pushed only if the internal metrics queue contains a minimum of `` ALIGNAK_STATS_FLUSH_COUNT`` metrics to be sent. The default value is 256 and it can be configured thanks to the environment variable.

If some environment variables exist the Alignak internal metrics will be logged to a file in append mode:

	ALIGNAK_STATS_FILE

	the file name

	ALIGNAK_STATS_FILE_LINE_FMT

	defaults to [#date#] #counter# #value# #uom#n’

	ALIGNAK_STATS_FILE_DATE_FMT

	defaults to ‘%Y-%m-%d %H:%M:%S’
date is UTC
if configured as an empty string, the date will be output as a UTC timestamp

Warning

storing the internal metrics to a file is really verbose! Use this feature with much caution and only for developement or tests purpose.

When the Alignak :ref:`inner metrics module <alignak_features/inner_modules>`_ is enabled, some more environment variables may be used to configure the module. The value in these variables takes precedence on the Alignak configuration of the module:

	ALIGNAK_HOSTS_STATS_FILE

	writes the metrics in append mode in the file which full path name is defined in the variable

Alignak events log

The Alignak arbiter stores the most recent monitoring events (eg. alerts, notifications, …) to be able to provide them on the alignak_log HTTP endpoint. The default events stored count is 100. You can change this value thanks to the ALIGNAK_EVENTS_LOG_COUNT environment variable.

Log system health

Defining the ALIGNAK_SYSTEM_MONITORING environment variable will make Alignak add some log in the arbiter daemon log to inform about the system CPU, memory and disk consumption.

On each activity loop end, if the report period is happening, the arbiter gets the current cpu, memory and disk information from the OS and dumps them to the information log. The dump is formatted as a Nagios plugin output with performance data.

When this variable is defined, the default report period is set to 5. As such, each 5 loop turn, there is a report in the information log. If this variable contains an integer value, this value will define the report period in seconds.

Define environment variable
setenv ALIGNAK_SYSTEM_MONITORING 5

[2017-09-19 15:54:36 CEST] INFO: [alignak.scheduler] Scheduler scheduler-master cpu|'cpu_count'=4 'cpu_1_percent'=42.20% 'cpu_2_percent'=38.40% 'cpu_3_percent'=35.40% 'cpu_4_percent'=48.10% 'cpu_1_user_percent'=37.90% 'cpu_1_nice_percent'=0.00% 'cpu_1_system_percent'=4.20% 'cpu_1_idle_percent'=57.80% 'cpu_1_irq_percent'=0.00% 'cpu_2_user_percent'=31.80% 'cpu_2_nice_percent'=0.00% 'cpu_2_system_percent'=6.10% 'cpu_2_idle_percent'=61.60% 'cpu_2_irq_percent'=0.50% 'cpu_3_user_percent'=31.00% 'cpu_3_nice_percent'=0.00% 'cpu_3_system_percent'=4.20% 'cpu_3_idle_percent'=64.60% 'cpu_3_irq_percent'=0.20% 'cpu_4_user_percent'=38.90% 'cpu_4_nice_percent'=0.00% 'cpu_4_system_percent'=9.20% 'cpu_4_idle_percent'=51.90% 'cpu_4_irq_percent'=0.00%
[2017-09-19 15:54:36 CEST] INFO: [alignak.scheduler] Scheduler scheduler-master disks|'disk_/_total'=952725065728B 'disk_/_used'=93761236992B 'disk_/_free'=858963828736B 'disk_/_percent_used'=9.80%
[2017-09-19 15:54:36 CEST] INFO: [alignak.scheduler] Scheduler scheduler-master memory|'swap_total'=2621424B 'swap_used'=33514B 'swap_free'=2587910B 'swap_used_percent'=1.30% 'swap_sin'=2687B 'swap_sout'=12851708B
[2017-09-19 15:54:41 CEST] INFO: [alignak.scheduler] Scheduler scheduler-master cpu|'cpu_count'=4 'cpu_1_percent'=34.00% 'cpu_2_percent'=37.40% 'cpu_3_percent'=36.10% 'cpu_4_percent'=25.10% 'cpu_1_user_percent'=26.90% 'cpu_1_nice_percent'=0.00% 'cpu_1_system_percent'=7.00% 'cpu_1_idle_percent'=66.00% 'cpu_1_irq_percent'=0.00% 'cpu_2_user_percent'=30.10% 'cpu_2_nice_percent'=0.00% 'cpu_2_system_percent'=7.20% 'cpu_2_idle_percent'=62.60% 'cpu_2_irq_percent'=0.20% 'cpu_3_user_percent'=30.40% 'cpu_3_nice_percent'=0.00% 'cpu_3_system_percent'=5.60% 'cpu_3_idle_percent'=63.90% 'cpu_3_irq_percent'=0.20% 'cpu_4_user_percent'=19.20% 'cpu_4_nice_percent'=0.00% 'cpu_4_system_percent'=5.80% 'cpu_4_idle_percent'=74.90% 'cpu_4_irq_percent'=0.20%
[2017-09-19 15:54:41 CEST] INFO: [alignak.scheduler] Scheduler scheduler-master disks|'disk_/_total'=952725061632B 'disk_/_used'=93761646592B 'disk_/_free'=858963415040B 'disk_/_percent_used'=9.80%
[2017-09-19 15:54:41 CEST] INFO: [alignak.scheduler] Scheduler scheduler-master memory|'swap_total'=2621424B 'swap_used'=33514B 'swap_free'=2587910B 'swap_used_percent'=1.30% 'swap_sin'=2687B 'swap_sout'=12851710B
[2017-09-19 15:54:46 CEST] INFO: [alignak.scheduler] Scheduler scheduler-master cpu|'cpu_count'=4 'cpu_1_percent'=28.70% 'cpu_2_percent'=24.60% 'cpu_3_percent'=36.40% 'cpu_4_percent'=41.00% 'cpu_1_user_percent'=21.20% 'cpu_1_nice_percent'=0.00% 'cpu_1_system_percent'=7.50% 'cpu_1_idle_percent'=71.30% 'cpu_1_irq_percent'=0.00% 'cpu_2_user_percent'=17.70% 'cpu_2_nice_percent'=0.00% 'cpu_2_system_percent'=6.80% 'cpu_2_idle_percent'=75.40% 'cpu_2_irq_percent'=0.20% 'cpu_3_user_percent'=27.90% 'cpu_3_nice_percent'=0.00% 'cpu_3_system_percent'=8.20% 'cpu_3_idle_percent'=63.60% 'cpu_3_irq_percent'=0.30% 'cpu_4_user_percent'=33.60% 'cpu_4_nice_percent'=0.00% 'cpu_4_system_percent'=7.10% 'cpu_4_idle_percent'=59.00% 'cpu_4_irq_percent'=0.30%
[2017-09-19 15:54:46 CEST] INFO: [alignak.scheduler] Scheduler scheduler-master disks|'disk_/_total'=952725045248B 'disk_/_used'=93762039808B 'disk_/_free'=858963005440B 'disk_/_percent_used'=9.80%
[2017-09-19 15:54:46 CEST] INFO: [alignak.scheduler] Scheduler scheduler-master memory|'swap_total'=2621424B 'swap_used'=33514B 'swap_free'=2587910B 'swap_used_percent'=1.30% 'swap_sin'=2687B 'swap_sout'=12851716B

Note

this feature allows to have some information about the system load with a running Alignak scheduler.

Log daemon health

Defining the ALIGNAK_DAEMON_MONITORING environment variable will make each Alignak daemon add some debug log to inform about its own CPU and memory consumption.

On each activity loop end, if the report period is happening, the daemon gets its current cpu and memory information from the OS and dumps these information formatted as a Nagios plugin output with performance data.

When this environment variable is defined, the default report period is set to 10. As such, each 10 loop turn (eg. 10 seconds), there is a report in the information log. If this variable contains an integer value, this value will define the report period in loop count. As such, defining ALIGNAK_DAEMON_MONITORING with 5 will make a log each 5 loop turn.

Log Scheduling loop

Defining the ALIGNAK_LOG_LOOP environment variable will make Alignak add some log in the scheduler daemons log files to inform about the checks that are scheduled.

As an example:

Define environment variable
export ALIGNAK_LOG_LOOP=1

Start Alignak daemons

Tail scheduler log files
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] --- 64
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Items (loop): broks: 0, notifications: 0, checks: 0, internal checks: 0, event handlers: 0, external commands: 0
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Items (total): broks: 52, notifications: 0, checks: 13, internal checks: 0, event handlers: 0, external commands: 0
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Actions 'eventhandler/total': launched: 0, timeout: 0, executed: 0
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Results 'eventhandler/total': total: 0,
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Actions 'eventhandler/loop': launched: 0, timeout: 0, executed: 0
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Results 'eventhandler/loop': total: 0,
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Actions 'notification/total': launched: 0, timeout: 0, executed: 0
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Results 'notification/total': total: 0,
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Actions 'notification/loop': launched: 0, timeout: 0, executed: 0
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Results 'notification/loop': total: 0,
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Actions 'check/total': launched: 2, timeout: 0, executed: 2
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Results 'check/total': total: 4, done: 4,
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Actions 'check/loop': launched: 0, timeout: 0, executed: 0
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Results 'check/loop': total: 2, done: 2,
[2017-05-27 07:32:49 CEST] INFO: [alignak.scheduler] Checks (loop): total: 12 (scheduled: 11, launched: 0, in poller: 0, timeout: 0, done: 0, zombies: 0)
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Elapsed time, current loop: 0.00, from start: 63.20 (64 loops)
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Check average (loop) = 0 checks results, 0.00 checks/s
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Check average (total) = 13 checks results, 0.21 checks/s
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] +++ 64
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] --- 65
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Items (loop): broks: 0, notifications: 0, checks: 0, internal checks: 0, event handlers: 0, external commands: 0
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Items (total): broks: 52, notifications: 0, checks: 13, internal checks: 0, event handlers: 0, external commands: 0
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Actions 'eventhandler/total': launched: 0, timeout: 0, executed: 0
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Results 'eventhandler/total': total: 0,
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Actions 'eventhandler/loop': launched: 0, timeout: 0, executed: 0
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Results 'eventhandler/loop': total: 0,
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Actions 'notification/total': launched: 0, timeout: 0, executed: 0
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Results 'notification/total': total: 0,
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Actions 'notification/loop': launched: 0, timeout: 0, executed: 0
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Results 'notification/loop': total: 0,
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Actions 'check/total': launched: 2, timeout: 0, executed: 2
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Results 'check/total': total: 4, done: 4,
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Actions 'check/loop': launched: 0, timeout: 0, executed: 0
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Results 'check/loop': total: 2, done: 2,
[2017-05-27 07:32:50 CEST] INFO: [alignak.scheduler] Checks (loop): total: 12 (scheduled: 11, launched: 0, in poller: 0, timeout: 0, done: 0, zombies: 0)
[2017-05-27 07:32:51 CEST] INFO: [alignak.scheduler] Elapsed time, current loop: 0.01, from start: 64.21 (65 loops)
[2017-05-27 07:32:51 CEST] INFO: [alignak.scheduler] Check average (loop) = 0 checks results, 0.00 checks/s
[2017-05-27 07:32:51 CEST] INFO: [alignak.scheduler] Check average (total) = 13 checks results, 0.20 checks/s
[2017-05-27 07:32:51 CEST] INFO: [alignak.scheduler] +++ 65

Log Alignak daemons loop

Defining the ALIGNAK_LOG_ACTIVITY environment variable will make Alignak daemons periodically log an information log as a keep alive. The integer value of this variable defines the period count. Each period count, an information log is raised. Per default, the daemons will make a log more or less every hour (3600 loop turns).

==> /usr/local/var/log/alignak/receiver-master.log <==
[2018-06-16 17:16:37] INFO: [receiver-master.alignak.daemon] Daemon receiver-master is living: loop #18001 ;)

==> /usr/local/var/log/alignak/scheduler-master.log <==
[2018-06-16 17:16:37] INFO: [scheduler-master.alignak.daemon] Daemon scheduler-master is living: loop #18001 ;)

==> /usr/local/var/log/alignak/poller-master.log <==
[2018-06-16 17:16:37] INFO: [poller-master.alignak.daemon] Daemon poller-master is living: loop #18001 ;)

==> /usr/local/var/log/alignak/broker-master.log <==
[2018-06-16 17:16:38] INFO: [broker-master.alignak.daemon] Daemon broker-master is living: loop #18001 ;)

==> /usr/local/var/log/alignak/arbiter-master.log <==
[2018-06-16 17:16:42] INFO: [arbiter-master.alignak.daemon] Daemon arbiter-master is living: loop #18001 ;)

==> /usr/local/var/log/alignak/reactionner-master.log <==
[2018-06-16 17:26:37] INFO: [reactionner-master.alignak.daemon] Daemon reactionner-master is living: loop #18601 ;)

==> /usr/local/var/log/alignak/receiver-master.log <==
[2018-06-16 17:26:37] INFO: [receiver-master.alignak.daemon] Daemon receiver-master is living: loop #18601 ;)

==> /usr/local/var/log/alignak/poller-master.log <==
[2018-06-16 17:26:38] INFO: [poller-master.alignak.daemon] Daemon poller-master is living: loop #18601 ;)

==> /usr/local/var/log/alignak/scheduler-master.log <==
[2018-06-16 17:26:38] INFO: [scheduler-master.alignak.daemon] Daemon scheduler-master is living: loop #18601 ;)

==> /usr/local/var/log/alignak/broker-master.log <==
[2018-06-16 17:26:38] INFO: [broker-master.alignak.daemon] Daemon broker-master is living: loop #18601 ;)

Log Alignak actions

Defining the ALIGNAK_LOG_ACTIONS environment variable will make Alignak add some information in its daemons log files to inform about the commands that are launched for the checks and the notifications. This is very useful to help setting-up the checks because the launched checks and their results are available as INFO log in the Alignak daemons log files;)

If this variable is set to ‘WARNING’, the logs will be at the WARNING level, else INFO.

As an example:

Define environment variable
setenv ALIGNAK_LOG_ACTIONS 1
Or
export ALIGNAK_LOG_ACTIONS='WARNING'

Start Alignak daemons

Tail log files
==> /usr/local/var/log/alignak/pollerd.log <==
[2017-04-26 16:23:57 UTC] INFO: [alignak.action] Launch command: /usr/local/libexec/nagios/check_nrpe -H 93.93.47.81 -t 10 -u -n -c check_zombie_procs
[2017-04-26 16:23:57 UTC] INFO: [alignak.action] Check for /usr/local/libexec/nagios/check_nrpe -H 93.93.47.81 -t 10 -u -n -c check_zombie_procs exited with return code 0
[2017-04-26 16:23:57 UTC] INFO: [alignak.action] Check result for /usr/local/libexec/nagios/check_nrpe -H 93.93.47.81 -t 10 -u -n -c check_zombie_procs: 0, PROCS OK: 0 processes with STATE = Z
[2017-04-26 16:23:57 UTC] INFO: [alignak.action] Performance data for /usr/local/libexec/nagios/check_nrpe -H 93.93.47.81 -t 10 -u -n -c check_zombie_procs: procs=0;5;10;0;

Log Alignak checks results

Defining the ALIGNAK_LOG_CHECKS environment variable will make Alignak add some information in its daemons log files to log the check results. This is also very useful to help understanding why some check results are not ok.

According to the check plugin exit code, a log will be emitted with a certain level: ‘info’, ‘warning’, ‘error’, or ‘critical’. As an example, this will add a warning log for a plugin with an exit code of 1, an error log for 2, and a critical log for any value greater than or equal to 3.

Log Alignak alerts and notifications

Defining the ALIGNAK_LOG_ALERTS ALIGNAK_LOG_NOTIFICATIONS environment variables will make Alignak add some information in its daemons log files to inform about the alerts and notifications that are raised for the monitored hosts and services.

If these variables are set to ‘WARNING’, the logs will be at the WARNING level, else INFO.

Disable internal commands

Defining the ALIGNAK_MANAGE_INTERNAL environment variable to a value different of 1 will make Alignak ignore the internal commands execution. This is to be used with much caution because it will disable the business rules computation and disable the business correlator. But it may be interesting if you do not use this feature because it will reduce the scheduler load and improve performance…

Log files

Daemons log

When running, the Alignak daemons are logging their activity in log files that can be found (per default) in the /usr/local/var/log/ (or /var/log) directory. Each daemon has its own log file. Log files are kept on the system for a default period of 7 rotating days.

Thanks to the Alignak logger configuration (see the logger configuration), the daemons log may be configured differently.

In case of any problem with Alignak, first make sure that there is no ERROR and/or WARNING logs in the log files.

Monitoring log

The Alignak event log is the very first information source about Alignak activity. You will find:

	HOST ALERT information

	SERVICE ALERT information

	…

to keep you informed about your system state.

The events that are logged in this file can be defined in the main configuration file.

As an example, the scheduler-master.log file some few minutes after start:

[1474548490] INFO: [Alignak] Loading configuration.
[1474548490] INFO: [Alignak] New configuration loaded
[1474548490] INFO: [Alignak] [scheduler-master] First scheduling launched
[1474548490] INFO: [Alignak] [scheduler-master] First scheduling done
[1474548490] INFO: [Alignak] A new broker just connected : broker-master
[1474548490] INFO: [Alignak] [scheduler-master] Created 38 initial Broks for broker broker-master
[1474548530] HOST ALERT: host_snmp;DOWN;SOFT;1;Alarm timeout
[1474548581] SERVICE ALERT: host_snmp;Disks;CRITICAL;SOFT;1;CRITICAL : (>95%) Cached memory: 100%used(189MB/189MB) Physical memory: 95%used(1892MB/2000MB) Shared memory: 100%used(23MB/23MB)
[1474548602] HOST ALERT: host_snmp;DOWN;SOFT;1;Alarm timeout
[1474548614] SERVICE ALERT: host_snmp;Memory;WARNING;SOFT;1;Ram : 85%, Swap : 54% : > 80, 80 ; WARNING
[1474548637] HOST ALERT: host_snmp;DOWN;SOFT;1;Alarm timeout
[1474548662] SERVICE ALERT: host_snmp;NetworkUsage;UNKNOWN;SOFT;1;ERROR : Unknown interface eth\d+
[1474548683] HOST ALERT: host_snmp;DOWN;SOFT;1;Alarm timeout
[1474548700] SERVICE ALERT: host_snmp;Disks;CRITICAL;SOFT;2;CRITICAL : (>95%) Cached memory: 100%used(193MB/193MB) Physical memory: 96%used(1921MB/2000MB) Shared memory: 100%used(23MB/23MB)
[1474548722] HOST ALERT: host_snmp;DOWN;SOFT;1;Alarm timeout
[1474548734] SERVICE ALERT: host_snmp;Memory;WARNING;SOFT;2;Ram : 86%, Swap : 54% : > 80, 80 ; WARNING
[1474548757] HOST ALERT: host_snmp;DOWN;SOFT;1;Alarm timeout
[1474548783] SERVICE ALERT: host_snmp;NetworkUsage;UNKNOWN;SOFT;2;ERROR : Unknown interface eth\d+
[1474548805] HOST ALERT: host_snmp;DOWN;SOFT;1;Alarm timeout
[1474548819] SERVICE ALERT: host_snmp;Disks;CRITICAL;HARD;3;CRITICAL : (>95%) Cached memory: 100%used(193MB/193MB) Physical memory: 96%used(1930MB/2000MB) Shared memory: 100%used(23MB/23MB)
[1474548829] HOST ALERT: host_snmp;DOWN;HARD;2;Alarm timeout
[1474548829] HOST NOTIFICATION: admin;host_snmp;DOWN;notify-host-by-email;Alarm timeout
[1474548854] SERVICE ALERT: host_snmp;Memory;WARNING;HARD;3;Ram : 86%, Swap : 54% : > 80, 80 ; WARNING
[1474548902] SERVICE ALERT: host_snmp;NetworkUsage;UNKNOWN;HARD;3;ERROR : Unknown interface eth\d+

Alignak framework configuration

The main Alignak framework configuration is described in the following chapters :

	Logger configuration

	Core configuration

	Alignak configuration variables

The next chapter explains the default shipped configuration.

	Default configuration

This last chapter gives information about configuring the inter-daemon communication with SSL.

	SSL inter-daemon communication

Logger configuration

Default logging configuration

The Alignak logger configuration is defined thanks to a JSON Python logger configuration file.

Thanks to this implementation all the Python logger features are available with a simple configuration in this file: changing the log format, sending log to several destination, logging to a file, logging through email, http,… For more information, see the Python logging cookbook [https://docs.python.org/2/howto/logging-cookbook.html]. All is not possible, but many scenario are yet ;)

The default shipped configuration file is /usr/local/share/alignak/etc/alignak-logger.json and it defines a logger for the Alignak daemons and a logger for the monitoring events log.

The Alignak daemons log are stored in daily rotated files located in the /usr/local/var/log/alignak directory. The log file names are prefixed with the daemon name. These files are kept for seven (default) days.

The Alignak monitoring events log is stored in a daily rotated file named alignak-events-log in the same directory. As per default, this file is kept for 365 days.

If a problem is raised before the logger configuration is set-up, a default /tmp/alignak.log is used to log the raised errors.

Tip

If you meet some problems when starting an Alignak daemon, think about having a look to this file, it may help understanding the problem!

The default shipped logger configuration is:

{
 "version": 1,
 "disable_existing_loggers": false,
 "formatters": {
 "alignak": {
 "format": "[%(asctime)s] %(levelname)s: [%(daemon)s.%(name)s] %(message)s",
 "datefmt": "%Y-%m-%d %H:%M:%S"
 },
 "monitoring-log": {
 "format": "[%(my_date)s] %(levelname)s: %(message)s",
 "datefmt": "%Y-%m-%d %H:%M:%S"
 }
 },

 "handlers": {
 "unit_tests": {
 "class": "alignak.log.CollectorHandler",
 "level": "DEBUG",
 "formatter": "alignak"
 },
 "console": {
 "class": "logging.StreamHandler",
 "level": "DEBUG",
 "formatter": "alignak",
 "stream": "ext://sys.stdout"
 },
 "color_console": {
 "class": "alignak.log.ColorStreamHandler",
 "level": "DEBUG",
 "formatter": "alignak",
 "stream": "ext://sys.stdout"
 },
 "daemons": {
 "class": "logging.handlers.TimedRotatingFileHandler",
 "level": "DEBUG",
 "formatter": "alignak",
 "filename": "%(logdir)s/%(daemon)s.log",
 "when": "midnight",
 "interval": 1,
 "backupCount": 7
 },
 "event_log": {
 "class": "logging.handlers.TimedRotatingFileHandler",
 "level": "INFO",
 "formatter": "monitoring-log",
 "filename": "%(logdir)s/alignak-events.log",
 "when": "midnight",
 "interval": 1,
 "backupCount": 365
 }
 },

 "loggers": {
 "alignak": {
 "level": "INFO",
 "handlers": ["color_console", "daemons"],
 "propagate": "no"
 },
 "monitoring-log": {
 "level": "DEBUG",
 "handlers": ["console", "event_log"],
 "propagate": "no"
 }
 },

 "root": {
 "level": "ERROR",
 "handlers": []
 }
}

When this file is loaded by an Alignak daemon, its content is parsed and the %(logdir)s and %(daemon)s variables are respectively replaced with the log directory configuration parameter and the daemon name.

The monitoring log event date is not the time when the log is emitted to the logger but the time when the event is raised by the originating daemon. The arbiter periodically collects all the events near all its satellites and raises the log with the creation time date.

Note

that the formatter used for the monitoring log uses a %(my_date)s variable which is not a standard logger date.

Specific CherryPy logging

For development purpose it may be interesting to have some CherryPy log for the underlying inter-daemon HTTP communication.

The Alignak main configuration file allows to activate CherryPy logging thanks to the log_cherrypy variable. When set, this variable will make the concerned HTTP daemon add some CherryPy log into the daemon log file.

For more specific need, it is possible possible to create a dedicated logger hierarchy configuration where all the Alignak and CherryPy logging behavior is configured. As an example, see the dev/alignak-logger-cherrypy.json file in the Alignak repository. This file redefines all the logger, handlers and formatters for Alignak and CherryPy. This will make CherryPy send its log to dedicated files with a specific formatting.

Note that the CherryPy access log formating is not easily updatable thanks to the logging formatter :(

Core configuration

The core configuration part describes the Alignak framework infrastructure (which daemons are used and how they are) and the main configuration.

The Alignak environment file (alignak.ini) aims to contain all the Alignak configuration, except the monitored system that may be configured separately in Nagios legacy configuration (cfg) files or in the Alignak backend.

If your monitored system configuration is stored in the Alignak backend, the alignak.ini file is (almost) the only configuration file you will have to manage ;)

The Alignak environment file contains the necessary information about:

	the Alignak installation directories

	the Alignak daemons and their configuration

	the Alignak monitored configuration

	the Alignak macros

This file is structured as a common Ini file with some sections containig variables.

All the Alignak configuration variables are commented in the default shipped configuration file and are described in the following chapter

When an Alignak daemon loads its configuration, it will try to open the file which name is provided on the command line with the -e / –environment parameter. If it exists an alignak.d sub-directory in the same directory as the environment file, all the **.ini* files located in this sub-directory will also be loaded and parsed.

When updating the configuration with a new daemon or new parameters, it is cleaner/easier to add a new file in the alignak.d rather than modifying a unique configuration file;)

The default shipped example configuration is structured as:

alignak.ini
alignak.d/
 daemons.ini
 modules.ini

Warning

all the default shipped files may be updated when you will update Alignak. As such, all the modifications you did in these files will be lost!

Configuration sections

[DEFAULT]

The DEFAULT section is the main section of the configuration. It defines global variables that will be inherited by all the other configuration sections.

The default configuration defines all the Alignak configuration variable in this section. It is a choice to make all the variables available, if needed, in any daemon that loads the alignak.ini file.

Note

For more information about this inheritance process, check the Python configuration parser [https://wiki.python.org/moin/ConfigParser] behavior.

[alignak-configuration]

The alignak-configuration section is used to define the global variables and macros, and the monitored system configuration files (eg. the Nagios legacy cfg files).

Thanks to the section inheritance process, all the configuration variables are made available in this section and they may be overloaded if needed. Only the Alignak Arbiter gets this section variables to build its monitoring configuration.

Global variables

To change a default configured variable:

; Disable notifications
enable_notifications=0

Alignak uses most of the Nagios common configuration variables that may be defined in this section.

Note

the variables defined in some legacy configuration files take precedence over the one defined in this configuration file.

Nagios legacy configuration

If your monitored system is configured with legacy configuration files, you can declare the main configuration entry point file in this section:

cfg=my_nagios.cfg
cfg2=an_extra_file.cfg

All the cfg prefixed variables will be considered as some Nagios legacy configuration files. The Alignak arbiter will open and parse these files to build the monitored system configuration.

Macros

Some plugins used to check the system hosts/services often need global variables known as macros. This section is the rigth place to declare such variables:

_my_macro_=1
_nrpe_plugins_dir_=/usr/local/libexec/nagios/

The variables prefixed with an _ (underscore) will be considered as macros. The leading and trailing underscores will be removed and the variable name will be uppercased. _my_macro_ will be usable as MY_MACRO.

[daemon.daemon-name]

The daemon.* sections allow to declare all the daemons that are involved in the Alignak configuration.

Each daemon must have its own section with its specific parameters.

Note

Remember that the DEFAULT section variables are inherited in all the other sections. Thus, you only need to declare the daemon specific variables (eg. listening port) in each daemon section.

All the daemons have a common set of configuration variables which are explained in this table:

	Variable name

	Type

	Default

	Short description

	type

	string

	
	Daemon type (arbiter, scheduler, poller, broker, reactionner, receive, poller)

	name

	string

	
	Daemon unique name

	user

	string

	
	Daemon user account username

	group

	string

	
	Daemon user account group

	host

	string

	0.0.0.0

	listening interface

	address

	string

	127.0.0.1

	FQDN or ip address used by the other daemons

	port

	integer

	
	HTTP port of the daemon WS interface

	spare

	boolean

	0

	set if the daemon is a spare

	debug

	boolean

	0

	set to activate debug log level

	active

	boolean

	1

	unset to disable the daemon in the configuration

	modules

	string

	
	modules name list separated by comma

	use_ssl

	boolean

	0

	use SSL for communications with this daemons

	realm

	string

	All

	the realm the daemon is attached to

	manage_sub_realms

	boolean

	0

	manage its realm only (0) and the sub realms (1)

	server_cert

	string

	%(etcdir)s/certs/server.crt

	

	server_key

	string

	%(etcdir)s/certs/server.key

	

	ca_cert

	string

	%(etcdir)s/certs/ca.pem

	

Each daemon is listening on an host:port interface where it exposes its Web Service API. It may be accessible for the other daemons on the same port but with an other address.

Each daemon will change its credentials to run as user / group as specified in its parameters. If non is specified it will use the current logged in user.

Each daemon is attached to a realm (defaults to All) and it may be involved only in its realm (default behavior) or in its realm and all the sub-realms (manage_sub_realms=1). When using a multi-realms environment, make sure to avoid overlapping realms/daemons because it may have some unexpected behavor!

Poller / reactionner daemons specific parameters:

	Variable name

	Type

	Default

	Short description

	min_workers

	integer

	0

	The minimum workers launched by the daemon

	max_workers

	integer

	0

	The maximum workers launched by the daemon

	processes_by_worker

	integer

	256

	The processes that may be started by a worker process.

	worker_polling_interval

	integer

	1

	The daemon will check its workers on this polling interval

	passive

	boolean

	0

	Set to 1 to use the daemon passive mode

The minimum and maximum workers launched by the daemon allow to configure the number of processes that will be used to execute the delegated actions. If set to 0, the poller/reactionner daemon will use N-1 workers if your system has N CPUs. The poller defaults to 0 (use as many workers as possible) whereas the reactionner defaults to 1 (use only one worker).

In active mode, the poller/reactionner is connecting to its scheduler to get its actions to execute and to report the execution results. The passive mode allows to make the scheduler push its actions and get the results from the poller/reactionner satellites. This mode is interesting to control the network flow from the scheduler to poller/reactionner on a remote site…

Scheduler daemons specific parameters (advanced configuration parameters):

	Variable name

	Type

	Default

	Short description

	skip_initial_broks

	boolean

	0

	The scheduler will not require the initial initialization broks

	weight

	integer

	1

	Set the scheduler weight in the dispatching process

	accept_passive_unknown_check_results

	boolean

	0

	set 1 to allow passive check for unknown hosts

Note

Those are advanced configuration parameters. Feel free to request for more information about them if needed. This will mean that you already have an idea of what it is about ;)

Broker daemons specific parameters:

	Variable name

	Type

	Default

	Short description

	max_queue_size

	integer

	100000

	Limit the broker modules queue size if it becomes too important

	manage_arbiters

	boolean

	1

	Set this to get the arbiter created broks

There must only be one and only one broker that gets the broks created by the arbiter (manage_arbiters). o not set this parameter for all other brokers because it defaults to False.

The max_queue_size parameter is managed by all the daemons with a default value set to 0, which means: do not care about the queue size. For a broker, it is important to manage the queue size limitation!

Note

Those are advanced configuration parameters. Feel free to request for more information about them if needed. This will mean that you already have an idea of what it is about ;)

[module.module-name]

The module.* sections allow to declare all the extra modules that are used and their configuration.

Each module must have its own section with its specific parameters.

Note

Remember that the DEFAULT section variables are inherited in all the other sections. Thus, you only need to declare the module specific variables in each module section.

All the modules have a common set of configuration variables which are explained in this table:

	Variable name

	Type

	Default

	Short description

	type

	string

	
	Module type (retention, metrics, …)

	name

	string

	
	Module unique name

	python_name

	string

	0.0.0.0

	Python libray to be loaded for the module

The module type is only an informative field. Except for some specific case, this is not considered by Alignak

Note

Contact the development team for more about the module type if needed!.

Alignak configuration variables

All the variables described in this chapter may be used in the Alignak environment configuration file as defined in the following chapter.

Note

some variables existing in the Alignak environment configuration file are not described in this chapter. This because they are not really useful for configuration or too specific … despite they are commented and explained in the default shipped configuration file;)

Note

When creating and/or editing configuration files, keep the following in mind:

	Lines that start with a # or ; character are comments that are not processed

	Variable names are case-sensitive

Main parameters

Legacy configuration files

Format:

cfg=<file_name>
cfg2=<file_name>
cfg_extra_file=<file_name>

The arbiter get all the parameters starting with a cfg prefix and considers them as Nagios legacy configuration files.

Macros

Format:

_macro=<macro value>
macro=<macro value>

The arbiter get all the parameters starting with a _ prefix and considers them as monitoring macros.

Algnak instance name

Alignak new!

Format:

; This information is useful to get/store alignak global configuration in the Alignak backend
; If you share the same backend between several Alignak instances, each instance must have its own
; name. If not defined, Alignak will use the master arbiter name as Alignak instance name.
; Anyway, it is recommended to make it unique if you run several Alignak instances
alignak_name=My Alignak

This variable defines the name of the Alignak instance. This is useful, for instance, when you share an Alignak backend between several Alignak instances to identify the source of the stored information.

Daemons logger configuration

Alignak new!

Format:

; Default is to get this file in the same directory as the alignak.ini
logger_configuration=./alignak-logger.json

This variable defines the configuration of the daemon Python logger.

Alignak monitoring

Alignak new!

Format:

; Default is no reporting - else set the monitor URL
;alignak_monitor = http://127.0.0.1:7773/ws
; Set the username and password to use for the authentication near the WS provider
; If not set, no authentication will be used
;alignak_monitor_username = admin
;alignak_monitor_password = admin

The arbiter daemon can report the overall Alignak status to an external application that exposes the same services as implemented by the Alignak Web service module.
The Arbiter will report the Alignak status as a passive host check. The Alignak daemons are considered as some services of an host named with the instance alignak_name.

Daemon specific

Daemons user/group account

Format:

; If not defined, the current user account will be used instead.
; It is recommended to define an alignak:alignak user/group account on your system.
; When Alignak is started with system services, it will try to use the root account which
; is not a recommended configuration...
; Note that this configuration will be ignored if it exists ALIGNAK_USER/ALIGNAK_GROUP
; environment variables because they will take precedence over this file configuration
;user=alignak
;group=alignak

; Disabling security means allowing the daemons to run under root account
; Set this variable to allow daemons running as root
;idontcareaboutsecurity=0

These variables define the user/group used by the running alignak daemons.

Daemons log file

Format:

; The daemon log file is configured according to the Python logger but it is
; still possible to override this...
;log_filename=%(workdir)s/daemon.log
; Same for the log_level
;log_level=

The daemon log file is configured according to the Python logger but it is still possible to change the file name and log level with these variables.

Note

that some command line parameters can also take precedence over these variables!

Daemons PID file

Format:

; Pid file
; The daemon will chdir into the workdir directory when launched
; and it will create its pid file in this working dir
; You can override this location with the pid_filename variable
;pid_filename=%(workdir)s/daemon.pid

The daemon will create its pid file in its working dir but this can be overriden with this variable.

Note

that some command line parameters can also take precedence over these variables!

Daemons realm

Format:

; Realm
; Each daemon is concerned by a realm. It will receive an appropriate configuration
; according to its realm
; The default value is the realm 'All'
;realm=All

As explained in this chapter, a daemon is involved in a realm. This variable will define the daemon realm.

Daemons WS interface

Format:

; Network configuration
; -----
; daemon host is set to 0.0.0.0 to listen on all interfaces,
; set 127.0.0.1 for a local loop only listening daemon
;host=0.0.0.0
; Port the daemon is listening to
;port=10000
; address is the IP address (or FQDN) used by the other daemons to contact the daemon
;address=127.0.0.1
; Number of threads the daemon is able to listen to
; Increase this number if some connection problems are raised; the more daemons exist in
; the configuration the more this pool size must be important
;thread_pool_size=32

Arbiter daemon

Daemons launch

Alignak new!

The Arbiter is able to launch the required daemons that are not declared in the configuration.

Tip

This may be necessary if some hosts are defined in a realm that do not have all its required daemons defined…

Tip

For simple tests, it may be easier to start the arbiter from a shell and set the alignak_launched parameter for the other daemons rather than using system services.

To activate this feature, set this parameter.

Format:

;launch_missing_daemons=0

When the arbiter starts some daemons by itself, some extra parameters are useful.

Format:

; Daemons startup script location
; Default is to use the bin directory of the daemon
;daemons_script_location=%(bindir)s
; Daemons extra arguments
; Define some extra arguments to be provided on the daemon command line
;daemons_arguments=
; Default is to allocate a port number incrementally starting from the value defined here
;daemons_initial_port=10000
;

Satellites polling

Alignak new!

The arbiter is polling its satellites every polling_interval seconds. After max_check_attempts unsuccessfull connection try, the daemon is declared as dead and an error log is raised.

Format:

; Daemons monitoring
; ---
; The daemons are polling their satellites every polling_interval seconds
;polling_interval=5
; After max_check_attempts unsuccessfull connection try, the daemon is declared as dead
;max_check_attempts=5

The arbiter is checking the satellites that it launched every daemons_check_period seconds. If daemons_failure_kill is set, and a missing process is detected, it will stop all the other self-launched daemons and stop itself.

Format:

; The arbiter is checking the running processes for the daemons every daemons_check_period
; seconds. The checking only concerns the daemons that were started by the arbiter itself
;daemons_check_period=5
; Daemons failure kill all daemons
; If a missing daemon is detected, all the arbiter children daemons will be killed and
; the arbiter will stop. This will make Alignak stop itself and restart if is configured to
; respawn in the system.
;daemons_failure_kill=1
;
; Graceful stop delay
; - on stop request, the arbiter will inform the daemons that stopping will happen soon
; - after the daemons_stop_timeout period, the arbiter will force kill the daemons
; that it launched and inform the other daemons that stopping is now effective
;daemons_stop_timeout=15
;
; Delay after daemons got started by the Arbiter
; The arbiter will pause a maximum delay of daemons_start_timeout or 0.5 seconds per
; launched daemon
; Whatever the value set in this file or internally computed, the arbiter will pause
;for a minimum of 1 second
;daemons_start_timeout=1
;
; Delay before dispatching a new configuration after reload
; Whatever the value set in this file, the arbiter will pause for a minimum of 1 second
;daemons_new_conf_timeout=1
;
; Delay after the configuration got dispatched to the daemons
; The arbiter will pause a maximum delay of daemons_dispatch_timeout or 0.5 seconds
; per launched daemon
; Whatever the value set in this file or internally computed, the arbiter will pause
; for a minimum of 1 second
;daemons_dispatch_timeout=5
; --

Alignak metrics

See this chapter.

Alignak new!

These parameters allow to configure how Alignak will export its inner performance metrics to a StatsD/Graphite server.

When graphite_enabled is set, the Alignak internal metrics are sent to a graphite/carbon port (statsd_host:statsd_port) instead of a StatsD instance (if statsd_enabled is set). Contrary to StatsD, Graphite/carbon uses a TCP connection but it allows to bulk send metrics. This is more reliable and improved than the StatsD interface that is based upon UDP

	Some environment variables exist to log the metrics to a file in append mode:

	
	‘ALIGNAK_STATS_FILE’

	the file name

	‘ALIGNAK_STATS_FILE_LINE_FMT’

	defaults to [#date#] #counter# #value# #uom#n’

	‘ALIGNAK_STATS_FILE_DATE_FMT’

	defaults to ‘%Y-%m-%d %H:%M:%S’
date is UTC
if configured as an empty string, the date will be output as a UTC timestamp

If a file is enough for you, set the statsd_host ‘None’ and the metrics will not be sent to the StatsD/Graphite.

Format:

; Default is not enabled for any interface
;statsd_enabled = 0
;graphite_enabled = 0

Configure the StatsD/Graphite address and port:

;statsd_host = localhost
;statsd_port = 8125

	This prefix will be prepended to all the metrics to make them more easily found in Graphite::

	;statsd_prefix = alignak

Notifications configuration

See this chapter.

Format:

; Notifications are enabled/disabled
;enable_notifications=1

After a short_timeout, launched notification scripts are killed
;notification_timeout=30

Event handlers configuration

See this chapter.

Format:

; Event handlers are enabled/disabled
;enable_event_handlers=1
;
; By default don't launch event handlers during a downtime period.
; Unset to get back the default Nagios behavior and raise event handlers during the downtime periods
;no_event_handlers_during_downtimes=1

; Global host/service event handlers: short names of defined commands
;global_host_event_handler=
;global_service_event_handler=
;
; After a short_timeout, launched event handlers are killed
;event_handler_timeout=30

Monitoring log configuration

All the monitoring events are logged to a file as defined in the Alginak logger configuration according to these configuration variables.

Note

alerts and downtimes are always logged. There is no specific variable for this event categories.

Format:

; Notifications
;log_notifications=1

; Services retries
;log_service_retries=1

; Hosts retries
;log_host_retries=1

; Event handlers
;log_event_handlers=1

; Flappings
;log_flappings=1

; Snapshots
;log_snapshots=1

; External commands
;log_external_commands=1

; Active checks
; Default it not logging this event, because it makes a quite verbose log
;log_active_checks=0

; Passive checks
; Default it not logging this event, because it makes a quite verbose log
;log_passive_checks=0

; Initial states
; Default it not logging this event, because it makes a quite verbose log
;log_initial_states=0

Nagios legacy

Automatic state retention update interval

Format:

retention_update_interval=<minutes>

Default:

retention_update_interval=60

This setting determines how often (in minutes) that Alignak scheduler will automatically save retention data during normal operation.
If you set this value to 0, it will not save retention data at regular intervals, but it will still save retention data before shutting down or restarting.

Maximum Host/Service check spread

Format:

max_service_check_spread=<minutes>
max_host_check_spread=<minutes>

Default:

max_service_check_spread=30
max_host_check_spread=30

This option determines the maximum number of minutes from when Alignak starts that all hosts/services (that are scheduled to be regularly checked) are checked. This option will ensure that the initial checks of all hosts/services occur within the timeframe you specify. Default value is 30 (minutes).

Service/Host check timeout

Format:

service_check_timeout=<seconds>
host_check_timeout=<seconds>

Default:

service_check_timeout=60
host_check_timeout=30

This is the maximum number of seconds that Alignak will allow service/host checks to run. If checks exceed this limit, they are killed and a CRITICAL state is returned. A timeout error will also be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last ditch mechanism to kill off plugins which are misbehaving and not exiting in a timely manner. It should be set to something high (like 60 seconds or more), so that each check normally finishes executing within this time limit. If a check runs longer than this limit, Alignak will kill it off thinking it is a runaway processes.

Timeout exit status

Format:

timeout_exit_status=[0,1,2,3]

Default:

timeout_exit_status=2

State set by Alignak in case of timeout. The value is a state identifier, thus:

	0: OK/UP

	1: WARNING/UNREACHABLE

	2: CRITICAL/DOWN

	3: UNKNOWN

Flap history

Format:

flap_history=<int>

Default:

flap_history=20

This option is used to set the history size of states keep by the scheduler to make the flapping calculation. By default, the value is 20 states kept.

The size in memory is for the scheduler daemon : 4Bytes * flap_history * (nb hosts + nb services). For a big environment, it costs 4 * 20 * (1000+10000) - 900Ko. So you can raise it to higher value if you want. To have more information about flapping, you can read this.

Maximum plugins output length

Format:

max_plugins_output_length=<int>

Default:

max_plugins_output_length=8192

This option is used to set the max size in bytes for the checks plugins output. So if you have some truncated output like for huge disk check when you have a lot of partitions, increase this value.

Enable problem/impacts states change

Format:

enable_problem_impacts_states_change=<0/1>

Default:

enable_problem_impacts_states_change=0

This option is used to know if we apply or not the state change when a host or service is impacted by a root problem (like the service’s host going down or a host’s parent being down too). The state will be changed by UNKNONW for a service and UNREACHABLE for a host until their next schedule check. This state change do not count as a attempt, it’s just for console so the users know that theses objects got problems and the previous states are not sure.

Disable old nagios parameters whining

Format:

disable_old_nagios_parameters_whining=<0/1>

Default:

disable_old_nagios_parameters_whining=0

If 1, disable all notice and warning messages when the Arbiter is checking the configuration.

Timezone option

Format:

use_timezone=<tz from tz database>

Default:

use_timezone=''

This option allows you to override the default timezone that this instance of Alignak runs in. Useful if you have multiple instances of Alignak that need to run from the same server, but have different local times associated with them. If not specified, Alignak will use the system configured timezone.

Environment macros option

Format:

enable_environment_macros=<0/1>

Default:

enable_environment_macros=1

This option determines whether or not the Alignak daemon will make all standard macros available as environment variables to your check, notification, event hander, etc. commands. In large installations this can be problematic because it takes additional CPU to compute the values of all macros and make them available to the environment. It also costs an increased network communication between schedulers and pollers.

	0 = Don’t make macros available as environment variables

	1 = Make macros available as environment variables

Initial states logging option

Format:

log_initial_states=<0/1>

Default:

log_initial_states=1

This variable determines whether or not Alignak will force all initial host and service states to be logged, even if they result in an OK state. Initial service and host states are normally only logged when there is a problem on the first check. Enabling this option is useful if you are using an application that scans the log file to determine long-term state statistics for services and hosts.

	0 = Don’t log initial states

	1 = Log initial states

Notification logging option

Format:

log_notifications=<0/1>

Example:

log_notifications=1

This variable determines whether or not notification messages are logged. If you have a lot of contacts or regular service failures your log file will grow (let say some Mo by day for a huge configuration, so it’s quite OK for nearly every one to log them). Use this option to keep contact notifications from being logged.

	0 = Don’t log notifications

	1 = Log notifications

Service/Host check retry logging option

Format:

log_service_retries=<0/1>
log_host_retries=<0/1>

Example:

log_service_retries=0
log_host_retries=0

This variable determines whether or not service/host check retries are logged. Service check retries occur when a service check results in a non-OK state, but you have configured Alignak to retry the service more than once before responding to the error. Services in this situation are considered to be in “soft” states. Logging service check retries is mostly useful when attempting to debug Alignak or test out service/host event handlers.

	0 = Don’t log service/host check retries (default)

	1 = Log service/host check retries

Event handlers logging option

Format:

log_event_handlers=<0/1>

Example:

log_event_handlers=1

This variable determines whether or not service and host event handlers are logged. Event handlers are optional commands that can be run whenever a service or hosts changes state. Logging event handlers is most useful when debugging Alignak or first trying out your event handler scripts.

	0 = Don’t log event handlers

	1 = Log event handlers

External commands logging option

Format:

log_external_commands=<0/1>

Example:

log_external_commands=1

This variable determines whether or not Alignak will log external commands that it receives.

	0 = Don’t log external commands

	1 = Log external commands (default)

Passive checks logging option

Format:

log_passive_checks=<0/1>

Example:

log_passive_checks=1

This variable determines whether or not Alignak will log passive host and service checks that it receives.

	0 = Don’t log passive checks

	1 = Log passive checks (default)

Active checks logging option

Format:

log_active_checks=<0/1>

Example:

log_active_checks=1

This variable determines whether or not Alignak will log active host and service checks that it runs.

	0 = Don’t log active checks (default)

	1 = Log active checks

Host/Service flapping logging option

Format:

log_flappings=<0/1>

Example:

log_flappings=1

This variable determines whether or not Alignak will log host/service flapping it detects.

	0 = Don’t log snapshots

	1 = Log snapshots (default)

Snapshots logging option

Format:

log_snapshots=<0/1>

Example:

log_snapshots=1

This variable determines whether or not Alignak will log the snapshots it built.

	0 = Don’t log snapshots

	1 = Log snapshots (default)

Event Handler during downtimes

Format:

no_event_handlers_during_downtimes=<0/1>

Default:

no_event_handlers_during_downtimes=0

This option determines whether or not Alignak will run event handlers when the host or service is in a scheduled downtime.

	0 = Launch event handlers (Nagios behavior)

	1 = Don’t launch event handlers

Performance data parameters

Performance data processing option

Format:

process_performance_data=<0/1>

Example:

process_performance_data=1

This value determines whether or not Alignak will process host and service check performance data.

	0 = Don’t process performance data

	1 = Process performance data (default)

If you want to use tools like PNP, NagiosGrapher or Graphite set it to 1.

Performance data processor command timeout

Format:

perfdata_timeout=<seconds>

Example:

perfdata_timeout=5

This is the maximum number of seconds that Alignak will allow a host performance data processor command or service performance data processor command to run. If a command exceeds this time limit it will be killed and a warning will be logged.

Host/Service performance data processing command

Format:

host_perfdata_command=<monitoring_objects/command>
service_perfdata_command=<monitoring_objects/command>

Example:

host_perfdata_command=process-host-perfdata
service_perfdata_command=process-service-perfdata

This option allows you to specify a command to be run after every host/service check to process host/service performance data that may be returned from the check. The command argument is the short name of a command definition that you define in your object configuration file. This command is only executed if the Performance Data Processing Option option is enabled globally and if the process_perf_data directive in the host definition is enabled.

Advanced scheduling parameters

Passive host checks are SOFT option

Format:

passive_host_checks_are_soft=<0/1>

Example:

passive_host_checks_are_soft=1

This option determines whether or not Alignak will treat passive host checks as HARD states or SOFT states. As a default, a passive host check result will put a host into a HARD state type. You can change this behavior by enabling this option.

	0 = Passive host checks are HARD (default)

	1 = Passive host checks are SOFT

Warning

This option is not yet implemented.

Predictive Host/Service dependency checks option

Format:

enable_predictive_host_dependency_checks=<0/1>
enable_predictive_service_dependency_checks=<0/1>

Example:

enable_predictive_host_dependency_checks=1
enable_predictive_service_dependency_checks=1

This option determines whether or not Alignak will execute predictive checks of hosts/services that are being depended upon (as defined in host/services dependencies) for a particular host/service when it changes state. Predictive checks help ensure that the dependency logic is as accurate as possible.

	0 = Disable predictive checks

	1 = Enable predictive checks (default)

Warning

This option is not yet implemented.

Orphaned Host/Service check option

Format:

check_for_orphaned_services=<0/1>
check_for_orphaned_hosts=<0/1>

Example:

check_for_orphaned_services=1
check_for_orphaned_hosts=1

This option allows you to enable or disable checks for orphaned service/host checks. Orphaned checks are checks which have been launched to pollers but have not had any results reported in a long time.

Since no results have come back in for it, it is not rescheduled in the event queue. This can cause checks to stop being executed. Normally it is very rare for this to happen - it might happen if an external user or process killed off the process that was being used to execute a check.

If this option is enabled and Alignak finds that results for a particular check have not come back, it will log an error message and reschedule the check. If you start seeing checks that never seem to get rescheduled, enable this option and see if you notice any log messages about orphaned services.

	0 = Don’t check for orphaned service checks

	1 = Check for orphaned service checks (default)

Warning

This option is not yet implemented.

Soft state dependencies option

Format: soft_state_dependencies=<0/1>
Example: soft_state_dependencies=0

This option determines whether or not Alignak will use soft state information when checking host and service dependencies. Normally it will only use the latest hard host or service state when checking dependencies. If you want it to use the latest state (regardless of whether its a soft or hard state type), enable this option.

	0 = Don’t use soft state dependencies (default)

	1 = Use soft state dependencies

Warning

This option is not yet implemented.

Performance tuning

Cached Host/Service check horizon

Format:

cached_host_check_horizon=<seconds>
cached_service_check_horizon=<seconds>

Example:

cached_host_check_horizon=15
cached_service_check_horizon=15

This option determines the maximum amount of time (in seconds) that the state of a previous host check is considered current. Cached host states (from host/service checks that were performed more recently than the time specified by this value) can improve host check performance immensely. Too high of a value for this option may result in (temporarily) inaccurate host/service states, while a low value may result in a performance hit for host/service checks. Use a value of 0 if you want to disable host/service check caching. More information on cached checks can be found here.

Tip

Nagios default is 15s, but it’s a tweak that make checks less accurate. So Alignak uses 0s as a default. If you have performance problems and you can’t add a new scheduler or poller, increase this value and start to buy a new server because this won’t be magical ;).

Warning

This option is not yet implemented.

Large installation tweaks option

Format:

use_large_installation_tweaks=<0/1>

Example:

use_large_installation_tweaks=0

This option determines whether or not the Alignak daemon will take shortcuts to improve performance. These shortcuts result in the loss of a few features, but larger installations will likely see a lot of benefit from doing so. If you can’t add new satellites to manage the load (like new pollers), you can activate it.

	0 = Don’t use tweaks (default)

	1 = Use tweaks

Flapping parameters

Flap detection option

Format:

enable_flap_detection=<0/1>

Example:

enable_flap_detection=1

This option determines whether or not Alignak will try and detect hosts and services that are “flapping”. Flapping occurs when a host or service changes between states too frequently, resulting in a barrage of notifications being sent out. When Alignak detects that a host or service is flapping, it will temporarily suppress notifications for that host/service until it stops flapping.

More information on how flap detection and handling works can be found here.

	0 = Don’t enable flap detection (default)

	1 = Enable flap detection

Low Service/Host flap threshold

Format:

low_service_flap_threshold=<percent>
low_host_flap_threshold=<percent>

Example:

low_service_flap_threshold=25.0
low_host_flap_threshold=25.0

This option is used to set the low threshold for detection of host/service flapping. For more information on how flap detection and handling works (and how this option affects things) read this.

High Service/Host flap threshold

Format:

high_service_flap_threshold=<percent>
high_host_flap_threshold=<percent>

Example:

high_service_flap_threshold=50.0
high_host_flap_threshold=50.0

This option is used to set the high threshold for detection of host/service flapping. For more information on how flap detection and handling works (and how this option affects things) read this.

Various commands timeouts

Format:

event_handler_timeout=<seconds> # default: 30s
notification_timeout=<seconds> # default: 30s

Example:

event_handler_timeout=60
notification_timeout=60

This is the maximum number of seconds that Alignak will allow event handlers, notifications to be run. If an command exceeds this time limit it will be killed and a warning will be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last ditch mechanism to kill off commands which are misbehaving and not exiting in a timely manner. It should be set to something high (like 60 seconds or more for notification), so that each event handler command normally finishes executing within this time limit. If an event handler runs longer than this limit, Alignak will kill it off thinking it is a runaway processes.

Freshness check

Host/Service freshness checking option

Format:

check_service_freshness=<0/1>
check_host_freshness=<0/1>

Example:

check_service_freshness=0
check_host_freshness=0

This option determines whether or not Alignak will periodically check the “freshness” of host/service checks. Enabling this option is useful for helping to ensure that passive service checks are received in a timely manner.

	0 = Don’t check host/service freshness

	1 = Check host/service freshness (default)

Host/Service freshness check interval

Format:

service_freshness_check_interval=<seconds>
host_freshness_check_interval=<seconds>

Example:

service_freshness_check_interval=60
host_freshness_check_interval=60

This setting determines how often (in seconds) Alignak will periodically check the “freshness” of host/service check results. If you have disabled host/service freshness checking (with the check_service_freshness option), this option has no effect.

Additional freshness threshold latency option

Format:

additional_freshness_latency=<#>

Example:

additional_freshness_latency=15

This option determines the number of seconds Alignak will add to any host or services freshness threshold it automatically calculates (e.g. those not specified explicitly by the user).

Notifications option

Format:

enable_notifications=<0/1>

Example:

enable_notifications=1

This option determines whether or not Alignak will send out notifications. If this option is disabled, Alignak will not send out notifications for any host or service.

	Values are as follows:

	
	0 = Disable notifications

	1 = Enable notifications (default)

External command check option

Format:

check_external_commands=<0/1>

Example:

check_external_commands=1

This option determines whether or not Alignak will execute the external commands that it receives. More information on external commands can be found here.

	0 = Don’t check external commands

	1 = Check external commands (default)

Scheduling parameters

Service/Host check execution option

Format:

execute_service_checks=<0/1>
execute_host_checks=<0/1>

Example:

execute_service_checks=1
execute_host_checks=1

This option determines whether or not Alignak will execute active host/service checks. If this option is disabled, Alignak will not execute any active host/service checks.

	0 = Don’t execute service checks

	1 = Execute service checks (default)

Passive Host/Service check acceptance option

Format:

accept_passive_service_checks=<0/1>
accept_passive_host_checks=<0/1>

Example:

accept_passive_service_checks=1
accept_passive_host_checks=1

This option determines whether or not Alignak will accept passive host/service checks. If this option is disabled, Alignak will not accept any passive host/service checks.

	0 = Don’t accept passive service/host checks

	1 = Accept passive service/host checks (default)

Event handlers option

Format:

enable_event_handlers=<0/1>

Example:

enable_event_handlers=1

This option determines whether or not Alignak will run event handlers.

	0 = Disable event handlers

	1 = Enable event handlers (default)

Global Host/Service event handlers option

Format:

global_host_event_handler=<monitoring_objects/command>
global_service_event_handler=<monitoring_objects/command>

Example:

global_host_event_handler=log-host-event-to-db
global_service_event_handler=log-service-event-to-db

This option allows you to specify a host event handler command that is to be run for every host state change. The global event handler is executed immediately prior to the event handler that you have optionally specified in each host definition. The command argument is the short name of a command that you define in your commands definition. The maximum amount of time that this command can run is controlled by the Event Handler Timeout option. More information on event handlers can be found here.

Such commands should not be so useful with the new Alignak distributed architecture. If you use it, look if you can avoid it because such commands will kill your performance!

Timing interval length

Format:

interval_length=<seconds>

Example:

interval_length=60

This is the number of seconds per “unit interval” used for timing in the scheduling queue, re-notifications, etc. “Units intervals” are used in the object configuration file to determine how often to run a service check, how often to re-notify a contact, etc.

The default value for this is set to 60, which means that a “unit value” of 1 in the object configuration file will mean 60 seconds (1 minute).

Tip

Changing this option is not a good thing with Alignak. It’s not designed to be a hard real time monitoring system…

Naming and macros parameters

Illegal object name characters

Format:

illegal_object_name_chars=<chars...>

Example:

illegal_object_name_chars=`-!$%^&*"|'<>?,()=

This option allows you to specify illegal characters that cannot be used in host names, service descriptions, or names of other object types. Alignak will allow you to use most characters in object definitions, but we recommend not using the characters shown in the example above because it may give you problems in the web interface, notification commands, etc.

Illegal macro output characters

Format:

illegal_macro_output_chars=<chars...>

Example:

illegal_macro_output_chars=`-$^&"|'<>

This option allows you to specify illegal characters that should be stripped from macros before being used in notifications, event handlers, and other commands. This DOES NOT affect macros used in service or host check commands. You can choose to not strip out the characters shown in the example above, but we recommend you do not do this. Some of these characters are interpreted by the shell (i.e. the backtick) and can lead to security problems. The following macros are stripped of the characters you specify:

	“$HOSTOUTPUT$”

	“$HOSTPERFDATA$”

	“$HOSTACKAUTHOR$”

	“$HOSTACKCOMMENT$”

	“$SERVICEOUTPUT$”

	“$SERVICEPERFDATA$”

	“$SERVICEACKAUTHOR$”

	“$SERVICEACKCOMMENT$”

Environment variables prefix

Format:

env_variables_prefix=<prefix>

Example:

env_variables_prefix=NAGIOS_

This option allows you to specify the prefix that is prepended to the Alignak macros when they are propagated to the executed plugins shell environement. The default prefix is ALIGNAK_ and this variable to specify an alternate prefix. Indeed, some existing scripts may use the default Nagios / Shinken NAGIOS_ prefix… so feel free to declare this legacy prefix here;)

Administrator email address

Format:

admin_email=<email_address>

Example:

admin_email=root@localhost.localdomain

This is the email address for the administrator of the local machine (i.e. the one that Alignak is running on). This value can be used in notification commands by using the “$ADMINEMAIL$” macro.

Administrator pager (unused)

Format:

admin_pager=<pager_number_or_pager_email_gateway>

Example:

admin_pager=pageroot@localhost.localdomain

This is the pager number (or pager email gateway) for the administrator of the local machine (i.e. the one that Alignak is running on). The pager number/address can be used in notification commands by using the $ADMINPAGER$ macro.

Scheduler loop configuration

Alignak new!

These parameters allow to configure the scheduler actions execution period.
Each parameter is a scheduler recurrent action. On each scheduling loop turn, the scheduler checks if the time is come to execute the corresponding work.

Each parameter defines on which loop turn count the action is to be executed. Considering a loop turn is 1 second, a parameter value set to 10 will make the corresponding action to be executed every 10 seconds.

Note

changing some of those parameters may have unexpected effects! Do not change unless you know what you are doing ;)

Tip

Some tips:
- tick_check_freshness, allow to change the freshness check period
- tick_update_retention, allow to change the retention save period

Default values

tick_update_downtimes_and_comments=1
tick_schedule=1
Check host/service freshness every 10 seconds
tick_check_freshness=10
tick_consume_results=1
tick_get_new_actions=1
tick_scatter_master_notifications=1
tick_get_new_broks=1
tick_delete_zombie_checks=1
tick_delete_zombie_actions=1
tick_clean_caches=1
Retention save every hour
tick_update_retention=3600
tick_check_orphaned=60
Notify about scheduler status every 10 seconds
tick_update_program_status=10
tick_check_for_system_time_change=1
Internal checks are computed every loop turn
tick_manage_internal_checks=1
tick_clean_queues=1
Note that if it set to 0, the scheduler will never try to clean its queues for oversizing
tick_clean_queues=10
tick_update_business_values=60
tick_reset_topology_change_flags=1
tick_check_for_expire_acknowledge=1
tick_send_broks_to_modules=1
tick_get_objects_from_from_queues=1
tick_get_latency_average_percentile=10

Default configuration

The default configuration shipped with Alignak is a quite good start to build your own configuration because it defines helpful stuff to set-up a monitoring configuration from scratch…

You will find more information on the content of this configuration and how to adapt to your needs in the Alignak configuration chapter and in the next chapter.

The default shipped example configuration is structured as:

alignak.ini
alignak.d/
 daemons.ini
 modules.ini

Main configuration file (alignak.ini)

The default file shipped when installing is largely commented to explain more about the configuration variables.:

;
; This configuration file is the main Alignak configuration entry point. Each Alignak installer
; will adapt the content of this file according to the installation process. This will allow
; any Alignak extension or third party application to find where the Alignak components and
; files are located on the system.
;
; ---
; This version of the file contains variable that are suitable to run a single node Alignak
; with all its daemon using the default configuration existing in the repository.
;

; Declaring script macros
; -----
; To declare a macro that can be used in the plugins scripts, you must set a variable prefixed
; with an underscore (_). All the variables prefixed with _ will be transformed to macros
; the leading and trailng underscores will be removed and the variable name will be uppercased.
;
; A variable _test_macro will become a $TEST_MACRO$
; A variable _test_macro_ will become a $TEST_MACRO$
;

; Main alignak variables.
; -----
; The variables declared in this DEFAULT section will be inherited in all
; the other sections of this file!
;
; Two main interests for this section:
; - define the global Alignak configuration parameters
; - define the common parameters to all the Alignak configuration daemons
;
; -----
; NOTE that defining all the parameters in the DEFAULT section is an easy solution but it will make
; these parameters available in all the daemons. It is also possible to define only the daemon
; specific parameters in the daemon own section
;
[DEFAULT]
; --
; Installation directories
; ----------
; - _dist_BIN is where the launch scripts are located
; (Standard installation sets to /usr/local/bin)
; - _dist_ETC is where we store the configuration files
; (Standard installation sets to /usr/local/etc/alignak)
; - _dist_VAR is where the libraries and plugins files are installed
; (Standard installation sets to /usr/local/var/lib/alignak)
; - _dist_RUN is the daemons working directory and where pid files are stored
; (Standard installation sets to /usr/local/var/run/alignak)
; - _dist_LOG is where we put log files
; (Standard installation sets to /usr/local/var/log/alignak)
_dist=/usr/local/
_dist_BIN=%(_dist)s/bin
_dist_ETC=%(_dist)s/etc/alignak
_dist_VAR=%(_dist)s/var/lib/alignak
_dist_RUN=%(_dist)s/var/run/alignak
_dist_LOG=%(_dist)s/var/log/alignak

; Daemons path configuration
; ----------
; Set as the default installation paths.
; If you set relative paths, they are relative to the default working directory.
workdir=%(_dist_RUN)s
logdir=%(_dist_LOG)s
etcdir=%(_dist_ETC)s
bindir=%(_dist_BIN)s
; --

; --
; Generic configuration name
; ----------
; This is the name used for this configuration
; The only purpose of this variable is to make it easier to search in the system log
config_name=Alignak global configuration

; Alignak instance name
; ----------
; This information is useful to get/store alignak global configuration in the Alignak backend
; If you share the same backend between several Alignak instances, each instance must have its own
; name. If not defined, Alignak will use the master arbiter name as Alignak instance name.
; Anyway, it is recommended to make it unique if you run several Alignak instances
alignak_name=My Alignak
; --

; --
; Alignak monitoring
; ----------
; The arbiter daemon can report the overall Alignak status to an external application that
; exposes the same services as implemented by the Alignak Web service module.
; The Arbiter will report the Alignak status as a passive host check. The Alignak daemons
; are considered as some services of an host named with the alignak_name

; Even if no reporting is configured, Alignak will raise an event log if log_alignak_checks is set

; Default is no reporting - else set the monitor URL
;alignak_monitor = http://127.0.0.1:7773/ws
; Report every alignak_monitor_period seconds
;alignak_monitor_period=60
; Set the username and password to use for the authentication
; If not set, no authentication will be used
;alignak_monitor_username = admin
;alignak_monitor_password = admin
; --

; --
; Alignak log management
; ----------
; Python logger configuration file
; Default is to get this file in the same directory as the alignak.ini
logger_configuration=./alignak-logger.json
; This will set the daemon log file
; --

; --
; Timezone
; ----------
; If you need to set a specific timezone to your deamons, update and uncomment this
; Useful if you have multiple instances of Alignak that need to run from the same server,
; but have different local times associated with them. If not specified, Alignak will use
; the system configured timezone.
;use_timezone=Europe/Paris
; --

; --
; Daemons configuration
; ----------
; Unset for the daemon to be ignored by the arbiter
; Use this with many care and only if you really want a running daemon to be ignored!
; If you think you need to use this parameter, do not hesitate to contact us;)
;active=1

; Debugging daemons
; If this is set, the daemon log level is set to DEBUG
;debug=true

; Username and group to run
; ----------
; If not defined, the current user account will be used instead.
; It is recommended to define an alignak:alignak user/group account on your system.
; When Alignak is started with system services, it will try to use the root account which
; is not a recommended configuration...
; Note that this configuration will be ignored if it exists ALIGNAK_USER/ALIGNAK_GROUP
; environment variables because they will take precedence over this file configuration
;user=alignak
;group=alignak

; Disabling security means allowing the daemons to run under root account
; Set this variable to allow daemons running as root
;idontcareaboutsecurity=0

; Log file
; The daemon log file is configured according to the Python logger but it is
; still possible to override this...
;log_filename=%(workdir)s/daemon.log
; Same for the log_level
;log_level=

; Include the CherryPy daemon HTTP server log in the daemon log file
; This is interesting if you want many many details about the daemons inter-communication
;log_cherrypy=1

; Pid file
; The daemon will chdir into the workdir directory when launched
; and it will create its pid file in this working dir
; You can override this location with the pid_filename variable
;pid_filename=%(workdir)s/daemon.pid

; Realm
; Each daemon is concerned by a realm. It will receive an appropriate configuration
; according to its realm
; The default value is the realm 'All'
;realm=All

; Advanced realm parameters:
; Do not change this paraemter unless you know what you are doing;)
; Is the daemon linked to the schedulers of sub-realms or only for its own realm?
; The default is that a daemon will also manage the sub realms of its realm. This parameter is
; useful if you need to define some daemons dedicated to a specific realm
; Make sure to avoid having several daemons of the same type for the same realm ;)
;manage_sub_realms=1

; Is the daemon connected to the arbiters?
; The default is that the daemon will not have a relation with the Alignak arbiter
; Handle this parameter with much care!
; An arbiter daemon will force-have a relation with the master arbiter
; A scheduler will also force-have a relation with the master arbiter
; This is only useful for a broker daemon. The master arbiter will push its brok to all
; the brokers that manage arbiters
;manage_arbiters=0

; Daemon high availability mode
; Unset (default) this parameter for a normal daemon
; Set for a spare daemon. A spare daemon will assume the main daemon role if the
; main daemon is not available
;spare=0

; Set to make the process daemonize itself, else it runs as a foreground process
;is_daemon=0

; Set to make the arbiter launch the daemon process
; If set, the arbiter will launch the corresponding daemon, else it will consider
; that this daemon is still started
;alignak_launched=1

; Set if you want to replace a running daemon. If an existing pid file is found
; the new process will try to kill an existing instance before daemonizing itself
;do_replace=0

; Daemons WS interface
; ----------
; Network configuration
; -----
; daemon host is set to 0.0.0.0 to listen on all interfaces,
; set 127.0.0.1 for a local loop only listening daemon
;host=0.0.0.0
; Port the daemon is listening to
;port=10000
; address is the IP address (or FQDN) used by the other daemons to contact the daemon
;address=127.0.0.1
; Number of threads the daemon is able to listen to
; Increase this number if some connection problems are raised; the more daemons exist in
; the configuration the more this pool size must be important
;thread_pool_size=32

; Daemon availability
; -----
; Daemon interface uses two different timeouts:
; - short for light data and long for heavy data exchanges
;short_timeout=3
;long_timeout=120

; If daemon communication fails max_check_attempts tims, the daemon is considered as dead
;max_check_attempts=3

; SSL configuration
; -----
; Configure this part if you are using SSL for communication between the Alignak daemons
;use_ssl=0
; Paths for certificate files
;server_cert=%(etcdir)s/certs/server.crt
;server_key=%(etcdir)s/certs/server.key
;ca_cert=%(etcdir)s/certs/ca.pem

;### Deprecated option - feel free to request for an implementation if needed
;hard_ssl_name_check=0
;### Deprecated option - feel free to request for an implementation if needed
;server_dh=%(etcdir)s/certs/server.pem

; Daemons external modules watchdog --
; ----------
; If a daemon external module has a brok queue higher than this value, it will be
; killed and restarted.
; Set to 0 to disable this behavior
;max_queue_size=0
; --

; --
; Notifications configuration
; ---
; Notifications are enabled/disabled
;enable_notifications=1

After a short_timeout, launched notification scripts are killed
;notification_timeout=30
; --

; --
; Retention configuration
; ---
; Unset this variable to disable the Alignak inner retention module
; Disable this feature if you intend to use the Alignak backend scheduler module
; that allows for retention in the Alignak backend
;retain_state_information=true

; If the retention file is set to an empty value, Alignak will persist its live state in
; one Json file per each host in the directory defined in this variable
; This is a very interesting solution when several schedulers are running simultaneously on
; the same server. This do not relate a group of hosts to a dedicated scheduler but shares all
; hosts retention amongst the schedulers of the system.
; When set to an emty value, Aligan will use the default system temporary files directory
; (eg. /tmp, /var/tmp, /usr/tmp) where files can be written
; Environment variable 'ALIGNAK_RETENTION_DIR' overloads this configuration variable
;state_retention_dir=/var/run/alignak

; Alignak will persist its live state in a Json file which name is defined in this variable
; If you do not set a value, Alignak will use a file name based upon the name of the scheduler that
; will save/load the data (eg. /tmp/alignak-retention-scheduler_name.json)
; If you set a file name, you can use %s inside the variable value to be replaced with the
; scheduler name. Beware to use %%s and not %s ;)
; If you set an empty value, Alignak will use one file per each host. See state_retention_dir
; Environment variable 'ALIGNAK_RETENTION_FILE' overloads this configuration variable
;state_retention_file=/tmp/alignak-retention-%%s.json
state_retention_file=

; Number of minutes between 2 retention save, default is 60 minutes
; This is only used if retention is enabled
; todo: move this parameter to the retention aware modules?
; If 0, the retention is disabled (default behaviour), else retention is enabled and the
; retention period is defined in the scheduler ticks parameters (see tick_update_retention later)
retention_update_interval=60
; --

; --
; Active checks configuration
; ---
; Active host/service checks are enabled/disabled
;execute_host_checks=1
;execute_service_checks=1

; Max plugin output in bytes for the plugins launched by the pollers
; Change this only if needed to increase for very long output check plugins
;max_plugins_output_length=8192

; Disabling environment macros for the check plugins is better for performance.
; If you really need to use environment variables, set this parameter.
;enable_environment_macros=0

; After a short_timeout, launched plugins are killed
; and the host state is set to a default value (2 for DOWN)
; and the service state is set to a default value (2 for CRITICAL)
;host_check_timeout=30
;service_check_timeout=60
;timeout_exit_status=2
--

; --
; Passive checks configuration
; ---
; Passive host/service checks are enabled/disabled
;accept_passive_host_checks=1
;accept_passive_service_checks=1

; Does Alignak accept passive check results for unknown hosts?
;accept_passive_unknown_check_results=1

; As default, Alignak always consider that passive host checks are SOFT states and it manages
; the check attempts before raising a HARD state. This Nagios parameter is not managed:
;passive_host_checks_are_soft=0

; Freshness check
; ---
; Default is enabled for hosts and services
; This all host/services that are passive checks enabled and not active checks
; enabled will have their freshness checked
;check_host_freshness=1
;check_service_freshness=1
; How often Alignak is checking for host/service freshness
; Default is 60 for hosts and services
;host_freshness_check_interval=60
;service_freshness_check_interval=60
; Extra time for freshness check ...
;additional_freshness_latency=15
; --

; --
; Checks scheduler configuration
; ---
; Scheduler interval length configuration
; Do not change this value unless you are really sure to master what you are doing...
;interval_length=60

; Number of intervals to spread the very first checks for hosts and services
; 5 minutes looks correct indeed...
;max_service_check_spread=5
;max_host_check_spread=5
; --

; --
; Flapping detection configuration
; ---
; Default is enabled
;enable_flap_detection=1
;
; Flapping threshold for hosts and services
;low_service_flap_threshold=20
;high_service_flap_threshold=30
;low_host_flap_threshold=20
;high_host_flap_threshold=30
;
; flap_history is the lengh of history states we keep to look for flapping.
; 20 is a correct default value but it can be increased.
;flap_history=20
; --

; --
; Performance data configuration
; ---
; Performance data management is enabled/disabled
;process_performance_data=1
; Commands to process the performance data
; Old Nagios parameters that are not used by Alignak
;host_perfdata_command=
;service_perfdata_command=
; --

; --
; Event handlers configuration
; ---
; Event handlers are enabled/disabled
;enable_event_handlers=1
;
; By default don't launch event handlers during a downtime period.
; Unset to get back the default Nagios behavior and raise event handlers during the downtime periods
;no_event_handlers_during_downtimes=1

; Global host/service event handlers: short names of defined commands
;global_host_event_handler=
;global_service_event_handler=
;
; After a short_timeout, launched event handlers are killed
;event_handler_timeout=30
; --

; --
; External commands configuration
; ---
; External commands are enabled/disabled
; Unset to disable the Alignak external commands processing
;check_external_commands=1
; --

; --
; Impacts configuration
; ---
; Enable or not the state change on impact detection (like a host going unreachable
; if a parent is DOWN for example). It's for services and hosts.
; Note: unset this for Nagios old behavior compatibility
;enable_problem_impacts_states_change=1
; --

; --
; Monitoring log configuration
; ---
; Note that alerts and downtimes are always logged
; ---
; --
; Notifications
;log_notifications=1

; Services retries
;log_service_retries=1

; Hosts retries
;log_host_retries=1

; Event handlers
;log_event_handlers=1

; Flappings
;log_flappings=1

; Snapshots
;log_snapshots=1

; External commands
;log_external_commands=1

; Active checks
; Default is not logging this event, because it makes a quite verbose log
;log_active_checks=0

; Passive checks
; Default is not logging this event, because it makes a quite verbose log
;log_passive_checks=0

; Alignak self checks
; Default is not logging this event, because it makes a quite verbose log
; Note that whatever this variable value, alerts will always be raised
;log_alignak_checks=0

; Initial states
; Default it not logging this event, because it makes a quite verbose log
;log_initial_states=0
; --

; --
; Arbiter daemons part,
; ---
; The Arbiter is able to launch the required daemons that are not declared in the configuration
; To activate this feature, set this parameter
;launch_missing_daemons=0

; When the arbiter starts some daemons by itself
; This may happen if some hosts are defined in a realm that do not have all
; its required daemons defined or if the alignak_launched parameter is set
; for a daemon
; Daemons startup script location
; Default is to use the bin directory of the daemon
;daemons_script_location=%(bindir)s
; Daemons extra arguments
; Define some extra arguments to be provided on the daemon command line
;daemons_arguments=
; Default is to allocate a port number incrementally starting from the value defined here
;daemons_initial_port=10000
;

; Daemons monitoring
; ---
; The daemons are polling their satellites every polling_interval seconds
;polling_interval=5
; After max_check_attempts unsuccessfull connection try, the daemon is declared as dead
;max_check_attempts=5

; The arbiter is checking the running processes for the daemons every daemons_check_period
; seconds. The checking only concerns the daemons that were started by the arbiter itself
;daemons_check_period=5
; Daemons failure kill all daemons
; If a missing daemon is detected, all the arbiter children daemons will be killed and
; the arbiter will stop. This will make Alignak stop itself and restart if is configured to
; respawn in the system.
;daemons_failure_kill=1
;
; Graceful stop delay
; - on stop request, the arbiter will inform the daemons that stopping will happen soon
; - after the daemons_stop_timeout period, the arbiter will force kill the daemons
; that it launched and inform the other daemons that stopping is now effective
;daemons_stop_timeout=5
;
; Delay after daemons got started by the Arbiter
; The arbiter will pause a maximum delay of daemons_start_timeout or 0.5 seconds per
; launched daemon
; Whatever the value set in this file or internally computed, the arbiter will pause
;for a minimum of 1 second
;daemons_start_timeout=1
;
; Delay before dispatching a new configuration after reload
; Whatever the value set in this file, the arbiter will pause for a minimum of 1 second
;daemons_new_conf_timeout=1
;
; Delay after the configuration got dispatched to the daemons
; The arbiter will pause a maximum delay of daemons_dispatch_timeout or 0.5 seconds
; per launched daemon
; Whatever the value set in this file or internally computed, the arbiter will pause
; for a minimum of 1 second
;daemons_dispatch_timeout=5
; --

; --
; Alignak internal metrics
; Export all alignak inner performance metrics to a statsd server.
; By default at localhost:8125 (UDP) with the alignak prefix
; --
;statsd_host = localhost
;statsd_port = 8125
;statsd_prefix = alignak
; --
; When graphite_enabled is set, the Alignak internal metrics are sent
; to a graphite/carbon port instead of a StatsD instance.
; Contrary to StatsD, Graphite/carbon uses a TCP connection but it
; allows to bulk send metrics.
; This is more reliable and improved than the StatsD interface that is based upon UDP
; Default is not enabled for any interface
;statsd_enabled = 0
;graphite_enabled = 0
; --

; --
; Scheduler loop configuration
; Those parameters allow to configure the scheduler actions execution
; period.
; Each parameter is a scheduler recurrent action. On each scheduling
; loop turn, the scheduler checks if the time is come to execute
; the corresponding work.
; Each parameter defines on which loop turn count the action is to be
; executed. Considering a loop turn is 1 second, a parameter value set
; to 10 will make the corresponding action to be executed every 10
; seconds.
; --
; BEWARE: changing some of those parameters may have unexpected
; effects! Do not change unless you know what you are doing ;)
; Some tips:
; - tick_check_freshness, allow to change the freshness check period
; - tick_update_retention, allow to change the retention save period
; --
;tick_update_downtimes_and_comments=1
;tick_schedule=1
; ### Check host/service freshness every 10 seconds
;tick_check_freshness=10
;tick_consume_results=1
;tick_get_new_actions=1
;tick_scatter_master_notifications=1
;tick_get_new_broks=1
;tick_delete_zombie_checks=1
;tick_delete_zombie_actions=1
;tick_clean_caches=1
; ### Retention save every hour
;tick_update_retention=3600
;tick_check_orphaned=60
; ### Notify about scheduler status every 10 seconds
;tick_update_program_status=10
;tick_check_for_system_time_change=1
; ### Internal checks are computed every loop turn
;tick_manage_internal_checks=1
;tick_clean_queues=1
; ### Note that if it set to 0, the scheduler will never try to clean its queues for oversizing
;tick_clean_queues=10
;tick_update_business_values=60
;tick_reset_topology_change_flags=1
;tick_check_for_expire_acknowledge=1
;tick_send_broks_to_modules=1
;tick_get_objects_from_from_queues=1
;tick_get_latency_average_percentile=10

[alignak-configuration]
; Alignak monitored system configuration files
; Declaring such configuration files is useful if you have some items declared in plain-old
; legacy configuration files (eg. Nagios, Shinken, ...)
; ---
; All the variables starting with 'cfg' are considered as some configuration files and will
; be parsed according to the Nagios parsing rules
; ---
; First configuration file
;cfg=%(etcdir)s/alignak.cfg
; Second configuration file
;cfg2=%(etcdir)s/macros.cfg

Daemons configuration

The default file shipped when installing for the daemons configuration (alignak.d/daemons.ini) is declaring one instance of each Alignak daemons type. This configuration is suitable for a standard non distributed Alignak configuration.:

For each Alignak daemon, this file contains a section with the daemon name. The section
identifier is the corresponding daemon name prefixed with the keyword daemon and a dot.
This daemon name is usually built with the daemon type (eg. arbiter, poller,...) and the
daemon name separated with a dash.
#
The previous rules ensure that Alignak will be able to find all the daemons configuration
in this file whatever the number of daemons is existing in the configuration
#
To be easily used as a configuration variable of this file, the daemon name is repeated
inside the section in a NAME variable.
#
Each section inherits from the [DEFAULT] section and only defines the specific values
inherent to the declared daemon.

[daemon.arbiter-master]
type=arbiter
name=arbiter-master

; Network configuration
; ---
; My listening interface
;host=0.0.0.0
port=7770
; My adress for the other daemons
;address=127.0.0.1

; Modules
; ---
; Default: None
; Interesting modules:
; - backend_arbiter: get the monitored objects configuration from the Alignak backend
;modules=backend_arbiter

[daemon.scheduler-master]
type=scheduler
name=scheduler-master

; Network configuration
; ---
; My listening interface
;host=0.0.0.0
port=7768
My adress for the other daemons
;address=127.0.0.1

; Modules
; ---
; Default: None
; Interesting modules:
; - backend_scheduler: store the system live state in the Alignak backend (retention)
;modules=backend_scheduler

; Advanced Features:
; If set, the scheduler will skip initial broks creation. It will be a little faster to start-up
; but no broker module will receive the initial_status broks. Take care about this!
;skip_initial_broks=0

; Some schedulers can manage more hosts than others
; The scheduler weight indicates if the scheduler can manage more hosts than its siblings...
;weight=1

[daemon.poller-master]
type=poller
name=poller-master

; Network configuration
; ---
; My listening interface
;host=0.0.0.0
port=7771
; My adress for the other daemons
;address=127.0.0.1

; Modules
; ---
; Default: None
; Interesting modules:
; - nrpe-booster, replaces the check_nrpe binary to enhance performance for NRPE checks
; - snmp-booster, replace the snmp_get with a bulk polling module
;modules=nrpe-booster

; Advanced parameters:
;manage_sub_realms=1
; If set to 0 the min_workers and max_workers values will be configured according to the
; system CPU count, This will lead to use as many workers as CPUs count less one; one CPU
; is preserved to avoid too much load on the system and let the other daemons do thei job;)
; If you set min_workers and max_workers to the same value, you will set the workers count.
; Use as much worker as possible for the pollers
min_workers=0
max_workers=0
;processes_by_worker=256
;worker_polling_interval=1

; Passive mode
; In active mode (default behavior), connections between scheduler and poller are
; poller -> scheduler to get checks to launch
; poller -> scheduler to report checks results
; For DMZ monitoring, set the passive mode for the connections to be from scheduler -> poller.
;passive=0

; Poller tags
; Poller tags are the tag that the poller will manage.
; Use None as tag name to manage untagged checks (default)
;poller_tags=None

[daemon.reactionner-master]
type=reactionner
name=reactionner-master

; Network configuration
; ---
; My listening interface
;host=0.0.0.0
port=7769
; My adress for the other daemons
;address=127.0.0.1

; Modules
; ---
; Default: None
; Interesting modules:
; - none currently
;modules

; Advanced parameters:
;manage_sub_realms=1
; If set to 0 the min_workers and max_workers values will be configured with the system CPU count
; this to use as many workers as CPUs
; If you set min_workers and max_workers to the same value, you will set the workers count.
; Use only 1 worker for the reactionner
min_workers=1
max_workers=1
;processes_by_worker=256
;worker_polling_interval=1

; Passive mode
; In active mode (default behavior), connections between scheduler and reactionner are
; reactionner -> scheduler to get checks to launch
; reactionner -> scheduler to report checks results
; For DMZ monitoring, set the passive mode for the connections to be from scheduler -> reactionner.
;passive=0

; Reactionner tags
; Reactionner tags are the tag that the reactionner will manage.
; Use None as tag name to manage untagged actions (default)
;reactionner_tags=None

[daemon.broker-master]
type=broker
name=broker-master

; Network configuration
; ---
; My listening interface
;host=0.0.0.0
port=7772
; My adress for the other daemons
;address=127.0.0.1

; Advanced parameters:
;manage_sub_realms=1
; The broker daemon may have an important message queue size so it is important to alert
; if this queue size becomes too huge; it may be caused by a broker module problem!
max_queue_size=100000

; Gets the arbiter broks
; There must only be one and only one broker that gets the broks created by the arbiter
; Do not set this parameter for all other brokers because it defaults to False.
manage_arbiters=1

; Modules
; ---
; Default: None
; Interesting modules:
; - backend_broker, update the live state in the Alignak backend
; - logs, collect monitoring logs and send them to the Alignak backend
;modules=backend_broker, logs

[daemon.receiver-master]
type=receiver
name=receiver-master

; Network configuration
; ---
; My listening interface
;host=0.0.0.0
port=7773
; My adress for the other daemons
;address=127.0.0.1

; Modules
; ---
; Default: None
; Interesting modules:
; - nsca, NSCA protocol server for collecting passive checks
; - external-commands, read a nagios commands file to notify external commands
; - web-services, expose Web services to get Alignak daemons state and notify external commands
;modules=nsca,external-commands,web-services

; Advanced parameters:
;manage_sub_realms=1

Modules configuration

The default file shipped when installing for the modules configuration (alignak.d/modules.ini) is not declaring any module. It is only an example file to get used for declaring a new module.:

For each Alignak module, this file contains a section with the module configuration.
;[module.example]
;# --
;# The module inherits from the global configuration defined in the
;# DEFAULT section
;# only specific module configuration may be set here
;# --
;name=Example
;type=type1,type2
;python_name=alignak_module_example
;
;# --
;# Module internal metrics
;# Export module metrics to a statsd server.
;# By default at localhost:8125 (UDP) with the alignak prefix
;# Default is not enabled
;# --
;statsd_host = localhost
;statsd_port = 8125
;statsd_prefix = alignak
;statsd_enabled = 0
;# --
;
;# Module log level
;;log_level=INFO
;
;# Module specific parameters
;option_1=foo
;option_2=bar
;option_3=foobar

Extra shipped configuration

Sample directory

The etc/alignak/sample directory contain many samples for the configuration of the different
elements defined in the configuration.

Note

Please consider these files are samples and that they will probably not be fully functional out-of-the-box…

Hint

Many sample files exist in the Alignak tests suites of the repository. If you are searching for a little help or some inspiration, feel free to have a look into the tests/cfg for simple configuration and tests_integ/cfg for more complex configurations!

Arbiter directory

This directory contains a default configuration built with legacy configuration files.

This configuration only declare one host which is always considered as UP because it is internaly checked:

/usr/local/etc/alignak/arbiter
 -> ... for the main monitoring configuration file (alignak.cfg)

/usr/local/etc/alignak/arbiter/resource.d
 -> ... for the global macros and resources

/usr/local/etc/alignak/arbiter/objects
 -> ... for the default monitored objects (by object type)
/usr/local/etc/alignak/arbiter/objects/contactgroups
/usr/local/etc/alignak/arbiter/objects/services
/usr/local/etc/alignak/arbiter/objects/hostgroups
/usr/local/etc/alignak/arbiter/objects/contacts
/usr/local/etc/alignak/arbiter/objects/realms
/usr/local/etc/alignak/arbiter/objects/timeperiods
/usr/local/etc/alignak/arbiter/objects/sample
/usr/local/etc/alignak/arbiter/objects/sample/services
/usr/local/etc/alignak/arbiter/objects/sample/hosts
/usr/local/etc/alignak/arbiter/objects/commands
/usr/local/etc/alignak/arbiter/objects/packs
/usr/local/etc/alignak/arbiter/objects/notificationways
/usr/local/etc/alignak/arbiter/objects/escalations
/usr/local/etc/alignak/arbiter/objects/templates
/usr/local/etc/alignak/arbiter/objects/servicegroups
/usr/local/etc/alignak/arbiter/objects/hosts
/usr/local/etc/alignak/arbiter/objects/dependencies

/usr/local/etc/alignak/arbiter/templates
 -> ... for the monitored objects templates

/usr/local/etc/alignak/arbiter/packs
 -> ... for the installed monitoring checks packs
/usr/local/etc/alignak/arbiter/packs/resource.d
 -> ... for the installed monitoring checks packs global macros

/usr/local/var/log/alignak
 -> ... for the alignak daemons log files

/usr/local/var/lib/alignak
 -> ... for the alignak libraries

/usr/local/var/libexec/alignak
 -> ... for the alignak external checks plugins

/usr/local/var/run/alignak
 -> ... for the alignak daemons run files (pid)

SSL inter-daemon communication

Why using SSL communication?

By default the Alignak inter-daemons communication uses the HTTP protocol.

This documentation part explain how to configure the Alignak daemons to use an encrypted SSL (HTTPS) communication.

Official certificate

You can buy a SSL certificate from an official certificate authority.

Self-signed certificate

You can generate your own self-signed certificate. The commands are:

$ openssl dhparam -out dhparams.pem 2048
$ cat dhparams.pem
 -----BEGIN DH PARAMETERS-----
 MIIBCAKCAQEArKTgemTGBjUAyHM3piDjNhBU4KGJ9JVS8n7+n8+vMdN/2XMOjvWS
 lrfpUJ51gcYw17JwfiwtKqQFvCOYw+XAo2jhfrMixuke1ggCQbnuMiDQfRZROj6T
 gelAzbDJ0LCHOEWl8gs16mj36KJeNSRqyy3V916SzboiiLCst+QGSR0RCekrq8no
 74/uLRSQfivSnCl33hs4LXpmZG+YvMQsH9ylqVt86NADPWTEVEl4gXQFnEHuC3Jd
 1Dm/bbUxGm4pCod1h76Ljy3j72osWHDOpARMV85QFLrXhmUvegt7fZxSA/TVETbT
 7FFXNaCKtGZ5wEfT49716NlNqLodwCRvSwIBAg==
 -----END DH PARAMETERS-----

$ openssl genrsa -passout pass:the_password_you_want -out certificate_test.key 2048
$ cat certificate_test.key
 -----BEGIN RSA PRIVATE KEY-----
 MIIEpAIBAAKCAQEA4e3i+ZetHrvSGmp/Jr3YefAHOnSoB6iWAkRbH3yLcxxM6DDP
 7uA8LzPMkiye6CTipVSL1huBUZMrz06fwOavCAQCZJjMPR7dOQJshxhIkU/oU5ZM
 UzZFw+njy/R0JgJjL77qO/TZWF9qkInXt71GokJHeFjfmWSTJXamjZjB5ypV9EmD
 xnGRyIJ7Jlq0uSZDRqWBo9xB9bxn+qXeIzOBb3ktap2XjDFXejyy9Hpn+oGJZxMA
 dbDjl20LcwD8gRpAHdWucIyOcIchM+8YFAJYgtYbtbiZdxgLd7hnoDuymrrHkctN
 0Z7KPyyVPvibf10oxtVEx50T8O6PFBReRn+gGwIDAQABAoIBAQDFZ+TtrtDOTNAc
 0ra89B5lFQxL0EhNQMmpu25fSaRS9QRh0NyuXPFZUQpLIn/KWQhL616vuqK40z3x
 SkKd+zIub8pjeXrjYMdtG6gWNmqZxVc7SdTw1DgLIZ8vwy2FVIqz2j2yG5OY+u4S
 0s5Qtio0dnMaPZVJ4y4LCuwmRrYOMzQdTl43WH0INgxRW3gHooDkTTlqsE5HKl1e
 8jlXzLQDyMESZi7eff3GIyKqDcyKtGT7A+9fclLTv1yzL9hlAsCSAvqxvQajtPNC
 LkHRg/vhHpetgByHKqCSxZN5PzqmuvQlmKr1KJy/KhWrii7dSbzJd6sbqtTZBuKx
 SASQvzKhAoGBAPiNl71r+tN4fWr9BmmqEAFDJoAeTX8eY+QWX/DD9q5wIEkXZp6i
 ffNq02EybnpiEWeoBl2UjBXMhEjXb9N4Ujlf14H2G2DMn6xiJqOcotAMjg4I2vm0
 F2Lnzcq9rKOInie9n4YJ1PEoMuMdRAcXgp9iL+Kp2QQm4Zro6kNoRkLLAoGBAOiy
 xLt3/3mcF1YqLfzDzLWsZjxQoads5LcecSOGOJUaseb2R1w/InGgvfm9bk0O9DQm
 YPRavbFWQKVODsuDsyn2bWGZZvqpxp6zEC+MbRYN738G5CIVPRNHMUmW7TE58Axr
 9AVFFDeEzizehHOu6UIPMD8Z3QFc/vducHo0ZV3xAoGAVXBWuMZlckv40M4pZikP
 V1+93EyOVyQbMkx+rkSuh0gD0Rw6Kk2w/fu6ra6oS2lqkjcv+PsXLGchEej8h7TU
 juRjMElpH903Bgq3PYaacOnf6vMgUrWVVGpaU1bgAVb1BrQoIes/R6aJ14g32jg6
 ro8R5th7wPGcm6N047b0cAECgYEAvYs4ktfJAr7xh18uPHElI2q9kC3Br4YUu1CR
 qfUfy9yFwvMi53IJ1XKwrGfwG9atdnk4inILiBMQ71Wo2X96hhjTuidhaZa3Uffb
 nE+PX+KUDe2IEHcqW7Sm4iGNLYbbENMyXsSJFjwYURYj37M/D28dxpiDnCOrD9Mm
 zXQ2iZECgYAL7HqDFPnXI/uNSLX03Eqwqo4rQo8SHYv2JDPczJJbG3ktTV7Nr1wG
 sY2BzMWKElvWrNjyZidY4gQpxe4+uD/FdtmcWBUc3XBbC2USUrcZbhPp5udIxxaQ
 VhTO0p+GvL1Uh5NuCeUTMe10oCe8u8iB2N3H02NdoVL43I0bh3xrCw==
 -----END RSA PRIVATE KEY-----

$ openssl req -new -x509 -days 365 -key certificate_test.key -out certificate_test.csr
 You are about to be asked to enter information that will be incorporated
 into your certificate request.
 What you are about to enter is what is called a Distinguished Name or a DN.
 There are quite a few fields but you can leave some blank
 For some fields there will be a default value,
 If you enter '.', the field will be left blank.

 Country Name (2 letter code) [AU]:FR
 State or Province Name (full name) [Some-State]:
 Locality Name (eg, city) []:Valence
 Organization Name (eg, company) [Internet Widgits Pty Ltd]:Fred
 Organizational Unit Name (eg, section) []:Alignak
 Common Name (e.g. server FQDN or YOUR name) []:Fred
 Email Address []:frederic.mohier@alignak.net

$ cat certificate_test.csr
 -----BEGIN CERTIFICATE-----
 MIID9TCCAt2gAwIBAgIJAMYvKhJ1pjGUMA0GCSqGSIb3DQEBCwUAMIGQMQswCQYD
 VQQGEwJGUjETMBEGA1UECAwKU29tZS1TdGF0ZTEQMA4GA1UEBwwHVmFsZW5jZTEN
 MAsGA1UECgwERnJlZDEQMA4GA1UECwwHQWxpZ25hazENMAsGA1UEAwwERnJlZDEq
 MCgGCSqGSIb3DQEJARYbZnJlZGVyaWMubW9oaWVyQGFsaWduYWsubmV0MB4XDTE4
 MDcxNTE0MzA1M1oXDTI4MDcxMjE0MzA1M1owgZAxCzAJBgNVBAYTAkZSMRMwEQYD
 VQQIDApTb21lLVN0YXRlMRAwDgYDVQQHDAdWYWxlbmNlMQ0wCwYDVQQKDARGcmVk
 MRAwDgYDVQQLDAdBbGlnbmFrMQ0wCwYDVQQDDARGcmVkMSowKAYJKoZIhvcNAQkB
 FhtmcmVkZXJpYy5tb2hpZXJAYWxpZ25hay5uZXQwggEiMA0GCSqGSIb3DQEBAQUA
 A4IBDwAwggEKAoIBAQDh7eL5l60eu9Iaan8mvdh58Ac6dKgHqJYCRFsffItzHEzo
 MM/u4DwvM8ySLJ7oJOKlVIvWG4FRkyvPTp/A5q8IBAJkmMw9Ht05AmyHGEiRT+hT
 lkxTNkXD6ePL9HQmAmMvvuo79NlYX2qQide3vUaiQkd4WN+ZZJMldqaNmMHnKlX0
 SYPGcZHIgnsmWrS5JkNGpYGj3EH1vGf6pd4jM4FveS1qnZeMMVd6PLL0emf6gYln
 EwB1sOOXbQtzAPyBGkAd1a5wjI5whyEz7xgUAliC1hu1uJl3GAt3uGegO7KauseR
 y03Rnso/LJU++Jt/XSjG1UTHnRPw7o8UFF5Gf6AbAgMBAAGjUDBOMB0GA1UdDgQW
 BBShPcP02G8+ZSNEgR+ImxpPSGuyETAfBgNVHSMEGDAWgBShPcP02G8+ZSNEgR+I
 mxpPSGuyETAMBgNVHRMEBTADAQH/MA0GCSqGSIb3DQEBCwUAA4IBAQCa7Kx3wWZn
 eOMYxzyXEH7eYmFJO5gZ2YpDbHpDb5i2sZ34M/xT2DfM1CiDFinX0kL4hDnrGQ8k
 UWR0H1ibd+ESUPiM3QLsRfftDzPeRsUAZg+32waRunPdyMr+sm8/gHnhzpXPnR+5
 AXkJLj+SdhzwFnx4oIQ+UZ9K9AE7m5OdYElXbbxReWFWGG+zqZG5EdFxqZi5gjjU
 GjsOcMXWdOodnrzuPFq0PVyUa1yB/5wiW6BaV3n71OpoliPqf3RAT++L4ZoiWJWA
 LtAavPyl7wG1KTmCOw/KabTmS8NHaHaCzrsyb2Ig1BH9RGe6424sv8j7JioiLI+u
 6bVtvmVAot/A
 -----END CERTIFICATE-----

When generating the certificate_test.csr (last command), if you run Alignak locally, you can use Common Name and the localhost value for the server name, otherwise enter the server fully qualified domain name where the daemon is running.

Copy the 3 generated files into the Alignak default configuration directory:

sudo cp dhparams.pem /usr/local/share/alignak/etc/certs/
sudo cp certificate_test.csr /usr/local/share/alignak/etc/certs/
sudo cp certificate_test.key /usr/local/share/alignak/etc/certs/

Daemons configuration

In the concerned daemons section of the Alignak configuration, define the full path of your certificate files and uncomment:

$ sudo vi /usr/local/share/alignak/etc/alignak.ini

 ; SSL configuration
 ; -----
 ; Configure this part if you are using SSL for communication between the Alignak daemons
 use_ssl=true
 ; Paths for certificate files
 server_cert=./certs/certificate_test.csr
 server_key=./certs/certificate_test.key
 ca_cert=./certs/dhparams.pem

 server_cert=%(etcdir)s/certs/certificate_test.csr
 server_key=%(etcdir)s/certs/certificate_test.key
 server_dh=%(etcdir)s/certs/dhparams.pem

If you are using a certificate from an official certification authority, you must also define the intermediate certificate of the authority and uncomment:

ca_cert=%(etcdir)s/certs/ca.pem

At last, enable SSL in the daemons configuration:

use_ssl=1

Monitored objects configuration

The following chapters give some information about the default installed configuration and some specific objects configuration features inherent to Alignak.

	Monitored objects configuration
	Objects explained

	Objects definition

	Objects inheritance
	Basics

	Local properties vs. inherited properties

	Inheritance chaining

	Partial object definitions as templates

	Custom variables inheritance

	Stopping properties inheritance

	Additive inheritance

	Implied inheritance

	Implied/additive inheritance in escalations

	Multiple inheritance sources

	Precedence with multiple inheritance sources

	Inheritance overriding

	Inheritance exclusions

	Time-Saving tricks for objects definition
	Services

	Service escalations

	Services dependencies

	Hosts escalations

	Hosts dependencies

	Hosts groups

	Custom Object Variables
	Introduction

	Custom Variable Basics

	Examples

	Custom Variables As Macros

	Custom Variables And Inheritance

Monitored objects configuration

Monitored objects are all the elements that are involved in the monitoring and notification logic.

Alignak manages all the Nagios legacy types of objects and proposes some extra objects types to enrich and ease the modnitoring configuration. Managed objects types include:

	Hosts and services

	Commands

	Time Periods

	Contacts

	Groups: hosts, services, contacts

	Dependencies

	Escalations

	Modulations (checks, macros, etc.)

The monitored objects can be defined in one or more configuration files and/or directories that are specified using the Nagios/Shinken legacy configuration as explained in the core configuration.

The monitored objects are defined with a flexible template format, which can make it much easier to manage your Alignak configuration in the long term. You can create object definitions that inherit properties from other object definitions.

Inheritance mechanism and some advanced tips and tricks may be found below.

Objects explained

Hosts

Hosts are one the main objects in the monitoring logic. Important attributes of hosts are as follows:

	Hosts are usually physical devices on your network (servers, workstations, routers, switches, printers, etc).

	Hosts have an address of some kind (e.g. an IP or MAC address).

	Hosts have one or more more services associated with them.

	Hosts can have parent/child relationships with other hosts, often representing real-world network connections, which is used in the network reachability logic.

Hosts Groups

	Hosts groups are logical groups of one or more hosts. They make it easier to:

	
	view the status of related hosts in the Alignak web interface and

	simplify your configuration through the use of configuration tricks.

Services

Services are associated with hosts and can be:

	Attributes of a host (CPU load, disk usage, uptime, etc.)

	Services provided by the host (“HTTP”, “POP3”, “FTP”, “SSH”, etc.)

	Other things associated with the host (“DNS” records, etc.)

	High level services for end users (database, Web application, etc.)

Contacts

Contacts are people involved in the notification process:

	they have one or more notification methods (cellphone, pager, email, instant messaging, etc.)

	they receive notifications for hosts and services they are related with

Contacts groups

Contacts groups are logical groups of contacts that make it easier to configure notifications.

Timeperiods

Time periods are used to control:

	When hosts and services can be monitored

	When contacts can receive notifications

Commands

Commands define the actions to perform for:

	Host and service checks

	Notifications

	Event handlers

	and more…

Objects definition

Alignak objects definition follow the standard and well known Nagios/Shinken legacy syntax. This syntax will not be developed more in this document.

If you need more information concerning the configuration files organization or syntax you are invited to read this Nagios documentation [https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/objectdefinitions.html].

The Shinken configuration is documented in the Shinken online documentation [https://shinken.readthedocs.io/en/latest/08_configobjects/index.html].

Some details for all objects definition are available in this document annexes.

Objects inheritance

Basics

Three properties are affecting recursion and inheritance and they are present in all object definitions.

define someobjecttype{
 name template_name
 use name_of_template_to_use
 register [0/1]

 object-specific variables ...

}

name is only the template name that will be referenced in other object definitions so they can inherit the template defined properties/variables. Template names must be unique amongst objects of the same type, so you can’t have two or more host definitions that have the same name property.

use specifies the name of the templates that you want to inherit properties/variables from. The name(s) you specify in this property must be defined as another object’s template name.

register is used to indicate whether or not the object definition should be registered. By default, all object definitions are registered as real objects. If you are creating a partial object definition as a template, you would want to prevent it from being registered as a real object, so you will need to set register as 0. Values are as follows: 0 = do NOT register object definition, 1 = register object definition (this is the default).

Local properties vs. inherited properties

The local object properties always take precedence over the properties defined in the inherited templates objects. Take a look at the following example of two host definitions (not all required variables have been supplied):

define host {
 host_name host1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 name hosttemplate1
}

define host {
 host_name host2
 max_check_attempts 3
 use hosttemplate1
}

host1 is defined as a template named hosttemplate1. host2 is inheriting from the template hosttemplate1.

Once those definition are parsed by Alignak, the resulting definition of host host2 will be equivalent to this definition:

define host{
 host_name host2
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
}

The check_command and notification_options properties were inherited from the hosttemplate1 template. However, the host_name and max_check_attempts variables were not inherited because they were yet defined locally in host2.

Inheritance chaining

Objects can inherit properties from multiple levels of template objects.

define host{
 host_name host1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 name hosttemplate1
}

define host{
 host_name host2
 max_check_attempts 3
 use hosttemplate1
 name hosttemplate2
}

define host{
 host_name host3
 use hosttemplate2
}

host3 inherits from host2, which inherits from host1.

Once those definition are parsed by Alignak, the resulting configuration will be equivalent to this definition:

define host{
 host_name host1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
}

define host{
 host_name host2
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
}

define host{
 host_name host3
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
}

Partial object definitions as templates

It is possible to use incomplete object definitions as templates to be used by other object definitions. A partial definition means that all mandatory properties in the object are not supplied in the object definition.

As an example:

define host{
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5

 name base-host
 register 0
}

define host{
 host_name host1
 address 192.168.1.3
 use base-host
}

define host{
 host_name host2
 address 192.168.1.4
 use base-host
}

Note that the first definition is not complete it is missing the required host_name property. We don’t need to supply a host name because we just want to use this definition as a generic host template. In order to prevent this definition from being registered with Alignak as a normal host, we set the register property as 0.

The definitions of hosts host1 and host2 inherit their properties from the base-host template. The only variable we have chosen to override is the address variable. Which means that both hosts will have the exact same properties, except for their host_name and address properties.

Once those definition are parsed by Alignak, the resulting configuration will be equivalent to this definition:

define host{
 host_name host1
 address 192.168.1.3
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
}

define host{
 host_name host2
 address 192.168.1.4
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
}

Using a template definition for default properties saves a lot of typing ;)

Custom variables inheritance

Custom objects variables that are defined in an host, service, or contact template will be inherited just like other standard variables. Take the following example:

define host{
 name base-host
 register 0

 _customvar1 somevalue ; <-- Custom host variable
 _snmp_community public ; <-- Custom host variable
}

define host{
 host_name host1
 address 192.168.1.3
 use base-host
}

host1 will inherit the custom host variables _customvar1 and _snmp_community, as well as their respective values, from the base-host template.

Stopping properties inheritance

Sometimes you may not want your host, service, or contact definition to inherit values of some properties from their templates. To stop inheritance for a property, you can specify null as the value of the property that you do not want to inherit.

define host{
 event_handler my-event-handler-command
 name base-host
 register 0
}

define host{
 host_name host1
 address 192.168.1.3
 event_handler null
 use base-host
}

The host host1 will not inherit the value of the event_handler property that is defined in the base-host.

Additive inheritance

By default, Alignak gives preference to local properties instead of inherited properties. Sometimes, it makes sense to use the values of inherited and local properties together.

The additive inheritance can be accomplished by prepending the local variable value with a plus sign (+). This feature is only available for standard (non custom) properties that contain string values.

As an example:

define host{
 name base-host
 hostgroups all-servers
 register 0
}

define host{
 host_name linuxserver1
 hostgroups +linux-servers,web-servers
 use base-host
}

The host linuxserver1 will append the value of its local hostgroups variable to the one inherited from base-host. The resulting definition of linuxserver1 is as following:

define host{
 host_name linuxserver1
 hostgroups all-servers,linux-servers,web-servers
}

Implied inheritance

Usually you have to either explicitly specify the value of a required property in an object definition or inherit it from a template. There are some exceptions to this rule, where Alignak will assume that you want to use a value that comes from a related object.

For example, the values of some service variables will be copied from the host the service is associated with if you don’t explicitly specify them.

The following table lists the object variables that will be implicitly inherited from related objects if you don’t explicitly specify their value in your object definition or inherit them from a template.

	Object Type

	Object Variable

	Implied Source

	Services

	contact_groups

	contact_groups in the associated host definition

	notification_interval

	notification_interval in the associated host definition

	

	notification_period

	notification_period in the associated host definition

	

	check_period

	check_period in the associated host definition

	

	Host Escalations

	contact_groups

	contact_groups in the associated host definition

	notification_interval

	notification_interval in the associated host definition

	

	escalation_period

	notification_period in the associated host definition

	

	Service Escalations

	contact_groups

	contact_groups in the associated service definition

	notification_interval

	notification_interval in the associated service definition

	

	escalation_period

	notification_period in the associated service definition

	

Implied/additive inheritance in escalations

Service and host escalation definitions can make use of a special rule that combines the features of implied and additive inheritance.

If escalations

	do not inherit the values of their contact_groups or contacts properties from another escalation template and

	their contact_groups or contacts properties begin with a plus sign (+),

then the values of their corresponding host or service definition’s contact_groups or contacts properties will be used in the additive inheritance logic.

Confused? Here’s an example:

define host{
 name linux-server
 contact_groups linux-admins
 ...
}

define hostescalation{
 host_name linux-server
 contact_groups +management
 ...
}

is equivalent to:

define hostescalation{
 host_name linux-server
 contact_groups linux-admins,management
 ...
}

Multiple inheritance sources

Thus far, all examples of inheritance have shown object definitions inheriting properties from a single source template. You are also able to inherit variables/values from multiple templates for more complex configurations, as shown below.

Generic host template
define host{
 name generic-host
 active_checks_enabled 1
 check_interval 10
 register 0
}

Development web server template
define host{
 name development-server
 check_interval 15
 notification_options d,u,r
 ...
 register 0
}

Development web server
define host{
 use generic-host,development-server
 host_name devweb1
 ...
}

[image: ../_images/multiple-templates1.png]
In the example above, devweb1 is inheriting properties from the templates: generic-host and development-server. check_interval is defined in both templates. Since generic-host is the first template specified in devweb1’s use property, its value is the one retained for the check_interval of devweb1. After inheritance, the effective definition of devweb1 would be as follows:

Development web server
define host{
 host_name devweb1
 active_checks_enabled 1
 check_interval 10
 notification_options d,u,r
 ...
}

Precedence with multiple inheritance sources

When using multiple inheritance templates, the property from the first specified template is the one that will be retained. Since templates can themselves inherit properties from one or more other templates, it can get tricky to figure out which property takes precedence.

Consider the following host definition that references three templates:

Development web server
define host{
 use 1, 4, 8
 host_name devweb1
 ...
}

If some of the referenced templates themselves inherit properties from one or more other templates, the precedence rules are shown below.

[image: ../_images/multiple-templates2.png]

Inheritance overriding

Inheritance is a core feature allowing to factorize configuration. It is possible from a host or a service template to build a very large set of checks with relatively few lines. The drawback of this approach is that it requires all hosts or services to be consistent. But if it is easy to instantiate new hosts with their own definitions attributes sets, it is generally more complicated with services, because the order of magnitude is larger (hosts * services per host), and because few attributes may come from the host. This is is especially true for packs, which is a generalization of the inheritance usage.

If some hosts require special properties for the services they are hosting (values that are different from those defined at template level), it is generally necessary to define new service.

Imagine two web servers clusters, one for the frontend, the other for the backend, where the frontend servers should notify any HTTP service in CRITICAL and WARNING state, and backend servers should only notify on CRITICAL state.

To implement this configuration, we may define 2 different HTTP services with different notification options.

Example:

define service {
 service_description HTTP Front
 hostgroup_name front-web
 notification_options c,w,r
 ...
}

define service {
 service_description HTTP Back
 hostgroup_name front-back
 notification_options c,r
 ...
}

define host {
 host_name web-front-01
 hostgroups web-front
 ...
}

define host {
 host_name web-back-01
 hostgroups web-back
 ...
}

Another way is to inherit attributes on the service side directly from the host: some service attributes may be inherited directly from the host if they are not defined on the service template side (see Implied Inheritance), but not all. Our notification_options in our example cannot be picked up from the host.

If the attribute you want to be set a custom value cannot be inherited from the host, you may use the service_overrides host directive. Its role is to enforce a service directive directly from the host. This allows to define specific service instance attributes from a same generalized service definition.

Its syntax is:

service_overrides xxx,yyy zzz

It could be summarized as “For the service bound to me, named ``xxx``, I want the directive ``yyy`` set to ``zzz`` rather tran the inherited value”

The service description selector (represented by xxx in the previous example) may be:

	A service name (default)
The service_description of one of the services attached to the host.

	* (wildcard)
Means all the services attached to the host

	
	A regular expression

	A regular expression against the service_description of the services attached to the host (it has to be prefixed by r:).

Example:

define service {
 service_description HTTP
 hostgroup_name web
 notification_options c,w,r
 ...
}

define host {
 host_name web-front-01
 hostgroups web
 ...
}
...

define host {
 host_name web-back-01
 hostgroups web
 service_overrides HTTP,notification_options c,r
 ...
}
...
define host {
 host_name web-back-02
 hostgroups web
 service_overrides *,notification_options c
 ...
}
...
define host {
 host_name web-back-03
 hostgroups web
 service_overrides r:^HTTP,notification_options r
 ...
}
...

In the previous example, we defined only one instance of the HTTP service, and we enforced the service notification_options for some web servers composing the backend. The final result is the same, but the second example is shorter, and does not require the second service definition.

Using packs allows an even shorter configuration.

Example:

define host {
 use http
 host_name web-front-01
 ...
}
...

define host {
 use http
 host_name web-back-01
 service_overrides HTTP,notification_options c,r
 ...
}
...
define host {
 use http
 host_name web-back-02
 service_overrides HTTP,notification_options c
 ...
}
...
define host {
 use http
 host_name web-back-03
 service_overrides HTTP,notification_options r
 ...
}
...

In this example, the web server from the front-end cluster uses the value defined in the pack, and the one from the backend cluster has its HTTP service (inherited from the HTTP pack also) enforced its notification_options directive.

Important

The service_overrides attribute may himself be inherited from an upper host template. This is a multivalued attribute which syntax requires that each value is set on its own line. If you add a line on a host instance, it will not add it to the ones defined at template level, it will overload them. If some of the values on the template level are needed, they have to be explicitly copied.

Example:

define host {
 name web-front
 service_overrides HTTP,notification_options c,r
 ...
 register 0
}
...

define host {
 use web-front
 host_name web-back-01
 hostgroups web
 service_overrides HTTP,notification_options c,r
 service_overrides HTTP,notification_interval 15
 ...
}
...

Inheritance exclusions

Packs and hostgroups allow to factorize the configuration and greatly reduce the amount of configuration to describe monitoring infrastructures. The drawback is that it forces hosts to be consistent, as the same configuration is applied to a possibly very large set of machines.

Imagine a web servers cluster. All machines except one should be checked its management interface (ILO, iDRAC). In the cluster, there is one virtual server that should be checked the exact same services than the others, except the management interface (as checking it on a virtual server has no meaning). The corresponding service comes from a pack.

In this situation, there is several ways to manage the situation:

	create an intermediate template on the pack level to have the management interface check attached to an upper level template

	re define all the services for the specified host.

	use service overrides to set a dummy command on the corresponding service.

None of these options are satisfying.

There is a last solution that consists of excluding the corresponding service from the specified host. This may be done using the service_excludes directive.

Its syntax is:

service_excludes xxx

The service description selector (represented by xxx in the previous example) may be:

	A service name (default)
The service_description of one of the services attached to the host.

	* (wildcard)
Means all the services attached to the host

	
	A regular expression

	A regular expression against the service_description of the services attached to the host (it has to be prefixed by r:).

Example:

define host {
 use web-front
 host_name web-back-01
 ...
}

define host {
 use web-front
 host_name web-back-02 ; The virtual server
 service_excludes Management interface
 ...
}
...
define host {
 use web-front
 host_name web-back-03 ; The virtual server
 service_excludes *
 ...
}
...
define host {
 use web-front
 host_name web-back-04 ; The virtual server
 service_excludes r^Management
 ...
}
...

In the case you want the opposite (exclude all except) you can use the service_includes directive which is its corollary.

Time-Saving tricks for objects definition

Services

Same service on several hosts

Identical services assigned to several hosts can be specified with a list of hosts names in the host_name service property.

define service{
 host_name HOST1,HOST2,HOST3,...,HOSTN
 service_description SOMESERVICE
 other service properties ...
}

Same service on hosts in multiple hostgroups

Identical services assigned to all the hosts in one or more hostgroups can be specified with a list of hosts groups names in the hostgroup_name service property.

define service{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 service_description SOMESERVICE
 #other service properties ...
}

Same service on all hosts

Identical services assigned to all the hosts in your monitoring configuration is as simple as:

define service{
 host_name *
 service_description SOMESERVICE
 # other service properties ...
}

Excluding Hosts

If you want to create identical services on numerous hosts or hostgroups, but would like to exclude some hosts from the definition, this can be accomplished by preceding the host or hostgroup with a ! symbol.

define service{
 host_name HOST1,HOST2,!HOST3,!HOST4,...,HOSTN
 hostgroup_name HOSTGROUP1,HOSTGROUP2,!HOSTGROUP3,!HOSTGROUP4,...,HOSTGROUPN
 service_description SOMESERVICE
 # other service properties ...
}

Service escalations

Multiple hosts

The same rules as the one used for the services may be used for the service escalations definitions. Specify several hosts, hosts from hosts groups, all hosts, and hosts exclusions apply on service escalations.

All services on the same host

If you want to create service escalations for all the services of a particular host, you can use a wildcard in the service_description property. The definition below will create a service escalation for all the services of the host HOST1.

define serviceescalation{
 host_name HOST1
 service_description *
 # other escalation properties ...
}

Several services on the same host

Using a service name list in the service_description property of an escalation will assign this escalation to the specified services of the host defined in the host_name property.

define serviceescalation{
 host_name HOST1
 service_description SERVICE1,SERVICE2,...,SERVICEN
 # other escalation properties ...
}

All the services in several services groups

Specifying a list of services groups names in the servicegroup_name property will target all the services defined in the specified groups.

define serviceescalation{
 servicegroup_name SERVICEGROUP1,SERVICEGROUP2,...,SERVICEGROUPN
 # other escalation properties ...
}

Services dependencies

Several hosts

To create service dependencies for services with the same service_description that are assigned to multiple hosts, you can specify multiple hosts in the host_name and/or dependent_host_name properties. In the example below, service SERVICE2 on hosts HOST3 and HOST4 will be dependent of service SERVICE1 on hosts HOST1 and HOST2.

define servicedependency{
 host_name HOST1,HOST2
 service_description SERVICE1
 dependent_host_name HOST3,HOST4
 dependent_service_description SERVICE2
 # other dependency properties ...
}

All hosts in multiple hostgroups

If you want to create service dependencies for services with the same service_description that are assigned to all hosts in one or more hosts groups, you can use the hostgroup_name and/or dependent_hostgroup_name properties. In the example below, service SERVICE2 on all hosts in hosts groups HOSTGROUP3 and HOSTGROUP4 will be dependent on service SERVICE1 on all hosts in hostgroups HOSTGROUP1 and HOSTGROUP2.

define servicedependency{
 hostgroup_name HOSTGROUP1,HOSTGROUP2
 service_description SERVICE1
 dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4
 dependent_service_description SERVICE2
 # other dependency properties ...
}

All services on an host

If you want to create service dependencies for all the services assigned to a specific host, you can use a wildcard in the service_description and/or dependent_service_description properties. In the example below, all services on host HOST2 will be dependent on all services on host HOST1.

define servicedependency{
 host_name HOST1
 service_description *
 dependent_host_name HOST2
 dependent_service_description *
 # other dependency properties ...
}

Several services on an host

If you want to create service dependencies for several services assigned to a specific host, you can specify more than one service description in the service_description and/or dependent_service_description properties as follows:

define servicedependency{
 host_name HOST1
 service_description SERVICE1,SERVICE2,...,SERVICEN
 dependent_host_name HOST2
 dependent_service_description SERVICE1,SERVICE2,...,SERVICEN
 # other dependency properties ...
}

All services in several services groups

If you want to create service dependencies for all services that belong to one or more services groups, you can use the servicegroup_name and/or dependent_servicegroup_name properties as follows:

define servicedependency{
 servicegroup_name SERVICEGROUP1,SERVICEGROUP2,...,SERVICEGROUPN
 dependent_servicegroup_name SERVICEGROUP3,SERVICEGROUP4,...SERVICEGROUPN
 other dependency properties ...
}

Same host dependencies

If you want to create service dependencies for multiple services that are dependent on other services on the same host, leave the dependent_host_name and dependent_hostgroup_name properties empty. The example below assumes that hosts HOST1 and HOST2 have at least the following four services associated with them: SERVICE1, SERVICE2, SERVICE3, and SERVICE4. In this example, SERVICE3 and SERVICE4 on HOST1 will be dependent on both SERVICE1 and SERVICE2 on HOST1. Similarly, the same dependencies will exist for the corresponding services on HOTS2.

define servicedependency{
 host_name HOST1,HOST2
 service_description SERVICE1,SERVICE2
 dependent_service_description SERVICE3,SERVICE4
 other dependency properties ...
}

Hosts escalations

Several hosts

To create host escalations for multiple hosts, specify several hosts in the host_name property.

define hostescalation{
 host_name HOST1,HOST2,HOST3,...,HOSTN
 # other escalation properties ...
}

All hosts in several hosts groups

To create host escalations for all hosts in one or more hostgroups, use the hostgroup_name property.

define hostescalation{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 # other escalation properties ...
}

Excluding some hosts

If you want to create identical host escalations on several hosts or hostgroups, but you wish to exclude some hosts from the definition, you can prepend the host or hostgroup with a ! symbol.

define hostescalation{
 host_name HOST1,HOST2,!HOST3,!HOST4,...,HOSTN
 hostgroup_name HOSTGROUP1,HOSTGROUP2,!HOSTGROUP3,!HOSTGROUP4,...,HOSTGROUPN
 # other escalation properties ...
}

Hosts dependencies

Several hosts

If you want to create host dependencies for several hosts, you can specify multiple hosts in the host_name and/or dependent_host_name properties. The definition below would be equivalent to creating six separate host dependencies. In the example above, hosts HOST3, HOST4 and HOST5 would be dependent upon both HOST1 and HOST2.

define hostdependency{
 host_name HOST1,HOST2
 dependent_host_name HOST3,HOST4,HOST5
 other dependency properties ...
}

All hosts in several hosts groups

If you want to create host dependencies for all hosts in one or more hostgroups, you can use the hostgroup_name and /or dependent_hostgroup_name properties. In the example below, all hosts in hostgroups HOSTGROUP3 and HOSTGROUP4 would be dependent on all hosts in hostgroups HOSTGROUP1 and HOSTGROUP2.

define hostdependency{
 hostgroup_name HOSTGROUP1,HOSTGROUP2
 dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4
 other dependency properties ...
}

Hosts groups

All hosts

If you want to create an hosts group that group all hosts defined in your monitored objects, you can use a wildcard in the members directive. The definition below will create an hostgroup called HOSTGROUP1 that has all hosts as members.

define hostgroup{
 hostgroup_name HOSTGROUP1
 members *
 # other hostgroup properties ...
}

Custom Object Variables

Introduction

Users often request that new variables to be added to host, service, or contact definitions. These include variables for “SNMP” community, MAC address, AIM username, Skype number, etc. The list is endless. Adding many information into the host, service or contact definition makes Alignak less generic and more infrastructure-specific.

Alignak allows the users to define their own custom variables to add extra properties in their host, service, and contact definitions. These additional properties can then be used in notifications, event handlers, and host and service checks.

Custom Variable Basics

There are a few important things that you should note about custom variables:

	Custom variable names must begin with an underscore (_) to prevent name collision with standard variables

	Custom variable names are case-insensitive

	Custom variables are inherited from object templates like normal variables

	Scripts can reference custom variable values with macros and environment variables

Examples

Here’s an example of how custom variables can be defined in different types of object definitions:

define host{
 host_name linuxserver
 _mac_address 00:06:5B:A6:AD:AA ; <-- Custom MAC_ADDRESS variable
 _rack_number R32 ; <-- Custom RACK_NUMBER variable
...
}

define service{
 host_name linuxserver
 description Memory Usage
 _SNMP_community public ; <-- Custom SNMP_COMMUNITY variable
 _TechContact Jane Doe ; <-- Custom TECHCONTACT variable

}

define contact{
 contact_name john
 _AIM_username john16 ; <-- Custom AIM_USERNAME variable
 _YahooID john32 ; <-- Custom YAHOOID variable
 ...
}

Custom Variables As Macros

Custom variable values can be referenced in scripts and executables that Alignak runs for checks, notifications, etc. by using macros or environment variables.

In order to prevent name collision among custom variables from different object types, Alignak prepends _HOST, _SERVICE, or _CONTACT to the beginning of custom host, service, or contact variables, respectively, in macro and environment variable names.

The table below shows the corresponding macro and environment variable names for the custom variables that were defined in the example above.

	Object Type

	Variable Name

	Variable definition

	Macro Name

	Environment Variable

	Host

	MAC_ADDRESS

	_MAC_ADDRESS

	$_HOSTMAC_ADDRESS$

	ALIGNAK__HOSTMAC_ADDRESS

	Host

	RACK_NUMBER

	_RACK_NUMBER

	$_HOSTRACK_NUMBER$

	ALIGNAK__HOSTRACK_NUMBER

	Service

	SNMP_COMMUNITY

	_SNMP_COMMUNITY

	$_SERVICESNMP_COMMUNITY$

	ALIGNAK__SERVICESNMP_COMMUNITY

	Service

	TECHCONTACT

	_TECHCONTACT

	$_SERVICETECHCONTACT$

	ALIGNAK__SERVICETECHCONTACT

	Contact

	AIM_USERNAME

	_AIM_USERNAME

	$_CONTACTAIM_USERNAME$

	ALIGNAK__CONTACTAIM_USERNAME

	Contact

	YAHOOID

	_YAHOOID

	$_CONTACTYAHOOID$

	ALIGNAK__CONTACTYAHOOID

Note

Alignak is still using an ALIGNAK_ prefix for the environment variables. You can set another prefix (eg. NAGIOS_) to maintain compatibility with former existing plugin or notification scripts. To change the default Alignak prefix, use the environment variables prefix configuration variable.

Custom Variables And Inheritance

Custom object variables are inherited just like standard host, service, or contact variables.

Extending Alignak

Alignak is a monitoring framework able to schedule hosts and services checks, but what is it:

	without the checks? No real information about my system…

	without the live state retention? Need to always restart from scratch…

	without a User Interface to see what happened? Parsing logs is not that easy for me…

The next chapters explain what may be done to update the default installed configuration and to
extend Alignak for making it suit your monitoring needs

	Updating default configuration
	What does it include ?

	Declaring new objects

	Installing checks
	Alignak packs

	Alignak notifications pack

	Alignak checks packs

	Alignak backend
	REST API

	Using the backend with Alignak

	Feeding the backend

	Alignak modules
	Configuring daemons with modules

	NSCA collector

	External commands

	Web services

	Alignak backend

	Alignak WebUI
	Installing the WebUI

	Using the WebUI

Updating default configuration

What does it include ?

The default configuration installed with Alignak contains:

	the Alignak and daemons configuration for: one arbiter, one scheduler, one broker, one reactionner, one poller and one receiver

	some plain-old Nagios-like configuration files, including:
* templates:

	a generic-contact template that contains the main common contact parameters

	a generic-host template that contains the main common host parameters

	a generic-service template that contains the main common service parameters for hosts, services and contacts

	one host (localhost) which will always be UP

	no services

	two contacts: guest and admin

This configuration is fully functionnal but it almost does nothing … except saying that localhost is UP without even checking if it is true :)

What is important at the moment is to check that the existing configuration is valid and that Alignak is able to use it. To check this configuration, run:

alignak-arbiter -V -e /usr/local/etc/alignak/alignak.ini

where alignak.ini is the configuration entry point.

The Alignak Arbiter will parse the configuration and will inform about its validity:

[1474542500] INFO: [Alignak] Alignak 0.2
[1474542500] INFO: [Alignak] Copyright (c) 2015-2015:
[1474542500] INFO: [Alignak] Alignak Team
[1474542500] INFO: [Alignak] License: AGPL
[1474542500] INFO: [Alignak] Loading configuration
[1474542500] INFO: [Alignak] [config] opening '/usr/local/etc/alignak/alignak.cfg' configuration file
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/realms/all.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/commands/check_host_alive.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/commands/detailled-service-by-email.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/commands/notify-service-by-email.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/commands/detailled-host-by-email.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/commands/notify-host-by-email.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/commands/check_ping.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/timeperiods/none.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/timeperiods/workhours.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/timeperiods/us-holidays.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/timeperiods/24x7.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/escalations/sample.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/dependencies/sample.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/templates/business-impacts.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/templates/time_templates.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/templates/generic-contact.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/templates/generic-host.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/templates/generic-service.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/packs/readme.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/packs/resource.d/readme.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/notificationways/email.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/notificationways/detailled-email.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/servicegroups/sample.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/hostgroups/linux.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/contactgroups/admins.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/contactgroups/users.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/hosts/localhost.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/services/services.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/contacts/guest.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/objects/contacts/admin.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/daemons/scheduler-master.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/daemons/receiver-master.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/daemons/poller-master.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/daemons/broker-master.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/daemons/arbiter-master.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/daemons/reactionner-master.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/modules/sample.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/resource.d/paths.cfg'
[1474542500] INFO: [Alignak] Processing object config file '/usr/local/etc/alignak/arbiter/packs/resource.d/readme.cfg'
[1474542500] INFO: [Alignak] I am the master Arbiter: arbiter-master
[1474542500] INFO: [Alignak] My own modules:
[1474542500] INFO: [Alignak] I correctly loaded the modules: []
[1474542500] INFO: [Alignak] All: (in/potential) (schedulers:1) (pollers:1/1) (reactionners:1/1) (brokers:1/1) (receivers:1/1)
[1474542500] WARNING: [Alignak] The following parameter(s) are not currently managed.
[1474542500] INFO: [Alignak] enable_predictive_service_dependency_checks
[1474542500] INFO: [Alignak] host_perfdata_file_processing_interval
[1474542500] INFO: [Alignak] use_embedded_perl_implicitly
[1474542500] INFO: [Alignak] use_regexp_matching: If you go some host or service definition like prod*, it will surely failed from now, sorry.
[1474542500] INFO: [Alignak] service_perfdata_file_processing_command
[1474542500] INFO: [Alignak] use_true_regexp_matching
[1474542500] INFO: [Alignak] enable_embedded_perl: It will surely never be managed, but it should not be useful with poller performances.
[1474542500] INFO: [Alignak] enable_predictive_host_dependency_checks
[1474542500] INFO: [Alignak] service_perfdata_file_processing_interval
[1474542500] INFO: [Alignak] host_perfdata_file_processing_command
[1474542500] INFO: [Alignak] passive_host_checks_are_soft
[1474542500] INFO: [Alignak] date_format
[1474542500] INFO: [Alignak] translate_passive_host_checks
[1474542500] INFO: [Alignak] auto_rescheduling_interval
[1474542500] INFO: [Alignak] soft_state_dependencies
[1474542500] INFO: [Alignak] auto_reschedule_checks
[1474542500] INFO: [Alignak] auto_rescheduling_window
[1474542500] WARNING: [Alignak] Unmanaged configuration statement, do you really need it?Ask for it on the developer mailing list https://lists.sourceforge.net/lists/listinfo/alignak-devel or submit a pull request on the Alignak github
[1474542500] INFO: [Alignak] Running pre-flight check on configuration data...
[1474542500] INFO: [Alignak] Checking global parameters...
[1474542500] INFO: [Alignak] Checking hosts...
[1474542500] INFO: [Alignak] Checked 1 hosts
[1474542500] INFO: [Alignak] Checking hostgroups...
[1474542500] INFO: [Alignak] Checked 1 hostgroups
[1474542500] INFO: [Alignak] Checking contacts...
[1474542500] INFO: [Alignak] Checked 2 contacts
[1474542500] INFO: [Alignak] Checking contactgroups...
[1474542500] INFO: [Alignak] Checked 2 contactgroups
[1474542500] INFO: [Alignak] Checking notificationways...
[1474542500] INFO: [Alignak] Checked 2 notificationways
[1474542500] INFO: [Alignak] Checking escalations...
[1474542500] INFO: [Alignak] Checked 0 escalations
[1474542500] INFO: [Alignak] Checking services...
[1474542500] INFO: [Alignak] Checked 0 services
[1474542500] INFO: [Alignak] Checking servicegroups...
[1474542500] INFO: [Alignak] Checked 0 servicegroups
[1474542500] INFO: [Alignak] Checking timeperiods...
[1474542500] INFO: [Alignak] Checked 4 timeperiods
[1474542500] INFO: [Alignak] Checking commands...
[1474542500] INFO: [Alignak] Checked 9 commands
[1474542500] INFO: [Alignak] Checking hostsextinfo...
[1474542500] INFO: [Alignak] Checked 0 hostsextinfo
[1474542500] INFO: [Alignak] Checking servicesextinfo...
[1474542500] INFO: [Alignak] Checked 0 servicesextinfo
[1474542500] INFO: [Alignak] Checking checkmodulations...
[1474542500] INFO: [Alignak] Checked 0 checkmodulations
[1474542500] INFO: [Alignak] Checking macromodulations...
[1474542500] INFO: [Alignak] Checked 0 macromodulations
[1474542500] INFO: [Alignak] Checking realms...
[1474542500] INFO: [Alignak] Checked 1 realms
[1474542500] INFO: [Alignak] Checking servicedependencies...
[1474542500] INFO: [Alignak] Checked 0 servicedependencies
[1474542500] INFO: [Alignak] Checking hostdependencies...
[1474542500] INFO: [Alignak] Checked 0 hostdependencies
[1474542500] INFO: [Alignak] Checking arbiters...
[1474542500] INFO: [Alignak] Checked 1 arbiters
[1474542500] INFO: [Alignak] Checking schedulers...
[1474542500] INFO: [Alignak] Checked 1 schedulers
[1474542500] INFO: [Alignak] Checking reactionners...
[1474542500] INFO: [Alignak] Checked 1 reactionners
[1474542500] INFO: [Alignak] Checking pollers...
[1474542500] INFO: [Alignak] Checked 1 pollers
[1474542500] INFO: [Alignak] Checking brokers...
[1474542500] INFO: [Alignak] Checked 1 brokers
[1474542500] INFO: [Alignak] Checking receivers...
[1474542500] INFO: [Alignak] Checked 1 receivers
[1474542500] INFO: [Alignak] Checking resultmodulations...
[1474542500] INFO: [Alignak] Checked 0 resultmodulations
[1474542500] INFO: [Alignak] Checking businessimpactmodulations...
[1474542500] INFO: [Alignak] Checked 0 businessimpactmodulations
[1474542500] INFO: [Alignak] Cutting the hosts and services into parts
[1474542500] INFO: [Alignak] Creating packs for realms
[1474542500] INFO: [Alignak] Number of hosts in the realm All: 1 (distributed in 1 linked packs)
[1474542500] INFO: [Alignak] Number of Contacts : 2
[1474542500] INFO: [Alignak] Number of Hosts : 1
[1474542500] INFO: [Alignak] Number of Services : 0
[1474542500] INFO: [Alignak] Number of Commands : 9
[1474542500] INFO: [Alignak] Total number of hosts in all realms: 1
[1474542500] INFO: [Alignak] Things look okay - No serious problems were detected during the pre-flight check

Declaring new objects

Declaring new objects in the monitoring configuration follow the rules as they are defined for a Nagios flat-files configuration as they are defined on the Nagios objects Definition [https://assets.nagios.com/downloads/nagioscore/docs/nagioscore/3/en/objectdefinitions.html]

The objects defined use the same properties as the one defined in Shinken and are documented here [http://shinken.readthedocs.io/en/latest/03_configuration/configobject.html].

Warning

* TO BE COMPLETED/IMPROVED *

A new contact

To declare a new contact, you can create a new file in the alignak/arbiter/objects/contacts directory:

define contact{
 use generic-contact
 contact_name new_contact
 email guest@localhost
 password password
 can_submit_commands 0
}

A new host

To declare a new host, you can create a new file in the alignak/arbiter/objects/hosts directory:

define host{
 use generic-host
 host_name new_host
 address 127.0.0.1
}

Installing checks

The default configuration does not include any plugins to check the monitored hosts and services. If we leave it in this state, our system will be really unuseful!

The plugins used to check an host or service state are not part of Alignak. There are literally thousands of plugins available to check various systems. To make Alignak use a new plugin to check, you must:

	install the plugin

	declare a new command that specifies how the plugin must be used

	declare a new service on the monitored host

Alignak proposes an easy way to deal with these operations by providing the most common checks plugins already packaged in an easy installable package called an Alignak checks package.

Alignak packs

Alignak contributions propose some prepared checks packs that make it easy to configure new hosts to be monitored with the most current plugins.

All the currently available checks packs:

	can be listed from the alignak contributions organization on github [https://github.com/Alignak-monitoring-contrib].

	each pack has its own repository named as alignak-checks-mypack (search on GitHub with the keyword checks to get the full list)

	each pack is easily installable thanks to the Python pip (eg. sudo pip install alignak_checks_mypack).

Note: all the currently available packs are not introduced in the current document. To get the updated most recent list, browse the Alignak contribution organization as explained previously ;)

Old school configuration files

All the packs include old school legacy configuration files which declare some templates, groups, … to use the checks in an existing configuration.

The configuration files are copied, when installing, in the /usr/local/etc/alignak/arbiter/packs directory and they will be de facto include in the default configuration shipped with alignak

Alignak backend feeding files

All the packs include backend feeding configuration files which declare some templates, groups, … that will be made available in the Alignak backend to use the checks in an existing configuration.

The configuration files are copied, when installing, in the /usr/local/etc/alignak/backend-json/ directory. A setup.sh script is shipped aicht each checks package to import the date into an Alginak backend. when installing this script is run and, if your backend is available on http://127.0.0.1:5000 with the default credentials, the data are imported.

Anyway, you can run the setup.sh script individually with parameters according to your backend configuration to import the data::

$ /usr/local/etc/alignak/backend-json/notifications/setup.sh -h

The script you are running has basename setup.sh, dirname /usr/local/etc/alignak/backend-json/notifications
The present working directory is /home/alignak/alignak-doc

Usage: /usr/local/etc/alignak/backend-json/notifications/setup.sh [-h|--help] [-b|--backend] [-u|--username] [-p|--password]

-h (--help) display this message
-v (--verbose) verbose mode
-b (--backend) Alignak backend URI (default is http://127.0.0.1:5000)
-u (--username) Alignak backend username (default is admin)
-p (--password) Alignak backend password (default is admin)
-f (--files) Directory where the Json files are located

Alignak notifications pack

All the Alignak notifications packs have their own repository and are easily installable thanks to the Python pip.

Using each pack is documented in the pack repository README file.

HTML mail notifications

For sending notifications as HTML formatted mails, install the notifications package [https://github.com/Alignak-monitoring-contrib/alignak-notifications].

This pack include several scripts that can be used to send notifications from Alignak:

	simple printf sent to sendmail

	python script to send HTML mail

	python script to send Slack notifications

Short story:

pip install alignak-notifications

Old configuration file format
define contact{
 contact_name hotline
 use generic-contact
 email hotline@corporation.com
 can_submit_commands 1
 notificationways detailed-email

 ; HTML mail commands ...
 service_notification_commands notify-service-by-email-html
 host_notification_commands notify-host-by-email-html
}

Alignak backend feeding
/usr/local/etc/alignak/backend-json/notifications/setup.sh

Alignak checks packs

All the Alignak checks packs have their own repository and are easily installable thanks to the Python pip.

Using each pack is documented in the pack repository README file.

Checking with the Monitoring plugins

For checking an host and its most common services with the “most common” plugins, install monitoring package [https://github.com/Alignak-monitoring-contrib/alignak-checks-monitoring].

The monitoring plugins are most often known as Nagios plugins… they provide many checks for network services.

Short story:

pip install alignak-checks-monitoring

define host{
 use dns, ftp, http
 host_name snmp_host
 address 127.0.0.1
}

Checking Unix/Linux hosts/services with SNMP

For checking an host and its most common services through SNMP, install SNMP package [https://github.com/Alignak-monitoring-contrib/alignak-checks-snmp].

Hosts inherit from a check command that gets the host uptime with an SNMP get, this to confirm that the host is alive and that SNMP connection is ok.

Short story:

pip install alignak-checks-snmp

define host{
 use linux-snmp
 host_name snmp_host
 address 127.0.0.1
}

Checking Unix/Linux hosts/services with NRPE

For checking an host and its most common services through NRPE, install NRPE package [https://github.com/Alignak-monitoring-contrib/alignak-checks-nrpe].

Hosts inherit from a check command that gets the host NRPE daemon version, this to confirm that the host is alive and that NRPE connection is ok.

Short story:

pip install alignak-checks-nrpe

define host{
 use linux-nrpe
 host_name nrpe_host
 address 127.0.0.1
}

Checking with WMI

For checking an host and its most common services through WMI, install WMI package [https://github.com/Alignak-monitoring-contrib/alignak-checks-wmi].

Hosts inherit from a check command that gets the host uptime with a WMI request, this to confirm that the host is alive and that WMI connection is ok.

Short story:

pip install alignak-checks-wmi

define host{
 use windows-wmi
 host_name wmi_host
 address 127.0.0.1
}

Passive checking Windows with NSCA

For checking a Windows host and its most common services through NSCA, install Windows NSCA package [https://github.com/Alignak-monitoring-contrib/alignak-checks-windows-nsca].

With this type of checking, hosts do not have any check_command (indeed they have a fake one …) because Alignak is waiting for the hosts and services to send their own check information.

Note: this checks pack assumes that your Windows host is using the NSClient agent [https://www.nsclient.org].

Short story:

pip install alignak-checks-windows-nsca

define host{
 use windows-nsca
 host_name nsca_windows_host
 address 0.0.0.0
}

Active checking Windows with NRPE

For checking a Windows host and its most common services through NRPE, install Windows NRPE package [https://github.com/Alignak-monitoring-contrib/alignak-checks-nrpe].

Note: this checks pack assumes that your Windows host is using the NSClient agent [https://www.nsclient.org].

Short story:

pip install alignak-checks-windows-nrpe

define host{
 use windows-nrpe
 host_name nrpe_windows_host
 address 0.0.0.0
}

Alignak backend

The Alignak backend is a REST backend dedicated to the Alignak framework. It is used to:

	manage monitoring configuration (hosts, services, contacts, timeperiods…)

	creates and updates monitoring objects configuration

	user rights management

	template management for hosts and services

	manage retention

	loads and saves retention information for checks/hosts/services

	manage live states

	creates and updates states for hosts and services

	manages acknowledges, downtimes, re-checks

	feed time series databases with performance data

	get performance data from the elements check to feed Graphite and/or Influx

	system activity log

	store all the system activity in a timestamped log

More information is available in the project repository [https://github.com/Alignak-monitoring-contrib/alignak-backend].

The backend full documentation is available on https://alignak-backend.readthedocs.io/en/latest/index.html

REST API

The Alignak backend, based on the Python Eve framework, implements a complete REST API to manage the monitored objects data model.

The detailed API is available in the backend documentation.

Using the backend with Alignak

Installing the Alignak backend is an easy operation.
The different installation methods are detailed in the documentation but the most easy way is to:

On Debian base distro
Assuming that you already have a running MongoDB instance
sudo apt install uwsgi uwsgi-plugin-python alignak-backend

Once installed, the backend is ready to run and you can start with:

sudo systemctl enable alignak-backend
sudo systemctl start alignak-backend

Configuring the Alignak backend is made easy thanks to a settings.json file.
The default configuration makes the backend run on the local interface, on port 5000, and it creates an admin user that can be used to log-in.

Once installed, the backend needs to be related to Alignak daemons. This is achieved thanks to the Alignak backend modules.

A backend installation tutorial exists on the SysAdmin.cool web site [http://sysadmin.cool/].

Feeding the backend

On start, the backend creates some elements if they do not yet exist:

	a default super administrator user named admin with an admin password

	a default Realm (All)

	default groups (users groups, hosts groups and services groups) named All

	default time periods: 24x7 and None

Those default elements are used as default values for the newly created elements to insure data model integrity.

Creating or updating data in the backend is made simple thanks to:

	direct curl commands

	using a REST client like PostMan

	using the Alignak backend client Python library

	using the Alignak backend client PHP library

	a flat-files Nagios configuration importation script

Backend clients

Several backend client or libraries exist to use the REST API. They will not be described in this document.

For more information, see:

	http://alignak-backend-client.readthedocs.io/en/latest/, for the Python library

To be completed…

Backend importation script

The easiest and fastest way to populate data in the Alignak backend is to import your existing configuration into the backend.

The alignak-backend-import makes it as easy as:

alignak-backend-import /etc/my_config/config.cfg

Once this script has finished its execution, you will be able to browse your contacts, hosts, services, … in the Alignak backend.

The most often alignak-backend-import command is:

alignak-backend-import -d -b http://backend:5000 -u username -p password /etc/my_config/config.cfg

where you specify that you want to delete existing data (-d), indicate where is located you backend (-b) and how to log-in (-u, -p).

More information is available in this documentation [http://alignak-backend-import.readthedocs.io/en/latest/].

Alignak modules

Extending Alignak features is made thanks to daemons modules. Some modules are already packaged in an easy installable package called an Alignak module package.

Configuring daemons with modules

Each Alignak daemon can be configured to load and use modules. In the daemon configuration file, the attribute modules may contain a list of the daemon modules.

As a default, no module is installed nor configured but one can edit the daemon configuration file to declare which module is to be used. The modules property is a comma separated list of the declared modules alias.

As an example, the receiver can have several attached modules.:

Receiver daemon configuration
define receiver{
 receiver_name receiver-master

 modules nsca, external-commands, web-services
}

Note that the module alias is case sensitive.

For more information about modules, see the example module repository [https://github.com/Alignak-monitoring/alignak-module-example].

Alignak modules are available on PyPI [https://pypi.python.org/pypi]. Their name starts with “alignak_module”.
To install them, install with pip command:

pip install alignak_module_nameofmodule

The configuration file of the installed module will be installed in the folder:

etc/alignak/arbiter/modules

Each module installed on Alignak stores its configuration file in this part of the configuration.

NSCA collector

Managing passive hosts and services requires that Alignak listen to passive checks.

To achieve this, the Receiver daemon needs to be extended with an NSCA module. This module listens on a TCP port for NSCA packets, decode the packets and builds an external command corresponding to the received check: HOST_PASSIVE_CHECK or SERVICE_PASSIVE_CHECK.

Passive checks are managed by Alignak according to this behavior.

Short story:

pip install alignak-module-nsca

Update your receiver daemon configuration
define receiver{
 receiver_name receiver-master

 modules nsca
}

Edit the NSCA configuration (etc/alignak/arbiter/modules/mod-nsca.cfg)
define module {
 module_alias nsca
 python_name alignak_module_nsca
 ...
 ...

}

The module default configuration allows to collect non-encrypted NSCA checks for hosts and services.
The file is largely commented to help understand and configure this module.

More information is available in the NSCA module repository [https://github.com/Alignak-monitoring-contrib/alignak-module-nsca].

External commands

This module allows Alignak framework (like Nagios and al.) to reacts to external commands sent to a named pipe file.

Thanks to this module the receiver daemon periodically reads the content of a configured file and builds an external command with the information read from this file. This also allows Alignak to receive passive checks.

Note that the Arbiter is able to manage the external commands by itself and that it is not necessary to use an external module…

Short story:

pip install alignak-module-external-commands

Update your receiver daemon configuration
define receiver{
 receiver_name receiver-master

 modules external-commands
}

Edit the external commands module configuration (etc/alignak/arbiter/modules/mod-external-commands.cfg)
define module {
 module_alias external-commands
 module_types external-commands
 python_name alignak_module_external_commands

 # Default file path is /tmp/alignak.cmd
 file_path /tmp/alignak.cmd
}

The module default configuration gets commands from a /tmp/alignak.cmd file.

More information is available in the external commands module repository [https://github.com/Alignak-monitoring-contrib/alignak-module-external-commands].

Web services

This module exposes Web services to get information about the Alignak framework and to notify external commands from a third-party application.

Note that the Arbiter is able to manage the external commands by itself and that it is not necessary to use an external module…

This also allows Alignak to receive passive checks.

Short story:

pip install alignak-module-web-services

Update your receiver daemon configuration
define receiver{
 receiver_name receiver-master

 modules web-services
}

Edit the web services module configuration (etc/alignak/arbiter/modules/mod-web-services.cfg)
define module {
 module_alias web-services
 module_types web-services
 python_name alignak_module_ws

 #-- Alignak configuration
 # Alignak main arbiter interface
 #alignak_host 127.0.0.1
 #alignak_port 7770

 # Alignak polling period
 #alignak_polling_period 1

 # Alignak daemons status refresh period
 #alignak_daemons_polling_period 10

 #-- Network configuration
 # Interface the modules listens to
 host 0.0.0.0
 # Do not comment the port parameter (see Alignak #504)
 port 8888

 #-- SSL configuration --
 use_ssl 0
 #ca_cert /usr/local/etc/alignak/certs/ca.pem
 #server_cert /usr/local/etc/alignak/certs/server.cert
 #server_key /usr/local/etc/alignak/certs/server.key
 #server_dh /usr/local/etc/alignak/certs/server.pem
 #hard_ssl_name_check 0
}

The module default configuration tries to get information from a local Alignak arbiter and listens
to all network interfaces on port 8888.

More information is available in the web services module repository [https://github.com/Alignak-monitoring-contrib/alignak-module-web-services].

Alignak backend

The Alignak backend module(s) implements several features for several Alignak daemons:

	loads the configuration for the Arbiter

	updates the monitored objects live state for the Broker

	state retention of the live state for the Scheduler

Installing this module will, in fact, install the three modules.

Note: this module implies that you already installed the Alignak backend.

Short story:

pip install alignak-module-backend

Update your arbiter daemon configuration
define arbiter{
 arbiter_name arbiter-master

 modules backend_arbiter
}

Edit the backend arbiter module configuration (etc/alignak/arbiter/modules/mod-alignak_backend_arbiter.cfg)
define module {
 module_alias backend_arbiter
 python_name alignak_module_backend.arbiter
 ...
 ...

}

Update your broker daemon configuration
define broker{
 broker_name broker-master

 modules backend_broker
}

Edit the backend broker module configuration (etc/alignak/arbiter/modules/mod-alignak_backend_broker.cfg)
define module {
 module_alias backend_broker
 python_name alignak_module_backend.broker
 ...
 ...

}

Update your arbiter scheduler configuration
define arbiter{
 scheduler_name scheduler-master

 modules backend_scheduler
}

Edit the backend scheduler module configuration (etc/alignak/arbiter/modules/mod-alignak_backend_scheduler.cfg)
define module {
 module_alias backend_scheduler
 python_name alignak_module_backend.scheduler
 ...
 ...

}

The modules default configuration needs to be updated with your backend connection and login information.
The files are largely commented to help understand and configure this module.

More information is available in the backend modules repository [https://github.com/Alignak-monitoring-contrib/alignak-module-backend].

Alignak WebUI

The Alignak Web User Interface is an independent Web application using the Alignak REST backend and
dedicated to the Alignak framework. It is used to display and edit the monitoring configuration.

More information is available in the project repository [https://github.com/Alignak-monitoring-contrib/alignak-webui].

The WebUI documentation is available on http://alignak-web-ui.readthedocs.io/

Installing the WebUI

Installing the Alignak WebUI is an easy operation.
The different installation methods are detailed in the documentation but the most easy way is to:

pip install alignak-webui

Once installed, the WebUI is ready to run and you can start with:

./bin/run.sh

Configuring the Alignak WebUI is made easy thanks to a settings.cfg file.
The default configuration makes the WebUI run on the local interface, on port 5001, and use a local Alignak backend running on port 5000.

Note: to be updated after the WebUI packaging …

A WebUI installation tutorial exists on the SysAdmin.cool web site [http://sysadmin.cool/].

Using the WebUI

As soon as the WebUI is running, you can open your Web browser and make it point to http://localhost:5001.

For more information about the WebUI configuration and features, have a look in the documentation on http://alignak-webui.readthedocs.io/en/latest/intro.html

Monitoring features

Alignak implements the Nagios / Shinken legacy features. These chapters explain these features. But Alignak also has some notable interesting features that are documented in the following chapter.

	Monitoring basics

	Services checks

	Hosts checks

	Alignak checks logic

	State Types

	Determining state and reachability of network hosts

	Notifications

	Time Periods

	Problems, acknowledgements and downtimes

	Host / service state Flapping detection

	State stalking

	Defining advanced service dependencies

	Volatile services

	Event Handlers

	Snapshots

	Macros

	External Commands

Monitoring basics

Introduction

Alignak includes a set of scalable internal mechanisms for checking the status of hosts and services on your network. Alignak also relies on external programs (called check plugins) to monitor a very wide variety of devices, applications and networked services.

What Are Plugins?

Plugins are compiled executables or scripts (Perl scripts, shell scripts, etc.) that can be run from a command line to check the status of an host or service. Alignak uses some check plugins as test probes to know about the monitored system health. Indeed, the results of the check plugins execution is used to set the current status of the monitored hosts and services and get some performance data about the monitored services.

Alignak will execute a plugin whenever it needs to check the status of a service or host. The plugin does something (notice the very general term) to perform the check and then simply returns the results to Alignak. Alignak will then process the results received from the plugin and take any necessary actions (set host/service status, run an event handler, raise an alert, send out some notifications, etc).

Alignak integrated data acquisition modules

To be improved

Alignak integrates some data acquisition modules. These modules replace the traditional unscalable plugins with high performance variants that are more tightly coupled with Alignak.

	Integrated Alignak data acquisition modules support the following protocols:

	
	NRPE

	SNMP

Plugins as an abstraction layer

Plugins act as an abstraction layer between the monitoring logic implemented in the Alignak daemon and the actual services and hosts that are being monitored.

The upside of this type of plugin architecture is that you can monitor just about anything you can think of. If you can automate the process of checking something, you can monitor it with Alignak.

There are already thousands of plugins that have been created to monitor basic resources such as processor load, disk usage, ping rates, etc. If you want to monitor something else, take a look at the documentation on writing plugins and roll your own. It’s simple!

The downside to this type of plugin architecture is the fact that Alignak has absolutely no idea about what is monitored. You could be monitoring network traffic statistics, data error rates, room temperate, CPU voltage, fan speed, processor load, disk space, or the ability of your super-fantastic toaster to properly brown your bread in the morning…

Alignak doesn’t understand the specifics of what’s being monitored - it just tracks changes in the state of those resources. Only the plugins know exactly what they’re monitoring and how to perform the actual checks.

Which plugins are available?

There are plugins to monitor many different kinds of devices and services.

They use basic monitoring protocols including:

	WMI, SNMP, SSH, NRPE, TCP, UDP, ICMP, OPC, LDAP and more

They can monitor pretty much anything:

	Unix/Linux, Windows, and Netware Servers

	Routers, Switches, VPNs

	Networked services: “HTTP”, “POP3”, “IMAP”, “FTP”, “SSH”, “DHCP”

	CPU Load, Disk Usage, Memory Usage, Current Users

	Applications, databases, logs and more.

Obtaining Plugins

Alignak plugin API is fully compatible with the Nagios one. Thaks to this compatibility, you can download and use the official Monitoring-plugins and many additional plugins created and maintained by Nagios users from the following locations:

	Monitoring Plugins Project: https://www.monitoring-plugins.org/

	Nagios Downloads Page: http://www.nagios.org/download/

	NagiosExchange.org: http://www.nagiosexchange.org/

Alignak also provides some checks packages. See this page for more information.

How do I use plugin X?

Most plugins will display basic usage information when you execute them using “-h” or “–help” on the command line.
For example, if you want to know how the check_http plugin works or what options it accepts, you should try executing the following command:

./check_http --help

Plugin API

You can find information on the technical aspects of plugins, as well as how to go about creating your own custom plugins here.

Services checks

Introduction

The basic workings of services checks are described here…

When are service checks performed?

Services are checked by the Alignak scheduler daemon at regular intervals, as defined by the check_interval and retry_interval options in your service definitions.

Cached service checks

Not available (see #1026)!

The performance of on-demand service checks can be significantly improved by implementing the use of cached checks, which allow Alignak to omit executing a service check if it determines that a relatively recent check result still exists. Cached checks will only provide a performance increase if you are making use of service dependencies. More information on cached checks can be found here.

Dependencies and checks

You can define service execution dependencies that prevent Alignak from checking the status of a service depending on the state of one or more other services. More information on dependencies can be found here.

Parallelization of service checks

Scheduled service checks are run in parallel.

Service states

Services that are checked can be in one of four different states:

	OK

	WARNING

	UNKNOWN

	CRITICAL

	UNREACHABLE

Note

the UNREACHABLE state is an Alignak specific feature that does not exist in Nagios. A service is UNREACHABLE when its attached host is DOWN or UNREACHABLE

Service state determination

Service checks are performed by plugins which can return a status code of OK, WARNING, UNKNOWN, or CRITICAL. These plugins exit codes directly translate to service states. For example, a plugin which returns a WARNING state will cause a service to have a WARNING state.

Internal services check command

Alignak allows to define a check_command that do not require executing a plugin to make the service state change. For more information see the internal checks documentation.

Services state changes

When Alignak checks the status of services, it will be able to detect when a service changes between OK, WARNING, UNKNOWN, and CRITICAL states and take appropriate action. These state changes result in different state types (HARD or SOFT), which can trigger event handlers to be run and notifications to be sent out. Service state changes can also trigger on-demand host checks. Detecting and dealing with state changes is what Alignak is all about.

Soft (state type is SOFT) states occur when the service checks return a non-OK state and are in the process of being retried. Hard states (state type is HARD) result when the service checks have been checked a specified maximum number of times and the current state is confirmed.

When services change state too frequently they are considered to be “flapping”. Alignak can detect when services start flapping, and can suppress notifications until flapping stops and the service’s state stabilizes. More information on the flap detection logic can be found here.

Hosts checks

Introduction

The basic workings of host checks are described here…

When are host checks performed?

Hosts are checked by the Alignak daemon:

	At regular intervals, as defined by the check_interval and retry_interval options in your host definitions.

	On-demand when the state of a service associated with the host changes.

	On-demand as needed as part of the host reachability logic.

Regularly scheduled host checks are optional. If you set the check_interval option in your host definition to zero (0), Alignak will not perform any periodical check of the host. It will, however, still perform on-demand checks of the host as needed for other parts of the monitoring logic.

On-demand checks are made when a service associated with the host changes state because Alignak needs to know whether the host has also changed state. Services that change state are often an indicator that the host may have also changed state. As an example, if Alignak detects that the “HTTP” service associated with a host just changed from a CRITICAL to an OK state, it may indicate that the host just recovered from a reboot and is now back up and running.

On-demand checks of hosts are also made as part of the host reachability logic. Alignak is designed to detect network outages as quickly as possible, and distinguish between DOWN and UNREACHABLE host states. These are very different states and can help an admin to quickly locate the cause of a network outage.

Cached host checks

Not available (see #1026)!

The performance of on-demand host checks can be significantly improved by implementing cached checks, which allow Alignak to omit executing an host check if it determines that a relatively recent check result still exists.
More information on cached checks can be found here.

Dependencies and checks

You can define host execution dependencies that prevent Alignak from checking the status of a host depending
on the state of one or more other hosts.
More information on dependencies can be found here.

Parallelization of host checks

All checks are run in parallel.

Host states

Hosts that are checked can be in one of three different states:

	UP

	DOWN

	UNREACHABLE

Host State Determination

Host checks are performed by plugins. The check_command parameter of an host defines the plugin that will be used to check the host state. The plugin can have an exit code of OK (0), WARNING (1), CRITICAL (2) or UNKNOWN (3).

The table below shows how plugin return codes correspond with preliminary host states. Some post-processing (described later) is done which may then alter the final host state.

	Plugin result

	Preliminary host state

	OK

	UP

	WARNING

	DOWN*

	CRITICAL

	DOWN

	UNKNOWN

	DOWN

If the preliminary host state is DOWN, Alignak will attempt to see if the host is really DOWN or if it is UNREACHABLE. The distinction between DOWN and UNREACHABLE host states is important, as it allows admins to determine root cause of network outages faster. The host reachability logic describe this distinction.

The following table shows how Alignak makes a final state determination based on the state of the hosts parent(s). A host’s parents are defined in the parents directive in host definition.

	Preliminary host state

	Parent host state

	Final host state

	DOWN

	At least one parent is UP

	DOWN

	DOWN

	All parents are either DOWN or UNREACHABLE

	UNREACHABLE

More information on how Alignak distinguishes between DOWN and UNREACHABLE states can be found here.

Host with no check command

If no check_command is defined for an host it means that no host check will be performed by Alignak. The host will always keep its initial_state as defined in its configuration. If none is defined in the configuration then the host will always be considered as UP by Alignak.

Note

that even a passive check received for such an host will not change its state. If you want to have an host that is never checked and always UP you must defined a check_command with one of the Alignak internal check commands.

Internal hosts check command

Alignak allows to define a check_command that do not require executing a plugin to make the host state change. For more information see the internal checks documentation.

Host state changes

As you are probably well aware, hosts don’t always stay in one state. Things break, patches get applied, and servers need to be rebooted. When Alignak checks the status of hosts, it will be able to detect when a host changes between UP, DOWN, and UNREACHABLE states and take appropriate action.

These state changes result in different state types (HARD or SOFT), which can trigger event handlers to be run, alerts to be raised and notifications to be sent out. Detecting and dealing with state changes is what Alignak is all about.

Soft (state type is SOFT) states occur when host checks return a non-OK (non-UP) state and are in the process of being retried. Hard states (state type is HARD) result when host checks have been checked a specified maximum number of times and the current state is confirmed.

When hosts change state too frequently they are considered to be “flapping”. A good example of a flapping host would be server that keeps spontaneously rebooting as soon as the operating system loads. That’s always a fun scenario to have to deal with. Alignak can detect when hosts start flapping, and can suppress notifications until flapping stops and the host’s state stabilizes. More information on the flap detection logic can be found here.

Alignak checks logic

Alignak is capable of monitoring hosts and services in two ways: actively and passively. Active checks are described in this chapter and passive checks are described in this chapter.

Active checks are the most common method for monitoring hosts and services. Active checks are initiated by the Alignak framework to “poll” a device on a regularly scheduled basis. In most cases you’ll use Alignak to monitor your hosts and services with this checking strategy.

Alignak also supports a way to monitor hosts and services passively instead of actively. Passive checks are initiated and performed by external applications/processes and then submitted to Alignak for its processing.

The major difference between active and passive checks is that active checks are initiated and performed by Alignak, while passive checks are performed by external applications.

Active Checks

How are active checks performed?

[image: ../_images/activechecks.png]
Active checks are initiated by the check logic in the Alignak daemon. When Alignak needs to check the status of a host or service it will execute a plugin and pass it information about what needs to be checked. The plugin will then check the operational state of the host or service and report the results back to the Alignak daemon. Alignak will process the results of the host or service check and take appropriate action as necessary (eg. send notifications, run event handlers, etc).

When are active checks executed?

Active check are executed:

	At regular intervals, as defined by the check_interval and retry_interval options in your host and service definitions

	On-demand as needed

Regularly scheduled checks occur at intervals equaling either the check_interval or the retry_interval in your host or service definitions, depending on which type of state the host or service is in. If a host or service is in a HARD state, it will be actively checked at intervals equal to the check_interval option. If it is in a SOFT state, it will be checked at intervals equal to the retry_interval option.

On-demand checks are performed whenever Alignak needs to obtain the latest status information about a particular host or service. For example, when Alignak is determining the reachability of an host, it will often perform on-demand checks for parent and child hosts to accurately determine the status of a particular network segment.

Passive checks

Using passive checks?

Passive checks are useful for monitoring services that are:

	Asynchronous in essence, they cannot or would not be monitored effectively by polling their status on a regularly scheduled basis

	Located behind a firewall and cannot be checked actively from the monitoring framework

Some examples of asynchronous services that are commonly monitored passively:

	“SNMP” traps and security alerts. You never know how many (if any) traps or alerts you’ll receive in a given time frame, so it’s not possible to just monitor their status every few minutes.

	Aggregated checks from a host running an agent. Checks may be run at much lower intervals on hosts running an agent.

	Submitting check results that happen directly within an application without using an intermediate log file (syslog, event log, etc.).

	Hosts monitored from outside their own network. Passive checks do not need specific firewall rules for active monitoring protocols

How passive checks works?

[image: ../_images/passivechecks.png]
Here’s how passive checks work in more detail:

	An external application checks the status of an host or service.

	The external application notifies the result of the check to Alignak with an external command.

	Alignak gets the external command and places the result of all passive checks into a queue for processing by the Alignak framework.

	Alignak will execute a poll each second and scan the check result queue.

Each service check result is processed in the same manner - regardless of whether the check was active or passive. Alignak may send out notifications, log alerts, etc. depending on the check result information.

Passive checks are conditioned by another parameter: the freshness of the check. What if an external application does not raise any check since a long time? And what if a passively checked host does not give some news since several hours? Alignak allows to define a freshness threshold to make some decision about what is to be done in this situation.

When the freshness threshold is reached, Alignak sets the host or service in its defined freshness state and runs the appropriate actions according to this new state (eg. notifications, event handlers,…).

The processing of active and passive check results is essentially identical. This allows for seamless integration of status information from external applications with Alignak.

Note

When the freshness threshold is reached, Nagios will run the check_command. Alignak do not implement such a behavior!It simply makes the host/service go to its defined freshness_state and executes the according actions if any…

More about passive checks

Enabling passive checks and freshness threshold

In order to enable passive checks in Alignak, you’ll need to do the following:

	Set the global accept_passive_service_checks (default=1) directive in the monitoring configuration file.

	Set the passive_checks_enabled directive in your host and service definitions.

If you want to disable processing of passive checks on a global basis, set the accept_passive_service_checks directive to 0.

If you would like to disable passive checks for just a few hosts or services, set the passive_checks_enabled directive in the host and/or service definitions to 0.

The freshness threshold management is set with those parameters:

	Set the global check_host_freshness (default=1) directive in the monitoring configuration file.

	Set the global check_service_freshness (default=1) directive in the monitoring configuration file.

	Set the global host_freshness_check_interval (default=3600) directive in the monitoring configuration file.

	Set the global service_freshness_check_interval (default=3600) directive in the monitoring configuration file.

	Set the global additional_freshness_latency (default=15) directive in the monitoring configuration file.

Note

The additional freshness latency is an extra duration (in seconds) added to the freshness threshold.

	For each host/service, you can set the following parameters:

	
	Set the check_freshness (default=0) directive in your host and service definitions.

	Set the freshness_threshold (default=3600) directive in your host and service definitions.

Submitting passive check results to Alignak

[image: ../_images/nsca.png]
Submitting passive checks to Alignak implies to send an external command containing the passive check result. The most common solution to submit passive checks are:

	use a dedicated protocol such as NSCA

	use an external commands capable module

The NSCA collector module collects the passive checks sent by the send_nsca command or from an NSCA agent (eg. Windows NSClient ++).

The external commands capable modules are described in the following chapter.

External applications can submit passive service check results to Alignak by notifying a PROCESS_SERVICE_CHECK_RESULT external command.

The format of the command is as follows: [<timestamp>] PROCESS_SERVICE_CHECK_RESULT;<host_name>;<svc_description>;<return_code>;<plugin_output>
where:

	timestamp is the time in time_t format (seconds since the UNIX epoch) that the service check was performed (or submitted).

	host_name is the short name of the host associated with the service in the service definition

	svc_description is the description of the service as specified in the service definition

	return_code is the return code of the check (0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN)

	plugin_output is the text output of the service check (i.e. the plugin output)

Note

The plugin_output can also contain some performance data. To include performance data you simply
need to include a | and the perf_data string after the plugin_output.

A service must be defined in Alignak before Alignak will accept passive check results for it! Alignak will ignore all check results for undefined services unless you set the accept_passive_unknown_check_results option in the monitoring configuration file.

Once data has been received by Alignak, the check results will be forwarded to the appropriate Scheduler which will apply the check logic.

External applications can submit passive host check results to Alignak by notifying a PROCESS_HOST_CHECK_RESULT external command.

The format of the command is as follows: [<timestamp>]PROCESS_HOST_CHECK_RESULT;<host_name>;<monitoring_objects/host_status>;<plugin_output>
where:

	timestamp is the time in time_t format (seconds since the UNIX epoch) that the host check was performed (or submitted). Please note the single space after the right bracket.

	host_name is the short name of the host (as defined in the host definition)

	host_status is the status of the host (0=UP, 1=DOWN, 2=UNREACHABLE)

	plugin_output is the text output of the host check

Note

The plugin_output can also contain some performance data. To include performance data you simply
need to include a | and the perf_data string after the plugin_output.

A host must be defined in Alignak before you can submit passive check results for it! Alignak will ignore all passive check results for undefined hosts unless you set the accept_passive_unknown_check_results option in the monitoring configuration file.

Once data has been received by Alignak, the check results will be forwarded to the appropriate Scheduler which will apply the check logic.

Passive Checks and Host States

Unlike with active host checks, Alignak does not attempt to determine whether an host is DOWN or UNREACHABLE with passive checks. Rather, Alignak takes the passive check result to be the actual state the host is in and doesn’t try to determine the hosts’ actual state using the reachability logic.

You can tell Alignak to translate DOWN/UNREACHABLE passive check result states to their “proper” state by using the translate_passive_host_checks variable.

Passive host checks are normally treated as HARD states, unless the passive_host_checks_are_soft option is set.

Checks results

Note

This chapter may seem quite esoteric for some of the readers but it uses an algorithm-like style to describe what’s Alignak doing when it gets a check result. This may help understanding the framework behavior ;)

what does Alignak do when it gets a check result? Here are the steps of the check result processing:

	if check status is not 0 and some dependencies exist, wait the result of dependent checks

	get the check data: execution time, output, …

	modulate the check status if some check modulation is defined

	set real item state according to plugin check status and impacts management

	manage the check status, if all dependencies are down, set item as unreachable

	manage the new state:

	to UP/OK from UP/OK/PENDING:

unacknowledge former problem

	if state type SOFT and not last state PENDING

	
	if max attempts and SOFT state

	HARD state

	else

	SOFT state

	else

	state type HARD
attempt 1

	to UP/OK from WARNING/CRITICAL/UNKNOWN/UNREACHABLE/DOWN (other states)

unacknowledge former problem

	if state type SOFT

	
	if no dependents

	attempt++

raise alert
raise event handler

state type HARD ****
attempt 1

else if state type HARD

raise alert
remove in progress notifications
create RECOVERY notification
attempt 1
I am no more a problem

	to UP/OK for a volatile host/service

state type HARD
attempt 1
raise alert
check for flexible downtime
remove in progress notifications
create PROBLEM notification
raise event handler
set myself as a problem

	to not UP/OK from OK/UP

	if max attempts

	state type HARD
raise alert
check for flexible downtime
remove in progress notifications
create PROBLEM notification
raise event handler
set myself as a problem

	else

	state type SOFT
attempt 1
raise alert
raise event handler

	to not UP/OK from non OK/UP

	if state type SOFT

	
	if no dependents

	attempt++

	if last state not state

	unacknowledged if not sticky

	if max attempts

	state type HARD
raise alert
raise event handler
check for flexible downtime
remove in progress notifications
create PROBLEM notification
set myself as a problem

	else

	raise alert
raise event handler

attempt 1

	else

	
	if last state not state

	
	if not unreachable check

	unacknowledged if not sticky
raise alert
remove in progress notifications
create PROBLEM notification
raise event handler
NO **************: check for flexible downtime

	else if in scheduled downtime during last check

	remove in progress notifications
create PROBLEM notification

set myself as a problem
remove in progress notifications
create PROBLEM notification

	update last hard state change if hard state changed

	update event/problem counter

	execute triggers

	obsessive processor (?)

	performance data commands

	execute snapshots

State Types

Introduction

The current state of monitored services and hosts is determined by two components:

	The status of the service or host (i.e. OK, WARNING, UP, DOWN, etc.)

	The type of state the service or host is in.

It exists two state types: SOFT states and HARD states. These state types are a crucial part of the monitoring logic, as they are used to determine when event handlers are executed and when notifications are initially sent out.

This document describes the difference between SOFT and HARD states, how they occur, and what happens when they occur.

Service and Host Check Retries

In order to prevent false alarms from transient problems, Alignak allows you to define how many times a service or host should be (re)checked before it is considered to have a “real” problem. This is controlled by the max_check_attempts option in the host and service definitions. Understanding how hosts and services are (re)checked in order to determine if a real problem exists is important in understanding how state types work.

Soft States

Soft states occur in the following situations…

	When a service or host check results in a non-OK or non-UP state and the service check has not yet been (re)checked the number of times specified by the max_check_attempts directive in the service or host definition. This is called a soft error.

	When a service or host recovers from a soft error. This is considered a soft recovery.

The following things occur when hosts or services experience SOFT state changes:

	The SOFT state is logged.

	Event handlers are executed to handle the SOFT state.

SOFT states are only logged if you enabled the log_service_retries or log_host_retries options in your main configuration file.

The only important thing that really happens during a soft state is the execution of event handlers. Using event handlers can be particularly useful if you want to try and proactively fix a problem before it turns into a HARD state. The $HOSTSTATETYPE$ or $SERVICESTATETYPE$ macros will have a value of “SOFT” when event handlers are executed, which allows your event handler scripts to know when they should take corrective action. More information on event handlers can be found here.

Hard States

Hard states occur for hosts and services in the following situations:

	When a host or service check results in a non-UP or non-OK state and it has been (re)checked the number of times specified by the max_check_attempts option in the host or service definition. This is a hard error state.

	When a host or service transitions from one hard error state to another error state (e.g. WARNING to CRITICAL).

	When a service check results in a non-OK state and its corresponding host is either DOWN or UNREACHABLE.

	When a host or service recovers from a hard error state. This is considered to be a hard recovery.

	When a passive host check is received. Passive host checks are treated as HARD unless the passive_host_checks_are_soft option is enabled.

The following things occur when hosts or services experience HARD state changes:

	The HARD state is logged.

	Event handlers are executed to handle the HARD state.

	Contacts are notifified of the host or service problem or recovery.

The $HOSTSTATETYPE$ or $SERVICESTATETYPE$ macros will have a value of “HARD” when event handlers are executed, which allows your event handler scripts to know when they should take corrective action. More information on event handlers can be found here.

Example

Here’s an example of how state types are determined, when state changes occur, and when event handlers and notifications are sent out. The table below shows consecutive checks of a service over time. The service has a max_check_attempts value of 3.

	Time

	Check #

	State

	State Type

	State Change

	Notes

	0

	1

	OK

	HARD

	No

	Initial state of the service

	1

	1

	CRITICAL

	SOFT

	Yes

	First detection of a non-OK state. Event handlers execute.

	2

	2

	WARNING

	SOFT

	Yes

	Service continues to be in a non-OK state. Event handlers execute.

	3

	3

	CRITICAL

	HARD

	Yes

	Max check attempts has been reached, so service goes into a HARD state. Event handlers execute and a problem notification is sent out. Check # is reset to 1 immediately after this happens.

	4

	1

	WARNING

	HARD

	Yes

	Service changes to a HARD WARNING state. Event handlers execute and a problem notification is sent out.

	5

	1

	WARNING

	HARD

	No

	Service stabilizes in a HARD problem state. Depending on what the notification interval for the service is, another notification might be sent out.

	6

	1

	OK

	HARD

	Yes

	Service experiences a HARD recovery. Event handlers execute and a recovery notification is sent out.

	7

	1

	OK

	HARD

	No

	Service is still OK.

	8

	1

	UNKNOWN

	SOFT

	Yes

	Service is detected as changing to a SOFT non-OK state. Event handlers execute.

	9

	2

	OK

	SOFT

	Yes

	Service experiences a SOFT recovery. Event handlers execute, but notification are not sent, as this wasn’t a “real” problem. State type is set HARD and check # is reset to 1 immediately after this happens.

	10

	1

	OK

	HARD

	No

	Service stabilizes in an OK state.

Determining state and reachability of network hosts

Introduction

If you’ve ever work in tech support, you’ve undoubtedly had users tell you “the Internet is down”. As a techie, you’re pretty sure that no one pulled the power cord from the Internet. Something must be going wrong somewhere between the user’s chair and the Internet.

Assuming it is a technical problem, you begin to search for the problem. Perhaps the user’s computer is turned off, maybe their network cable is unplugged, or perhaps your organization’s core router just took a dive.

Whatever the problem might be, one thing is most certain - the Internet isn’t down. It just happens to be unreachable for that user.

Alignak is able to determine whether the hosts you’re monitoring are in a DOWN or UNREACHABLE state. These are very different (although related) states and can help you quickly determine the root cause of network problems. To achieve this goal you must first and foremost define a check_command for the host you are monitoring. From there, here’s how the reachability logic works to distinguish between these two states…

Example Network

Take a look at the simple network diagram below. For this example, let us assume you’re monitoring all the hosts (server, routers, switches, etc) that are pictured, meaning you have defined check_commands for each of the various hosts. Alignak is installed and running on the Alignak host.

Warning

If you have not defined a check_command for your host, Alignak will assume that the host is always UP.
Meaning that the logic described will NOT kick-in

[image: ../_images/reachability1.png]

Defining parent/child relationships

In order for Alignak to be able to distinguish between DOWN and UNREACHABLE states for the hosts that are being monitored, you’ll need to tell Alignak how those hosts are connected each others - from the standpoint of the Alignak daemon.

To do this, trace the path that a data packet would take from the Alignak daemon to each individual host. Each switch, router, and server the packet encounters or passes through is considered as a hop and will require that you define a parent/child host relationship in Alignak. Here’s what the host parent/child relationships looks like from the standpoint of Alignak:

[image: ../_images/reachability2.png]
Now that you know what the parent/child relationships look like for hosts that are being monitored, how do you configure Alignak to reflect them? The parents directive in your host definitions allows you to do this. Here’s what the (abbreviated) host definitions with parent/child relationships would look like for this example:

; This host has no parent - it is the topmost host
define host{
 host_name Alignak
}

define host{
 host_name Switch1
 parents Alignak
}

define host{
 host_name Web
 parents Switch1
}

define host{
 host_name FTP
 parents Switch1
}

define host{
 host_name Router1
 parents Switch1
}

define host{
 host_name Switch2
 parents Router1
}

define host{
 host_name Wkstn1
 parents Switch2
}

define host{
 host_name HPLJ2605
 parents Switch2
}

define host{
 host_name Router2
 parents Router1
}

define host{
 host_name somewebsite.com
 parents Router2
}

Reachability logic in action

Now that you have configured Alignak with the proper parent/child relationships for your hosts, let’s see what is happening when problems arise. Assume that two hosts - Web and Router1 - go offline…

[image: ../_images/reachability3.png]
When hosts change state (i.e. from UP to DOWN), the host reachability logic in Alignak kicks in. The reachability logic will initiate parallel checks of the parents and children of whatever hosts change state. This allows Alignak to quickly determine the current status of your network infrastructure when some changes happen.

[image: ../_images/reachability4.png]
In this example, Alignak will determine that Web and Router1 are both in DOWN states because the “path” to those hosts is not being blocked.

Alignak will determine that all the hosts beyond Router1 are all in an UNREACHABLE state because Alignak can’t reach them. Router1 is DOWN and is blocking the path to those hosts. They might be running fine, or they might be offline - Alignak doesn’t know because it can’t reach them. Hence, Alignak considers them to be UNREACHABLE instead of DOWN.

UNREACHABLE states and notifications

By default, Alignak will notify contacts about both DOWN and UNREACHABLE host states. As an admin/tech, you might not want to get notifications about hosts that are UNREACHABLE. You know your network structure, and if Alignak notifies you that your router/firewall is down, you know that everything behind it is unreachable.

If you want to spare yourself from a flood of UNREACHABLE notifications during network outages, you can exclude the unreachable (x) option from the notification_options directive in your host definitions and/or the host_notification_options directive in your contact definitions.

Notifications

Introduction

[image: ../_images/objects-contacts.png]
This chapter will attempt to explain exactly when and how host and service notifications are sent out, as well as who receives them.

Notification escalations are explained here.

When do notifications happen?

The decision to send out notifications is made in the service check and host check logic. Host and service notifications occur:

	When a HARD state change occurs.

	When a host or service remains in a HARD non-OK state and the time specified by the notification_interval option in the host or service definition has passed since the last notification was sent out (for that specified host or service).

Who gets notified?

Each host and service definition has a contact_groups option that specifies which contact groups receive notifications for that particular host or service. Contact groups can contain one or more individual contacts.

When Alignak sends out a host or service notification, it will notify each contact that is a member of any contact groups specified in the contact_groups option of the service definition. Alignak is aware that a contact may be a member of more than one contact group, so it removes duplicate contact notifications before it does anything.

What filters must be passed for notifications to be sent?

Just because there is a need to send out a host or service notification doesn’t mean that any contacts are
going to get notified. There are several filters that potential notifications must pass before they are
deemed worthy enough to be sent out.

Even then, specific contacts may not be notified if their notification filters do not allow for the notification
to be sent to them. Let’s go into the filters that have to be passed in more detail…

Program-Wide filter

The first filter that notifications must pass is a test of whether or not notifications are enabled on a program-wide basis. This is initially determined by the enable_notifications directive in the main configuration file, but may be changed at runtime through external commands. If notifications are disabled on a program-wide basis, no host or service notifications can be sent out.

If they are enabled on a program-wide basis, there are still other tests that must be passed…

Service and host filters

The first filter for host or service notifications is a check whether the host or service is in a period scheduled downtime. It it is in a scheduled downtime, no one gets notified. If it isn’t in a downtime period, it gets passed on to the next filter. As a side note, notifications for services are suppressed if the host they’re associated with is in a period of scheduled downtime.

The second filter for host or service notification is a check whether the host or service is flapping (if flapping detection is enabled). If the service or host is currently flapping, no one gets notified. Otherwise it gets passed to the next filter.

The third host or service filter that must be passed is the host or service specific notification options. Each service definition contains options that determine whether or not notifications can be sent out for warning states, critical states, and recoveries. Similarly, each host definition contains options that determine whether or not notifications can be sent out when the host goes down, becomes unreachable, or recovers. If the host or service notification does not pass these options, no one gets notified. If it does pass these options, the notification gets passed to the next filter…

Notifications about host or service recoveries are only sent out if a notification was sent out for the original problem. It doesn’t make sense to get a recovery notification for something you never knew was a problem.

The fourth host or service filter that must be passed is the time period. Each host and service definition has a notification_period option that specifies which time period contains valid notification times for the host or service. If the time that the notification is raised does not fall within a valid time range in the specified time period, no one gets contacted. If it falls within a valid time range, the notification gets passed to the next filter…

If the time period filter is not passed, Alignak will reschedule the next notification for the host or service (if its in a non-OK state) for the next valid time present in the time period. This helps ensure that contacts are notified of problems as soon as possible when the next valid time in time period arrives.

The last set of host or service filters is conditional upon two things:

	a notification was already sent out about a problem with the host or service at some point in the past and

	the host or service remained in the same non-OK state that it was when the last notification went out.

If these two criteria are met, then Alignak will check and make sure the time that has passed since the last notification went out either meets or exceeds the value specified by the notification_interval option in the host or service definition.

If not enough time elapsed since the last notification, no one gets contacted. If either enough time elapsed and the two criteria for this filter were not met, the notification will be sent out!

Whether or not it is sent to individual contacts is depending upon another set of filters…

Contact filters

At this point the notification has passed the program mode filter and all host or service filters and Alignak starts to notify all the people it should. Does this mean that each contact is going to receive the notification? No! Each contact has his own set of filters that the notification must pass before they receive it.

Contact filters are specific to each contact and do not affect whether or not other contacts receive notifications.

The first filter that must be passed for each contact is the notification options. Each contact definition has options that determine whether or not service notifications can be sent out for WARNING, CRITICAL, or UNKNOWN states, recoveries and flapping. Each contact definition also contains options that determine whether or not host notifications can be sent out when the host goes DOWN, UNREACHABLE, or recovers. If the host or service notification does not pass this options filter, the contact will not be notified. If it does pass this options filter, the notification gets passed to the next filter…

Notifications about host or service recoveries are only sent out to a contact if a notification was sent out for the original problem. It doesn’t make sense that someone get a recovery notification for a problem he never was notified…

The last filter that must be passed for each contact is the time period test. Each contact definition has a notification_period option that specifies which time period contains valid notification times for the contact. If the time that the notification is being made does not fall within a valid time range in the specified time period, the contact will not be notified. If it falls within a valid time range, the contact gets notified!

Notification methods

You can have Alignak notify you of problems and recoveries pretty much anyway you want: pager, cellphone, email, instant message, audio alert, electric shocker, etc.

How notifications are sent depends on the notification commands that are defined in your objects definition files.

Notification methods (mail, paging, etc.) are not directly included into the Alignak code as it just doesn’t make much sense. The Alignak framework is not designed to be an all-in-one application.

There are a thousand different ways to do notifications and there are already a lot of packages out there that handle the dirty work, so why re-invent the wheel and limit yourself to a bike tire? Its much easier to let an external entity (i.e. a simple script or a full-blown messaging system) do the messy stuff. Some messaging packages that can handle notifications for pagers and cellphones are listed below in the resource section.

An Alignak extension package proposes several notification commands, amongst which an HTML formatted notifications script.

Notification type macro

When crafting your notification commands, you need to take into account what type of notification is occurring. The $NOTIFICATIONTYPE$ macro contains a string that identifies exactly that.

The table below lists the possible values for the macro and their respective descriptions:

	Value

	Description

	PROBLEM

	A service or host has just entered (or is still in) a problem state. If this is a service notification, it means the service is either in a WARNING, UNKNOWN or CRITICAL state. If this is a host notification, it means the host is in a DOWN or UNREACHABLE state.

	RECOVERY

	A service or host recovery has occurred. If this is a service notification, it means the service has just returned to an OK state. If it is a host notification, it means the host has just returned to an UP state.

	ACKNOWLEDGEMENT

	This notification is an acknowledgement notification for a host or service problem. Acknowledgement notifications are initiated via the web interface by contacts for the particular host or service.

	FLAPPINGSTART

	The host or service has just started flapping.

	FLAPPINGSTOP

	The host or service has just stopped flapping.

	FLAPPINGDISABLED

	The host or service has just stopped flapping because flap detection was disabled..

	DOWNTIMESTART

	The host or service has just entered a period of scheduled downtime. Future notifications will be suppressed.

	DOWNTIMESTOP

	The host or service has just exited from a period of scheduled downtime. Notifications about problems can now resume.

	DOWNTIMECANCELLED

	The period of scheduled downtime for the host or service was just cancelled. Notifications about problems can now resume.

Detailed notification macros

Alignak introduces optional hosts and services macros that add information about which impacts have an object and what to do. That can be useful when users that are notified, work for many customers and don’t know very well each services. So that help users without knowledge to take a decision about it.

	There are 3 objects macros you can add on a host or a service object definition :

	
	_DETAILLEDESC : provides detailed information about the monitored object.

	_IMPACT : describes impacts that a problem will have on infrastructure and help to define its severity.

	_FIXACTIONS : How to solve the problem. Only available on service type objects.

define service{
 service_description Oracle-KEY-tnsping
 use oracle-service
 register 0
 host_name oracle
 check_command check_oracle_tnsping!KEY
 duplicate_foreach _databases
 business_impact 5
 aggregation /oracle/KEY/connectivity

 _DETAILLEDESC Ping Oracle Listener
 _IMPACT Critical: Can't network connect to database
 _FIXACTIONS Start listener !
}

define host{
 host_name hostA
 use generic_host

 _DETAILLEDESC This one controls all the IT !!!
 _IMPACT Critical: Nothing can work without it !
}

You may define a notification command that uses those detail macros:

Notify host problem by email with detailed information
define command {
 command_name detailed-host-by-email
 command_line /usr/bin/printf "%b" "Alignak Notification\n\nType:$NOTIFICATIONTYPE$\nHost: $HOSTNAME$\nState: $HOSTSTATE$\nAddress: $HOSTADDRESS$\nDate/Time: $DATE$/$TIME$\n Host Output : $HOSTOUTPUT$\n\nHost description: $_HOSTDESC$\nHost Impact: $_HOSTIMPACT$" | /usr/bin/mail -s "Host $HOSTSTATE$ alert for $HOSTNAME$" $CONTACTEMAIL$
}

Notify service problem by email with detailed informations
define command {
 command_name detailed-service-by-email
 command_line /usr/bin/printf "%b" "Alignak Notification\n\nNotification Type: $NOTIFICATIONTYPE$\n\nService: $SERVICEDESC$\nHost: $HOSTALIAS$\nAddress: $HOSTADDRESS$\nState: $SERVICESTATE$\n\nDate/Time: $DATE$ at $TIME$\nService Output : $SERVICEOUTPUT$\n\nService Description: $_SERVICEDETAILLEDESC$\nService Impact: $_SERVICEIMPACT$\nFix actions: $_SERVICEFIXACTIONS$" | /usr/bin/mail -s "$SERVICESTATE$ on Host : $HOSTALIAS$/Service : $SERVICEDESC$" $CONTACTEMAIL$
}

Then all you have to do is change notificationways or the notification commands of your contact to get a more detailed email notification:

define contact{
 contact_name hotline
 use generic-contact
 email hotline@corporation.com
 can_submit_commands 1
 notificationways detailed-email
 ; Or
 service_notification_commands detailed-service-by-email
 host_notification_commands detailed-host-by-email
}

Time Periods

Abstract

or…“Is This a Good Time?”

Introduction

[image: ../_images/objects-timeperiods.png]
Timeperiod definitions allow you to control when various aspects of the monitoring and alerting logic can operate. For instance, you can restrict:

	When regularly scheduled host and service checks can be performed

	When notifications can be sent out

	When notification escalations can be used

	When dependencies are valid

Precedence in Time Periods

Timeperod definitions may contain multiple types of attributes, including weekdays, days of the month, and calendar dates. Different types of attributes have different precedence levels and may override other attributes in your timeperiod definitions. The order of precedence for different types of attributes (in descending order) is as follows:

	Calendar date (2008-01-01)

	Specific month date (January 1st)

	Generic month date (Day 15)

	Offset weekday of specific month (2nd Tuesday in December)

	Offset weekday (3rd Monday)

	Normal weekday (Tuesday)

Examples of different timeperiod attributes can be found here.

How Time Periods Work With Host and Service Checks

Host and service definitions have an optional “check_period” attribute that allows you to specify a timeperiod that should be used to restrict when regularly scheduled, active checks of the host or service can be made.

If you do not use the “check_period attribute” to specify a timeperiod, Alignak will be able to schedule active checks of the host or service anytime it needs to. This is essentially a 24x7 monitoring scenario.

Specifying a timeperiod in the “check_period attribute” allows you to restrict the time that Alignak perform regularly scheduled, active checks of the host or service. When Alignak attempts to reschedule a host or service check, it will make sure that the next check falls within a valid time range within the defined timeperiod. If it doesn’t, Alignak will adjust the next check time to coincide with the next “valid” time in the specified timeperiod. This means that the host or service may not get checked again for another hour, day, or week, etc.

On-demand checks and passive checks are not restricted by the timeperiod you specify in the “check_period attribute”. Only regularly scheduled active checks are restricted.

A service’s timeperiod is inherited from its host only if it’s not already defined for the service. In a fresh new default Alignak installation, it is defined to “24x7” in the generic-service service template. If you want that the service notifications are not sent out when the host is outside its notification period, you will have to comment notification_period and/or notification_enabled in the generic-service template.

Unless you have a good reason not to do so, a good practice is to monitor all the hosts and services using timeperiods that cover a 24x7 time range. If you don’t do this, you can run into some problems during the blackout time (times that are not valid in the timeperiod definition):

	The status change of the host or service will not appear during the blackout time.

	Contacts will mostly likely not get re-notified of problems with a host or service during blackout times.

	If a host or service recovers during a blackout time, contacts will not be immediately notified of the recovery.

How Time Periods Work With Contact Notifications

By specifying a timeperiod in the notification_period attribute of a host or service definition, you can control when Alignak is allowed to send notifications out regarding problems or recoveries for that host or service. When a host notification is about to get sent out, Alignak will make sure that the current time is within a valid range in the “notification_period” timeperiod. If it is a valid time, then Alignak will attempt to notify each contact of the problem or recovery.

You can also use timeperiods to control when notifications can be sent out to individual contacts. By using the service_notification_period and host_notification_period attributes in the contact definition, you’re able to essentially define an “on call” period for each contact. Contacts will only receive host and service notifications in the time frame that are specified in the his/her notification periods.

How Time Periods Work With Notification Escalations

Service and host notification escalations have an optional escalation_period attribute that allows to specify a timeperiod when the escalation is valid and can be used. If you do not use the escalation_period attribute in an escalation definition, the escalation is considered as permanently valid. If you specify a timeperiod in the escalation_period attribute, Alignak will only use the escalation definition in the time frame that are valid in the timeperiod definition.

How Time Periods Work With Dependencies

Host and service dependencies have an optional dependency_period attribute that allows to specify a timeperiod when the dependendies are valid and can be used. If you do not use the dependency_period attribute in a dependency definition, the dependency can be used at any time. If you specify a timeperiod in the “dependency_period” attribute, Alignak will only use the dependency definition in the time frame that are valid in the timeperiod definition.

Defining On-Call rotations

Administrators often have to shoulder the burden of answering pagers, cell phone calls, etc. when they least desire them. No one likes to be woken up at 4 am to fix a problem. But its often better to fix the problem in the middle of the night, rather than face the wrath of an unhappy boss when you stroll in at 9 am the next morning ;)

For those lucky admins who have a team of gurus who can help share the responsibility of answering alerts, on-call rotations are often setup. Multiple admins will often alternate taking notifications on weekends, weeknights, holidays, etc.

I’ll show you how you can create timeperiod definitions in a way that can facilitate most on-call notification rotations. These definitions won’t handle human issues that will inevitably crop up (admins calling in sick, swapping shifts, or throwing their pagers into the river), but they will allow you to setup a basic structure that should work the majority of the time.

Scenario 1: Holidays and Weekends

Two admins - John and Bob - are responsible for responding to Alignak alerts. John receives all notifications for weekdays (and weeknights) - except for holidays - and Bob gets handles notifications during the weekends and holidays. Lucky Bob. Here’s how you can define this type of rotation using timeperiods…

First, define a timeperiod that contains time ranges for holidays:

define timeperiod{
 name holidays
 timeperiod_name holidays
 january 1 00:00-24:00 ; New Year's Day
 2008-03-23 00:00-24:00 ; Easter (2008)
 2009-04-12 00:00-24:00 ; Easter (2009)
 monday -1 may 00:00-24:00 ; Memorial Day (Last Monday in May)
 july 4 00:00-24:00 ; Independence Day
 monday 1 september 00:00-24:00 ; Labor Day (1st Monday in September)
 thursday 4 november 00:00-24:00 ; Thanksgiving (4th Thursday in November)
 december 25 00:00-24:00 ; Christmas
 december 31 17:00-24:00 ; New Year's Eve (5pm onwards)
 }

Next, define a timeperiod for John’s on-call times that include weekdays and weeknights, but excludes the dates/times defined in the holidays timeperiod above:

define timeperiod{
 timeperiod_name john-oncall
 monday 00:00-24:00
 tuesday 00:00-24:00
 wednesday 00:00-24:00
 thursday 00:00-24:00
 friday 00:00-24:00
 exclude holidays ; Exclude holiday dates/times defined elsewhere
}

You can now reference this timeperiod in John’s contact definition:

define contact{
 contact_name john
 ...
 host_notification_period john-oncall
 service_notification_period john-oncall
}

Define a new timeperiod for Bob’s on-call times that include weekends and the dates/times defined in the holidays timeperiod above:

define timeperiod{
 timeperiod_name bob-oncall
 friday 00:00-24:00
 saturday 00:00-24:00
 use holidays ; Also include holiday date/times defined elsewhere
}

You can now reference this timeperiod in Bob’s contact definition:

define contact{
 contact_name bob
 ...
 host_notification_period bob-oncall
 service_notification_period bob-oncall
}

Scenario 2: Alternating Days

In this scenario John and Bob alternate handling alerts every other day - regardless of whether its a weekend, weekday, or holiday.

Define a timeperiod for when John should receive notifications. Assuming today’s date is August 1st, 2007 and John is handling notifications starting today, the definition would look like this:

define timeperiod{
 timeperiod_name john-oncall
 2007-08-01 / 2 00:00-24:00 ; Every two days, starting August 1st, 2007
}

Now define a timeperiod for when Bob should receive notifications. Bob gets notifications on the days that John doesn’t, so his first on-call day starts tomorrow (August 2nd, 2007).

define timeperiod{
 timeperiod_name bob-oncall
 2007-08-02 / 2 00:00-24:00 ; Every two days, starting August 2nd, 2007
}

Now you need to reference these timeperiod definitions in the contact definitions for John and Bob:

define contact{
 contact_name john
 ...
 host_notification_period john-oncall
 service_notification_period john-oncall
}
define contact{
 contact_name bob
 ...
 host_notification_period bob-oncall
 service_notification_period bob-oncall
}

Scenario 3: Alternating Weeks

In this scenario John and Bob alternate handling alerts every other week. John handles alerts Sunday through Saturday one week, and Bob handles alerts for the following seven days. This continues in perpetuity.

Define a timeperiod for when John should receive notifications. Assuming today’s date is Sunday, July 29th, 2007 and John is handling notifications this week (starting today), the definition would look like this:

define timeperiod{
 timeperiod_name john-oncall
 2007-07-29 / 14 00:00-24:00 ; Every 14 days (two weeks), starting Sunday, July 29th, 2007
 2007-07-30 / 14 00:00-24:00 ; Every other Monday starting July 30th, 2007
 2007-07-31 / 14 00:00-24:00 ; Every other Tuesday starting July 31st, 2007
 2007-08-01 / 14 00:00-24:00 ; Every other Wednesday starting August 1st, 2007
 2007-08-02 / 14 00:00-24:00 ; Every other Thursday starting August 2nd, 2007
 2007-08-03 / 14 00:00-24:00 ; Every other Friday starting August 3rd, 2007
 2007-08-04 / 14 00:00-24:00 ; Every other Saturday starting August 4th, 2007
}

Now define a timeperiod for when Bob should receive notifications. Bob gets notifications on the weeks that John doesn’t, so his first on-call day starts next Sunday (August 5th, 2007).

define timeperiod{
 timeperiod_name bob-oncall
 2007-08-05 / 14 00:00-24:00 ; Every 14 days (two weeks), starting Sunday, August 5th, 2007
 2007-08-06 / 14 00:00-24:00 ; Every other Monday starting August 6th, 2007
 2007-08-07 / 14 00:00-24:00 ; Every other Tuesday starting August 7th, 2007
 2007-08-08 / 14 00:00-24:00 ; Every other Wednesday starting August 8th, 2007
 2007-08-09 / 14 00:00-24:00 ; Every other Thursday starting August 9th, 2007
 2007-08-10 / 14 00:00-24:00 ; Every other Friday starting August 10th, 2007
 2007-08-11 / 14 00:00-24:00 ; Every other Saturday starting August 11th, 2007
}

Now you need to reference these timeperiod definitions in the contact definitions for John and Bob:

define contact{
 contact_name mjohn
 ...
 host_notification_period john-oncall
 service_notification_period john-oncall
}
define contact{
 contact_name bob
 ...
 host_notification_period bob-oncall
 service_notification_period bob-oncall
}

Scenario 4: Vacation Days

In this scenarios, John handles notifications for all days except those he has off. He has several standing days off each month, as well as some planned vacations. Bob handles notifications when John is on vacation or out of the office.

First, define a timeperiod that contains time ranges for John’s vacation days and days off:

define timeperiod{
 name john-out-of-office
 timeperiod_name john-out-of-office
 day 15 00:00-24:00 ; 15th day of each month
 day -1 00:00-24:00 ; Last day of each month (28th, 29th, 30th, or 31st)
 day -2 00:00-24:00 ; 2nd to last day of each month (27th, 28th, 29th, or 30th)
 january 2 00:00-24:00 ; January 2nd each year
 june 1 - july 5 00:00-24:00 ; Yearly camping trip (June 1st - July 5th)
 2007-11-01 - 2007-11-10 00:00-24:00 ; Vacation to the US Virgin Islands (November 1st-10th, 2007)
}

Next, define a timeperiod for John’s on-call times that excludes the dates/times defined in the timeperiod above:

define timeperiod{
 timeperiod_name john-oncall
 monday 00:00-24:00
 tuesday 00:00-24:00
 wednesday 00:00-24:00
 thursday 00:00-24:00
 friday 00:00-24:00
 exclude john-out-of-office ; Exclude dates/times John is out
}

You can now reference this timeperiod in John’s contact definition:

define contact{
 contact_name john
 ...
 host_notification_period john-oncall
 service_notification_period john-oncall
}

Define a new timeperiod for Bob’s on-call times that include the dates/times that John is out of the office:

define timeperiod{
 timeperod_name bob-oncall
 use john-out-of-office ; Include holiday date/times that John is out
}

You can now reference this timeperiod in Bob’s contact definition:

define contact{
 contact_name bob
 ...
 host_notification_period bob-oncall
 service_notification_period bob-oncall
}

Other Scenarios

There are a lot of other on-call notification rotation scenarios that you might have. The date exception attribute in the timeperiod definitions is capable of handling most dates and date ranges that you might need to use, so check out the different formats that you can use. If you make a mistake when creating timeperiod definitions, always err on the side of giving someone else more on-call duty time. :-)

Problems, acknowledgements and downtimes

Introduction

[image: ../_images/downtime.png]
When an host/service problem is detected by Alignak, some actions are possible with Alignak to manage the problems.

allows you to schedule downtime periods for hosts and service that you’re monitoring. This is useful in the event that you actually know you’re going to be taking a server down for an upgrade, etc.

Downtime vs Acknowledge

Acknowledging a problem for an host or service is simply an information that you are aware of the problem that Alignak alerted for. Acknowledging an host or service problem will make it appear as acknowledged in the Alignak Web UI and the future notifications for the same state of the problem will be disabled.

Note that acknowledging an host problem will also acknowledge all its services problems.

If the acknowledge is “sticky”, the acknowledgement will remain until the host/service returns to an UP/OK state. Otherwise the acknowledgement will automatically be removed when the host changes state whatever the new state is.

If the “notify” option is set for the acknowledge, a notification will be sent out to the host/service contacts indicating that the current host problem has been acknowledged. A notification will also be sent when the acknowledge is unset.

Note that the acknowledgements are always persistent with Alignak (not as the Nagios legacy acknowledgements).

Scheduling downtime

You can schedule downtime with external commands or with the Alignak Web UI.

Once you schedule a downtime for an host or service, Alignak will add a comment to that host/service indicating that it is scheduled for downtime during the period of time you indicated.

When the downtime period starts, Alignak will acknowledge the host and all its services that are currently problems. And when the period of downtime exits, Alignak will automatically delete the comment that it added.

Fixed vs. flexible downtime

When you schedule a downtime for an host or service through the web interface you’ll be asked if the downtime is fixed or flexible. Here’s an explanation of how “fixed” and “flexible” downtime differs:

“Fixed” downtime starts and stops at the exact start and end times that you specified when you scheduled it. Okay, that was easy enough…

“Flexible” downtime is intended for times when you know that a host or service is going to be down for X minutes (or hours), but you don’t know exactly when that’ll start. When you schedule a flexible downtime, Alignak will start the scheduled downtime sometime between the start and end times you specified. The downtime will last for as long as the duration you specified when you scheduled it.

This assumes that the host or service for which you scheduled flexible downtime either goes down (or becomes unreachable) or goes into a non-OK state sometime between the start and end times you specified. The time at which a host or service transitions to a problem state determines the time at which Alignak
actually starts the downtime. The downtime will then last for the duration you specified, even if the host or service recovers before the downtime expires.

This is done for a very good reason. As we all know, you might think you’ve got a problem fixed, but then have to restart a server ten times before it actually works right.

Triggered downtime

When scheduling host or service downtime you have the option of making it “triggered” downtime. What is a triggered downtime? With triggered downtime the start of the downtime is triggered by the start of some other scheduled host or service downtime.

This is extremely useful if you’re scheduling downtime for a large number or hosts or services and the start time of the downtime period depends on the start time of another downtime entry.

For instance, if you schedule a flexible downtime for a particular host (because its going down for maintenance), you might want to schedule triggered downtime for all of that hosts’s “children”.

How scheduled downtime affects notifications?

When a host or service is in a period of scheduled downtime, Alignak will not allow normal notifications to be sent out for the host or service. However, a DOWNTIMESTART notification will be sent out for the host or service, which will serve to put any admins on notice that they won’t receive upcoming problem alerts.

When the scheduled downtime is over, Alignak will allow normal notifications to be sent out for the host or service again. A DOWNTIMEEND notification will be sent out notifying contacts that the scheduled downtime is over, and they will start receiving normal alerts again.

If the scheduled downtime is cancelled prematurely (before it expires), a DOWNTIMECANCELLED notification will be sent out to the appropriate contacts.

Maintenance period

Sometimes you may need to define a recurring downtime period for an host or service.

Let’s imagine that you have some regularly scheduled maintenance operations on this host. When your maintenance is happening, your checks will probably raise some problems and all the monitoring alert and notification stuff will process… to avoid this, you may define some exclusions in the host check period to avoid checking this host/service when you scheduled your maintenance operations.

The maintenance period is an easier solution than the time periods with exclusions. Simply define a time period with your maintenance period schedule and set this time period as your host/service maintenance_period. It will be considered the same as a scheduled downtime, so (unlike exclusions in your host/service check period) the checks will still be run during the maintenance period but the problems notifications will not be raised.

Overlapping scheduled downtime

I like to refer to this as the “Oh crap, it’s not working” syndrome. You know what I’m talking about. You take a server down to perform a “routine” hardware upgrade, only to later realize that the OS drivers aren’t working, the RAID array blew up, or the drive imaging failed and left your original disks useless to the world.

Moral of the story is that any routine work on a server is quite likely to take three or four times as long as you had originally planned…

Let’s take the following scenario:

	You schedule downtime for host A from 7:30pm-9:30pm on a Monday

	You bring the server down about 7:45pm Monday evening to start a hard drive upgrade

	After wasting an hour and a half battling with SCSI errors and driver incompatibilities, you finally get the machine to boot up

	At 9:15 you realize that one of your partitions is either hosed or doesn’t seem to exist anywhere on the drive

	Knowing you’re in for a long night, you go back and schedule additional downtime for host A from 9:20pm Monday evening to 1:30am Tuesday Morning.

If you schedule overlapping periods of downtime for a host or service (in this case the periods were 7:40pm-9:30pm and 9:20pm-1:30am), Alignak will wait until the last period of scheduled downtime is over before it allows notifications to be sent out for that host or service. In this example notifications would be suppressed for host A until 1:30am Tuesday morning.

Host / service state Flapping detection

Introduction

Alignak supports optional detection of hosts and services that are “flapping”. Flapping occurs when a service
or host state changes too frequently, resulting in a storm of problem and recovery notifications.

Flapping can be indicative of configuration problems (i.e. thresholds set too low), troublesome services, or real network problems.

How flapping detection works

Whenever Alignak checks the status of a host or service, it will check to see if it has started or stopped flapping. It does this by:

	Storing the results of the last 21 checks of the host or service

	Analyzing the historical check results and determine where state changes/transitions occur

	Using the state transitions to determine a percent state change value (a measure of change) for the host or service

	Comparing the percent state change value against low and high flapping thresholds

A host or service is determined to have started flapping when its percent state change first exceeds a high flapping threshold.

A host or service is determined to have stopped flapping when its percent state goes below a low flapping threshold (assuming that is was previously flapping).

Example

Let’s describe in more detail how flap detection works with services…

The image below shows a chronological history of service states from the most recent 21 service checks.
OK states are shown in green, WARNING states in yellow, CRITICAL states in red, and UNKNOWN states in orange.

[image: ../_images/statetransitions.png]
The historical service check results are examined to determine where state changes/transitions occur. State changes
occur when an archived state is different from the archived state that immediately precedes it chronologically.
Since we keep the results of the last 21 service checks in the array, there is a possibility of having at most 20 state changes.
The 20 value can be changed in the main configuration file (see flap_history).
In this example there are 7 state changes, indicated by blue arrows in the image above.

The flap detection logic uses the state changes to determine an overall percent of state change for the service.
This is a measure of volatility/change for the service. Services that never change state will have a 0% state change
value, while services that change state each time they’re checked will have 100% state change. Most services will
have a percent of state change somewhere in between.

When calculating the percent of state change for the service, the flap detection algorithm will give more weight to
new state changes compare to older ones. Specifically, the flap detection routines are currently designed to make
the newest possible state change carry 50% more weight than the oldest possible state change. The image below shows
how recent state changes are given more weight than older state changes when calculating the overall or total percent
state change for a particular service.

[image: ../_images/statetransitions2.png]
Using the images above, lets do a calculation of percent state change for the service. You will notice that there are a
total of 7 state changes (at t3, t4, t5, t9, t12, t16, and t19). Without any weighting of the state changes over time, this
would give us a total state change of 35%:

(7 observed state changes / possible 20 state changes) * 100 = 35 %

Since the flap detection logic will give newer state changes a higher rate than older state changes, the actual calculated
percent state change will be slightly less than 35% in this example. Let’s say that the weighted percent of state change turned out to be 31%…

The calculated percent state change for the service (31%) will then be compared against flapping thresholds to see what should happen:

	If the service was not previously flapping and 31% is equal to or greater than the high flap threshold, Alignak considers the service to have just started flapping.

	If the service was previously flapping and 31% is less than the low flap threshold, Alignak considers the service to have just stopped flapping.

If neither of those two conditions are met, the flap detection logic won’t do anything else with the service, since it is
either not currently flapping or it is still flapping.

Flapping detection for services

Alignak checks to see if a service is flapping whenever the service is checked (either actively or passively).

The flap detection logic for services works as described in the example above.

Flapping detection for hosts

Hosts flapping detection works as services flapping detection, except for one important difference: Alignak
will attempt to check if an host is flapping whenever:

	The host is checked (actively or passively)

	Sometimes when a service associated with that host is checked. More specifically, when at least x amount of time has passed since the flap detection was last performed, where x is equal to the average check interval of all services associated with the host.

Why is this done? With services we know that the minimum amount of time between consecutive flap detection routines is going to be equal to the service check interval. However, you might not be monitoring hosts on a regular basis, so there might not be a host check interval that can be used in the flapping detection logic. Also, it makes sense that checking a service should count towards the detection of host flapping. Services are attributes of or things associated with host after all… At any rate, that’s the best method I could come up with for determining how often flap detection could be performed on a host, so there you have it.

Flapping detection thresholds

Alignak uses several variables to determine the percentage of state change thresholds which is used for flapping detection. For both hosts and services, there are global high and low thresholds and host/service specific thresholds that you can configure. Alignak will use the global thresholds for flapping detection if you do not specify host/service specific thresholds.

The table below shows the global and host/service specific variables that control the various thresholds used in flap detection.

	Object Type

	Global Variables

	Object-Specific Variables

	Host

	low_host_flap_threshold high_host_flap_threshold

	low_flap_threshold high_flap_threshold

	Service

	low_service_flap_threshold high_service_flap_threshold

	low_flap_threshold high_flap_threshold

States used for flapping detection

Normally Alignak will track the results of the last 21 checks of a host or service, regardless of the check result (host/service state),
for use in the flap detection logic.

You can exclude certain host or service states from use in flap detection logic by using the flap_detection_options directive
in your host or service definitions. This directive allows you to specify what host or service states (i.e. “UP, “DOWN”, “OK, “CRITICAL”)
you want to use for flap detection. If you don’t use this directive, all host or service states are used in flap detection.

Flapping handling

When a service or host is first detected as flapping, Alignak will:

	Log a message indicating that the service or host is flapping.

	Add a non-persistent comment to the host or service indicating that it is flapping.

	Send a “flapping start” notification for the host or service to appropriate contacts.

	Suppress other notifications for the service or host (this is one of the filters in the notification logic).

When a service or host stops flapping, Alignak will:

	Log a message indicating that the service or host has stopped flapping.

	Delete the comment that was originally added to the service or host when it started flapping.

	Send a “flapping stop” notification for the host or service to appropriate contacts.

	Remove the block on notifications for the service or host (notifications will still be bound to the normal notification logic).

Enabling flapping detection

In order to enable the flap detection features in Alignak, you’ll need to:

	Set enable_flap_detection directive

	Set the flap_detection_enabled directive in your host and service definitions

If you want to disable flap detection on a global basis, set the enable_flap_detection directive to 0.

If you would like to disable flap detection for just a few hosts or services, set the flap_detection_enabled directive in the host and/or service definitions to 0.

State stalking

State “stalking” is a feature which is probably not going to be used by most users. When enabled, it allows to log changes in the service and host checks output even if the state does not change. When stalking is enabled for a particular host or service, Alignak will watch log any changes in the output of the check results.

How does it work?

Under normal circumstances, the result of a host or service check is only logged if the host or service has changed state since it was last checked. There are a few exceptions to this, but for the most part, that’s the rule.

If you enable stalking for one or more states of a particular host or service, Alignak will log the output of the check if the output differs from the former check. Take the following example of eight consecutive checks of a service:

	Service Check #:

	Service State:

	Service Check Output:

	Logged Normally

	Logged With Stalking

	x

	OK

	RAID array optimal

	
	

	
	

	x+1

	OK

	RAID array optimal

	
	

	
	

	x+2

	WARNING

	RAID array degraded (1 drive bad, 1 hot spare rebuilding)

	[image: ../_images/checkmark.png]

	[image: ../_images/checkmark.png]

	x+3

	CRITICAL

	RAID array degraded (2 drives bad, 1 host spare online, 1 hot spare rebuilding)

	[image: ../_images/checkmark.png]

	[image: ../_images/checkmark.png]

	x+4

	CRITICAL

	RAID array degraded (3 drives bad, 2 hot spares online)

	
	

	[image: ../_images/checkmark.png]

	x+5

	CRITICAL

	RAID array failed

	
	

	[image: ../_images/checkmark.png]

	x+6

	CRITICAL

	RAID array failed

	
	

	
	

	x+7

	CRITICAL

	RAID array failed

	
	

	
	

Given this sequence of checks, you would normally only see two log entries for this catastrophe. The first one would occur at service check x+2 when the service changed from an OK state to a WARNING state. The second log entry would occur at service check x+3 when the service changed from a WARNING state to a CRITICAL state.

For whatever reason, you may like to have the complete history of this catastrophe in your log files. Perhaps to help explain to your manager how quickly the situation got out of control, perhaps just to laugh at it over a couple of drinks at the local pub…

Well, if you had enabled stalking of this service for CRITICAL states, you would have events at x+4 and x+5 logged in addition to the events at x+2 and x+3. Why is this? With state stalking enabled, Alignak would have examined the output from each service check to see if it differed from the output of the previous check. If the output differed and the state of the service didn’t change between the two checks, the result of the newer service check would get logged.

A similar example of stalking might be on a service that checks your web server. If the check_http plugin first returns a WARNING state because of a 404 error and on subsequent checks returns a WARNING state because of a particular pattern not being found, you might want to know that. If you didn’t enable state stalking for WARNING states of the service, only the first WARNING state event (the 404 error) would be logged and you wouldn’t have any idea (looking back in the archived logs) that future WARNING states were not due to a 404, but rather some text pattern that could not be found in the returned web page.

Should I enable stalking?

First, you must decide if you have a real need to analyze archived log data to find the exact cause of a problem. You may decide you need this feature for some hosts or services, but not for all. You may also find that you only have a need to enable stalking for some host or service states, rather than all of them. For example, you may decide to enable stalking for WARNING and CRITICAL states of a service, but not for OK and UNKNOWN states.

The decision to enable state stalking for a particular host or service will also depend on the plugin that you use to check that host or service. If the plugin always returns the same text output for a particular state, there is no reason to enable stalking for that state.

Enable the state stalking feature for hosts and services by setting the stalking_options directive in the concerned host and service definitions.

Volatile services are similar, but they will cause notifications and event handlers to run. Stalking is purely for logging purposes.

Defining advanced service dependencies

First, the basics. You create service dependencies by adding service dependency definitions in your
object definition. In each definition you specify the dependent service, the service you are depending on,
and the criteria (if any) that causes the execution and notification dependencies to fail (these are described later).

You can create several dependencies for a given service, but you must add a separate service dependency definition for each dependency you create.

Service Dependencies example

The image below shows an example logical layout of service notification and execution dependencies.
Different services are dependent on other services for notifications and check execution.

[image: ../_images/service-dependencies.png]
In this example, the dependency definitions for Service F on Host C would be defined as follows:

define servicedependency{
 host_name Host B
 service_description Service D
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria o
 notification_failure_criteria w,u
}

define servicedependency{
 host_name Host B
 service_description Service E
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria n
 notification_failure_criteria w,u,c
}

define servicedependency{
 host_name Host B
 service_description Service C
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria w
 notification_failure_criteria c
}

The other dependency definitions shown in the image above would be defined as follows:

define servicedependency{
 host_name Host A
 service_description Service A
 dependent_host_name Host B
 dependent_service_description Service D
 execution_failure_criteria u
 notification_failure_criteria n
}

define servicedependency{
 host_name Host A
 service_description Service B
 dependent_host_name Host B
 dependent_service_description Service E
 execution_failure_criteria w,u
 notification_failure_criteria c
}

define servicedependency{
 host_name Host B
 service_description Service C
 dependent_host_name Host B
 dependent_service_description Service E
 execution_failure_criteria n
 notification_failure_criteria w,u,c
}

How Service Dependencies Are Tested

Before than Alignak executes a service check or sends notifications out for a service, it will check to
see if the service has any dependencies. If it doesn’t have any dependencies, the check is executed or
the notification is sent out as it normally would be.

If the service does have one or more dependencies, Alignak will check each dependency entry as follows:

	Alignak gets the current state of the service that is being depended upon.

	Alignak compares this state against either the execution or notification failure options in the
dependency definition (whichever one is relevant at the time).

	If this state matches one of the failure options, the dependency is said to have failed and
Alignak will break out of the dependency check loop.

	If this state does not match any of the failure options for the dependency entry, the dependency
is said to have passed and Alignak will go on and check the next dependency entry.

This cycle continues until either all dependencies for the service have been checked or until one dependency check fails.

Warning

One important thing to note is that by default, Alignak will use the most current hard state of the
service(s) that is/are being depended upon when it does the dependency checks. If you want Alignak
to use the most current state of the services (regardless of whether its a soft or hard state),
enable the soft_state_dependencies option.

Execution Dependencies

Execution dependencies are used to restrict when active checks of a service can be performed.
Passive checks are not restricted by execution dependencies.

If all of the execution dependency tests for the service passed, Alignak will execute the check of
the service as it normally would. If even just one of the execution dependencies for a service fails,
Alignak will temporarily prevent the execution of checks for that (dependent) service.

At some point in the future the execution dependency tests for the service may all pass.
If this happens, Alignak will start checking the service again as it normally would.

In the example above, Service E would have failed execution dependencies if Service B is
in a WARNING or UNKNOWN state. If it was the case, the service check would not be performed and the
check would be scheduled for (potential) execution at a later time.

Warning

Execution dependencies will limit the load due to useless checks, but can limit some
correlation logics, and so should be used only if you truly need them.

Notification Dependencies

If all of the notification dependency tests for the service passed, Alignak will send notifications
out for the service as it normally would. If even just one of the notification dependencies for a
service fails, Alignak will temporarily repress notifications for that (dependent) service.

At some point in the future the notification dependency tests for the service may all pass.
If this happens, Alignak will start sending out notifications again as it normally would for the service.

In the example above, Service F would have failed notification dependencies if Service C is
in a CRITICAL state, //and/or* Service D is in a WARNING or UNKNOWN state, and/or// if **Service E*
is in a WARNING, UNKNOWN, or CRITICAL state. If this were the case, notifications for the service would not be sent out.

Dependency Inheritance

As mentioned before, service dependencies are not inherited by default.
In the example above you can see that Service F is dependent on Service E.
However, it does not automatically inherit Service E’s dependencies on Service B and Service C.
In order to make Service F dependent on Service C we had to add another service dependency definition.
There is no dependency definition for Service B, so Service F is not dependent on Service B.

If you do wish to make service dependencies inheritable, you must use the inherits_parent directive in
the service dependency definition. When this directive is enabled, it indicates that the dependency
inherits dependencies of the service that is being depended upon (also referred to as the master service).
In other words, if the master service is dependent upon other services and any one of those dependencies fail,
this dependency will also fail.

In the example above, imagine that you want to add a new dependency for service F to make it dependent
on service A. You could create a new dependency definition that specified service F as the dependent
service and service A as being the master service (i.e. the service that is being depended on).
You could alternatively modify the dependency definition for services D and F to look like this:

define servicedependency{
 host_name Host B
 service_description Service D
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria o
 notification_failure_criteria n
 inherits_parent 1
}

Since the inherits_parent directive is enabled, the dependency between services A and D will be tested
when the dependency between services F and D are being tested.

Dependencies can have multiple levels of inheritance. If the dependency definition between A and D had
its inherits_parent directive enable and service A was dependent on some other service (let’s call it
service G), the service F would be dependent on services D, A, and G (each with potentially different criteria).

Host Dependencies

As you’d probably expect, host dependencies work in a similar fashion to service dependencies.
The difference is that they’re for hosts, not services.

Do not confuse host dependencies with parent/child host relationships.
You should be using parent/child host relationships (defined with the parents directive in host definitions)
for most cases, rather than host dependencies.
A description of how parent/child host relationships work can be found in the documentation on network reachability.

Here are the basics about host dependencies:

	A host can be dependent on one or more other host

	Host dependencies are not inherited (unless specifically configured to)

	Host dependencies can be used to cause host check execution and host notifications to be
suppressed under different circumstances (UP, DOWN, and/or UNREACHABLE states)

	Host dependencies might only be valid during specific time periods

Example Host Dependencies

The image below shows an example of the logical layout of host notification dependencies.
Different hosts are dependent on other hosts for notifications.

[image: ../_images/host-dependencies.png]
In the example above, the dependency definitions for Host C would be defined as follows:

define hostdependency{
 host_name Host A
 dependent_host_name Host C
 notification_failure_criteria d
}

define hostdependency{
 host_name Host B
 dependent_host_name Host C
 notification_failure_criteria d,u
}

As with service dependencies, host dependencies are not inherited. In the example image you can see
that Host C does not inherit the host dependencies of Host B. In order for Host C to be dependent on
Host A, a new host dependency definition must be defined.

Host notification dependencies work in a similar manner to service notification dependencies.
If all of the notification dependency tests for the host pass, Alignak will send notifications out
for the host as it normally would. If even just one of the notification dependencies for a host fails,
Alignak will temporarily repress notifications for that (dependent) host.

At some point in the future the notification dependency tests for the host may all pass.
If this happens, Alignak will start sending out notifications again as it normally would for the host.

Volatile services

Alignak has the ability to distinguish between “normal” services and “volatile” services. The is_volatile property of a service allows you to specify whether a specific service is volatile or not (default behavior).

Volatile services are useful for monitoring:

	Things that automatically reset themselves to an “OK” state each time they are checked

	Events such as security alerts which require attention every time there is a problem (and not only the first time)

Volatile services differ from “normal” services in three important ways. Each time they are checked when they are in a hard non-OK state, and the check returns a non-OK state (i.e. no state change has occurred):

	The non-OK service state is logged

	Contacts are notified about the problem and notification intervals are ignored

	The event handler for the service is run

These events normally only occur for services when they are in a non-OK state and a hard state change has just occurred. In other words, they only happen the first time that a service goes into a non-OK state. If future checks of the service result in the same non-OK state, no hard state change occurs and none of the events mentioned take place again.

Tip

If you are only interested in logging, consider using stalking feature instead.

Event Handlers

Introduction

[image: ../_images/eventhandlers.png]
Event handlers are optional system commands (scripts or executables) that are run whenever a host or service state change occurs.

An obvious use for event handlers is the ability for Alignak to pro-actively fix problems before anyone is
notified. Some other uses for event handlers include:

	Restarting a failed service

	Entering a trouble ticket into a helpdesk system

	Logging event information to a database

	Cycling power on/off a host

	etc.

Cycling power on a host that is experiencing problems with an automated script should not be implemented lightly. Consider the consequences of this carefully before implementing automatic reboots. :-)

When are event handlers executed?

Event handlers are executed when a service or host:

	Is in a SOFT problem state

	Initially goes into a HARD problem state

	Initially recovers from a SOFT or HARD problem state

Event handler types

There are different types of optional event handlers that you can define to handle host and state changes:

	Global host event handler

	Global service event handler

	Host-specific event handlers

	Service-specific event handlers

Global host and service event handlers are run for every host or service state change that occurs,
immediately prior to any host (or service) specific event handler that may be run.

Event handlers offer functionality similar to notifications (launch some command) but are called each
state change, soft or hard. This allows to call handler function and react to problems before Alignak
raises a hard state and starts sending out notifications.

You can specify global event handler commands by using the global_host_event_handler and global_service_event_handler
options in your main configuration file.

Individual hosts and services can have their own event handler command that should be run to handle state
changes. You can specify an event handler that should be run by using the event_handler directive in
your host and service definitions.
These host (and service) specific event handlers are executed immediately after the (optional) global host or service event handler is executed.

Enabling event handlers

Event handlers can be enabled or disabled on a program-wide basis by using the enable_event_handlers in your main configuration file.

Host- and service-specific event handlers can be enabled or disabled by using the event_handler_enabled directive in
your host and service definitions. Host (and service) specific event handlers will not be executed if
the global enable_event_handlers option is disabled.

Event handler execution order

As already mentioned, global host and service event handlers are executed immediately before host (or service) specific event handlers.

Event handlers are executed for HARD problem and recovery states immediately after notifications are sent out.

Permissions for event handler commands

Event handler commands will normally execute with the same permissions as the user used by the Alignak daemons.
This can raise a problem if you want to write an event handler that restarts system services, as root privileges
are generally required to do these sorts of tasks.

Ideally you should evaluate the types of event handlers you will be implementing and grant only the necessary
permissions to the Alignak daemons user for executing the necessary system commands. You might want to try
using sudo to accomplish this.

Writing Event Handler Commands

Event handler commands will likely be shell or perl scripts, but they can be any type of executable that
can run from a command prompt (shell script, python, php, …).

At a minimum, the scripts should take the following macros as arguments:

	For services: $SERVICESTATE$, $SERVICESTATETYPE$, $SERVICEATTEMPT$

	For hosts: $HOSTSTATE$, $HOSTSTATETYPE$, $HOSTATTEMPT$

The scripts should examine the values of the arguments provided and run action based upon those values.
The best way to understand how event handlers work is to see some examples.

Service event handler example

The example below assumes that you are monitoring the “HTTP” server on the local machine and have
specified restart-httpd as the event handler command for the “HTTP” service definition.
Also, it assumes that you have set the max_check_attempts option for the service to be a value of 4
or greater (i.e. the service is checked 4 times before it is considered to have a real problem).

An abbreviated example service definition might look like this…

define service{
 host_name somehost
 service_description HTTP
 max_check_attempts 4
 event_handler restart-httpd
 ...
}

Once the service has been defined with an event handler, we must define that event handler as a command.
An example command definition for restart-httpd is shown below.
Notice the macros in the command line that I am passing to the event handler script - these are important!

define command{
 command_name restart-httpd
 command_line /usr/local/alignak/libexec/eventhandlers/restart-httpd $SERVICESTATE$ $SERVICESTATETYPE$ $SERVICEATTEMPT$
}

Now, let’s actually write the event handler script (this is the “/usr/local/alignak/libexec/eventhandlers/restart-httpd” script).

#!/bin/sh
#
Event handler script for restarting the web server on the local machine
#
Note: This script will only restart the web server if the service is
retried 3 times (in a "soft" state) or if the web service somehow
manages to fall into a "hard" error state.
#
What state is the HTTP service in?
case "$1" in
OK)
 # The service just came back up, so don't do anything...
 ;;
WARNING)
 # We don't really care about warning states, since the service is probably still running...
 ;;
UNKNOWN)
 # We don't know what might be causing an unknown error, so don't do anything...
 ;;
CRITICAL)
 # Aha! The HTTP service appears to have a problem - perhaps we should restart the server...
 # Is this a "soft" or a "hard" state?
 case "$2" in

 # We're in a "soft" state, meaning that Alignak is in the middle of retrying the
 # check before it turns into a "hard" state and contacts get notified...
 SOFT)

 # What check attempt are we on? We don't want to restart the web server on the first
 # check, because it may just be a fluke!
 case "$3" in

 # Wait until the check has been tried 3 times before restarting the web server.
 # If the check fails on the 4th time (after we restart the web server), the state
 # type will turn to "hard" and contacts will be notified of the problem.
 # Hopefully this will restart the web server successfully, so the 4th check will
 # result in a "soft" recovery. If that happens no one gets notified because we
 # fixed the problem!
 3)
 echo -n "Restarting HTTP service (3rd soft critical state)..."
 # Call the init script to restart the HTTPD server
 /etc/rc.d/init.d/httpd restart
 ;;
 esac
 ;;

 # The HTTP service somehow managed to turn into a hard error without getting fixed.
 # It should have been restarted by the code above, but for some reason it didn't.
 # Let's give it one last try, shall we?
 # Note: Contacts have already been notified of a problem with the service at this
 # point (unless you disabled notifications for this service)
 HARD)
 echo -n "Restarting HTTP service..."
 # Call the init script to restart the HTTPD server
 /etc/rc.d/init.d/httpd restart
 ;;
 esac
 ;;
 esac
exit 0

The sample script above will attempt to restart the web server on the local machine in two different conditions:

	After the service has been rechecked for the 3rd time and is in a SOFT CRITICAL state

	After the service first goes into a HARD CRITICAL state

The script should theoretically restart the web server and it will fix the problem before the service goes
into a HARD problem state, but we include a fallback case in the event it doesn’t succeed the first time.
It should be noted that the event handler will only be executed the first time that the service falls into
a HARD problem state. This prevents Alignak from continuously executing the script to restart the web server
if the service remains in a HARD problem state. You don’t want that. :-)

That’s all there is to it! Event handlers are pretty simple to write and implement, so give it a try and see what you can do.

Note

you may need to:
* disable event handlers during downtimes (either by setting no_event_handlers_during_downtimes=1, or
by checking $HOSTDOWNTIME$ and $SERVICEDOWNTIME$)
* make sure you want event handlers to be run even outside of the notification_period

Snapshots

Overview

Snapshots are on demand command launched during a specific time period and only when an host/service is in a specific state. This is useful, as an example, to export a quick-view/snapshot of an element when a problem happen (like a list of processes) …

Snapshots are commands attached to hosts and/or services. It’s not a good idea to enable them on all hosts and services as it will add a lot of load on your system :/

Snapshots are like event handlers except that they are launched periodically (snapshot_interval) since the targeted element is in one of the specified states (snapshot_criteria) during a specified time perio (snapshot_period).

They are launched from the reactionner daemon with the same properties (reactionner_tag) than the event handlers. The scheduler is grabbing the output and it will create a specific brok object (host_snapshot_brok or service_snapshot_brok) so that the brokers can be informed and notify specific modules.

Macros

One of the main features that make Alignak so flexible is the ability to use macros in command definitions. Macros allow you to reference information from hosts, services, and other sources in the commands.

Macro substitution - how macros work?

Before Alignak executes a command, it will replace any macro found in the command definition with its corresponding value. This macro substitution occurs for all types of commands that Alignak executes - host and service checks, notifications, event handlers, etc.

Some macros may themselves contain other macros. These include the $HOSTNOTES$, $HOSTNOTESURL$, $HOSTACTIONURL$, $SERVICENOTES$, $SERVICENOTESURL$, and $SERVICEACTIONURL$ macros.

Tip

If, you need to have the $ character in one of your command (and not referring to a macro), use $$ instead. Alignak will replace all $$ with a single $

Example 1: Host address macro

When you use host and service macros in command definitions, they refer to values for the host or service for which the command is being run. Let’s try an example. Assuming we are using a host definition and a check_ping command defined like this:

define host{
 host_name linuxbox
 address 192.168.1.2
 check_command check_ping
 ...
}

define command{
 command_name check_ping
 command_line /var/lib/alignak/libexec/check_ping -H $HOSTADDRESS$ -w 100.0,90% -c 200.0,60%
}

the expanded (eg. final) command line to be executed for the host’s check command would look like this:

/var/lib/alignak/libexec/check_ping -H 192.168.1.2 -w 100.0,90% -c 200.0,60%

Pretty simple, right? The beauty in this is that you can use a single command definition to check an unlimited number of hosts. Each host can be checked with the same command definition because each host’s address is automatically substituted in the command line before execution.

Example 2: Command argument macros

You can pass arguments to commands as well, which is quite handy if you’d like to keep your command definitions rather generic. Arguments are specified in the object (i.e. host or service) definition, by separating them from the command name with exclamation points (!) like so:

define service{
 host_name linuxbox
 service_description PING
 check_command check_ping!200.0,80%!400.0,40%
 ...
}

In the example above, the service check command has two arguments (which can be referenced with $ARGn$ macros). The $ARG1$ macro will be 200.0,80% and $ARG2$ will be 400.0,40% (both without quotes). Assuming we are using the host definition given earlier and a check_ping command defined like this:

define command{
 command_name check_ping
 command_line /var/lib/alignak/libexec/check_ping -H $HOSTADDRESS$ -w $ARG1$ -c $ARG2$
}

the expanded (eg. final) command line to be executed for the service’s check command would look like this:

/var/lib/alignak/libexec/check_ping -H 192.168.1.2 -w 200.0,40% -c 400.0,80%

If you need to pass bang (!) characters in your command arguments, you can do so by escaping them with a backslash (). If you need to include backslashes in your command arguments, they should also be escaped with a backslash (\).

On-demand macros

Usually when you use host and service macros in command definitions, they refer to values for the host or service for which the command is being run. For instance, if a host check command is being executed for a host named linuxbox, all the standard host macros (see later) will refer to values for that host (linuxbox).

If you would like to reference values for another host or service in a command (for which the command is not being run), you can use what are called on-demand macros. On-demand macros look like normal macros, except for the fact that they contain an identifier for the host or service from which they should get their value. Here’s the basic format for on-demand macros:

	$HOSTMACRONAME:host_name$

	$SERVICEMACRONAME:host_name:service_description$

Replace HOSTMACRONAME and SERVICEMACRONAME with the name of one of the standard host of service macros (see later).

Note that the macro name is separated from the host or service identifier by a colon (:). For on-demand service macros, the service identifier consists of both a host name and a service description - these are separated by a colon (:) as well.

On-demand service macros can contain an empty host name field. In this case the name of the host associated with the service will automatically be used.

Examples of on-demand host and service macros follow:

$HOSTDOWNTIME:myhost$ // On-demand host macro
$SERVICESTATEID:server:database$ // On-demand service macro
$SERVICESTATEID::CPU Load$ // On-demand service macro with blank host name field

On-demand macros are also available for hostgroup, servicegroup, contact, and contactgroup macros. For example:

$CONTACTEMAIL:john$ // On-demand contact macro
$CONTACTGROUPMEMBERS:linux-admins$ // On-demand contactgroup macro
$HOSTGROUPALIAS:linux-servers$ // On-demand hostgroup macro
$SERVICEGROUPALIAS:DNS-Cluster$ // On-demand servicegroup macro

On-demand group macros

You can obtain the values of a macro across all contacts, hosts, or services in a specific group by using a special format for your on-demand macro declaration. You do this by referencing a specific host group, service group, or contact group name in an on-demand macro, like so:

	$HOSTMACRONAME:hostgroup_name:delimiter$

	$SERVICEMACRONAME:servicegroup_name:delimiter$

	$CONTACTMACRONAME:contactgroup_name:delimiter$

Replace HOSTMACRONAME, SERVICEMACRONAME, and CONTACTMACRONAME with the name of one of the standard host, service, or contact macros (see later). The delimiter you specify is used to separate macro values for each group member.

As an example, $HOSTSTATEID:hg1:,$ will be replaced with a comma-separated list of host state ids for hosts that are members of the hg1 hostgroup.

Custom variable macros

Any custom object variables that you define in host, service, or contact definitions are also available as macros. Custom variable macros are named as follows:

	$_HOSTvarname$

	$_SERVICEvarname$

	$_CONTACTvarname$

The following host definition with a custom variable called _MACADDRESS

define host{
 host_name linuxbox
 address 192.168.1.1

 _MACADDRESS 00:01:02:03:04:05
 ...
}

The _MACADDRESS custom variable is available in a macro called $_HOSTMACADDRESS$.

More information on custom object variables and how they can be used in macros can be found here.

Macro cleansing

Some macros are stripped of potentially dangerous shell metacharacters before being substituted into commands to be executed. Which characters are stripped from the macros depends on the setting of the illegal_macro_output_chars directive that you can define in the monitoring configuration file. The following macros are stripped of potentially dangerous characters:

	$HOSTOUTPUT$

	$LONGHOSTOUTPUT$

	$HOSTPERFDATA$

	$HOSTACKAUTHOR$

	$HOSTACKCOMMENT$

	$SERVICEOUTPUT$

	$LONGSERVICEOUTPUT$

	$SERVICEPERFDATA$

	$SERVICEACKAUTHOR$

	$SERVICEACKCOMMENT$

Macros as environment variables

Most macros are made available as environment variables for easy reference by scripts or commands that are executed by Alignak. For purposes of security and sanity, $USERn$ and on-demand host and service macros are not made available as environment variables.

Environment variables that contain standard macros are named the same as their corresponding macro names (listed here), with NAGIOS_ prepended to their names. For example, the $HOSTNAME$ macro would be available as an environment variable named NAGIOS_HOSTNAME.

Available macros

A list of all the macros that are available in Alignak, as well as a chart of when they can be used, can be found here.

External Commands

Introduction

Alignak can process commands from external applications to alter various aspects of its monitoring functions based on the commands it receives.

Enabling external commands

[image: ../_images/externalcommands.png]
In order to have Alignak process external commands, make sure you enabled external command checking with the check_external_commands parameter in the monitoring configuration file.

Note that the Arbiter is able to manage the external commands by itself and that it is not necessary to use an external module… but you may install an external commands capable module near the Alignak receiver daemon. This will be a more interesting configuration to balance the commands load if you are using many passive checks!

An external commands capable module implements a solution to provide the external commands to Alignak.

The external commands named pipe module allows an external application residing on the same host as Alignak to simply write the external commands directly to a named pipe file as outlined above. However, applications on remote hosts can’t do this so easily.

The NSCA collector module collects the passive checks sent by the send_nsca command or from an NSCA agent (eg. Windows NSClient ++). This module only manages the external commands for receiving the passive checks.

The Web services module exposes a Web service (POST /alignak_command) that allows to notify external commands to the Alignak framework.

Using external commands

External commands can be used to accomplish a lot of different things while Alignak is running. Example of what can be done include temporarily disabling notifications for services and hosts, temporarily disabling service checks, forcing immediate service checks, adding comments to hosts and services, etc.

Command format

External commands have the following format:

[<timestamp>] COMMAND;command_arguments

where timestamp is the time (in “time_t” format) that the external application submitted the external command. The values for the COMMAND and command_arguments will depend on which command is being submitted to Alignak.

External commands list

The external commands list annex contains a description of each external command.

Warning

all those external commands are not implemented in Alignak! This list contains all the commonly known external commands and keep you informed if the command is implemented or not!

Alignak features

Alignak has some rich features:

	Monitoring log
	Events dictionary

	Web service API
	Introduction

	Alignak daemons API

	Alignak overall state

	Alignak detailed status

	Alignak live synthesis

	Alignak known problems

	Alignak objects

	Alignak external commands

	Satellites list

	Satellites configuration

	Alignak configuration reload

	Alignak Statistics
	Getting monitoring statistics from Alignak

	Getting inner metrics from Alignak

	Realms
	Introduction

	Realms in few words

	Realms are not poller_tags!

	Sub realms

	Example of realm usage

	Realms configuration

	Monitoring a DMZ
	Tag your hosts and pollers for being “in the DMZ”

	Configuration part

	Business rules
	View your infrastructure from a business perspective

	How to define Business Rules?

	The OR rule

	The AND rule

	The NOT rule

	With “need at least X elements” clusters

	Manage degraded status

	Grouping expression expansion

	Smart notifications

	Consolidated services

	Macro expansion

	Business rule check output

	Notifications and escalations
	Escalations

	Definition and sample

	Lower contact groups

	Multiple escalations levels

	Overlapping Escalation Ranges

	Recovery Notifications

	Short escalations and long notification intervals

	Time Period Restrictions

	State Restrictions

	Legacy definitions: host_escalations and service_escalations based on notification number

	Time period modulations
	Macro modulations

	Businessimpact modulations

	Check modulations

	Problems and impacts correlation management
	What is this correlation ?

	How to enable it?

	Dynamic Business Impact

	Cached Checks
	Introduction

	For on-demand checks only

	How caching works

	What it really means

	Configuration variables

	Integrated protocols
	NRPE booster module

	SNMP booster module

	Internal Checks
	Introduction

	Internal hosts check command

	Internal services check command

	Services state changes

	Inner modules
	Introduction

	Retention module

	Metrics module

The next chapters explain those specific features.

Monitoring log

The monitoring log is what Alignak is made for!

This log contains all the monitoring events that Alignak is able to raise:

	active host/service checks

	passive host/service checks

	alerts

	notifications

	acknowledgements

	downtimes

	comments

As soon as one of this event is raised by Alignak, it is stored locally by the originating daemon. The arbiter periodically collects all the events near all its satellites and raises the log with the collected data: creation date, log level and message.

As an example:

[2018-04-22 08:52:49] INFO: TIMEPERIOD TRANSITION: 24x7;-1;1
[2018-04-22 08:52:49] INFO: TIMEPERIOD TRANSITION: ipm_fdj_hours;-1;1
[2018-04-22 08:52:50] INFO: RETENTION SAVE: scheduler-master scheduler
[2018-04-22 08:59:59] WARNING: SERVICE ALERT: es3;Memory;WARNING;HARD;3;Memory WARNING - 89.5% (15373434880 kB) used
[2018-04-22 08:59:59] WARNING: SERVICE NOTIFICATION: ipm-fdj;es3;Memory;WARNING;notify-service-by-email-html;Memory WARNING - 89.5% (15373434880 kB) used
[2018-04-22 08:59:59] WARNING: SERVICE NOTIFICATION: Bee-notifier;es3;Memory;WARNING;notify-service-by-email-html;Memory WARNING - 89.5% (15373434880 kB) used
[2018-04-22 08:59:59] WARNING: SERVICE NOTIFICATION: Bee-notifier;es3;Memory;WARNING;notify-service-to-Bee;Memory WARNING - 89.5% (15373434880 kB) used
[2018-04-22 09:00:41] WARNING: CONFIGURATION RELOAD
[2018-04-22 09:01:03] INFO: TIMEPERIOD TRANSITION: ipm_fdj_hours;-1;1
[2018-04-22 09:01:03] INFO: TIMEPERIOD TRANSITION: 24x7;-1;1
[2018-04-22 09:01:05] INFO: RETENTION SAVE: scheduler-master scheduler
[2018-04-22 09:01:10] INFO: RETENTION LOAD: scheduler-master scheduler
...
...
...
[2018-04-22 16:38:51] INFO: EXTERNAL COMMAND: [1524400607] ACKNOWLEDGE_SVC_PROBLEM;rsync;Up-to-date;2;1;1;admin;Acknowledge requested from WebUI
[2018-04-22 16:38:51] INFO: SERVICE ACKNOWLEDGE ALERT: rsync;Up-to-date;STARTED; Service problem has been acknowledged
[2018-04-22 16:38:51] INFO: EXTERNAL COMMAND: [1524400614] ACKNOWLEDGE_SVC_PROBLEM;mysql_slave;Up-to-date;2;1;1;admin;Acknowledge requested from WebUI
[2018-04-22 16:38:51] INFO: SERVICE ACKNOWLEDGE ALERT: mysql_slave;Up-to-date;STARTED; Service problem has been acknowledged
[2018-04-22 16:38:51] INFO: EXTERNAL COMMAND: [1524400624] ACKNOWLEDGE_SVC_PROBLEM;es1;Up-to-date;2;1;1;admin;Acknowledge requested from WebUI
[2018-04-22 16:38:51] INFO: SERVICE ACKNOWLEDGE ALERT: es1;Up-to-date;STARTED; Service problem has been acknowledged
[2018-04-22 16:38:52] INFO: SERVICE NOTIFICATION: Bee-notifier;mysql_slave;Up-to-date;ACKNOWLEDGEMENT (CRITICAL);notify-service-by-email-html;CHECKPKGAUDIT CRITICAL - found 2 vulnerable(s) pkg(s) in : mysql_slave
[2018-04-22 16:38:52] INFO: SERVICE NOTIFICATION: Bee-notifier;mysql_slave;Up-to-date;ACKNOWLEDGEMENT (CRITICAL);notify-service-to-Bee;CHECKPKGAUDIT CRITICAL - found 2 vulnerable(s) pkg(s) in : mysql_slave
[2018-04-22 16:38:52] INFO: SERVICE NOTIFICATION: ipm-fdj;mysql_slave;Up-to-date;ACKNOWLEDGEMENT (CRITICAL);notify-service-by-email-html;CHECKPKGAUDIT CRITICAL - found 2 vulnerable(s) pkg(s) in : mysql_slave
[2018-04-22 16:38:52] INFO: SERVICE NOTIFICATION: Bee-notifier;rsync;Up-to-date;ACKNOWLEDGEMENT (CRITICAL);notify-service-by-email-html;CHECKPKGAUDIT CRITICAL - found 2 vulnerable(s) pkg(s) in : rsync
[2018-04-22 16:38:52] INFO: SERVICE NOTIFICATION: Bee-notifier;rsync;Up-to-date;ACKNOWLEDGEMENT (CRITICAL);notify-service-to-Bee;CHECKPKGAUDIT CRITICAL - found 2 vulnerable(s) pkg(s) in : rsync
[2018-04-22 16:38:52] INFO: SERVICE NOTIFICATION: ipm-fdj;rsync;Up-to-date;ACKNOWLEDGEMENT (CRITICAL);notify-service-by-email-html;CHECKPKGAUDIT CRITICAL - found 2 vulnerable(s) pkg(s) in : rsync
[2018-04-22 16:38:52] INFO: SERVICE NOTIFICATION: Bee-notifier;es1;Up-to-date;ACKNOWLEDGEMENT (CRITICAL);notify-service-by-email-html;CHECKPKGAUDIT CRITICAL - found 2 vulnerable(s) pkg(s) in : es1
[2018-04-22 16:38:52] INFO: SERVICE NOTIFICATION: Bee-notifier;es1;Up-to-date;ACKNOWLEDGEMENT (CRITICAL);notify-service-to-Bee;CHECKPKGAUDIT CRITICAL - found 2 vulnerable(s) pkg(s) in : es1
[2018-04-22 16:38:52] INFO: SERVICE NOTIFICATION: ipm-fdj;es1;Up-to-date;ACKNOWLEDGEMENT (CRITICAL);notify-service-by-email-html;CHECKPKGAUDIT CRITICAL - found 2 vulnerable(s) pkg(s) in : es1

Note

The monitoring log file(s) can be easily parsed thanks to parsing tools like Logstash… see the project repo in the contrib directory for more information about this.

Events dictionary

Several types of events may be present in the log:

	informational events

	warning and error events

Warning and error events are raised when received commands are not correctly parsed:

ERROR: Malformed command: command
ERROR: Command 'command' is not recognized, sorry
ERROR: Arguments are not correct for the command: command
WARNING: command: this command is not implemented!

Some information events are raised:

INFO: RESTART: output
INFO: RELOAD: output
INFO: CONFIGURATION RELOAD: duration
INFO: RETENTION LOAD: scheduler
INFO: RETENTION SAVE: scheduler
INFO: TIMEPERIOD TRANSITION: tp;from;to

The received external commands are logged (if log_external_commands is set):

INFO: EXTERNAL COMMAND: [timestamp] command

Initial states are logged on restart or configuration reload (if log_initial_state is set):

INFO: CURRENT HOST STATE: host;state;state_type;current_attempt;output
INFO: CURRENT SERVICE STATE: host;service;state;state_type;current_attempt;output

Active checks (if log_active_checks is set):

INFO: ACTIVE HOST CHECK: host;status;output;long_output;perf_data
INFO: ACTIVE SERVICE CHECK: host;service;status;output;long_output;perf_data

Passive checks (if log_passive_checks is set):

INFO: PASSIVE HOST CHECK: host;status;output;long_output;perf_data
INFO: PASSIVE SERVICE CHECK: host;service;status;output;long_output;perf_data

Comments:

INFO: HOST COMMENT: host;author;comment
INFO: SERVICE COMMENT: host;service;author;comment
WARNING: DEL_HOST_COMMENT: comment id: xxxxxxx does not exist and cannot be deleted.
WARNING: DEL_SVC_COMMENT: comment id: xxxxxxx does not exist and cannot be deleted.

Alerts (always logged):

level: HOST COMMENT: host;state;state_type;current_attempt;output
level: SERVICE ALERT: host;service;state;state_type;current_attempt;output
level: SERVICE FLAPPING ALERT: host;service;STARTED; Service appears to have started flapping (ratio% change >= threshold% threshold)
level: SERVICE FLAPPING ALERT: host;service;STOPPED; Service appears to have stopped flapping (ratio% change >= threshold% threshold)

Acknowledges (always logged):

info: HOST ACKNOWLEDGE ALERT: host;STARTED; Host problem has been acknowledged
info: HOST ACKNOWLEDGE ALERT: host;EXPIRED; Host problem acknowledge expired
info: SERVICE ACKNOWLEDGE ALERT: host;service;STARTED; Service problem has been acknowledged
info: SERVICE ACKNOWLEDGE ALERT: host;service;EXPIRED; Service problem acknowledge expired

Event handlers (if log_event_handlers is set):

level: HOST EVENT HANDLER: host;state;state_type;current_attempt;command
level: SERVICE EVENT HANDLER: host;service;state;state_type;current_attempt;command

Snapshots (if log_snapshots is set):

level: HOST SNAPSHOT: host;state;state_type;current_attempt;command
level: SERVICE SNAPSHOT: host;service;state;state_type;current_attempt;command

Notifications (if log_notifications is set):

level: HOST NOTIFICATION: host;state;command;output
level: SERVICE NOTIFICATION: host;service;state;command;output

Downtimes (always logged):

INFO: HOST DOWNTIME ALERT: host;STARTED; Host has entered a period of scheduled downtime
INFO: HOST DOWNTIME ALERT: host;STOPPED; Host has exited from a period of scheduled downtime
INFO: HOST DOWNTIME ALERT: host;CANCELLED; Scheduled downtime for host has been cancelled.

INFO: SERVICE DOWNTIME ALERT: host;service;STARTED; Service has entered a period of scheduled downtime
INFO: SERVICE DOWNTIME ALERT: host;service;STOPPED; Service has exited from a period of scheduled downtime
INFO: SERVICE DOWNTIME ALERT: host;service;CANCELLED; Scheduled downtime for service has been cancelled.

INFO: CONTACT DOWNTIME ALERT: contact;STARTED; Contact has entered a period of scheduled downtime
INFO: CONTACT DOWNTIME ALERT: contact;STOPPED; Contact has exited from a period of scheduled downtime
INFO: CONTACT DOWNTIME ALERT: contact;CANCELLED; Scheduled downtime for contact has been cancelled.

WARNING: DEL_CONTACT_DOWNTIME: downtime id: xxxxxxx does not exist and cannot be deleted.
WARNING: DEL_HOST_DOWNTIME: downtime id: xxxxxxx does not exist and cannot be deleted.
WARNING: DEL_SVC_DOWNTIME: downtime id: xxxxxxx does not exist and cannot be deleted.

Web service API

Introduction

All the Alignak daemons communicate thanks to a Web based API, but the main interesting services are exposed by the Alignak arbiter.

The services exposed by the Arbiter:

	get Alignak status information

	get the list of the currently known problems

	get the alignak events log

	force configuration reload

	get the daemons list

	get the Alignak instance overall state

	get the Alignak daemons state

	…

The following chapters detail the main services.

Note

all the daemons implement a /api endpoint that returns many information about the exposed services and their parameters.

Alignak daemons API

Each daemon has its own address:port it listens to. As per defaut, the configuration is:

	scheduler: http://127.0.0.1:7768

	reactionner: http://127.0.0.1:7769

	arbiter: http://127.0.0.1:7770

	poller: http://127.0.0.1:7771

	broker: http://127.0.0.1:7772

	receiver: http://127.0.0.1:7773

A request on the daemon / endpoint returns the daemon identity in a JSON object.

{
 "type": "arbiter",
 "name": "arbiter-master",
 "alignak": "My Alignak",
 "version": "1.1.0",
 "start_time": 1522385883,
 "running_id": 1522385883.123456
}

A request on the daemon /api endpoint returns an object containing some information about the daemon available services:

	doc for a global API information

	api which is a list of the available API endpoints

For each API endpoint object in the list, the following atributes are available:

	endpoint contains the endpoint to use with the daemon URL

	doc is the documentation of the endpoint

	args is the list and format of the attributes to provide in the request

The exhaustive daemons API is listed on this page which is built automatically from the source code.

Alignak overall state

The /status endpoint returns information about the overall Alignak status.

The livestate is a synthesis of all the daemons state; state is up if every thing is ok. The output and long_output contain information about the arbiter satellites status.
The services contains the same live state information for each satellite involved in the Alignak configuration.

If the details parameter is used in the URL, a monitoring_objects field contain a list of all the monitoring objects (hosts, services, …) including their count and names.

The exhaustive information returned by this endpoint is described on this page.

Alignak detailed status

Each daemon implements a /stats endpoint that returns many information about the daemon configuration and live state.

The load is an approximate information about the daemon work load.
The livestate is a synthesis of all the daemons state; state is 0 for Ok, 1 for Warning and 2 for
The daemons_states contains the configuration and live state of each satellite managed by the arbiter.

If the details parameter is used in the URL, a monitoring_objects field contain a list of all the monitoring objects (hosts, services, …) including their count and names.

http://daemon:port/stats returns information about the daemon and Alignak. The statistics information are depending upon the daemon type.

As an example, for a reactionner daemon:

{
 "load": 0.9442897365918568,
 "program_start": 1522386196.912419,
 "name": "reactionner-master",
 "alignak": "My Alignak",
 "modules": {"internal": {}, "external": {}},
 "metrics": [
 "reactionner.reactionner-master.external-commands.queue 0 1522386203"
],
 "version": "1.1.0",
 "spare": false,
 "type": "reactionner",
 "counters": {
 "broks": 0,
 "arbiters": 0,
 "schedulers": 1,
 "workers": 3,
 "modules": 0,
 "external-commands": 0
 }
}

The exhaustive information returned by each daemons is described on this page.

Alignak live synthesis

The /livesynthesis endpoint returns the overall Alignak live synthesis.

	This will return an object containing the properties of the get_id, plus a livesynthesis object which contains 2 properties for each known scheduler:

	
	_freshness, which is the timestamp when the provided data were fetched

	livesynthesis, which is an object with the scheduler live synthesis.

An _overall fake scheduler is also contained in the schedulers list to provide the cumulated live synthesis. Before sending the results, the arbiter sums-up all its schedulers live synthesis counters in the _overall live synthesis.

A real example of data returned by this endpoint is described on this page.

As an example:

{
 ...

 "livesynthesis": {
 "_overall": {
 "_freshness": 1528947526,
 "livesynthesis": {
 "hosts_total": 11,
 "hosts_not_monitored": 0,
 "hosts_up_hard": 11,
 "hosts_up_soft": 0,
 "hosts_down_hard": 0,
 "hosts_down_soft": 0,
 "hosts_unreachable_hard": 0,
 "hosts_unreachable_soft": 0,
 "hosts_flapping": 0,
 "hosts_acknowledged": 0,
 "hosts_in_downtime": 0,
 "services_total": 100,
 "services_not_monitored": 0,
 "services_ok_hard": 70,
 "services_ok_soft": 0,
 "services_warning_hard": 4,
 "services_warning_soft": 6,
 "services_critical_hard": 6,
 "services_critical_soft": 4,
 "services_unknown_hard": 3,
 "services_unknown_soft": 7,
 "services_unreachable_hard": 0,
 "services_unreachable_soft": 0,
 "services_flapping": 0,
 "services_acknowledged": 0,
 "services_in_downtime": 0
 }
 }
 },
 "scheduler-master": {
 "_freshness": 1528947522,
 "livesynthesis": {
 "hosts_total": 11,
 "hosts_not_monitored": 0,
 "hosts_up_hard": 11,
 "hosts_up_soft": 0,
 "hosts_down_hard": 0,
 "hosts_down_soft": 0,
 "hosts_unreachable_hard": 0,
 "hosts_unreachable_soft": 0,
 "hosts_flapping": 0,
 "hosts_acknowledged": 0,
 "hosts_in_downtime": 0,
 "services_total": 100,
 "services_not_monitored": 0,
 "services_ok_hard": 70,
 "services_ok_soft": 0,
 "services_warning_hard": 4,
 "services_warning_soft": 6,
 "services_critical_hard": 6,
 "services_critical_soft": 4,
 "services_unknown_hard": 3,
 "services_unknown_soft": 7,
 "services_unreachable_hard": 0,
 "services_unreachable_soft": 0,
 "services_flapping": 0,
 "services_acknowledged": 0,
 "services_in_downtime": 0
 }
 }
 }
 }
}

Alignak known problems

The /monitoring_problems (or /problems) endpoint returns the overall Alignak known problems list.

This will return an object containing the properties of the Alignak arbiter identity, and a _freshness property, plus a problems object which contains the list of known problems for each scheduler.

The _freshness is the timestamp when the provided data were fetched from the schedulers.

Each problem is referenced by an uuid and a series of attributes explaining which host/service is concerned and why it is a problem.

Note

a problem is an host (or service) which is not in an UP (or OK) HARD state. For more information, see this page.

A real example of data returned by this endpoint is described on this page.

As an example:

{
 _freshness: 1532452260,
 version: "1.1.0rc8",
 name: "arbiter-master",
 alignak: "My Alignak",
 start_time: 1532451465,
 type: "arbiter",
 running_id: "1532451465.77049649"
 problems: {
 scheduler-master-3: {
 problems: {
 9c5de32f-2e83-457f-9ab1-fbda77e993a9: {
 last_state: "DOWN",
 service: null,
 last_state_type: "HARD",
 last_state_update: 1532452229,
 last_hard_state: "DOWN",
 last_hard_state_change: 1532451509,
 last_state_change: 1532451509,
 state: "DOWN",
 state_type: "HARD",
 host: "host_2",
 output: "I am always Down"
 }
 }
 },
 scheduler-master-2: {
 problems: {
 856c5f44-93fd-4909-b051-444d17f3a272: {
 last_state: "WARNING",
 service: "BR_Simple_And",
 last_state_type: "HARD",
 last_state_update: 1532452232,
 last_hard_state: "WARNING",
 last_hard_state_change: 1532451932,
 last_state_change: 1532451692,
 state: "WARNING",
 state_type: "HARD",
 host: "BR_host",
 output: ""
 },
 494f06c6-8b77-40c4-b6ce-b0f746580270: {
 last_state: "WARNING",
 service: "dummy_warning",
 last_state_type: "HARD",
 last_state_update: 1532452234,
 last_hard_state: "WARNING",
 last_hard_state_change: 1532451634,
 last_state_change: 1532451574,
 state: "WARNING",
 state_type: "HARD",
 host: "host_0",
 output: "host_0-dummy_warning-1"
 },
 d3bb6510-d02b-412a-87a2-1aa4344c21c5: {
 last_state: "WARNING",
 service: "dummy_warning",
 last_state_type: "HARD",
 last_state_update: 1532452232,
 last_hard_state: "WARNING",
 last_hard_state_change: 1532451572,
 last_state_change: 1532451512,
 state: "WARNING",
 state_type: "HARD",
 host: "BR_host",
 output: "BR_host-dummy_warning-1"
 },
 }
 },
 ...
 ...

 }
}

Alignak objects

It may be interesting to know exactly what Alignak knows about a monitored object. This is what the /object endpoint is made for…

	This endpoint will return the full JSON dump of the requested object. For this, you need to provide:

	
	the object type (eg. hostgroup, host, realm, …)

	the object name (or uuid)

Note

that there is not any documentation (except the source code one) for all the attributes you will get with this API… :/ At minimum you will find all the configuration properties that can be provided in the object configuration plus the inner Alignak peoperties …

As an example, to get the list of the hosts groups:

 GET ``http://daemon:port/object/hostgroup``
 {
 "__sys_python_module__": "alignak.objects.hostgroup.Hostgroups",
 "content": {
 "4a0f49c5-3ced-4bd9-b184-287aa24f07e9": {
 "name": "", "notes_url": "", "imported_from": "unknown", "use": [], "action_url": "", "members": [], "conf_is_correct": true, "alias": "All Router Hosts", "register": true, "tags": [], "configuration_warnings": [], "realm": "", "hostgroup_members": [], "configuration_errors": [], "downtimes": {}, "uuid": "4a0f49c5-3ced-4bd9-b184-287aa24f07e9", "hostgroup_name": "router", "unknown_members": [], "definition_order": 100, "notes": ""
 },
 "767c5cb0-00dc-4792-a1ff-2d386480747f": {"name": "", "notes_url": "", "imported_from": "unknown", "use": [], "action_url": "", "members": ["256ef0c0-8b3c-4418-a34b-946d577ddb45", "18d89da0-5e7d-4c73-a3b4-4ed80e99abd5", "8e03762e-18c9-4573-ade7-72e234bfe4d5", "8a544de0-7032-462b-8ac9-641bef1ea4e8", "b713abeb-f167-48ce-b9c2-ace78acca8ba", "7d0be735-f706-4a7d-be69-cae17593d890", "e3086789-833d-4e06-a102-80049895241e", "475bbf42-433d-4a3d-95de-8f0a616720c1", "b51cdb58-e2ff-48b5-b0cf-1c9471e15cf0", "b565b005-a454-4f0d-bd99-12f5f49b78c5", "64ea4e7b-662d-4a4f-ac3f-288f055b1811"], "conf_is_correct": true, "alias": "All Hosts", "register": true, "tags": [], "configuration_warnings": [], "realm": "", "hostgroup_members": [], "configuration_errors": [], "downtimes": {}, "uuid": "767c5cb0-00dc-4792-a1ff-2d386480747f", "hostgroup_name": "allhosts", "unknown_members": [], "definition_order": 100, "notes": ""
 },
 "dc48ba3f-f22c-46f6-b7b0-9d15cd499314": {
 "name": "", "notes_url": "", "imported_from": "unknown", "use": [], "action_url": "", "members": ["256ef0c0-8b3c-4418-a34b-946d577ddb45", "f26c3694-4738-4eac-a1be-97e4e92da23c"], "conf_is_correct": true, "alias": "monitoring_servers", "register": true, "tags": [], "configuration_warnings": [], "realm": "", "hostgroup_members": [], "configuration_errors": [], "downtimes": {}, "uuid": "dc48ba3f-f22c-46f6-b7b0-9d15cd499314", "hostgroup_name": "monitoring_servers", "unknown_members": [], "definition_order": 100, "notes": ""
 }
 }
}

As an example, to get the hostgroup named allhosts:

GET ``http://daemon:port/object/hostgroup/all``
{
 "__sys_python_module__": "alignak.objects.hostgroup.Hostgroup",
 "content": {
 "imported_from": "unknown", "hostgroup_name": "allhosts", "use": [], "uuid": "f64590c3-1c40-4c7a-ae8c-968ca53a4231", "alias": "All Hosts", "unknown_members": [], "downtimes": {}, "conf_is_correct": true, "configuration_warnings": [], "action_url": "", "members": ["390d944b-2ee2-41ed-b15b-65d51c78012c", "cefa6c8c-0c47-45ee-8b18-79809884c52f", "42fee4e4-08b3-4fdb-9aee-a8e1798c1c9c", "1d1d46e7-6f43-44de-91dd-ceef2ea3c0ac", "32abdd11-07f8-421b-af2d-eab0c0e6ea26", "2f9bbf60-a956-4445-aa4b-36ffa1de0be5", "67a346ce-32a2-4b38-9ec4-bb64d771c418", "9229341e-4421-46d2-bc6b-ccb906824f1c", "e35afdb8-6207-43ef-8013-e972d27878c6", "4128a394-9479-4c3f-b23a-8fee060c7704", "0c0c8c87-93ec-4934-b1da-30023855475a"], "configuration_errors": [], "notes_url": "", "hostgroup_members": [], "name": "", "notes": "", "definition_order": 100, "tags": [], "register": true, "realm": ""
 }
}

Alignak external commands

Some external commands can be notified to make Alignak change its behavior. More information on external commands can be found here.

POSTing on the /command endpoint allows to request the execution of an external command.

Allowed parameters are:

	command: mandatory parameter containing the whole command line or only the command name

	timestamp: optional parameter containing the timestamp. If not present, the current timestamp is added in the command line

	element: the targeted element that will be appended after the command name (command). If element contains a ‘/’ character it is split to make an host and service.

	host, service or user: the targeted host, service or user. Takes precedence over the element to target a specific element

	parameters: the parameter that will be appended after all the arguments

In case of any error, this service returns an object containing some properties:

	‘_status’: ‘ERR’ because of the error

	_message: some more explanations about the error

The _status field is ‘OK’ with an according _message to explain what the Arbiter will do depending upon the notification. The command property contains the formatted external command.

Satellites list

The /satellites_list returns the list of each satellites grouped by daemon type.

As an example:

{
 "reactionner": ["reactionner-master"],
 "broker": ["broker-master"],
 "arbiter": ["arbiter-master"],
 "scheduler": ["scheduler-master"],
 "receiver": ["receiver-master"],
 "poller": ["poller-master"]
}

Satellites configuration

The /satellites_configuration returns the list of each satellites grouped by daemon type. For each satellite, all its configuration is included.

As an example:

{'scheduler': ['Scheduler1']},
{'poller': ['Poller1', 'Poller2']}

Alignak configuration reload

If you change something in the monitored configuration (eg. add a new host, change a service parameter, …) it is not necessary to stop and start all the Alignak processes. ou simply need to inform Alignak that something changed…

POSTing on the /configuration_reload endpoint provokes a configuration reload by the arbiter. The arbiter reloads its configuration and all the daemons receive this new configuration.

POSTing on the /backend_notification endpoint with an event and some parameters may also provoke a configuration reload.

Note

the /backend_notification is used by the Alignak backend. TYou would rather use the /configuration_reload service to provoke a reload except if you need to specify the reaload reason to the Alignak arbiter.

The event data is an event notification parameter.
The parameters data is only a text string that append information to the event.

As of now, the Arbiter will only log the request and provoke a configuration reload if event is creation or deletion.

Alignak Statistics

Getting monitoring statistics from Alignak

Alignak daemons have an HTTP JSON API that allows to get information about the daemons status. Especially, the arbiter daemon has an endpoint providing many useful data to be aware of the global Alignak framework status.

Note

This part of the documentation is still to be improved. Many information exist that are not yet enough documented !

Thanks to collectd [https://collectd.org/], some metrics can be easily collected and provided to a graphite database. Then a smart Grafana [https://grafana.com/] dashboard allows to have a nice interface to monitor your Alignak instance :)

Tip

all the necessary information to implement this feature on your configuration is available in the project repository contrib/collectd directory.

Screen captures:

[image: ../_images/grafana-alignak-collectd-1.png]
[image: ../_images/grafana-alignak-collectd-2.png]

Getting inner metrics from Alignak

Alignak daemons are logging some internal metrics that may be notified to a StatsD or Graphite server. These metrics are mainly intended to know everything about the internal Alignak depths… most of them are intended to expert eyes but the provided information are a bit explained thanks to smart Grafana dashboards.

To activate the metrics notification to a StatsD or Graphite server, see this part of the Alignak configuration.

Some snvironment variables allow to configure the statistics sending.

Grafana

Thanks to collectd [https://collectd.org/], some metrics can be easily collected and provided to a graphite database. Then a smart Grafana [https://grafana.com/] dashboard allows to have a nice interface to monitor your Alignak instance :)

Tip

all the necessary information to implement this feature on your configuration is available in the project repository contrib/grafana directory.

Statistics dictionary

NOTE: this list needs to be updated according to some recent modifications in the scheduler daemon statistics. There are much more than the counters listed here under…

Alignak daemons statistics dictionary:

	
	all daemons:

	
	loop-count - current loop index count

	loop-turn (timer) - duration spent in the loop processing of the daemon

	run-duration - duration spent since the daemon start

	sleep-time (timer) - time slept during the current loop

	
	hooks:

	
	tick (timer)

	hook_name.module_name (timer)

	
	arbiter:

	
	
	configuration reading:

	
	configuration.loading (timer) - duration spent to load the configuration

	configuration.spliting (timer) - duration spent to load and split the configuration

	configuration.available (timer) - duration spent before the configuration is fully available for dispatch

	
	configuration dispatch:

	
	prepare-dispatch (timer) - duration to check the configuration dispatching

	dispatch (timer) - duration to dispatch the configuration to the daemons

	check-dispatch (timer) - duration to check that the configuration is correctly

dispatched

	check-alive (timer) - duration to check that Alignak daemons are alive

	check-status (timer) - duration to get Alignak daemons status

	
	hooks:

	
	read-configuration (timer): all the modules having a configuration to provide

	
	events:

	
	events (counter)

	broks.added (counter)

	broks.pushed.count (counter)

	broks.pushed.time (timer)

	broks.get-initial (timer): get initial broks from the satellites

	external-commands.added (counter)

	get-objects-from-queues (timer): time to get objects from our external modules

	
	scheduler:

	
	
	configured objects count (gauge)

	
	configuration.hosts

	configuration.services

	configuration.hostgroups

	configuration.servicegroups

	configuration.contacts

	configuration.contactgroups

	configuration.timeperiods

	configuration.commands

	configuration.notificationways

	configuration.escalations

	
	retention objects count (gauge)

	
	retention.hosts

	retention.services

	
	dropped items, on too much load, the scheduler may drop some items

	
	activity.broks_dropped: dropped broks

	activity.checks_dropped: checks dropped

	activity.actions_dropped: actions dropped

	
	scheduler activity (gauge)

	
	activity.*, checks, broks, results, …

	first_scheduling (timer) - for the first scheduling on scheduler start

	push_actions_to_passives_satellites (timer) - duration to push actions to passive satellites

	get_actions_from_passives_satellites (timer) - duration to get results from passive satellites

	loop.whole (timer) - for the scheduler complete loop

	loop.%s (timer) - for each scheduler recurrent work in the scheduling loop, where %s can be:

	update_downtimes_and_comments

	schedule

	check_freshness

	consume_results

	get_new_actions

	scatter_master_notifications

	get_new_broks

	delete_zombie_checks

	delete_zombie_actions

	clean_caches

	update_retention_file

	check_orphaned

	get_and_register_update_program_status_brok

	check_for_system_time_change

	manage_internal_checks

	clean_queues

	update_business_values

	reset_topology_change_flags

	check_for_expire_acknowledge

	send_broks_to_modules

	get_objects_from_from_queues

	get_latency_average_percentile

	
	satellite (poller, reactionner):

	
	con-init.scheduler (timer) - scheduler connection duration

	core.get-new-actions (timer) - duration to get the new actions to execute from the scheduler

	core.manage-returns (timer) - duration to send back to the scheduler the results of executed actions

	core.worker-%s.queue-size (gauge) - size of the actions queue for each satellite worker

	core.wait-ratio (timer) - time waiting for launched actions to finish

	core.wait-arbiter (timer) - time waiting for arbiter configuration

	
	arbiter:

	
	core.hook.get_objects (timer) - duration spent in the get_objects hook function provided by a module

	
	receiver:

	
	external-commands.pushed (gauge) - number of external commands pushed to schedulers

	core.get-objects-from-queues (timer) - duration to get the objects from modules queues

	core.push-external-commands (timer) - duration to push the external commands to the schedulers

	
	broker:

	
	con-init.%s (timer) - for the %s daemon connection duration

	get-new-broks.%s (timer) - duration to get new broks from other daemons, where %s can be: arbiter, scheduler, poller, reactionner, receiver or broker

	core.put-to-external-queue (timer) - duration to send broks to external modules

	core.put-to-external-queue.%s (timer) - duration to send broks to each external module, where %s is the external module alias

	core.manage-broks (timer) - duration to manage broks with internal modules

	core.manage-broks.%s (timer) - duration to manage broks with each internal module, where %s is the internal module alias

Realms

Introduction

Alignak architecture allows the administrator to have a unique point of administration with numerous schedulers, pollers, reactionners, brokers and receivers.

Hosts are dispatched with their own services to schedulers. The satellites daemons (pollers/reactionners/brokers) get and execute jobs from their schedulers. Everyone is happy! Or almost everyone…

Think about an administrator who has a distributed architecture around the world. With the current Alignak architecture the administrator can have a couple scheduler/poller daemons in Europe and another one set in Asia, but he cannot “tag” hosts in Asia to be checked by the asian scheduler. Trying to check an asian server with an european scheduler can be very sub-optimal, read very sloooow.

The hosts are dispatched to all schedulers and satellites so the administrator cannot be sure that asian hosts will be checked by the asian monitoring servers.

Alignak provides a way to manage different geographic or organizational sites.

We will use a generic term for this site management, Realms.

Realms in few words

A realm is a pool of resources (scheduler, poller, reactionner, broker and receiver) that hosts or hostgroups can be attached to.

The following rule apply:

	A host can be attached to one and only one realm.

	A hostgroup can be attached to one and only one realm; all the hosts in the group will be de facto in the same realm.

	All “dependencies” or parents of an host must be in the same realm as the related host

	A realm can be set as the default one, and all “unrealmed” hosts will be attached to the default realm.

	If no default realm exists in the configuration, Alignak will create one

	In a realm, pollers, reactionners and brokers will only get jobs from schedulers of the same realm.

Realms are not poller_tags!

Make sure to understand when to use realms and when to use poller_tags.

For some cases poller_tag functionality could also be done using Realms. The question you need to ask yourself: is a poller_tag “enough”, or do you need to fully segregate the scheduler level and use Realms. In realms, schedulers do not communicate with schedulers from other Realms.

If you just need a poller in a DMZ network, use poller_tag.

If you need a scheduler/poller in a customer LAN, use realms.

Sub realms

A realm can contain another realm. It does not change anything for schedulers: they are only responsible for hosts of their realm not the ones of the sub realms.

The realm tree is useful for satellites like reactionners or brokers: they can get jobs from the schedulers of their realm, but also from schedulers of sub realms.

Pollers can also get jobs from sub realms, but it’s less useful so it’s disabled by default.

Warning

having more than one broker with a scheduler is not a good idea. The jobs for brokers can be taken by only one broker!

For the Arbiter it does not change anything: there is still only one Arbiter and one configuration whatever realms you have.

Example of realm usage

Let’s take a look at two distributed environments.

In the first case the administrator wants totally distinct daemons.

In the second one he just wants the schedulers/pollers to be distinct, but still have one place to send notifications (reactionners) and one place for database export (broker).

Distinct realms :

[image: ../_images/alignak-architecture-isolated-realms.png]
More common usage, the global realm with reactionner/broker, and sub realms with schedulers/pollers :

[image: ../_images/alignak-architecture-global-realm.png]

Realms configuration

Here is the configuration for the shared architecture:

; One main default realm with 3 sub-realms
define realm {
 realm_name All
 realm_members Europe,US,Asia
 default 1
}

; The Europe realm with a sub-realm
define realm{
 realm_name Europe
 realm_members Paris
}

An now the satellites:

; A scheduler that will only manage Paris hosts
define scheduler{
 scheduler_name scheduler_Paris
 realm Paris
}

; A reactionner for all the schedulers (All realm + sub-realms)
define reactionner{
 reactionner_name reactionner-master
 realm All
}

And in host/hostgroup definition:

; A server in the Paris realm
define host{
 host_name server-paris
 realm Paris
 [...]
}

; All the hosts in this group will be in the realm Europe
define hostgroups{
 hostgroup_name linux-servers
 alias Linux Servers
 members srv1,srv2
 realm Europe
}

Multi levels brokers

In the previous samples, if you put numerous brokers into the realm, each scheduler will have only one
broker at the same time. It is also impossible to have a common Broker in All, and one brokers in each sub-realms.

You can activate multi-brokers features with a realm parameter, the broker_complete_links option (0 by default).

You will have to enable this option in ALL your realms! For example:

define realm{
 realm_name Europe
 broker_complete_links 1
}

This will enable the fact that each scheduler will be linked with each brokers. This will make it possible to have dedicated brokers in a same realm; each one for its specific stuff.

It will also make it possible to have a common Broker in “All”, and one broker in each of its sub-realms (Europe, US and Asia).

Of course the sub-brokers will only see the data from their realms, and the sub-realms (like Paris for Europe for example).

Monitoring a DMZ

	There are two ways for monitoring a DMZ network:

	
	have a poller on the LAN, and launch check from it, so the firewall should allow monitoring traffic (like NRPE, SNMP, etc.)

	have a poller into the DMZ, so only the Alignak communication should be opened through the firewall

If you can use the first solution, it is the most simple one, use it :)

If you can’t (because of security concerns), use the second one and set a poller into the DMZ.

Pollers are “dumb” things. They get their jobs from the schedulers. So if you just have a poller in the DMZ network aside another one in the LAN, some checks for the DMZ hosts will be caught by the LAN one, and some for the LAN hosts will be caught by the DMZ one.

Tag your hosts and pollers for being “in the DMZ”

Alignak allows to dedicate some checks to a specific poller. We will “tag” checks, so they will be able to run only in a specific poller.

	This is done with the poller_tag parameter that can be applied on the following objects:

	
	pollers

	commands

	services

	hosts

It’s quite simple: the monitoring objects are tagged, and the pollers are also tagged. When the tags match, the poller and the objects are compatible each others…

There is an implicit inheritance in this order: hosts->services->commands. If a command doesn’t have a poller_tag, it will inherit from the service ones. And if this service neither has a poller_tag, it will inherit from those of its host.

You just need to install a poller with the DMZ tag in the DMZ and then tag the hosts (or services) that are in the DMZ with the same tag. Tagged hosts/services will have their checks run by the tagged poller. You simply have to open the DMZ poller communication from the LAN to allow scheduler / poller communication.

You are sure that the tagged checks won’t be launched from other pollers, because untagged pollers can’t get tagged checks.

Configuration part

You need to tag the poller in its configuration file:

define poller{
 poller_name poller-DMZ
 address server-dmz
 port 7771
 poller_tags DMZ
}

And then tag some hosts and/or some services.

define host{
 host_name server-DMZ-1
 [...]
 poller_tag DMZ
 [...]
}

All checks for the host server-DMZ-1 will be launched from the poller poller-dmz, and only from this poller.

Business rules

View your infrastructure from a business perspective

The main role of this feature is to allow users to have in one “indicator” the aggregation of
more complex monitored elements. This indicator can provide a unique view for users focused on different roles.

Typical roles:

	Service delivery Management

	Business Management

	Engineering

	IT support

Let’s take a simple example of a service delivery role for an ERP application. It mainly consists of the following IT components:

	2 databases, in high availability, so with one database active, the service is considered up

	2 web servers, in load sharing, so with one web server active, the service is considered up

	2 load balancers, again in high availability

These IT components (Hosts in this example) will be the basis for the ERP service.

With business rules, you can have an “indicator” representing the “aggregated service” state for
the ERP service! Alignak already checks all of the IT components one by one including processing
for root cause analysis from a host and service perspective.

How to define Business Rules?

It’s a simple service (or an host) with a “special” check_command named bp_rule. :)

This makes it compatible with all your current habits and UIs. As the service aggregation is
considered as any other state from a host or service, you can get notifications, actions and
escalations. This means you can have contacts that will receive only the relevant
notifications based on their role.

Warning

You must NOT define the bp_rule command, it’s purely internal and Alignak already defined it for you.

Here is a configuration example for an ERP service, attached to a dummy host named “servicedelivery”.

define service{
 use standard-service
 host_name servicedelivery
 service_description ERP
 check_command bp_rule!(h1,database1 | h2,database2) & (h3,Http1 | h4,Http4) & (h5,IPVS1 | h6,IPVS2)
}

That’s all!

Note

A complete service delivery view should include an aggregated view of the end user
availability perspective states, end user performance perspective states, IT component states,
application error states, application performance states. This aggregated state can then be used
as a metric for Service Management (basis for defining an SLA).

The OR rule

You can define a OR state rule with the | symbol.

Example:

define service{
 check_command bp_rule!test_host_0,db1|test_host_0,db2
 host_name test_host_0
 service_description Simple_Or
 use generic-service
}

The aggregated state is somehow like a boolean property:

	db1 OK | db2 OK -> Simple_Or will be OK

	db1 OK | db2 WARNING -> Simple_Or will be OK

	db1 OK | db2 CRITICAL -> Simple_Or will be OK

	db1 WARNING | db2 OK -> Simple_Or will be OK

	db1 WARNING | db2 WARNING -> Simple_Or will be WARNING

	db1 CRITICAL | db2 OK -> Simple_Or will be OK

	db1 CRITICAL | db2 WARNING -> Simple_Or will be WARNING

	db1 CRITICAL | db2 CRITICAL -> Simple_Or will be CRITICAL

The AND rule

You can define and AND state rule with the & symbol.

Example:

define service{
 check_command bp_rule!test_host_0,db1&test_host_0,db2
 host_name test_host_0
 service_description Simple_And
 use generic-service
}

The aggregated state is somehow like a boolean property:

	db1 OK & db2 OK -> Simple_And will be OK

	db1 OK & db2 WARNING -> Simple_And will be WARNING

	db1 OK & db2 CRITICAL -> Simple_And will be CRITICAL

	db1 WARNING & db2 OK -> Simple_And will be WARNING

	db1 WARNING & db2 WARNING -> Simple_And will be WARNING

	db1 CRITICAL & db2 OK -> Simple_And will be CRITICAL

	db1 CRITICAL & db2 WARNING -> Simple_And will be CRITICAL

	db1 CRITICAL & db2 CRITICAL -> Simple_And will be CRITICAL

The NOT rule

You can define a NOT state rule. It can be useful for active/passive setups for example.
You just need to add a ! before your element name.

Example:

define service{
 use generic-service
 host_name servicedelivery
 service_description Cluster_state
 check_command bp_rule!(h1,database1 & !h2,database2)
}

Aggregated state will be ok if database1 is ok and database2 is warning or critical (stopped).

With “need at least X elements” clusters

Sometimes, you know that in a cluster of N elements, you need at least X of them to run OK. This
is easily defined, you just need to use the X of: operator.

Here is an example of the same ERP but with 3 HTTP web servers, and you need at least 2 of them
(to maintain the load):

define service{
 use standard-service
 host_name servicedelivery
 service_description ERP
 check_command bp_rule!(h1,database1 | h2,database2) & (2 of: h3,Http1 & h4,Http4 & h5,Http5)
}

It’s done :)

Possible values of X in X of: expressions

The Xof: expression may have different values depending on the needs.
The supported expressions are described below:

	a positive integer, which means “at least X host/services should be UP/OK”

	
	a positive percentage, which means “at least X percents of hosts/services should be UP/OK”.

	This percentage expression may be combined with grouping expression expansion to build expressions
such as “95 percents of the web front ends should be up”. This way, adding hosts in the web
frontend hostgroup is sufficient, and the QoS remains the same.

	a negative integer, which means “at most X host/services may be down”

	
	a negative percentage, which means “at most X percents of hosts/services should may be down”.

	This percentage expression may be combined with grouping expression expansion to build expressions
such as “5 percents of the web front ends may be down”. This way, adding hosts in the web
frontend hostgroup is sufficient, and the QoS remains the same.

Example:

define service{
 use standard-service
 host_name servicedelivery
 service_description ERP
 check_command bp_rule!(h1,database1 | h2,database2) & (h6,IPVS1 | h7,IPVS2) & 95% of: g:frontend,Http
}

Manage degraded status

In the Xof: way the only case where you got a “warning” (=”degraded but not dead”)
is when all your elements are in WARNING state. But you should want to be in WARNING if 1 or your
3 HTTP server is CRITICAL: the service is still running, but in a degraded state.

	For this you can use the extended operator X,Y,Z of:

	
	X: number min of OK to get an overall OK state

	Y: number min of WARNING to get an overall WARNING state

	Z: number min of CRITICAL to get an overall CRITICAL state

	State processing will be done the following order:

	
	is Ok possible?

	is critical possible?

	is warning possible?

	if none is possible, set OK.

Here are some example for business rules about 5 services A, B, C, D and E: 5,1,1 of:A|B|C|D|E

Example 1

	A

	B

	C

	D

	E

	Warn

	Ok

	Ok

	Ok

	Ok

Rules and overall states:

	4 of: –> Ok

	5,1,1 of: –> Warning

	5,2,1 of: –> Ok

Example 2

	A

	B

	C

	D

	E

	Warn

	Warn

	Ok

	Ok

	Ok

Rules and overall states:

	4 of: –> Warning

	3 of: –> Ok

	4,1,1 of: –> Warning

Example 3

	A

	B

	C

	D

	E

	Crit

	Crit

	Ok

	Ok

	Ok

Rules and overall states:

	4 of: –> Critical

	3 of: –> Ok

	4,1,1 of: –> Critical

Example 4

	A

	B

	C

	D

	E

	Warn

	Crit

	Ok

	Ok

	Ok

Rules and overall states:

	4 of: –> Critical

	4,1,1 of: –> Critical

Example 5

	A

	B

	C

	D

	E

	Warn

	Warn

	Crit

	Ok

	Ok

Rules and overall states:

	2 of: –> Ok

	4,1,1 of: –> Critical

Example 6

	A

	B

	C

	D

	E

	Warn

	Crit

	Crit

	Ok

	Ok

Rules and overall states:

	2 of: –> Ok

	2,4,4 of: –> Ok

	4,1,1 of: –> Critical

	4,1,2 of: –> Critical

	4,1,3 of: –> Warning

Some classic rules

Let’s look at some classic rules, for MAX elements.

	ON/OFF state: MAX of: <=> MAX,MAX,MAX of:

	WARNING as soon as there is problem, and critical if all are CRITICAL: MAX,1,MAX of:

	Get the worse state: MAX,1,1

Grouping expression expansion

Sometimes, you do not want to specify explicitly the hosts/services contained in a business rule,
but prefer use a grouping expression such as hosts from the hostgroup xxx,
services holding label yyy or hosts which name matches regex zzz.

To do so, it is possible to use a grouping expression which is expanded into hosts or services.
The supported expressions use the following syntax:

flag:expression

The flag is a single character qualifying the expansion type. The supported types (and associated flags) are described in the table below.

Host flags

	F

	Expansion

	Example

	Equivalent to

	g

	Content of the hostgroup

	g:webs

	web-srv1 & web-srv2 & …

	l

	Hosts which are holding label

	l:front

	web-srv1 & db-srv1 & …

	r

	Hosts which name matches regex

	r:^web

	web-srv1 & web-srv2 & …

	t

	Hosts which are holding tag

	t:http

	web-srv1 & web-srv2 & …

Service flags

	F

	Expansion

	Example

	Equivalent to

	g

	Content of the servicegroup

	g:web

	web-srv1,HTTP & web-srv2,HTTP & …

	l

	Services which are holding label

	l:front

	web-srv1,HTTP & db-srv1,MySQL & …

	r

	Services which description matches regex

	r:^HTTPS?

	web-srv1,HTTP & db-srv2,HTTPS & …

	t

	Services which are holding tag

	t:http

	web-srv1,HTTP & db-srv2,HTTPS & …

	Labels are arbitrary names which may be set on any host or service using the label property.

	Tags are the template names inherited by hosts or services, usually coming from packs.

It is possible to combine both host and service expansion expression to build complex business rules.

Note

A business rule expression must always be made of an host expression (a selector)
AND a service expression (still a selector) separated by a coma when looking at service status.
If not so, there is no mean to distinguish a host status from a service status in the expression.
In servicegroup flag case, as you do not want to apply any filter on the host
(you want ALL services which are member of the XXX service group, whichever host they are bound to),
you may use the * host selector expression. The correct expression syntax should be:
bp_rule!*,g:my-servicegroup
The same rule applies to other service selectors (l, r, t, and so on).

Examples of combined expansion expression

You want to build a business rule including all web servers composing the application frontend.

l:front,r:HTTPS?

which is equivalent to:

web-srv1,HTTP & web-srv3,HTTPS

You may obviously combine expression expansion with standard expressions.

l:front,h:HTTPS? & db-srv1,MySQL

which is equivalent to:

(web-srv1,HTTP & web-srv3,HTTPS) & db-srv1,MySQL

Smart notifications

As of any host or service check, a business rule having its state in a non OK state may send
notifications depending on its notification_options directive. But what if the underlying
problems are known, and may be acknowledged ? The default behaviour is to continue sending notifications.

This may be what you need, but what if you want the business rule to stop sending notifications ?

Imagine your business rule is composed of all your site’s web front ends. If a host fails, you
want to know it, but once someone starts to fix the issue, you don’t want to be notified anymore.
A possible solution is to acknowledge the business rule itself. But if you do so, any other
failing host won’t get notified. Another solution is to enable smart notification on the business rule check.

Smart notifications is a way to disable notifications on a business rule having all its
problems acknowledged. If a new problem occurs, notifications will be enabled back while it has not been acknowledged.

To enable smart notifications, simply set the business_rule_smart_notifications to 1.

Downtimes management

Downtimes are a bit more tricky to handle. While acknowledgement are necessarily set by humans,
downtimes may be set automatically (for instance, by maintenance periods). You may still want
to be notified during downtime periods. As a consequence, downtimes are not taken into account by
smart notification processing, unless explicitly told to do so.

To enable downtimes in smart notifications processing, simply set the business_rule_downtime_as_ack to 1.

Consolidated services

Another useful usage of business rules is consolidated services. Imagine you have a large web
cluster, composed of hundreds of nodes. If a small portion of the nodes fail, you may receive a
large number of notifications, which is not convenient. To prevent this, you may use a business
rule looking like `bp_rule`!g:web,.... If you disable notifications by setting
notification_options to n on the underlying hosts or services, you would receive a single
notification with all the failing nodes in one time, which may be clearer.

To avoid having to manually set notification_options on each node, you may use two convenient
directives on the business rule side: business_rule_host_notification_options which enforces
notification options of underlying hosts, and business_rule_service_notification_options which
does the same for services.

This feature, combined with the convenience of packs and Smart notifications allows to build large consolidated services very easily.

Example:

define host {
 use http
 host_name web-01
 hostgroups web
 ...
 }

define host {
 use http
 host_name web-02
 hostgroups web
 ...
 }

define host {
 host_name meta
 ...
 }

define service {
 host_name meta
 service_description Web cluster
 check_command `bp_rule`!g:web,g:HTTPS?
 business_rule_service_notification_options n
 ...
 }

In the previous example, HTTP/HTTPS services come from the http pack. If one or more http
servers fail, a single notification would be sent, rather than one per failing service.

Warning

It would be very tempting in this situation to acknowledge the consolidated service
if a notification is sent. Never do so, as any, as any new failure would not be
reported. You still have to acknowledge each independent failure.
Take care to explain this to people in charge of the operations.

Macro expansion

It is possible in a business rule expression to include macros, as you would do for normal
check command definition. You may for instance define a custom macro on the host or service
holding the business rule, and use it in the expression.

Combined with macro modulation, this allows to define consolidated services with variable fault tolerance thresholds depending on the timeperiod.

Imagine your web frontend cluster composed of dozens servers serving the web site. If one is
failing, this would not impact the service so much. During the day, when the complete team is
at work, a single failure should be notified and fixed immediately. But during the night, you
may consider that losing let’s say up to 5% of the cluster has no impact on the QoS: thus waking
up the on-call guy is not useful.

You may handle that with a consolidated service using macro modulation combined with an X of: expression.

Example:

define macromodulation{
 macromodulation_name web-xof
 modulation_period night
 _XOF_WEB -5% of:
 }

define host {
 use http
 host_name web-01
 hostgroups web
 ...
 }

define host {
 use http
 host_name web-02
 hostgroups web
 ...
 }

define host {
 host_name meta
 macromodulations web-xof
 ...
 }

define service {
 host_name meta
 service_description Web cluster
 check_command `bp_rule`!$_HOSTXOF_WEB$ g:web,g:HTTPS?
 business_rule_service_notification_options n
 ...
 }

In the previous example, during the day, we’re outside the modulation period. The _XOF_WEB is
not defined, so the resulting business rule is g:web,g :HTTPS?. During the night, the macro is
set a value, then the resulting business rule is -5% of: g:web,g:HTTPS?, allowing to lose 5%
of the cluster silently.

Business rule check output

By default, business rules checks have no output as there’s no real script or binary behind.
But it is still possible to control their output using a templating system.

To do so, you may set the business_rule_output_template option on the host or service holding
the business rule. This attribute may contain any macro. Macro expansion works as follows:

	All macros outside the (and) sequences are expanded using attributes set on the host or service holding the business rule.

	All macros between the (and) sequences are expanded for each underlying problem using its attributes.

All macros defined on hosts or services composing or holding the business rule may be used in
the outer or inner part of the template respectively.

To ease writing output template for business rules made of both hosts and services, 3 convenience
macros having the same meaning for each type may be used: STATUS, SHORTSTATUS, and
FULLNAME, which expand respectively to the host or service status, its status abbreviated form
and its full name (host_name for hosts, or host_name/service_description for services).

Example:

Imagine you want to build a consolidated service which notifications contain links to the
underlying problems in the WebUI, allowing to acknowledge them without having to search.
You may use a template looking like:

define service {
 host_name meta
 service_description Web cluster
 check_command `bp_rule`!$_HOSTXOF_WEB$ g:web,g:HTTPS?
 business_rule_output_template Down web services: $(($SHORTSTATUS$) $HOSTNAME$)$
 ...
 }

The resulting output would look like Down web services: link1 link2 link3 … where linkN are URLs leading to the problem in the WebUI.

Notifications and escalations

Escalations

[image: ../_images/objects-contacts.png]
Alignak supports optional escalation of contact notifications for hosts and services.
Escalation of host and service notifications is accomplished by defining
escalations and calling them from your hosts and services definitions.

Tip

Legacy Nagios host_escalations and service_escalations objects are still managed,
but it’s advised to migrate and simplify your configuration with simple escalations objects.

Definition and sample

Notifications are escalated if and only if one or more escalation linked to your host/service
matches the current notification that is being sent out. Look at the example below:

define escalation{
 escalation_name To_level_2
 first_notification_time 60
 last_notification_time 240
 notification_interval 60
 contact_groups level2
}

And then you can call it from a service (or a host):

define service{
 use webservice
 host_name webserver
 service_description HTTP
 escalations To_level_2
 contact_groups level1
}

Here, notifications sent before the fist_notification_time
(60 = 60*interval_length*seconds = 60*60s = 1h) will be sent to the contact_groups of the service,
and after one hour and before 4 hours (last_notification_time) it will be escalated to the
level2 contacts group.

If there is no escalations available (like after 4 hours) it fails back to the default service
contact_groups, in this case it is level1.

Lower contact groups

When defining notification escalations, look if it’s interesting that members of a “lower”
escalation (i.e. those with lower notification time ranges) should also be included in “higher”
escalation definitions or not. This can be done to ensure that anyone who gets notified of a
problem continues to get notified as the problem is escalated.

In our previous example it becomes:

define escalation{
 escalation_name To_level_2
 first_notification_time 60
 last_notification_time 240
 notification_interval 60
 contact_groups level1,level2
}

Multiple escalations levels

It can be interesting to have more than one level for escalations.
Like if problems are send to your level1, and after 1 hour it’s send to your level2 contacts
group and after 4 hours it’s sent to the level3 contacts group until the problem is solved
(last_notification_time is 0).

All you need is to define theses two escalations and link them to your host/service:

define escalation{
 escalation_name To_level_2
 first_notification_time 60
 last_notification_time 240
 notification_interval 60
 contact_groups level2
}

define escalation{
 escalation_name To_level_3
 first_notification_time 240
 last_notification_time 0
 notification_interval 60
 contact_groups level3
}

And for your service:

define service{
 use webservice
 host_name webserver
 service_description HTTP
 escalations To_level_2,To_level_3
 contact_groups level1
}

Overlapping Escalation Ranges

Notification escalation definitions can have notification ranges that overlap.

See the following example:

define escalation{
 escalation_name To_level_2
 first_notification_time 60
 last_notification_time 240
 notification_interval 60
 contact_groups level2
}

define escalation{
 escalation_name To_level_3
 first_notification_time 120
 last_notification_time 0
 notification_interval 60
 contact_groups level3
}

	In the example above:

	
	The level2 contacts group is notified after one hour

	level2 and level3 contacts groups are notified at 2 hours

	Only the level3 contacts group is notified after 4 hours

Recovery Notifications

Recovery notifications are slightly different than problem notifications when it comes to
escalations. If the problem was escalated, or was about to reach a new level, who should be
notified of the recovery?

The rule is very simple: we notify about the recovery every one that was notified about the
problem, and only them.

Short escalations and long notification intervals

It’s also interesting to see that with escalation, if the notification interval is longer than
the next escalation time, it’s this last value that will be taken into account.

Let take an example where your service got:

define service{
 notification_interval 1440
 escalations To_level_2,To_level_3
}

Then with the escalations objects:

define escalation{
 escalation_name To_level2
 first_notification_time 60
 last_notification_time 120
 contact_groups level2
}

define escalation{
 escalation_name To_level_3
 first_notification_time 120
 last_notification_time 0
 contact_groups level3
}

Here let say you have a problem HARD on the service at t=0. It will notify the level1 contacts
group.
The next notification should be at t=1440 minutes, so tomorrow. It’s okay for classic services
(too much notification is spamming…) but not for escalated ones.

Here, at t=60 minutes, the escalation will raise, you will notify the level2 contacts group,
and then at t=120 minutes you will notify the level3 contacts group, and here one a day until
they solve it!

So you can put large notification_interval and still have quick escalations times, it’s not a problem :)

Time Period Restrictions

Under normal circumstances, escalations can be used at any time that a notification could
normally be sent out for the host or service. This “notification time window” is determined
by the notification_period directive in the host or service definition.

You can optionally restrict escalations so that they are only used during specific time periods
by using the escalation_period directive in the host or service escalation definition.
If you use the escalation_period directive to specify time period definition during which the
escalation can be used, the escalation will only be used during that time.
If you do not specify any escalation_period directive, the escalation can be used at any time
within the “notification time window” for the host or service.

Escalated notifications are still subject to the normal time restrictions imposed by the
notification_period directive in a host or service definition, so the timeperiod you specify
in an escalation definition should be a subset of that larger “notification time window”.

State Restrictions

If you would like to restrict the escalation definition so that it is only used when the host
or service is in a particular state, you can use the escalation_options directive in the host
or service escalation definition. If you do not use the escalation_options directive, the
escalation can be used when the host or service is in any state.

Legacy definitions: host_escalations and service_escalations based on notification number

The Nagios legacy escalations definitions are still managed, but it’s strongly advised to switch
to escalations based on time and call by host/services because it’s far more flexible.

Hera are example of theses legacy definitions:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 45
 contact_groups nt-admins,managers
}

define hostescalation{
 host_name webserver
 first_notification 6
 last_notification 0
 notification_interval 60
 contact_groups nt-admins,managers,everyone
}

It’s based on notification number to know if the escalation should be raised or not.
Remember that with this form you cannot mix long notification_interval and short escalations time!

Time period modulations

Sometimes you will need to have a different behavior for the Alignak framework depending upon a specific time frame. This is where the modulations are of interest to you.

You can adapt the checks, macros or business impact during a specific time period.

Macro modulations

It’s a good idea to have macros for critical/warning levels on the host or its templates. But sometime even with this, it can be hard to manage such cases where you want to have high levels during the night, and lower levels one during the day.

macro_modulations is made for this.

define macromodulation{
 macromodulation_name HighDuringNight
 modulation_period night
 _CRITICAL 20
 _WARNING 10
}

define host{
 check_command check_ping
 check_period 24x7
 host_name localhost
 use generic-host
 macromodulations HighDuringNight
 _CRITICAL 5
 _WARNING 2
}

With this definition, the values of the _CRITICAL and _WARNING macros will be set to 5 and 2 during the day, and will automatically be set to 20 and 10 during the night timeperiod. You can have as many modulations as you want.

Note

if some macros modulations overlap, the first modulation enabled will take the lead.

Businessimpact modulations

Depending on your configuration you may want to change the business impact of a specific host/service during the night. For example you don’t consider a specific application as business critical during the night because there are no users, so the impact may be lower for this time frame.

define businessimpactmodulation{
 business_impact_modulation_name LowImpactOnNight
 business_impact 1
 modulation_period night
}

define service{
 check_command check_crm_status
 check_period 24x7
 host_name CRM
 service_description CRM_WEB_STATUS
 use generic-service
 business_impact 3
 businessimpactmodulations LowImpactOnNight
}

With this configuration the business impact of the service will be set to 1 during night wheres it is usually 3.

Check modulations

Depending on your configuration you may want to change the check_command during the night. As an example, you want to send more packets for a ping during the night because there is less network activity so that you can get more accurate data.

define checkmodulation{
 checkmodulation_name ping_night
 check_command check_ping_night
 check_period night
}

define host{
 check_command check_ping
 check_period 24x7
 host_name localhost
 use generic-host
 checkmodulations ping_night
}

With this configuration, the check_ping command will be replaced with check_ping_night for the host localhost.

Problems and impacts correlation management

What is this correlation ?

The main role of this feature is to allow users to have the same correlation views in the console than they got in the notifications.

From now, users won”t get notified if there was a dependency problem or example (a host in DOWN make the service notifications to not be send for example). But in the console, we still got some green and red indicators: the scheduler waited for actual checks to put the elements in a UNKNOWN or UNREACHABLE state when he already know that there was a dependency problem.

Now it”s smart enough to put such states to elements that we know the check will fail. An example?

Imagine such a parent relations between hosts:

[image: ../_images/example_dep.png]
If gw is DOWN, all checks for others elements will put UNREACHABLE state. But if the fw and servers are checks 5 minutes later, during this period, the console will still have green indicators for them. And are they really green? No. We know that future checks will put them in errors. That why the problems/impacts feature do: when the gateway is set in HARD/DOWN, it apply a UNREACHABLE (and UNKNOWN for services) states for others elements below. So the administrators in front of his desk saw directly that there is a problem, and what are the elements impacted.

It”s important to see that such state change do not interfere with the HARD/SOFT logic: it”s just a state change for console, but it”s not taken into account as a checks attempt.

Here gateway is already in DOWN/HARD. We can see that all servers do not have an output: they are not already checked, but we already set the UNREACHABLE state. When they will be checks, there will be an output and they will keep this state.

How to enable it?

It’s quite easy, all you need is to enable the parameter

enable_problem_impacts_states_change=1

See enable_problem_impacts_states_change for more information about it.

Dynamic Business Impact

There is a good thing about problems and impacts when you do not identify a parent devices Business Impact: your problem will dynamically inherit the maximum business impact of the failed child!

Let take an example: you have a switch with different children, one is a devel environment with a low business impact (0 or 1) and one with a huge business impact (4 or 5). The network administrator has set SMS notification at night but only for HUGE business impacts (min_criticity=4 in the contact definition for example).

It’s important to say that the switch DOES NOT HAVE ITS OWN BUSINESS IMPACT DEFINED! A switch is there to server applications, the only business impact it gets is the child hosts and services that are connected to it!

	There are 2 nights:

	
	the first one, the switch got a problem, and only the devel environment is impacted. The switch will inherit the maximum impact of its impacts (or it own value if it’s higher, it’s 3 by default for all elements). Here the devel impact is 0, the switch one is 3, so its impact will stay at 3. It’s slower than the contact value, so the notification will not be send, the admin will be able to sleep :)

	the second night, the switch got a problem, but this time it impacts the production environment! This time, the computed impact is set at 5 (the one of the max impact, here the production application), so it’s higher than the min_criticity of the contact, so the notification is send. The admin is awaken, and can solve this problem before too many users are impacted :)

Cached Checks

Introduction

Not available (see #1026)!

[image: ../_images/cachedchecks1.png]
The performance of Alignak’s monitoring logic can be significantly improved by implementing the use of cached checks. Cached checks allow Alignak to forget executing a host or service check command if it determines a relatively recent check result will do instead.

For on-demand checks only

Regularly scheduled host and service checks will not see a performance improvement with use of cached checks. Cached checks are only useful for improving the performance of on-demand host and service checks. Scheduled checks help to ensure that host and service states are updated regularly, which may result in a greater possibility their results can be used as cached checks in the future.

For reference, on-demand host checks occur…

	When a service associated with the host changes state.

	As needed as part of the host reachability logic.

	As needed for host dependency checks.

And on-demand service checks occur…

	As needed for service dependency checks.

Unless you make use of service dependencies, Alignak will not be able to use cached check results to improve the performance of service checks. Don’t worry about it - that’s normal.

How caching works

[image: ../_images/cachedchecks.png]
When Alignak needs to perform an on-demand host or service check, it will check whether it can use a cached check result or if it needs to perform a real check by executing a plugin. The implemented logic is to check if the last check for the host or service occurred within the last X seconds, where X is the cached host or service check horizon.

If the last check was performed within the timeframe specified by the cached check horizon variable, Alignak will use the result of the last host or service check and will not execute a new check. If the host or service has not yet been checked, or if the last check falls outside of the cached check horizon timeframe, Alignak will execute a new host or service check by running a plugin.

What it really means

Alignak performs on-demand checks because it needs to know the current state of a host or service at that exact moment in time. Using cached checks allows you to make Alignak think that recent check results are “good enough” for knowing the current state of hosts, and that it doesn’t need to go out and actually re-check the status of that host or service.

The cached check horizon tells Alignak how recent check results must be in order to reliably reflect the current state of a host or service. For example, with a cached check horizon of 30 seconds, you are telling Alignak that if a host’s state was checked sometime in the last 30 seconds, the result of that check should still be considered as the current state of the host.

The number of cached check results that Alignak can use versus the number of on-demand checks it has to actually execute can be considered the cached check “hit” rate. By increasing the cached check horizon to equal the regular check interval of a host, you could theoretically achieve a cache hit rate of 100%. In that case all on-demand checks of that host would use cached check results. What a performance improvement! But is it really? Probably not.

The reliability of cached check result information decreases over time. Higher cache hit rates require that previous check results are considered “valid” for longer periods of time. Things can change quickly in any network scenario, and there’s no guarantee that a server that was functioning properly 30 seconds ago isn’t on fire right now. There’s the tradeoff - reliability versus speed. If you have a large cached check horizon, you risk having unreliable check result values being used in the monitoring logic.

Alignak will eventually determine the correct state of all hosts and services, so even if cached check results prove to unreliably represent their true value, it will only work with incorrect information for a short period of time. Even short periods of unreliable status information can prove to be noisy for admins, as they may receive notifications about problems which no longer exist.

There is no standard cached check horizon or cache hit rate that will be acceptable to every users. Some people will want a short horizon timeframe and a low cache hit rate, while others will want a larger horizon timeframe and a larger cache hit rate (with a low reliability rate).

Some users may even want to disable cached checks altogether to obtain a 100% reliability rate. Testing different horizon timeframes, and their effect on the reliability of status information, is the only want that an individual user will find the “right” value for their situation. More information on this is discussed below.

Note

this feature is still in development and not yet fully implemented.

Configuration variables

The following variables determine the time frames in which a previous host or service check result may be used as a cached host or service check result:

	The cached_host_check_horizon variable controls cached host checks.

	The cached_service_check_horizon variable controls cached service checks.

Integrated protocols

Thanks to integrated modules, Alignak improves the hosts/services check performance.

NRPE booster module

The Alignak NRPE booster module implements the Nagios NRPE (Nagios Remote Execution Protocol) protocol directly in an Alignak module to avoid starting some external processes to launch the standard check_nrpe check plugin.

More information `in the module repository<<https://github.com/Alignak-monitoring-contrib/alignak-module-nrpe-booster>>`_.

TO BE DEVELOPED

SNMP booster module

The Alignak SNMP booster module implements the SNMP protocol directly in an Alignak module to avoid starting some external processes to launch the standard check_snmp check plugin.

More information `in the module repository<<https://github.com/Alignak-monitoring-contrib/alignak-module-snmp-booster>>`_.

TO BE DEVELOPED

Internal Checks

Introduction

Alignak allows to define a check_command that do not require executing a plugin to make the host or service state change. The main interest of this feature is to allow defining and testing a monitored system configuration with many hosts dependencies without the need to check everything in a real environment. It also allows having an Alignak demo mode with some activity ;)

Note

the default shipped configuration defines some few hosts / services with only internal checks :)

Internal hosts check command

Alignak allows to define a check_command that makes it consider an host to have always the same state. Defining the _host_internal_check command as the host check_command will make the host always have the same state and output.

The _host_internal_check must be specified with 2 parameters:
- plugin exit code: 0 (Up), 1 (Down), 2 (Down), 3 (Unknown), 4 (Unreachable)
- plugin output: string

If the plugin output is an empty string, Alignak will build an output message as Host internal check result: X where X is the plugin exit code.

If the plugin exit code is composed as a comma separated list, Alignak will randomly choose one of the values as the exit code. This allows to use internal checks to simply simulate hosts states changing.

When several values are used, the first value is always the most probable one that will be used. The choice rules are:

	80 / 20 for 2 values

	70 / 20 /10 for 3 values

	60 / 20 / 10 / 10 for 4 values

	40 / 20 / 20 / 10 / 10 for 5 values

Note

If the syntax of this command is not correct, the check will be considered as and unknown check and the output will be Malformed host internal check.

Define an internal check:
- 1st parameter is the plugin exit code
- 2nd parameter is the plugin output message

hen check output is empty, Alginak builds a string with the exit code

Some hosts that are always in the same state
define host{
 use generic-host
 host_name host_0
 address 127.0.0.1

 check_interval 5

 check_command _internal_host_check!0!I am always Up
}
define host{
 use generic-host
 host_name host_1
 address 127.0.0.1

 check_interval 5

 check_command _internal_host_check!1!I am always Down
}
define host{
 use generic-host
 host_name host_2
 address 127.0.0.1

 check_interval 5

 check_command _internal_host_check!2!I am always Down
}
define host{
 use generic-host
 host_name host_3
 address 127.0.0.1

 check_interval 5

 check_command _internal_host_check!3!I am always Unknown
}
define host{
 use generic-host
 host_name host_4
 address 127.0.0.1

 check_interval 5

 check_command _internal_host_check!4!I am always Unreachable
}

No check output
define host{
 use generic-host
 host_name host_5
 address 127.0.0.1

 check_interval 5

 check_command _internal_host_check!0!
}

Define multiple possible exit codes - Alignak randomly chooses one on each check laungh
Check output is empty
define host{
 use generic-host
 host_name host_6
 address 127.0.0.1

 check_interval 5

 check_command _internal_host_check!0,2!
}

Internal services check command

Alignak allows to define a check_command that makes it consider a service to have always the same state. Defining the _service_internal_check command as the service check_command will make the service always have the same state and output.

The _service_internal_check must be specified with 2 parameters:

	plugin exit code: 0 (Up), 1 (Warning), 2 (Critical), 3 (Unknown), 4 (Unreachable)

	plugin output: string

If the plugin output is an empty string, Alignak will build an output message as Service internal check result: X where X is the plugin exit code.

If the plugin exit code is composed as a comma separated list, Alignak will randomly choose one of the values as the exit code. This allows to use internal checks to simply simulate services states changing.

When several values are used, the first value is always the most probable one that will be used. The choice rules are:

	80 / 20 for 2 values

	70 / 20 /10 for 3 values

	60 / 20 / 10 / 10 for 4 values

	40 / 20 / 20 / 10 / 10 for 5 values

Note

If the syntax of this command is not correct, the check will be considered as and unknown check and the output will be Malformed host internal check.

Define some internal service checks:
- 1st parameter is the plugin exit code
- 2nd parameter is the plugin output message

When the check output is empty, Alignak builds a string with the exit code

Some services that are always in the same state
define service{
 check_command _echo
 host_name test-host
 service_description dummy_echo
}
define service{
 check_command _internal_service_check!0!$HOSTNAME$!$SERVICEDESC$!%d
 host_name test-host
 service_description dummy_ok
}
define service{
 check_command _internal_service_check!1!$HOSTNAME$-$SERVICEDESC$-%d
 host_name test-host
 service_description dummy_warning
}
define service{
 check_command _internal_service_check!2!$HOSTNAME$-$SERVICEDESC$-%d
 host_name test-host
 service_description dummy_critical
}
define service{
 check_command _internal_service_check!3!$HOSTNAME$-$SERVICEDESC$-%d
 host_name test-host
 service_description dummy_unknown
}
define service{
 check_command _internal_service_check!4!$HOSTNAME$-$SERVICEDESC$-%d
 host_name test-host
 service_description dummy_unreachable
}

No check output
define service{
 check_command _internal_service_check!0!
 host_name test-host
 service_description dummy_no_output
}

Define multiple possible exit codes - Alignak randomly chooses one on each check laungh
Check output is empty
define service{
 check_command _internal_service_check!0,1,2,3,4!
 host_name test-host
 service_description dummy_random
}

Services state changes

When Alignak checks the status of services, it will be able to detect when a service changes between OK, WARNING, UNKNOWN, and CRITICAL states and take appropriate action. These state changes result in different state types (HARD or SOFT), which can trigger event handlers to be run and notifications to be sent out. Service state changes can also trigger on-demand host checks. Detecting and dealing with state changes is what Alignak is all about.

Soft (state type is SOFT) states occur when the service checks return a non-OK state and are in the process of being retried. Hard states (state type is HARD) result when the service checks have been checked a specified maximum number of times and the current state is confirmed.

When services change state too frequently they are considered to be “flapping”. Alignak can detect when services start flapping, and can suppress notifications until flapping stops and the service’s state stabilizes. More information on the flap detection logic can be found here.

Inner modules

Introduction

Alignak has some inner modules that extend the basic monitoring features without the need to install separate modules. The main goal of this is to have a full featured monitoring application that remains quite simple to set-up ;)

Retention module

The inner retention module provides a simple retention save / load of the current system live state in Json formated files. This to mimic the Nagios legacy status.dat feature…

This module is automatically enabled if your configuration has some values in the retain_state_information parameter. The module has its own default configuration but it will use the state_retention_file and state_retention_dir if it not empty as the directory/file name.

If you set some values in the module configuration they will overload the one defined formely in the main configuration

Module default configuration:

[module.inner-retention]
; The inner retention module is declared to allow parameters configuration when it is activated
; in the configuration. To activate, simply set 'enabled' as 1 or set the
; retain_state_information Nagios legacy parameter
name = inner-retention
type = retention
python_name = alignak.modules.inner_retention
definition_order = 1
enabled = 1

; --
; Retention configuration
; ---
; If defined in this file, the configuration will overload the default one
; built on former configuration loading.
; ---

; retention_dir overloads main state_retention_dir
; Environment variable 'ALIGNAK_RETENTION_DIR' overloads this configuration variable
;retention_dir=/var/run/alignak

; retention_file overloads main state_retention_file
; Environment variable 'ALIGNAK_RETENTION_FILE' overloads this configuration variable
;retention_file=
; --

Metrics module

The inner metrics module provides a simple performance data management. This to mimic the Nagios legacy performance data commands feature…

This module is automatically enabled if your configuration has some values in the host_perfdata_file or service_perfdata_file parameters. The module has its own default configuration.

Module default configuration:

[module.inner-metrics]
; The inner metrics module is declared to allow parameters configuration when it is activated
; in the configuration. To activate, simply set -enabled' as 1 or declare a value for
; host_perfdata_file or service_perfdata_file Nagios legacy parameters
name = inner-metrics
type = metrics
python_name = alignak.modules.inner_metrics
definition_order = 1
enabled = 1

; --
; Module internal metrics
; Export module metrics to a statsd server.
; By default at localhost:8125 (UDP) with the alignak prefix
; Default is not enabled
; --
;statsd_host = localhost
;statsd_port = 8125
;statsd_prefix = alignak
;statsd_enabled = 0
; --
;
; Module log level
;log_level=INFO

;
; Module specific parameters
graphite_host=localhost
graphite_port=2004
graphite_prefix=alignak

; Add this suffix to the hosts/services matrics
;graphite_data_source=from_alignak

;
; Output metrics to a file - specify the output file full path name
; Default is disabled
;output_file=

; Flush to Graphite everay X received metrics
; This allows sending metrics to Graphite in bulk mode
;metrics_flush_count=64

; Do not ignore unknown hosts/services
ignore_unknown=0

; Use a fake service description for the metrics of an host check result
; This will group the host metrics in a same directory
;host_check=

; Send the warning, critical, ... to Graphite
; Default is to not send because it creates many similar metrics
;send_warning=true
;send_critical=true
;send_min=true
;send_max=true

How to contribute

	Useful links

	How to contribute
	Roadmap and versioning

	Bug report / feature request

	Documentation

	Setup environment for Alignak hacking

	Getting started into the developer documentation

	Git and GitHub

	Unit and integration tests

	Application packaging

	A step by step contribution example
	Very simple fix with Github

	Simple fix

	Alignak modules and checks packages
	Modules

	Checks packs

Useful links

Here are the links useful to know if you wish to contribute:

	Official GitHub: officialgithub [https://github.com/Alignak-monitoring] .

Here you can find the official Alignak repository, this doc (alignak-doc), the website,…

	Contribution GitHub (modules): contribgithub [https://github.com/Alignak-monitoring-contrib]

Here you will find Alignak contributions such as the Alignak backend, the Web User Interface, the Alignak applet, the modules, the checks packages, …

How to contribute

There is nothing we don’t want, we consider every features / ideas.

Feel free to join

	by mail

	on the IRC [http://webchat.freenode.net/?channels=%23alignak] or on gitter chat room [https://gitter.im/Alignak-monitoring/alignak?utm_source=share-link&utm_medium=link&utm_campaign=share-link] to discuss or ask for more information

	on Alignak web site [http://alignak.net]

Roadmap and versioning

Release strategy

Alignak has no strict schedule for now on release date. The very first main release was released after almost two years of intense cleaning, coding and environment testing. The current version is the second major version (2.0) and it is a strongly improved and stable version.

The project roadmap is managed in the github repository thanks to milestones [https://github.com/Alignak-monitoring/alignak/milestones] and specific issues [https://github.com/Alignak-monitoring/alignak/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+roadmap] tagged with the roadmap label Feature request and specification is discussed there. A technical specification or point of view about a specific feature is discussed in a dedicated issue.

Versioning scheme

Alignak is following as much as possible the recommendations of the Python PEP 440 [https://www.python.org/dev/peps/pep-0440/#semantic-versioning] and uses the semantic versioning scheme.

The main information to retain is that Alignak is released with “Major.Minor.Patch”:

	Patch number is incremented when only some fixes or minor modifications are introduced in the current version.

	Minor number is incremented when a new feature is introduced in the current version.

	Major number is incremented when some important modifications are (will be…) introduced in the current version.

The stable current Alignak has a simple version number such as M.m.p, but some other versions may also be available in the installation repositories:

	the current develop branch version is referenced as M.m.p-develop

	a specifc branch version (eg. my_branch) is referenced as M.m.p-my_branch

	a specific tag version (eg. my_tag) is referenced as M.m.p-my_tag

Bug report / feature request

Some bugs or unexpected behaviors may happen … rarely, but it may happen :)

Bugs are tracked in the issue list on GitHub [https://github.com/Alignak-monitoring/alignak/issues] . Please, always search for your problem in the existing issues before filing a new one.

When filing a new bug, please remember to include:

	A helpful title - use descriptive keywords in the title and body so others can find your bug (avoiding duplicates).

	Steps to reproduce the problem, with actual vs. expected results

	Alignak version (or if you’re pulling directly from the Git repo, your current commit SHA - use git rev-parse HEAD)

	OS version

	If the problem happens with specific code, link to test files

	Screenshots or log are very helpful if you’re seeing an error message or a UI display problem. (Just copy log or drag an image into the issue description field to include it).

Documentation

The Alignak documentation that you are currently browsing is also a project that we need contributions to… thus contributions to this project are also welcome and encouraged ;) Feel free to update or add your own writings to this documentation project!

The issue tracker of the project [https://github.com/Alignak-monitoring/alignak-doc/issues] is the preferred channel for reporting errors and submitting pull requests.

Note

A part of this document is built automatically when some tests run in the Alignak project. The test_daemons_api.py test builds some RST file and copies the files into the ../alignak-doc/source/07_alignak_features/api directory.

The documentation is organized in chapters. Each chapter has its own directory into the source directory. The index.rst file make them all grouped in the main table of content. For a local build of the documentation, run:

make html

Go to your Web browser and open file:///home/alignak/alignak-doc/build/html/index.html.

Setup environment for Alignak hacking

See on this page for the requirements and how to get the source code.

We really suggest using a virtualenv to hack the Alignak code:

virtualenv alignak
./alignak/bin/activate
pip install -r requirements.txt
pip install -e .

Note

using an IDE such as Pycharm makes all this stuff really easy ;) Feel free to ask for more information on our IRC channel…

If you don’t want to use a virtual environment (you are in a docker or something else), install system-wide:

sudo pip install .

If you do not want to use the Alignak system services for testing, the alignak-arbiter daemon is able to start the other daemons by itself. This makes it easier for some simple testings;) Have a look to the alignak.ini configuration file and the alignak_launched configuration parameter.

Getting started into the developer documentation

The developer documentation [https://alignak.readthedocs.org/] is generated from Alignak source code. Basically, it describes the Alignak application packages and modules. You can see the details of the source code docstrings and jump to the source code if necessary. You also have some class diagrams in the index page to browse code more easily.

Tip

A good entry point could be the daemon package where you can find the python files used to launch the Alignak daemons (arbiter, scheduler …) and then follow the code…

When some classes got modified, one must update the developer documentation:

rm -rf doc/source/reference/* && sphinx-apidoc -o doc/source/reference/ alignak/

Git and GitHub

Before starting to dig into Alignak code, you should be able to use git with ease. If you are new to it, we can suggest you the following links:

	http://www.git-tower.com/blog/git-cheat-sheet/

	http://www.cheat-sheets.org/saved-copy/git-cheat-sheet.pdf

We recommend following as much as possible a standard git forking workflow as documented here <https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow. Take a moment to read this, it is really interesting …

If you are already familiar with this, here are some of useful commands we use quite often. Indeed, we suggest to use and IDE such as Pycharm because it will hide the git stuff behind a nice interface ;)

Else, if you are a command line addict, what is following is for you…

Note

Consider “origin” as the remote branch from Alignak-monitoring organization

Add the fork you have made by pressing the “Fork” button on GitHub:

Add your remote git
git remote add <yournick> git@github.com:<yournick>/alignak.git
Fetch data from this remote
git fetch <yournick>
Create new branch named mydevelop linked to the remote develop branch of your fork
git checkout <yournick>/develop -b mydevelop

Synchronize alignak develop with your current branch (considering there is no conflicts):

git fetch origin
You should have a merge commit to confirm
git merge origin/develop
Pick the id of the commit before the merging commit you have just done
git log
git will automatically try to stack commit over the commit you specified (develop HEAD)
git rebase <commit-id>
This push the new tree upstream (we have to force push as your local and remote have drifted)
git push -f <yournick> <current_branch>

Avoid merging a commit because you forgot to pull before committing:

This will fetch and merge remote branch with your local one creating a merge commit
git pull
Pick the id of the commit corresponding to the remote HEAD (usually 2 commit before)
git log
Git will revert you commit(s) and stack it after the remote HEAD
git rebase <commit-id>
Don't need to force you have only added one commit over remote.
git push

When you’ve finished a feature on a local branch and it’s time to commit your changes to the develop or master branch, you might prefer merging over rebasing. Clean your pull request before submitting it:

Pick the id of the current origin develop (see synchronize)
git rebase -i <commit-id>

Here you can: squash, fix, reword or edit order of commit the way you want.
At the end git will try to make the tree the way you ask (if no conflict)
In case of a conflict, git will stop were the conflict is and let you deal with it
git mergetools may help for that
One you are done (git status says there no modified file neither added file)
git rebase --continue

Unit and integration tests

Alignak is using py.test [https://docs.pytest.org/en/latest/] for its unit and integration tests. The tests are currently dispatched in two directories / test suites:

	tests for the unit tests: base class, functions tests, etc.

	tests_integ for the integration tests (indeed the one that need to run at least one daemon…)

Almost every test uses alignak_test.py module and inherit from the AlignakTest class. This class provides a set of function to help tests:

* scheduler_loop : used to fake a scheduler loop (run check, create broks, raise notification etc..)
* show_logs : Dump logs (broks with type "log")
* show_actions : Dump actions (notification, event handler)
* assert_log_match / assert_any_log_match / ... : Find regexp into logs
* add : add a brok or external command

Note

this file contains many useful functions for Alignak testing… the functions are documented to explain what they are used for.

	The best solution to add a test case is:

	
	check the existing test_.py files names (the files are named according to the main tested features…), and choose the appropriate one. Else, create a new test_feature.py file …

	duplicate an existing test case and change the expected behavior

	contact us to ask for more information and we will help digging into the Alignak tests suites

Running the same tests as the one that are executed during a Travis build is an easy stuff. Run the following script in the corresponding directory to run the whole test suite:

pytest --verbose --durations=10 --no-print-logs --cov=alignak --cov-config .coveragerc test_*.py

A more simple form (without verbose and code coverage)
pytest test_*.py

Because Alignak is intended to run on multiple Python interpreters, the best solution ot run all the tests is to use the Tox tests automation tool <http://tox.readthedocs.io/en/latest/index.html>. We provide a tox.ini file in the main directory of the project repository. Running all the tests in the exact same conditions as the Travis build and production environment is as simple as:

tox

Application packaging

Python packaging

The Python package is built thanks to the Travis CI deployment feature. You can find the built package in the Alignak profile on the Python packages repository PyPi [https://pypi.org].

How to build and publish an Alignak python package:

Set Alignak version in alignak/version.py
VERSION = "1.1.0rc0"

In alignak repo main directory:
for a source distribution
python setup.py sdist

for a wheel distribution
python setup.py bdist_wheel

Upload the package to the test pypi
There is an Alignak user account (alignak) on the official PyPi repository
twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Test packaging
sudo pip install --index-url https://test.pypi.org/simple/ --extra-index-url https://pypi.org/simple alignak==1.1.0rc0
...
...
Successfully installed CherryPy-15.0.0 alignak-1.1.0b0 backports.functools-lru-cache-1.5 certifi-2018.4.16 chardet-3.0.4 cheroot-6.3.1 docopt-0.6.2 idna-2.6 importlib-1.0.4 more-itertools-4.1.0 numpy-1.14.3 portend-2.2 psutil-5.4.5 pytz-2018.4 requests-2.18.4 setproctitle-1.1.10 six-1.11.0 tempora-1.11 termcolor-1.1.0 ujson-1.35 urllib3-1.22

Check files copy
ls -al /usr/local/etc/alignak
Contains the default configuration files (same as the etc repo directory)

Distro packaging

Packaging Alignak for Linux/Unix is done thanks to the fpm packaging tool [https://github.com/jordansissel/fpm] and a specific shell script (package.sh) that allows to choose which package is to be built.

The project repository includes three .bintray-*.json files that are used to publish the built packages to the Alignak dedicated repositories on the Bintray software distribution [https://bintray.com/alignak/].

The package.sh script creates the packages and updates the .bintray-*.json files to update:

	
	the target repository

	It replaces sed_version_repo with the appropriate repository name: alignak-deb-testing / alignak-deb-stable, or alignak-rpm-testing / alignak-rpm-stable

	
	the version name, description and release date

	It replaces sed_version_name, sed_version_desc and sed_version_released with fresh information from the aplication

The package.sh script command line parameters:

	
	git branch name:

	
	
	master will build a stable version (alignak_deb-stable repository)

	-> python-alignak_x.x.x_all.deb

	
	develop will build a develop version (alignak_deb-testing repository)

	-> python-alignak_x.x.x-dev_all.deb

	
	any other will build a develop named version (alignak_deb-testing repository)

	-> python-alignak_x.x.x-mybranch_all.deb

	
	python version:

	2.7, 3.6 (default)

	
	package type:

	deb (default), rpm, freebsd, apk, pacman, …
Indeed all the package types supported by fpm may be used … but it may give some unexpected results.

Note

it is not recommended to use anything else than alphabetic characters in the # branch name according to the debian version name policy! Else, the package will not even install on the system!

As an example:

Installing fpm
sudo apt-get install ruby ruby-dev rubygems build-essential
sudo apt-get install rpm
sudo gem install --no-ri --no-rdoc fpm

Packaging
sudo pip install virtualenv virtualenv-tools
sudo pip install --upgrade distribute

Get Alignak repo
git clone http://github.com/alignak-monitoring/alignak
cd alignak
Build package from a virtualenv
./package.sh test
package.sh is commented for all options

The packages are built thanks to the Travis CI deployment feature. You can find the built packages in an Alignak dedicated repository on the Bintray software distribution [https://bintray.com/alignak/].

To proceed with installation, you must register the alignak repository and store its public key on your system. This script is an example (for Ubuntu 16) to be adapted to your system:

Create an apt source with the content according to your Linux distribution.
Get the development repository URL
$ echo "deb https://dl.bintray.com/alignak/alignak-deb-testing {distribution} main" | sudo tee -a /etc/apt/sources.list

Get the stable repository URL
$ echo "deb https://dl.bintray.com/alignak/alignak-deb-stable {distribution} main" | sudo tee -a /etc/apt/sources.list

Note

According to your OS, replace {xenial} in the former script example:

	Debian 9: stretch

	Debian 8: jessie

	Ubuntu 16.04: xenial

	Ubuntu 14.04: trusty

	Ubuntu 12.04: precise

The Alignak packages repositories contain several version of the application. Some information about the versioning scheme are :ref: available on this page.

	For Travis build deploying to Bintray:

	
	let the alignak subject in the bintray json files

	create a secure key with the travis encrypt tool. Use yor Bintray API key to generate the key, see https://docs.travis-ci.com/user/deployment/bintray/

	copy the secure key into the travis.yml file

A step by step contribution example

The process to contribute to Alignak is quite simple. However, depending on what you are planning to do, the most efficient way to do it may vary.

Very simple fix with Github

If you have a very small to do (typo, doc, one file commit), you’d better use GitHub. You can click edit in the Alignak repository.
It will fork the repository for you and let you edit the file through the Web interface.
Once you picked a good commit message (see below for commit message habits) you can push it in a new branch (see below for branch name habits).
Finally, you can create a new pull request to the Alignak repository (still with GitHub UI)

Simple fix

Checkout new branch

Once you have forked the repository and added remote (see above) you can start a new branch

git checkout -b Add_ponies_and_rainbows

Here your new branch is Add_ponies_and_rainbows.

Good habits is to name the branch as:

	fix-#123 for a branch fixing the issue #123.

	feature for a branch implementing a new feature

You can now start editing the files…

Coding standards

Alignak application source code is complying to the coding best practices edicted in PEP 8 [http://www.python.org/dev/peps/pep-0008/] and PEP 257 [http://www.python.org/dev/peps/pep-0257/]. All the source code must also comply to some lint rules that are statically analysed.

Running the same analysis as the one that are executed during a Travis build is an easy stuff. Run the following script in the repository main directory:

Static code analysis
-- pycodestyle (former pep8)
pycodestyle --max-line-length=100 --exclude='*.pyc,carboniface.py' alignak/*
-- pylint
pylint --rcfile=.pylintrc -r no alignak
-- pep257
pep257 --select=D300 alignak

Some good links about Python code style:

	Guide to Python [http://docs.python-guide.org/en/latest/writing/style/] from Hitchhiker’s

	Google Python Style Guide [https://google.github.io/styleguide/pyguide.html]

Run Alignak

The dev directory of the repository includes several useful scripts to run Alignak daemons on your development platform. The scripts names are self explanatory and the scripts are commented.

Installing Alignak and its default configuration will create an environment almost identical to the one you will find on your production server.
See the how it works chapter for more information.

Tests

Before committing (unless you know that you are pushing unfinished stuff) you should create or update some tests. Whether you fix a bug or add a new feature you need to add some test cases.

The Alignak test environment is :ref:`described in details here <contributing/testing>`_.

An example to run the whole test suite:

cd tests
pytest --verbose --durations=10 --no-print-logs --cov=alignak --cov-config .coveragerc test_*.py

A more simple test run (without verbose and code coverage)
pytest test_*.py

A single test
pytest test_my_tests.py

If you have enabled Travis on your fork (recommended) you will receive Travis notifications about the tests results once you pushed some commits to your repository. Else you should browse the Travis builds on the Travis CI.

Commit

You should be ready to commit now, all new files and modified files are added in “stage”. If you look at the commit tree, you can notice more or less a pattern in commit message

Enh|Fix|Add: <Generic word to describe> - <Specific word to describe>

Example:

Enh: Tests - Clean unused imports

This is not a mandatory format to write commit. If you want to do it differently it’s fine.
Always keep in mind that a commit message has to be clear enough.
Message like “fix”, “try1”, “update”, “clean” are not really relevant to understand what’s in the commit.

Create pull request

You feel like your fix / new feature is ready to be merged upstream? It is time to create a pull request. The pull request is the entry point for Alignak team’s review process.

Keep in mind that we are humans and we usually are doing more that one thing at a time. So the clearer the pull request is the quicker it will be merged
Here are some hints to help reviewers

* Explain the issue you encountered, and how you fixed it (short description)
* Add test cases in the main commit (better) or in a separate commit
* Link any GitHub issue it is related to (if you fix an issue for example)
* Mention any limitations of your implementation
* Mention any removal of supported feature

If you run the tests previously you should see that Travis managed to build successfully. If not you will get an email from the Travis engine to informa about the tests results.

No pull request will be merged upstream until all Travis tests pass and until one of the reviewer will accept the Pull Request. Reviewers may not look at your pull request if the build is broken.

Tip

You don’t need such details for a typo / doc fix.

Alignak modules and checks packages

Modules

Alignak framework can be extended with daemon modules. A module is an extra Python module installed and configured for as an Alignak daemon to feed it with some broks.
Broks are events and pieces of information resulting from the Alignak internal monitoring process.

Some modules examples:

	logs module that build a log of all the monitoring events (alerts, notifications, …)

	Web services module that exposes some web services to interact with the Alignak framework

	NSCA collector module that collects NSCA passive checks to feed Alignak with

	backend scheduler module that saves and loads retention data

An Alignak example module [https://github.com/Alignak-monitoring/alignak-module-example] is available in the Alignak organization on GitHub [https://github.com/Alignak-monitoring] .
This module is documented to explain how to build a module and which information are available into the modules.

The existing modules available in the Alignak contribution organization on GitHub [https://github.com/Alignak-monitoring] are also good examples to help digging into the module code.

Checks packs

Alignak framework configuration can be enriched with checks packages. A check package is an extra
Python module installed to provide some more configuration and/or check plugins in the Alignak framework.

Some checks packages examples:

	check with NRPE

	Windows checks using WMI or NSCA

	HTML notifications

An Alignak example checks package [https://github.com/Alignak-monitoring/alignak-checks-example] exists is available in the Alignak organization on GitHub [https://github.com/Alignak-monitoring] .
This package is documented to explain how to build a checks package.

The existing checks packages available in the Alignak contribution organization on GitHub [https://github.com/Alignak-monitoring]
are also good examples to help digging into such a code ;)

Annexes

Some useful information:

	Standard Macros in Alignak

	External Commands list

	Alignak check plugins API

Monitoring objects configuration:

	Command Definition

	Time Period Definition

	Realm Definition

	Contact Definition

	Host Definition

	Service Definition

	Contact Group Definition

	Hostgroup Definition

	Service Group Definition

	Host Dependency Definition

	Service Dependency Definition

	Host Escalation Definition

	Service Escalation Definition

	Notification Way Definition

Standard Macros in Alignak

Standard macros that are available in Alignak are listed here.

On-demand macros and macros for custom variables are described here.

Macro Validity

Although macros can be used in all commands you define, not all macros may be valid in a particular type of command. For example, some macros may only be valid during service notification commands, whereas other may only be valid during host check commands.

Some commands are recognized and treated differently by Alignak. They are as follows:

	Service checks

	Service notifications

	Host checks

	Host notifications

	Service event handlers and/or a global service event handler

	Host event handlers and/or a global host event handler

	Service performance data commands

	Host performance data commands

The tables below list all macros currently available in Alignak, along with a brief description of each and the types of commands in which they are valid. If a macro is used in a command in which it is invalid, it is replaced with an empty string. It should be noted that macros consist of all uppercase characters and are enclosed in $ characters.

Macro Availability Chart

Legend:

	No

	The macro is not available

	Yes

	The macro is available

	Macro Name

	Service Checks

	Service Notifications

	Host Checks

	Host Notifications

	Service Event Handlers

	Host Event Handlers

	Service Perf Data

	Host Perf Data

	Host Macros: 03

	
	
	
	
	
	
	
	

	$HOSTNAME$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTDISPLAYNAME$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTALIAS$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTADDRESS$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTSTATE$

	Yes

	Yes

	Yes 01

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTSTATEID$

	Yes

	Yes

	Yes 01

	Yes

	Yes

	Yes

	Yes

	Yes

	$LASTHOSTSTATE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$LASTHOSTSTATEID$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTSTATETYPE$

	Yes

	Yes

	Yes 01

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTATTEMPT$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$MAXHOSTATTEMPTS$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTEVENTID$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$LASTHOSTEVENTID$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTPROBLEMID$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$LASTHOSTPROBLEMID$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTLATENCY$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTEXECUTIONTIME$

	Yes

	Yes

	Yes 01

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTDURATION$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTDURATIONSEC$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTDOWNTIME$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTPERCENTCHANGE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTGROUPNAME$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTGROUPNAMES$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$LASTHOSTCHECK$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$LASTHOSTSTATECHANGE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$LASTHOSTUP$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$LASTHOSTDOWN$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$LASTHOSTUNREACHABLE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTOUTPUT$

	Yes

	Yes

	Yes 01

	Yes

	Yes

	Yes

	Yes

	Yes

	$LONGHOSTOUTPUT$

	Yes

	Yes

	Yes 01

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTPERFDATA$

	Yes

	Yes

	Yes 01

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTCHECKCOMMAND$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTACKAUTHOR$ 08

	No

	No

	No

	Yes

	No

	No

	No

	No

	$HOSTACKAUTHORNAME$ 08

	No

	No

	No

	Yes

	No

	No

	No

	No

	$HOSTACKAUTHORALIAS$ 08

	No

	No

	No

	Yes

	No

	No

	No

	No

	$HOSTACKCOMMENT$ 08

	No

	No

	No

	Yes

	No

	No

	No

	No

	$HOSTACTIONURL$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTNOTESURL$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTNOTES$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTBUSINESSIMPACT$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$TOTALHOSTSERVICES$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$TOTALHOSTSERVICESOK$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$TOTALHOSTSERVICESWARNING$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$TOTALHOSTSERVICESUNKNOWN$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$TOTALHOSTSERVICESCRITICAL$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Macro Name

	Service Checks

	Service Notifications

	Host Checks

	Host Notifications

	Service Event Handlers

	Host Event Handlers

	Service Perf Data

	Host Perf Data

	Host Group Macros:

	
	
	
	
	
	
	
	

	$HOSTGROUPALIAS$ 05

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTGROUPMEMBERS$ 05

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTGROUPNOTES$ 05

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTGROUPNOTESURL$ 05

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTGROUPACTIONURL$ 05

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Macro Name

	Service Checks

	Service Notifications

	Host Checks

	Host Notifications

	Service Event Handlers

	Host Event Handlers

	Service Perf Data

	Host Perf Data

	Service Macros:

	
	
	
	
	
	
	
	

	$SERVICEDESC$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEDISPLAYNAME$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICESTATE$

	Yes 02

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICESTATEID$

	Yes 02

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$LASTSERVICESTATE$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$LASTSERVICESTATEID$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICESTATETYPE$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEATTEMPT$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$MAXSERVICEATTEMPTS$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEISVOLATILE$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEEVENTID$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$LASTSERVICEEVENTID$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEPROBLEMID$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$LASTSERVICEPROBLEMID$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICELATENCY$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEEXECUTIONTIME$

	Yes 02

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEDURATION$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEDURATIONSEC$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEDOWNTIME$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEPERCENTCHANGE$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEGROUPNAME$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEGROUPNAMES$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$LASTSERVICECHECK$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$LASTSERVICESTATECHANGE$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$LASTSERVICEOK$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$LASTSERVICEWARNING$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$LASTSERVICEUNKNOWN$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$LASTSERVICECRITICAL$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEOUTPUT$

	Yes 02

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$LONGSERVICEOUTPUT$

	Yes 02

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEPERFDATA$

	Yes 02

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICECHECKCOMMAND$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEACKAUTHOR$ 08

	No

	Yes

	No

	No

	No

	No

	No

	No

	$SERVICEACKAUTHORNAME$ 08

	No

	Yes

	No

	No

	No

	No

	No

	No

	$SERVICEACKAUTHORALIAS$ 08

	No

	Yes

	No

	No

	No

	No

	No

	No

	$SERVICEACKCOMMENT$ 08

	No

	Yes

	No

	No

	No

	No

	No

	No

	$SERVICEACTIONURL$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICENOTESURL$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICENOTES$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	$SERVICEBUSINESSIMPACT$

	Yes

	Yes

	No

	No

	Yes

	No

	Yes

	No

	Macro Name

	Service Checks

	Service Notifications

	Host Checks

	Host Notifications

	Service Event Handlers

	Host Event Handlers

	Service Perf Data

	Host Perf Data

	Service Group Macros:

	
	
	
	
	
	
	
	

	$SERVICEGROUPALIAS$ 06

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$SERVICEGROUPMEMBERS$ 06

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$SERVICEGROUPNOTES$ 06

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$SERVICEGROUPNOTESURL$ 06

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$SERVICEGROUPACTIONURL$ 06

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Macro Name

	Service Checks

	Service Notifications

	Host Checks

	Host Notifications

	Service Event Handlers

	Host Event Handlers

	Service Perf Data

	Host Perf Data

	Contact Macros:

	
	
	
	
	
	
	
	

	$CONTACTNAME$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$CONTACTALIAS$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$CONTACTEMAIL$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$CONTACTPAGER$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$CONTACTADDRESSn$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	Macro Name

	Service Checks

	Service Notifications

	Host Checks

	Host Notifications

	Service Event Handlers

	Host Event Handlers

	Service Perf Data

	Host Perf Data

	Contact Group Macros:

	
	
	
	
	
	
	
	

	$CONTACTGROUPALIAS$ 07

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$CONTACTGROUPMEMBERS$ 07

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Macro Name

	Service Checks

	Service Notifications

	Host Checks

	Host Notifications

	Service Event Handlers

	Host Event Handlers

	Service Perf Data

	Host Perf Data

	Summary Macros:

	
	
	
	
	
	
	
	

	$TOTALHOSTSUP$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALHOSTSDOWN$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALHOSTSUNREACHABLE$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALHOSTSDOWNUNHANDLED$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALHOSTSUNREACHABLEUNHANDLED$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALHOSTPROBLEMS$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALHOSTPROBLEMSUNHANDLED$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALSERVICESOK$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALSERVICESWARNING$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALSERVICESCRITICAL$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALSERVICESUNKNOWN$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALSERVICESWARNINGUNHANDLED$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALSERVICESCRITICALUNHANDLED$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALSERVICESUNKNOWNUNHANDLED$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALSERVICEPROBLEMS$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	$TOTALSERVICEPROBLEMSUNHANDLED$ 10

	Yes

	Yes 04

	Yes

	Yes 04

	Yes

	Yes

	Yes

	Yes

	Macro Name

	Service Checks

	Service Notifications

	Host Checks

	Host Notifications

	Service Event Handlers

	Host Event Handlers

	Service Perf Data

	Host Perf Data

	Notification Macros:

	
	
	
	
	
	
	
	

	$NOTIFICATIONTYPE$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$NOTIFICATIONRECIPIENTS$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$NOTIFICATIONISESCALATED$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$NOTIFICATIONAUTHOR$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$NOTIFICATIONAUTHORNAME$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$NOTIFICATIONAUTHORALIAS$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$NOTIFICATIONCOMMENT$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$NOTIFICATIONNUMBER$ No

	Yes

	No

	Yes

	No

	No

	No

	No

	

	$NOTIFICATIONID$ No

	Yes

	No

	Yes

	No

	No

	No

	No

	

	$HOSTNOTIFICATIONNUMBER$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$HOSTNOTIFICATIONID$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$SERVICENOTIFICATIONNUMBER$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	$SERVICENOTIFICATIONID$

	No

	Yes

	No

	Yes

	No

	No

	No

	No

	Macro Name

	Service Checks

	Service Notifications

	Host Checks

	Host Notifications

	Service Event Handlers

	Host Event Handlers

	Service Perf Data

	Host Perf Data

	Date/Time Macros:

	
	
	
	
	
	
	
	

	$LONGDATETIME$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$SHORTDATETIME$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$DATE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$TIME$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$TIMET$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$ISVALIDTIME:$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$NEXTVALIDTIME:$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Macro Name

	Service Checks

	Service Notifications

	Host Checks

	Host Notifications

	Service Event Handlers

	Host Event Handlers

	Service Perf Data

	Host Perf Data

	File Macros:

	
	
	
	
	
	
	
	

	$ALIGNAK$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$MAINCONFIGFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$STATUSDATAFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$COMMENTDATAFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes 05

	$DOWNTIMEDATAFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$RETENTIONDATAFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$OBJECTCACHEFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$TEMPFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$TEMPPATH$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$LOGFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$RESOURCEFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$COMMANDFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$HOSTPERFDATAFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$SERVICEPERFDATAFILE$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Macro Name

	Service Checks

	Service Notifications

	Host Checks

	Host Notifications

	Service Event Handlers

	Host Event Handlers

	Service Perf Data

	Host Perf Data

	Misc Macros:

	
	
	
	
	
	
	
	

	$PROCESSSTARTTIME$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$EVENTSTARTTIME$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$ADMINEMAIL$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$ADMINPAGER$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$ARGn$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	$USERn$

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

Macro Descriptions

Host Macros 03

$HOSTNAME$

Short name for the host (i.e. “biglinuxbox”). This value is taken from the host_name directive in the host definition.

$HOSTDISPLAYNAME$

An alternate display name for the host. This value is taken from the display_name directive in the host definition.

$HOSTALIAS$

Long name/description for the host. This value is taken from the alias directive in the host definition.

$HOSTADDRESS$

Address of the host. This value is taken from the address directive in the host definition.

$HOSTSTATE$

A string indicating the current state of the host (“UP”, “DOWN”, or “UNREACHABLE”).

$HOSTSTATEID$

A number that corresponds to the current state of the host: 0=UP, 1=DOWN, 2=UNREACHABLE.

$LASTHOSTSTATE$

A string indicating the last state of the host (“UP”, “DOWN”, or “UNREACHABLE”).

$LASTHOSTSTATEID$

A number that corresponds to the last state of the host: 0=UP, 1=DOWN, 2=UNREACHABLE.

$HOSTSTATETYPE$

A string indicating the state type for the current host check (“HARD” or “SOFT”).

$HOSTATTEMPT$

The number of the current host check retry. For instance, if this is the second time that the host is being rechecked, this will be the number two. Current attempt number is really only useful when writing host event handlers for “soft” states that take a specific action based on the host retry number.

$MAXHOSTATTEMPTS$

The max check attempts as defined for the current host. Useful when writing host event handlers for “soft” states that take a specific action based on the host retry number.

$HOSTEVENTID$

A globally unique number associated with the host’s current state. Every time a host (or service) experiences a state change, a global event ID number is incremented by one (1). If a host has experienced no state changes, this macro will be set to zero (0).

$LASTHOSTEVENTID$

The previous (globally unique) event number that was given to the host.

$HOSTPROBLEMID$

A globally unique number associated with the host’s current problem state. Every time a host (or service) transitions from an UP or OK state to a problem state, a global problem ID number is incremented by one (1). This macro will be non-zero if the host is currently a non-UP state. State transitions between non-UP states (e.g. DOWN to UNREACHABLE) do not cause this problem id to increase. If the host is currently in an UP state, this macro will be set to zero (0). Combined with event handlers, this macro could be used to automatically open trouble tickets when hosts first enter a problem state.

$LASTHOSTPROBLEMID$

The previous (globally unique) problem number that was given to the host. Combined with event handlers, this macro could be used for automatically closing trouble tickets, etc. when a host recovers to an UP state.

$HOSTLATENCY$

A (floating point) number indicating the number of seconds that a scheduled host check lagged behind its scheduled check time. For instance, if a check was scheduled for 03:14:15 and it didn’t get executed until 03:14:17, there would be a check latency of 2.0 seconds. On-demand host checks have a latency of zero seconds.

$HOSTEXECUTIONTIME$

A (floating point) number indicating the number of seconds that the host check took to execute (i.e. the amount of time the check was executing).

$HOSTDURATION$

A string indicating the amount of time that the host has spent in its current state. Format is “XXh YYm ZZs”, indicating hours, minutes and seconds.

$HOSTDURATIONSEC$

A number indicating the number of seconds that the host has spent in its current state.

$HOSTDOWNTIME$

A number indicating the current “downtime depth” for the host. If this host is currently in a period of scheduled downtime, the value will be greater than zero. If the host is not currently in a period of downtime, this value will be zero.

$HOSTPERCENTCHANGE$

A (floating point) number indicating the percent state change the host has undergone. Percent state change is used by the flap detection algorithm.

$HOSTGROUPNAME$

The short name of the hostgroup that this host belongs to. This value is taken from the hostgroup_name directive in the hostgroup definition. If the host belongs to more than one hostgroup this macro will contain the name of just one of them.

$HOSTGROUPNAMES$

A comma separated list of the short names of all the hostgroups that this host belongs to.

$LASTHOSTCHECK$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which a check of the host was last performed.

$LASTHOSTSTATECHANGE$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time the host last changed state.

$LASTHOSTUP$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the host was last detected as being in an UP state.

$LASTHOSTDOWN$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the host was last detected as being in a DOWN state.

$LASTHOSTUNREACHABLE$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the host waslast detected as being in an UNREACHABLE state.

$HOSTOUTPUT$

The first line of text output from the last host check (i.e. “Ping OK”).

$LONGHOSTOUTPUT$

The full text output (aside from the first line) from the last host check.

$HOSTPERFDATA$

This macro contains any performance data that may have been returned by the last host check.

$HOSTCHECKCOMMAND$

This macro contains the name of the command (along with any arguments passed to it) used to perform the host check.

$HOSTACKAUTHOR$ 08

A string containing the name of the user who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

$HOSTACKAUTHORNAME$ 08

A string containing the short name of the contact (if applicable) who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

$HOSTACKAUTHORALIAS$ 08

A string containing the alias of the contact (if applicable) who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

$HOSTACKCOMMENT$ 08

A string containing the acknowledgement comment that was entered by the user who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

$HOSTACTIONURL$

Action URL for the host. This macro may contain other macros (e.g. $HOSTNAME$), which can be useful when you want to pass the host name to a web page.

$HOSTNOTESURL$

Notes URL for the host. This macro may contain other macros (e.g. $HOSTNAME$), which can be useful when you want to pass the host name to a web page.

$HOSTNOTES$

Notes for the host. This macro may contain other macros (e.g. $HOSTNAME$), which can be useful when you want to host-specific status information, etc. in the description.

$HOSTBUSINESSIMPACT$

A number indicating the business impact for the host.

$TOTALHOSTSERVICES$

The total number of services associated with the host.

$TOTALHOSTSERVICESOK$

The total number of services associated with the host that are in an OK state.

$TOTALHOSTSERVICESWARNING$

The total number of services associated with the host that are in a WARNING state.

$TOTALHOSTSERVICESUNKNOWN$

The total number of services associated with the host that are in an UNKNOWN state.

$TOTALHOSTSERVICESUNREACHABLE$

The total number of services associated with the host that are in an UNREACHABLE state.

$TOTALHOSTSERVICESCRITICAL$
The total number of services associated with the host that are in a CRITICAL state.

Host Group Macros 05

$HOSTGROUPALIAS$ 05

The long name / alias of either 1) the hostgroup name passed as an on_demand macro argument or 2) the primary hostgroup associated with the current host (if not used in the context of an on_demand macro). This value is taken from the alias directive in the hostgroup definition.

$HOSTGROUPMEMBERS$ 05

A comma-separated list of all hosts that belong to either 1) the hostgroup name passed as an on-demand macro argument or 2) the primary hostgroup associated with the current host (if not used in the context of an on-demand macro).

$HOSTGROUPNOTES$ 05

The notes associated with either 1) the hostgroup name passed as an on_demand macro argument or 2) the primary hostgroup associated with the current host (if not used in the context of an on_demand macro). This value is taken from the notes directive in the hostgroup definition.

$HOSTGROUPNOTESURL$ 05

The notes URL associated with either 1) the hostgroup name passed as an on_demand macro argument or 2) the primary hostgroup associated with the current host (if not used in the context of an on_demand macro). This value is taken from the notes_url directive in the hostgroup definition.

$HOSTGROUPACTIONURL$ 05

The action URL associated with either 1) the hostgroup name passed as an on_demand macro argument or 2) the primary hostgroup associated with the current host (if not used in the context of an on_demand macro). This value is taken from the action_url directive in the hostgroup definition.

Service Macros

$SERVICEDESC$`

The long name/description of the service (i.e. “Main Website”). This value is taken from the description directive of the service definition.

$SERVICEDISPLAYNAME$

An alternate display name for the service. This value is taken from the display_name directive in the service definition.

$SERVICESTATE$

A string indicating the current state of the service (“OK”, “WARNING”, “UNKNOWN”, or “CRITICAL”).

$SERVICESTATEID$

A number that corresponds to the current state of the service: 0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN.

$LASTSERVICESTATE$

A string indicating the last state of the service (“OK”, “WARNING”, “UNKNOWN”, or “CRITICAL”).

$LASTSERVICESTATEID$

A number that corresponds to the last state of the service: 0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN.

$SERVICESTATETYPE$

A string indicating the state type of the current service check (“HARD” or “SOFT”).

$SERVICEATTEMPT$

The number of the current service check retry. For instance, if this is the second time that the service is being rechecked, this will be the number two. Current attempt number is really only useful when writing service event handlers for “soft” states that take a specific action based on the service retry number.

$MAXSERVICEATTEMPTS$

The max check attempts as defined for the current service. Useful when writing host event handlers for “soft” states that take a specific action based on the service retry number.

$SERVICEISVOLATILE$

Indicates whether the service is marked as being volatile or not: 0 = not volatile, 1 = volatile.

$SERVICEEVENTID$

A globally unique number associated with the service’s current state. Every time a a service (or host) experiences a state change, a global event ID number is incremented by one (1). If a service has experienced no state changes, this macro will be set to zero (0).

$LASTSERVICEEVENTID$

The previous (globally unique) event number that given to the service.

$SERVICEPROBLEMID$

A globally unique number associated with the service’s current problem state. Every time a service (or host) transitions from an OK or UP state to a problem state, a global problem ID number is incremented by one (1). This macro will be non-zero if the service is currently a non-OK state. State transitions between non-OK states (e.g. WARNING to CRITICAL) do not cause this problem id to increase. If the service is currently in an OK state, this macro will be set to zero (0). Combined with event handlers, this macro could be used to automatically open trouble tickets when services first enter a problem state.

$LASTSERVICEPROBLEMID$

The previous (globally unique) problem number that was given to the service. Combined with event handlers, this macro could be used for automatically closing trouble tickets, etc. when a service recovers to an OK state.

$SERVICELATENCY$

A (floating point) number indicating the number of seconds that a scheduled service check lagged behind its scheduled check time. For instance, if a check was scheduled for 03:14:15 and it didn’t get executed until 03:14:17, there would be a check latency of 2.0 seconds.

$SERVICEEXECUTIONTIME$

A (floating point) number indicating the number of seconds that the service check took to execute (i.e. the amount of time the check was executing).

$SERVICEDURATION$

A string indicating the amount of time that the service has spent in its current state. Format is “XXh YYm ZZs”, indicating hours, minutes and seconds.

$SERVICEDURATIONSEC$

A number indicating the number of seconds that the service has spent in its current state.

$SERVICEDOWNTIME$

A number indicating the current “downtime depth” for the service. If this service is currently in a period of scheduled downtime, the value will be greater than zero. If the service is not currently in a period of downtime, this value will be zero.

$SERVICEPERCENTCHANGE$

A (floating point) number indicating the percent state change the service has undergone. Percent state change is used by the flap detection algorithm.

$SERVICEGROUPNAME$

The short name of the servicegroup that this service belongs to. This value is taken from the servicegroup_name directive in the servicegroup definition. If the service belongs to more than one servicegroup this macro will contain the name of just one of them.

$SERVICEGROUPNAMES$

A comma separated list of the short names of all the servicegroups that this service belongs to.

$LASTSERVICECHECK$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which a check of the service was last performed.

$LASTSERVICESTATECHANGE$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time the service last changed state.

$LASTSERVICEOK$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in an OK state.

$LASTSERVICEWARNING$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in a WARNING state.

$LASTSERVICEUNKNOWN$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in an UNKNOWN state.

$LASTSERVICEUNREACHABLE$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in an UNREACHABLE state.

$LASTSERVICECRITICAL$

This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in a CRITICAL state.

$SERVICEOUTPUT$

The first line of text output from the last service check (i.e. “Ping OK”).

$LONGSERVICEOUTPUT$

The full text output (aside from the first line) from the last service check.

$SERVICEPERFDATA$

This macro contains any performance data that may have been returned by the last service check.

$SERVICECHECKCOMMAND$

This macro contains the name of the command (along with any arguments passed to it) used to perform the service check.

$SERVICEACKAUTHOR$ 08

A string containing the name of the user who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

$SERVICEACKAUTHORNAME$ 08

A string containing the short name of the contact (if applicable) who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

$SERVICEACKAUTHORALIAS$ 08

A string containing the alias of the contact (if applicable) who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

$SERVICEACKCOMMENT$ 08

A string containing the acknowledgement comment that was entered by the user who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

$SERVICEACTIONURL$

Action URL for the service. This macro may contain other macros (e.g. $HOSTNAME$ or $SERVICEDESC$), which can be useful when you want to pass the service name to a web page.

$SERVICENOTESURL$

Notes URL for the service. This macro may contain other macros (e.g. $HOSTNAME$ or $SERVICEDESC$), which can be useful when you want to pass the service name to a web page.

$SERVICENOTES$

Notes for the service. This macro may contain other macros (e.g. $HOSTNAME$ or $SERVICESTATE$), which can be useful when you want to service-specific status information, etc. in the description

$SERVICEBUSINESSIMPACT$

A number indicating the business impact for the service.

Service Group Macros 06

$SERVICEGROUPALIAS$ 06

The long name / alias of either 1) the servicegroup name passed as an on_demand macro argument or 2) the primary servicegroup associated with the current service (if not used in the context of an on_demand macro). This value is taken from the alias directive in the servicegroup definition.

$SERVICEGROUPMEMBERS$ 06

A comma-separated list of all services that belong to either 1) the servicegroup name passed as an on-demand macro argument or 2) the primary servicegroup associated with the current service (if not used in the context of an on-demand macro).

$SERVICEGROUPNOTES$ 06

The notes associated with either 1) the servicegroup name passed as an on_demand macro argument or 2) the primary servicegroup associated with the current service (if not used in the context of an on_demand macro). This value is taken from the notes directive in the servicegroup definition.

$SERVICEGROUPNOTESURL$ 06

The notes URL associated with either 1) the servicegroup name passed as an on_demand macro argument or 2) the primary servicegroup associated with the current service (if not used in the context of an on_demand macro). This value is taken from the notes_url directive in the servicegroup definition.

$SERVICEGROUPACTIONURL$ 06

The action URL associated with either 1) the servicegroup name passed as an on_demand macro argument or 2) the primary servicegroup associated with the current service (if not used in the context of an on_demand macro). This value is taken from the action_url directive in the servicegroup definition.

Contact Macros

$CONTACTNAME$

Short name for the contact (i.e. “jdoe”) that is being notified of a host or service problem. This value is taken from the contact_name directive in the contact definition.

$CONTACTALIAS$

Long name/description for the contact (i.e. “John Doe”) being notified. This value is taken from the alias directive in the contact definition.

$CONTACTEMAIL$

Email address of the contact being notified. This value is taken from the email directive in the contact definition.

$CONTACTPAGER$

Pager number/address of the contact being notified. This value is taken from the pager directive in the contact definition.

$CONTACTADDRESSn$

Address of the contact being notified. Each contact can have six different addresses (in addition to email address and pager number). The macros for these addresses are $CONTACTADDRESS1$ - $CONTACTADDRESS6$. This value is taken from the addressx directive in the contact definition.

$CONTACTGROUPNAME$

The short name of the contactgroup that this contact is a member of. This value is taken from the contactgroup_name directive in the contactgroup definition. If the contact belongs to more than one contactgroup this macro will contain the name of just one of them.

$CONTACTGROUPNAMES$

A comma separated list of the short names of all the contactgroups that this contact is a member of.

Contact Group Macros 05

$CONTACTGROUPALIAS$ 07

The long name / alias of either 1) the contactgroup name passed as an on_demand macro argument or 2) the primary contactgroup associated with the current contact (if not used in the context of an on_demand macro). This value is taken from the alias directive in the contactgroup definition.

$CONTACTGROUPMEMBERS$ 07

A comma-separated list of all contacts that belong to either 1) the contactgroup name passed as an on-demand macro argument or 2) the primary contactgroup associated with the current contact (if not used in the context of an on-demand macro).

Summary Macros

$TOTALHOSTSUP$

This macro reflects the total number of hosts that are currently in an UP state.

$TOTALHOSTSDOWN$

This macro reflects the total number of hosts that are currently in a DOWN state.

$TOTALHOSTSUNREACHABLE$

This macro reflects the total number of hosts that are currently in an UNREACHABLE state.

$TOTALHOSTSDOWNUNHANDLED$

This macro reflects the total number of hosts that are currently in a DOWN state that are not currently being “handled”. Unhandled host problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

$TOTALHOSTSUNREACHABLEUNHANDLED$

This macro reflects the total number of hosts that are currently in an UNREACHABLE state that are not currently being “handled”. Unhandled host problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

$TOTALHOSTPROBLEMS$

This macro reflects the total number of hosts that are currently either in a DOWN or an UNREACHABLE state.

$TOTALHOSTPROBLEMSUNHANDLED$

This macro reflects the total number of hosts that are currently either in a DOWN or an UNREACHABLE state that are not currently being “handled”. Unhandled host problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

$TOTALSERVICESOK$

This macro reflects the total number of services that are currently in an OK state.

$TOTALSERVICESWARNING$

This macro reflects the total number of services that are currently in a WARNING state.

$TOTALSERVICESCRITICAL$

This macro reflects the total number of services that are currently in a CRITICAL state.

$TOTALSERVICESUNKNOWN$

This macro reflects the total number of services that are currently in an UNKNOWN state.

$TOTALSERVICESUNREACHABLE$

This macro reflects the total number of services that are currently in an UNREACHABLE state.

$TOTALSERVICESWARNINGUNHANDLED$

This macro reflects the total number of services that are currently in a WARNING state that are not currently being “handled”. Unhandled services problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

$TOTALSERVICESCRITICALUNHANDLED$

This macro reflects the total number of services that are currently in a CRITICAL state that are not currently being “handled”. Unhandled services problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

$TOTALSERVICESUNKNOWNUNHANDLED$

This macro reflects the total number of services that are currently in an UNKNOWN state that are not currently being “handled”. Unhandled services problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

$TOTALSERVICEPROBLEMS$

This macro reflects the total number of services that are currently either in a WARNING, CRITICAL, or UNKNOWN state.

$TOTALSERVICEPROBLEMSUNHANDLED$

This macro reflects the total number of services that are currently either in a WARNING, CRITICAL, or UNKNOWN state that are not currently being “handled”. Unhandled services problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

Notification Macros

$NOTIFICATIONTYPE$

A string identifying the type of notification that is being sent (“PROBLEM”, “RECOVERY”, “ACKNOWLEDGEMENT”, “FLAPPINGSTART”, “FLAPPINGSTOP”, “FLAPPINGDISABLED”, “DOWNTIMESTART”, “DOWNTIMEEND”, or “DOWNTIMECANCELLED”).

$NOTIFICATIONRECIPIENTS$

A comma-separated list of the short names of all contacts that are being notified about the host or service.

$NOTIFICATIONISESCALATED$

An integer indicating whether this was sent to normal contacts for the host or service or if it was escalated. 0 = Normal (non-escalated) notification , 1 = Escalated notification.

$NOTIFICATIONAUTHOR$

A string containing the name of the user who authored the notification. If the $NOTIFICATIONTYPE$ macro is set to “DOWNTIMESTART” or “DOWNTIMEEND”, this will be the name of the user who scheduled downtime for the host or service. If the $NOTIFICATIONTYPE$ macro is “ACKNOWLEDGEMENT”, this will be the name of the user who acknowledged the host or service problem. If the $NOTIFICATIONTYPE$ macro is “CUSTOM”, this will be name of the user who initiated the custom host or service notification.

$NOTIFICATIONAUTHORNAME$

A string containing the short name of the contact (if applicable) specified in the $NOTIFICATIONAUTHOR$ macro.

$NOTIFICATIONAUTHORALIAS$

A string containing the alias of the contact (if applicable) specified in the $NOTIFICATIONAUTHOR$ macro.

$NOTIFICATIONCOMMENT$

A string containing the comment that was entered by the notification author.

If the $NOTIFICATIONTYPE$ macro is set to “DOWNTIMESTART” or “DOWNTIMEEND”, this will be the comment entered by the user who scheduled downtime for the host or service.

If the $NOTIFICATIONTYPE$ macro is “ACKNOWLEDGEMENT”, this will be the comment entered by the user who acknowledged the host or service problem.

If the $NOTIFICATIONTYPE$ macro is “CUSTOM”, this will be comment entered by the user who initiated the custom host or service notification.

$NOTIFICATIONNUMBER$

The current notification number for the host/service. You can use this macro in place of the $HOSTNOTIFICATIONNUMBER$ and $SERVICENOTIFICATIONNUMBER$.

$NOTIFICATIONID$

A unique number identifying a notification. You can use this macro in place of the $HOSTNOTIFICATIONID$ and $SERVICENOTIFICATIONID$.

$HOSTNOTIFICATIONNUMBER$

The current notification number for the host. The notification number increases by one (1) each time a new notification is sent out for the host (except for acknowledgements).

The notification number is reset to 0 when the host recovers (after the recovery notification has gone out). Acknowledgements do not cause the notification number to increase, nor do notifications dealing with flap detection or scheduled downtime.

$HOSTNOTIFICATIONID$

A unique number identifying a host notification.

Notification ID numbers are unique across both hosts and service notifications, so you could potentially use this unique number as a primary key in a notification database. Notification ID numbers should remain unique across restarts of the Alignak process, so long as you have state retention enabled.

The notification ID number is incremented by one (1) each time a new host notification is sent out, and regardless of how many contacts are notified.

$SERVICENOTIFICATIONNUMBER$

The current notification number for the service. The notification number increases by one (1) each time a new notification is sent out for the service (except for acknowledgements).

The notification number is reset to 0 when the service recovers (after the recovery notification has gone out). Acknowledgements do not cause the notification number to increase, nor do notifications dealing with flap detection or scheduled downtime.

$SERVICENOTIFICATIONID$

A unique number identifying a service notification.

Notification ID numbers are unique across both hosts and service notifications, so you could potentially use this unique number as a primary key in a notification database. Notification ID numbers should remain unique across restarts of the Alignak process, so long as you have state retention enabled.

The notification ID number is incremented by one (1) each time a new service notification is sent out, and regardless of how many contacts are notified.

Date/Time Macros

$LONGDATETIME$

Current date/time stamp (i.e. Fri Oct 13 00:30:28 CDT 2000).

$SHORTDATETIME$

Current date/time stamp (i.e. 10-13-2000 00:30:28).

$DATE$

Date stamp (i.e. 10-13-2000).

$TIME$

Current time stamp (i.e. 00:30:28).
$TIMET$

Current time stamp in time_t format (seconds since the UNIX epoch).

$ISVALIDTIME$ 09

This is a special on_demand macro that returns a 1 or 0 depending on whether or not a particular time is valid within a specified timeperiod. There are two ways of using this macro: _ $ISVALIDTIME:24x7$ will be set to “1” if the current time is valid within the “24x7” timeperiod. If not, it will be set to “0”. _ $ISVALIDTIME:24x7:timestamp$ will be set to “1” if the time specified by the “timestamp” argument (which must be in time_t format) is valid within the “24x7” timeperiod. If not, it will be set to “0”.

$NEXTVALIDTIME$ 09

This is a special on_demand macro that returns the next valid time (in time_t format) for a specified timeperiod. There are two ways of using this macro: _ $NEXTVALIDTIME:24x7$ will return the next valid time _ from and including the current time _ in the “24x7” timeperiod. _ $NEXTVALIDTIME:24x7:timestamp$ will return the next valid time - from and including the time specified by the “timestamp” argument (which must be specified in time_t format) - in the “24x7” timeperiod.If a next valid time cannot be found in the specified timeperiod, the macro will be set to “0”.

File Macros

Note this list needs to be updated!
== ==
$ALIGNAK$ The name defined for the Alignak instance in the configuration file.
$MAINCONFIGFILE$ The location and name of the main configuration file.
$STATUSDATAFILE$ Not available
$COMMENTDATAFILE$ Not available
$DOWNTIMEDATAFILE$ Not available
$RETENTIONDATAFILE$ Not available
$OBJECTCACHEFILE$ Not available
$TEMPFILE$ Not available
$TEMPPATH$ Not available
$LOGFILE$ Not available
$RESOURCEFILE$ Not available
$COMMANDFILE$ Not available
$HOSTPERFDATAFILE$ Not available
$SERVICEPERFDATAFILE$ Not available
== ==

Misc Macros

Note this list needs to be updated!

$PROCESSSTARTTIME$

Time stamp in time_t format (seconds since the UNIX epoch) indicating when the Alignak process was last (re)started. You can determine the number of seconds that Alignak has been running (since it was last restarted) by subtracting $PROCESSSTARTTIME$ from $TIMET$.

$EVENTSTARTTIME$

Time stamp in time_t format (seconds since the UNIX epoch) indicating when the Alignak process starting process events (checks, etc.). You can determine the number of seconds that it took for Alignak to startup by subtracting $PROCESSSTARTTIME$ from $EVENTSTARTTIME$.

$ADMINEMAIL$ (unused)

Not available

$ADMINPAGER$ (unused)
Not available

$ARGn$

The nth argument passed to the command (notification, event handler, service check, etc.). Alignak supports up to 32 argument macros ($ARG1$ through $ARG32$).

$USERn$

The nth user-definable macro. Alignak supports up to 32 user macros ($USER1$ through $USER32$).

Notes

	01 These macros are not valid for the host they are associated with when that host is being checked (i.e. they make no sense, as they haven’t been determined yet).

	02 These macros are not valid for the service they are associated with when that service is being checked (i.e. they make no sense, as they haven’t been determined yet).

	03 When host macros are used in service-related commands (i.e. service notifications, event handlers, etc) they refer to the host that the service is associated with.

	04 When host and service summary macros are used in notification commands, the totals are filtered to reflect only those hosts and services for which the contact is authorized (i.e. hosts and services they are configured to receive notifications for).

	05 These macros are normally associated with the first/primary hostgroup associated with the current host. They could therefore be considered host macros in many cases. However, these macros are not available as on-demand host macros. Instead, they can be used as on-demand hostgroup macros when you pass the name of a hostgroup to the macro. For example: $HOSTGROUPMEMBERS:hg1$ would return a comma-delimited list of all (host) members of the hostgroup hg1.

	06 These macros are normally associated with the first/primary servicegroup associated with the current service. They could therefore be considered service macros in many cases. However, these macros are not available as on-demand service macros. Instead, they can be used as on-demand servicegroup macros when you pass the name of a servicegroup to the macro. For example: $SERVICEGROUPMEMBERS:sg1$ would return a comma-delimited list of all (service) members of the servicegroup sg1.

	07 These macros are normally associated with the first/primary contactgroup associated with the current contact. They could therefore be considered contact macros in many cases. However, these macros are not available as on-demand contact macros. Instead, they can be used as on-demand contactgroup macros when you pass the name of a contactgroup to the macro. For example: $CONTACTGROUPMEMBERS:cg1$ would return a comma-delimited list of all (contact) members of the contactgroup cg1.

	08 These acknowledgement macros are deprecated. Use the more generic $NOTIFICATIONAUTHOR$, $NOTIFICATIONAUTHORNAME$, $NOTIFICATIONAUTHORALIAS$ or $NOTIFICATIONAUTHORCOMMENT$ macros instead.

	09 These macro are only available as on-demand macros - e.g. you must supply an additional argument with them in order to use them. These macros are not available as environment variables.

	10 Summary macros are not available as environment variables if the use_large_installation_tweaks option is enabled, as they are quite CPU-intensive to calculate.

External Commands list

Below you will find descriptions of each external command.

Warning

all those external commands are not implemented in Alignak! This list contains all the commonly known external commands and keep you informed if the command is implemented or not!

ACKNOWLEDGE_HOST_PROBLEM

ACKNOWLEDGE_HOST_PROBLEM;<host_name>;<sticky>;<notify>;<persistent>;<author>;<comment>

Allows you to acknowledge the current problem for the specified host. By acknowledging the current problem, future notifications (for the same host state) are disabled.

If the “sticky” option is set to two (2), the acknowledgement will remain until the host recovers (returns to an UP state). Otherwise (value different of 2)the acknowledgement will automatically be removed when the host changes state.

If the “notify” option is set to one (1), a notification will be sent out to contacts indicating that the current host problem has been acknowledged, if not set (0) there will be no notification.

If the “persistent” option is set to one (1), the comment associated with the acknowledgement will remain even after the host recovers.

Note contrary to the legacy Nagios behavior, Alignak will automatically set an acknowledge on all the host services that are currently problems when an host problem is acknowledged.

Note that Alignak will always consider an acknowledge as persistent. Thus it will ignore the “persistent” information value.

ACKNOWLEDGE_HOST_PROBLEM_EXPIRE

ACKNOWLEDGE_HOST_PROBLEM_EXPIRE;<host_name>;<sticky>;<notify>;<persistent>;<timestamp>;<author>;<comment>

Allows you to define the time (seconds since the UNIX epoch) when the acknowledgement will expire (will be deleted).

ACKNOWLEDGE_SVC_PROBLEM

ACKNOWLEDGE_SVC_PROBLEM;<host_name>;<service_description>;<sticky>;<notify>;<persistent>;<author>;<comment>

Allows you to acknowledge the current problem for the specified service. By acknowledging the current problem, future notifications (for the same service state) are disabled.

If the “sticky” option is set to two (2), the acknowledgement will remain until the service recovers (returns to an OK state). Otherwise (value different of 2) the acknowledgement will automatically be removed when the service changes state.

If the “notify” option is set to one (1), a notification will be sent out to contacts indicating that the current service problem has been acknowledged, if set to null (0) there will be no notification.

If the “persistent” option is set to one (1), the comment associated with the acknowledgement will remain even after the service recovers.

Note that Alignak will always consider an acknowledge as persistent. Thus it will ignore the “persistent” information value.

ACKNOWLEDGE_SVC_PROBLEM_EXPIRE

ACKNOWLEDGE_SVC_PROBLEM_EXPIRE;<host_name>;<service_description>;<sticky>;<notify>;<persistent>;<timestamp>;<author>;<comment>

Allows you to define the time (seconds since the UNIX epoch) when the acknowledgement will expire (will be deleted).

ADD_HOST_COMMENT

ADD_HOST_COMMENT;<host_name>;<persistent>;<author>;<comment>

Adds a comment to a particular host. If the “persistent” field is set to zero (0), the comment will be deleted the next time Alignak is restarted. Otherwise, the comment will persist across program restarts until it is deleted manually.

ADD_SVC_COMMENT

ADD_SVC_COMMENT;<host_name>;<service_description>;<persistent>;<author>;<comment>

Adds a comment to a particular service. If the “persistent” field is set to zero (0), the comment will be deleted the next time Alignak is restarted. Otherwise, the comment will persist across program restarts until it is deleted manually.

CHANGE_CONTACT_HOST_NOTIFICATION_TIMEPERIOD

CHANGE_CONTACT_HOST_NOTIFICATION_TIMEPERIOD;<contact_name>;<notification_timeperiod>

Changes the host notification timeperiod for a particular contact to what is specified by the “notification_timeperiod” option. The “notification_timeperiod” option should be the short name of the timeperiod that is to be used as the contact’s host notification timeperiod. The timeperiod must have been configured in Alignak before it was last (re)started.

CHANGE_CONTACT_MODATTR

CHANGE_CONTACT_MODATTR;<contact_name>;<value>

This command changes the modified attributes value for the specified contact. Modified attributes values are used by Alignak to determine which object properties should be retained across program restarts. Thus, modifying the value of the attributes can affect data retention. This is an advanced option and should only be used by people who are intimately familiar with the data retention logic in Alignak.

CHANGE_CONTACT_MODHATTR

CHANGE_CONTACT_MODHATTR;<contact_name>;<value>

This command changes the modified host attributes value for the specified contact. Modified attributes values are used by Alignak to determine which object properties should be retained across program restarts. Thus, modifying the value of the attributes can affect data retention. This is an advanced option and should only be used by people who are intimately familiar with the data retention logic in Alignak.

CHANGE_CONTACT_MODSATTR

CHANGE_CONTACT_MODSATTR;<contact_name>;<value>

This command changes the modified service attributes value for the specified contact. Modified attributes values are used by Alignak to determine which object properties should be retained across program restarts. Thus, modifying the value of the attributes can affect data retention. This is an advanced option and should only be used by people who are intimately familiar with the data retention logic in Alignak.

CHANGE_CONTACT_SVC_NOTIFICATION_TIMEPERIOD

CHANGE_CONTACT_SVC_NOTIFICATION_TIMEPERIOD;<contact_name>;<notification_timeperiod>

Changes the service notification timeperiod for a particular contact to what is specified by the “notification_timeperiod” option. The “notification_timeperiod” option should be the short name of the timeperiod that is to be used as the contact’s service notification timeperiod. The timeperiod must have been configured in Alignak before it was last (re)started.

CHANGE_CUSTOM_CONTACT_VAR

CHANGE_CUSTOM_CONTACT_VAR;<contact_name>;<varname>;<varvalue>

Changes the value of a custom contact variable.

CHANGE_CUSTOM_HOST_VAR

CHANGE_CUSTOM_HOST_VAR;<host_name>;<varname>;<varvalue>

Changes the value of a custom host variable.

CHANGE_CUSTOM_SVC_VAR

CHANGE_CUSTOM_SVC_VAR;<host_name>;<service_description>;<varname>;<varvalue>

Changes the value of a custom service variable.

CHANGE_GLOBAL_HOST_EVENT_HANDLER

CHANGE_GLOBAL_HOST_EVENT_HANDLER;<event_handler_command>

Changes the global host event handler command to be that specified by the “event_handler_command” option. The “event_handler_command” option specifies the short name of the command that should be used as the new host event handler. The command must have been configured in Alignak before it was last (re)started.

Note

this command is not currently implemented in Alignak

CHANGE_GLOBAL_SVC_EVENT_HANDLER

CHANGE_GLOBAL_SVC_EVENT_HANDLER;<event_handler_command>

Changes the global service event handler command to be that specified by the “event_handler_command” option. The “event_handler_command” option specifies the short name of the command that should be used as the new service event handler. The command must have been configured in Alignak before it was last (re)started.

Note

this command is not currently implemented in Alignak

CHANGE_HOST_CHECK_COMMAND

CHANGE_HOST_CHECK_COMMAND;<host_name>;<check_command>

Changes the check command for a particular host to be that specified by the “check_command” option. The “check_command” option specifies the short name of the command that should be used as the new host check command. The command must have been configured in Alignak before it was last (re)started.

CHANGE_HOST_CHECK_TIMEPERIOD

CHANGE_HOST_CHECK_TIMEPERIOD;<host_name>;<timeperiod>

Changes the valid check period for the specified host.

CHANGE_HOST_EVENT_HANDLER

CHANGE_HOST_EVENT_HANDLER;<host_name>;<event_handler_command>

Changes the event handler command for a particular host to be that specified by the “event_handler_command” option. The “event_handler_command” option specifies the short name of the command that should be used as the new host event handler. The command must have been configured in Alignak before it was last (re)started.

CHANGE_HOST_MODATTR

CHANGE_HOST_MODATTR;<host_name>;<value>

This command changes the modified attributes value for the specified host. Modified attributes values are used by Alignak to determine which object properties should be retained across program restarts. Thus, modifying the value of the attributes can affect data retention. This is an advanced option and should only be used by people who are intimately familiar with the data retention logic in Alignak.

CHANGE_HOST_NOTIFICATION_TIMEPERIOD

CHANGE_HOST_NOTIFICATION_TIMEPERIOD;<host_name>;<notification_timeperiod>

Changes the notification timeperiod for a particular host to what is specified by the “notification_timeperiod” option. The “notification_timeperiod” option should be the short name of the timeperiod that is to be used as the service notification timeperiod. The timeperiod must have been configured in Alignak before it was last (re)started.

CHANGE_MAX_HOST_CHECK_ATTEMPTS

CHANGE_MAX_HOST_CHECK_ATTEMPTS;<host_name>;<check_attempts>

Changes the maximum number of check attempts (retries) for a particular host.

CHANGE_MAX_SVC_CHECK_ATTEMPTS

CHANGE_MAX_SVC_CHECK_ATTEMPTS;<host_name>;<service_description>;<check_attempts>

Changes the maximum number of check attempts (retries) for a particular service.

CHANGE_NORMAL_HOST_CHECK_INTERVAL

CHANGE_NORMAL_HOST_CHECK_INTERVAL;<host_name>;<check_interval>

Changes the normal (regularly scheduled) check interval for a particular host.

CHANGE_NORMAL_SVC_CHECK_INTERVAL

CHANGE_NORMAL_SVC_CHECK_INTERVAL;<host_name>;<service_description>;<check_interval>

Changes the normal (regularly scheduled) check interval for a particular service

CHANGE_RETRY_HOST_CHECK_INTERVAL

CHANGE_RETRY_HOST_CHECK_INTERVAL;<host_name>;<check_interval>

Changes the retry check interval for a particular host.

CHANGE_RETRY_SVC_CHECK_INTERVAL

CHANGE_RETRY_SVC_CHECK_INTERVAL;<host_name>;<service_description>;<check_interval>

Changes the retry check interval for a particular service.

CHANGE_SVC_CHECK_COMMAND

CHANGE_SVC_CHECK_COMMAND;<host_name>;<service_description>;<check_command>

Changes the check command for a particular service to be that specified by the “check_command” option. The “check_command” option specifies the short name of the command that should be used as the new service check command. The command must have been configured in Alignak before it was last (re)started.

CHANGE_SVC_CHECK_TIMEPERIOD

CHANGE_SVC_CHECK_TIMEPERIOD;<host_name>;<service_description>;<check_timeperiod>

Changes the check timeperiod for a particular service to what is specified by the “check_timeperiod” option. The “check_timeperiod” option should be the short name of the timeperod that is to be used as the service check timeperiod. The timeperiod must have been configured in Alignak before it was last (re)started.

CHANGE_SVC_EVENT_HANDLER

CHANGE_SVC_EVENT_HANDLER;<host_name>;<service_description>;<event_handler_command>

Changes the event handler command for a particular service to be that specified by the “event_handler_command” option. The “event_handler_command” option specifies the short name of the command that should be used as the new service event handler. The command must have been configured in Alignak before it was last (re)started.

CHANGE_SVC_MODATTR

CHANGE_SVC_MODATTR;<host_name>;<service_description>;<value>

This command changes the modified attributes value for the specified service. Modified attributes values are used by Alignak to determine which object properties should be retained across program restarts. Thus, modifying the value of the attributes can affect data retention. This is an advanced option and should only be used by people who are intimately familiar with the data retention logic in Alignak.

CHANGE_SVC_NOTIFICATION_TIMEPERIOD

CHANGE_SVC_NOTIFICATION_TIMEPERIOD;<host_name>;<service_description>;<notification_timeperiod>

Changes the notification timeperiod for a particular service to what is specified by the “notification_timeperiod” option. The “notification_timeperiod” option should be the short name of the timeperiod that is to be used as the service notification timeperiod. The timeperiod must have been configured in Alignak before it was last (re)started.

DEL_ALL_HOST_COMMENTS

DEL_ALL_HOST_COMMENTS;<host_name>

Deletes all comments associated with a particular host.

DEL_ALL_SVC_COMMENTS

DEL_ALL_SVC_COMMENTS;<host_name>;<service_description>

Deletes all comments associated with a particular service.

DEL_HOST_COMMENT

DEL_HOST_COMMENT;<comment_id>

Deletes a host comment. The id number of the comment that is to be deleted must be specified.

DEL_DOWNTIME_BY_HOST_NAME

DEL_DOWNTIME_BY_HOST_NAME;<host_name>[;<servicedesc>[;<starttime>[;<commentstring>]]]

Deletes the host downtime entry and associated services for the host whose host_name matches the “host_name” argument. If the downtime is currently in effect, the host will come out of scheduled downtime (as long as there are no other overlapping active downtime entries). Please note that you can add more (optional) “filters” to limit the scope.

[Note] Note
Changes provided by the Opsview team.

DEL_DOWNTIME_BY_HOSTGROUP_NAME

DEL_DOWNTIME_BY_HOSTGROUP_NAME;<hostgroup_name>[;<hostname>[;<servicedesc>[;<starttime>[;<commentstring>]]]]

Deletes the host downtime entries and associated services of all hosts of the host group matching the “hostgroup_name” argument. If the downtime is currently in effect, the host will come out of scheduled downtime (as long as there are no other overlapping active downtime entries). Please note that you can add more (optional) “filters” to limit the scope.

[Note] Note
Changes provided by the Opsview team.

DEL_DOWNTIME_BY_START_TIME_COMMENT

DEL_DOWNTIME_BY_START_TIME_COMMENT;<start time[;comment_string]>

Deletes downtimes with start times matching the timestamp specified by the “start time” argument and an optional comment string.

[Note] Note
Changes provided by the Opsview team.

DEL_HOST_DOWNTIME

DEL_HOST_DOWNTIME;<downtime_id>

Deletes the host downtime entry that has an ID number matching the “downtime_id” argument. If the downtime is currently in effect, the host will come out of scheduled downtime (as long as there are no other overlapping active downtime entries).

DEL_SVC_COMMENT

DEL_SVC_COMMENT;<comment_id>

Deletes a service comment. The id number of the comment that is to be deleted must be specified.

DEL_SVC_DOWNTIME

DEL_SVC_DOWNTIME;<downtime_id>

Deletes the service downtime entry that has an ID number matching the “downtime_id” argument. If the downtime is currently in effect, the service will come out of scheduled downtime (as long as there are no other overlapping active downtime entries).

DELAY_HOST_NOTIFICATION

DELAY_HOST_NOTIFICATION;<host_name>;<notification_time>

Delays the next notification for a particular host until “notification_time”. The “notification_time” argument is specified in time_t format (seconds since the UNIX epoch). Note that this will only have an affect if the host stays in the same problem state that it is currently in. If the host changes to another state, a new notification may go out before the time you specify in the “notification_time” argument.

DELAY_SVC_NOTIFICATION

DELAY_SVC_NOTIFICATION;<host_name>;<service_description>;<notification_time>

Delays the next notification for a particular service until “notification_time”. The “notification_time” argument is specified in time_t format (seconds since the UNIX epoch). Note that this will only have an affect if the service stays in the same problem state that it is currently in. If the service changes to another state, a new notification may go out before the time you specify in the “notification_time” argument.

DISABLE_ALL_NOTIFICATIONS_BEYOND_HOST

DISABLE_ALL_NOTIFICATIONS_BEYOND_HOST;<host_name>

Disables notifications for all hosts and services “beyond” (e.g. on all child hosts of) the specified host. The current notification setting for the specified host is not affected.

Note

this command is not currently implemented in Alignak

DISABLE_CONTACT_HOST_NOTIFICATIONS

DISABLE_CONTACT_HOST_NOTIFICATIONS;<contact_name>

Disables host notifications for a particular contact.

DISABLE_CONTACT_SVC_NOTIFICATIONS

DISABLE_CONTACT_SVC_NOTIFICATIONS;<contact_name>

Disables service notifications for a particular contact.

DISABLE_CONTACTGROUP_HOST_NOTIFICATIONS

DISABLE_CONTACTGROUP_HOST_NOTIFICATIONS;<contactgroup_name>

Disables host notifications for all contacts in a particular contactgroup.

DISABLE_CONTACTGROUP_SVC_NOTIFICATIONS

DISABLE_CONTACTGROUP_SVC_NOTIFICATIONS;<contactgroup_name>

Disables service notifications for all contacts in a particular contactgroup.

DISABLE_EVENT_HANDLERS

DISABLE_EVENT_HANDLERS

Disables host and service event handlers on a program-wide basis.

DISABLE_FAILURE_PREDICTION

DISABLE_FAILURE_PREDICTION

Disables failure prediction on a program-wide basis.

DISABLE_FLAP_DETECTION

DISABLE_FLAP_DETECTION

Disables host and service flap detection on a program-wide basis.

DISABLE_HOST_AND_CHILD_NOTIFICATIONS

DISABLE_HOST_AND_CHILD_NOTIFICATIONS;<host_name>

Disables notifications for the specified host, as well as all hosts “beyond” (e.g. on all child hosts of) the specified host.

Note

this command is not currently implemented in Alignak

DISABLE_HOST_CHECK

DISABLE_HOST_CHECK;<host_name>

Disables (regularly scheduled and on-demand) active checks of the specified host.

DISABLE_HOST_EVENT_HANDLER

DISABLE_HOST_EVENT_HANDLER;<host_name>

Disables the event handler for the specified host.

DISABLE_HOST_FLAP_DETECTION

DISABLE_HOST_FLAP_DETECTION;<host_name>

Disables flap detection for the specified host.

DISABLE_HOST_FRESHNESS_CHECKS

DISABLE_HOST_FRESHNESS_CHECKS

Disables freshness checks of all hosts on a program-wide basis.

DISABLE_HOST_NOTIFICATIONS

DISABLE_HOST_NOTIFICATIONS;<host_name>

Disables notifications for a particular host.

DISABLE_HOST_SVC_CHECKS

DISABLE_HOST_SVC_CHECKS;<host_name>

Disables active checks of all services on the specified host.

DISABLE_HOST_SVC_NOTIFICATIONS

DISABLE_HOST_SVC_NOTIFICATIONS;<host_name>

Disables notifications for all services on the specified host.

DISABLE_HOSTGROUP_HOST_CHECKS

DISABLE_HOSTGROUP_HOST_CHECKS;<hostgroup_name>

Disables active checks for all hosts in a particular hostgroup.

DISABLE_HOSTGROUP_HOST_NOTIFICATIONS

DISABLE_HOSTGROUP_HOST_NOTIFICATIONS;<hostgroup_name>

Disables notifications for all hosts in a particular hostgroup. This does not disable notifications for the services associated with the hosts in the hostgroup - see the DISABLE_HOSTGROUP_SVC_NOTIFICATIONS command for that.

DISABLE_HOSTGROUP_PASSIVE_HOST_CHECKS

DISABLE_HOSTGROUP_PASSIVE_HOST_CHECKS;<hostgroup_name>

Disables passive checks for all hosts in a particular hostgroup.

DISABLE_HOSTGROUP_PASSIVE_SVC_CHECKS

DISABLE_HOSTGROUP_PASSIVE_SVC_CHECKS;<hostgroup_name>

Disables passive checks for all services associated with hosts in a particular hostgroup.

DISABLE_HOSTGROUP_SVC_CHECKS

DISABLE_HOSTGROUP_SVC_CHECKS;<hostgroup_name>

Disables active checks for all services associated with hosts in a particular hostgroup.

DISABLE_HOSTGROUP_SVC_NOTIFICATIONS

DISABLE_HOSTGROUP_SVC_NOTIFICATIONS;<hostgroup_name>

Disables notifications for all services associated with hosts in a particular hostgroup. This does not disable notifications for the hosts in the hostgroup - see the DISABLE_HOSTGROUP_HOST_NOTIFICATIONS command for that.

DISABLE_NOTIFICATIONS

DISABLE_NOTIFICATIONS

Disables host and service notifications on a program-wide basis.

DISABLE_NOTIFICATIONS_EXPIRE_TIME

DISABLE_NOTIFICATIONS_EXPIRE_TIME;<schedule_time>;<expire_time>

<schedule_time> has no effect currently, set it to current timestamp in your scripts.

Disables host and service notifications on a program-wide basis, with given expire time.

DISABLE_PASSIVE_HOST_CHECKS

DISABLE_PASSIVE_HOST_CHECKS;<host_name>

Disables acceptance and processing of passive host checks for the specified host.

DISABLE_PASSIVE_SVC_CHECKS

DISABLE_PASSIVE_SVC_CHECKS;<host_name>;<service_description>

Disables passive checks for the specified service.

DISABLE_PERFORMANCE_DATA

DISABLE_PERFORMANCE_DATA

Disables the processing of host and service performance data on a program-wide basis.

DISABLE_SERVICE_FRESHNESS_CHECKS

DISABLE_SERVICE_FRESHNESS_CHECKS

Disables freshness checks of all services on a program-wide basis.

DISABLE_SERVICEGROUP_HOST_CHECKS

DISABLE_SERVICEGROUP_HOST_CHECKS;<servicegroup_name>

Disables active checks for all hosts that have services that are members of a particular servicegroup.

DISABLE_SERVICEGROUP_HOST_NOTIFICATIONS

DISABLE_SERVICEGROUP_HOST_NOTIFICATIONS;<servicegroup_name>

Disables notifications for all hosts that have services that are members of a particular servicegroup.

DISABLE_SERVICEGROUP_PASSIVE_HOST_CHECKS

DISABLE_SERVICEGROUP_PASSIVE_HOST_CHECKS;<servicegroup_name>

Disables the acceptance and processing of passive checks for all hosts that have services that are members of a particular service group.

DISABLE_SERVICEGROUP_PASSIVE_SVC_CHECKS

DISABLE_SERVICEGROUP_PASSIVE_SVC_CHECKS;<servicegroup_name>

Disables the acceptance and processing of passive checks for all services in a particular servicegroup.

DISABLE_SERVICEGROUP_SVC_CHECKS

DISABLE_SERVICEGROUP_SVC_CHECKS;<servicegroup_name>

Disables active checks for all services in a particular servicegroup.

DISABLE_SERVICEGROUP_SVC_NOTIFICATIONS

DISABLE_SERVICEGROUP_SVC_NOTIFICATIONS;<servicegroup_name>

Disables notifications for all services that are members of a particular servicegroup.

DISABLE_SVC_CHECK

DISABLE_SVC_CHECK;<host_name>;<service_description>

Disables active checks for a particular service.

DISABLE_SVC_EVENT_HANDLER

DISABLE_SVC_EVENT_HANDLER;<host_name>;<service_description>

Disables the event handler for the specified service.

DISABLE_SVC_FLAP_DETECTION

DISABLE_SVC_FLAP_DETECTION;<host_name>;<service_description>

Disables flap detection for the specified service.

DISABLE_SVC_NOTIFICATIONS

DISABLE_SVC_NOTIFICATIONS;<host_name>;<service_description>

Disables notifications for a particular service.

ENABLE_ALL_NOTIFICATIONS_BEYOND_HOST

ENABLE_ALL_NOTIFICATIONS_BEYOND_HOST;<host_name>

Enables notifications for all hosts and services “beyond” (e.g. on all child hosts of) the specified host. The current notification setting for the specified host is not affected. Notifications will only be sent out for these hosts and services if notifications are also enabled on a program-wide basis.

Note

this command is not currently implemented in Alignak

ENABLE_CONTACT_HOST_NOTIFICATIONS

ENABLE_CONTACT_HOST_NOTIFICATIONS;<contact_name>

Enables host notifications for a particular contact.

ENABLE_CONTACT_SVC_NOTIFICATIONS

ENABLE_CONTACT_SVC_NOTIFICATIONS;<contact_name>

Disables service notifications for a particular contact.

ENABLE_CONTACTGROUP_HOST_NOTIFICATIONS

ENABLE_CONTACTGROUP_HOST_NOTIFICATIONS;<contactgroup_name>

Enables host notifications for all contacts in a particular contactgroup.

ENABLE_CONTACTGROUP_SVC_NOTIFICATIONS

ENABLE_CONTACTGROUP_SVC_NOTIFICATIONS;<contactgroup_name>

Enables service notifications for all contacts in a particular contactgroup.

ENABLE_EVENT_HANDLERS

ENABLE_EVENT_HANDLERS

Enables host and service event handlers on a program-wide basis.

ENABLE_FAILURE_PREDICTION

ENABLE_FAILURE_PREDICTION

Enables failure prediction on a program-wide basis.

ENABLE_FLAP_DETECTION

ENABLE_FLAP_DETECTION

Enables host and service flap detection on a program-wide basis.

ENABLE_HOST_AND_CHILD_NOTIFICATIONS

ENABLE_HOST_AND_CHILD_NOTIFICATIONS;<host_name>

Enables notifications for the specified host, as well as all hosts “beyond” (e.g. on all child hosts of) the specified host. Notifications will only be sent out for these hosts if notifications are also enabled on a program-wide basis.

Note

this command is not currently implemented in Alignak

ENABLE_HOST_CHECK

ENABLE_HOST_CHECK;<host_name>

Enables (regularly scheduled and on-demand) active checks of the specified host.

ENABLE_HOST_EVENT_HANDLER

ENABLE_HOST_EVENT_HANDLER;<host_name>

Enables the event handler for the specified host.

ENABLE_HOST_FLAP_DETECTION

ENABLE_HOST_FLAP_DETECTION;<host_name>

Enables flap detection for the specified host. In order for the flap detection algorithms to be run for the host, flap detection must be enabled on a program-wide basis as well.

ENABLE_HOST_FRESHNESS_CHECKS

ENABLE_HOST_FRESHNESS_CHECKS

Enables freshness checks of all hosts on a program-wide basis. Individual hosts that have freshness checks disabled will not be checked for freshness.

ENABLE_HOST_NOTIFICATIONS

ENABLE_HOST_NOTIFICATIONS;<host_name>

Enables notifications for a particular host. Notifications will be sent out for the host only if notifications are enabled on a program-wide basis as well.

ENABLE_HOST_SVC_CHECKS

ENABLE_HOST_SVC_CHECKS;<host_name>

Enables active checks of all services on the specified host.

ENABLE_HOST_SVC_NOTIFICATIONS

ENABLE_HOST_SVC_NOTIFICATIONS;<host_name>

Enables notifications for all services on the specified host. Note that notifications will not be sent out if notifications are disabled on a program-wide basis.

ENABLE_HOSTGROUP_HOST_CHECKS

ENABLE_HOSTGROUP_HOST_CHECKS;<hostgroup_name>

Enables active checks for all hosts in a particular hostgroup.

ENABLE_HOSTGROUP_HOST_NOTIFICATIONS

ENABLE_HOSTGROUP_HOST_NOTIFICATIONS;<hostgroup_name>

Enables notifications for all hosts in a particular hostgroup. This does not enable notifications for the services associated with the hosts in the hostgroup - see the ENABLE_HOSTGROUP_SVC_NOTIFICATIONS command for that. In order for notifications to be sent out for these hosts, notifications must be enabled on a program-wide basis as well.

ENABLE_HOSTGROUP_PASSIVE_HOST_CHECKS

ENABLE_HOSTGROUP_PASSIVE_HOST_CHECKS;<hostgroup_name>

Enables passive checks for all hosts in a particular hostgroup.

ENABLE_HOSTGROUP_PASSIVE_SVC_CHECKS

ENABLE_HOSTGROUP_PASSIVE_SVC_CHECKS;<hostgroup_name>

Enables passive checks for all services associated with hosts in a particular hostgroup.

ENABLE_HOSTGROUP_SVC_CHECKS

ENABLE_HOSTGROUP_SVC_CHECKS;<hostgroup_name>

Enables active checks for all services associated with hosts in a particular hostgroup.

ENABLE_HOSTGROUP_SVC_NOTIFICATIONS

ENABLE_HOSTGROUP_SVC_NOTIFICATIONS;<hostgroup_name>

Enables notifications for all services that are associated with hosts in a particular hostgroup. This does not enable notifications for the hosts in the hostgroup - see the ENABLE_HOSTGROUP_HOST_NOTIFICATIONS command for that. In order for notifications to be sent out for these services, notifications must be enabled on a program-wide basis as well.

ENABLE_NOTIFICATIONS

ENABLE_NOTIFICATIONS

Enables host and service notifications on a program-wide basis.

ENABLE_PASSIVE_HOST_CHECKS

ENABLE_PASSIVE_HOST_CHECKS;<host_name>

Enables acceptance and processing of passive host checks for the specified host.

ENABLE_PASSIVE_SVC_CHECKS

ENABLE_PASSIVE_SVC_CHECKS;<host_name>;<service_description>

Enables passive checks for the specified service.

ENABLE_PERFORMANCE_DATA

ENABLE_PERFORMANCE_DATA

Enables the processing of host and service performance data on a program-wide basis.

ENABLE_SERVICE_FRESHNESS_CHECKS

ENABLE_SERVICE_FRESHNESS_CHECKS

Enables freshness checks of all services on a program-wide basis. Individual services that have freshness checks disabled will not be checked for freshness.

ENABLE_SERVICEGROUP_HOST_CHECKS

ENABLE_SERVICEGROUP_HOST_CHECKS;<servicegroup_name>

Enables active checks for all hosts that have services that are members of a particular servicegroup.

ENABLE_SERVICEGROUP_HOST_NOTIFICATIONS

ENABLE_SERVICEGROUP_HOST_NOTIFICATIONS;<servicegroup_name>

Enables notifications for all hosts that have services that are members of a particular servicegroup. In order for notifications to be sent out for these hosts, notifications must also be enabled on a program-wide basis.

ENABLE_SERVICEGROUP_PASSIVE_HOST_CHECKS

ENABLE_SERVICEGROUP_PASSIVE_HOST_CHECKS;<servicegroup_name>

Enables the acceptance and processing of passive checks for all hosts that have services that are members of a particular service group.

ENABLE_SERVICEGROUP_PASSIVE_SVC_CHECKS

ENABLE_SERVICEGROUP_PASSIVE_SVC_CHECKS;<servicegroup_name>

Enables the acceptance and processing of passive checks for all services in a particular servicegroup.

ENABLE_SERVICEGROUP_SVC_CHECKS

ENABLE_SERVICEGROUP_SVC_CHECKS;<servicegroup_name>

Enables active checks for all services in a particular servicegroup.

ENABLE_SERVICEGROUP_SVC_NOTIFICATIONS

ENABLE_SERVICEGROUP_SVC_NOTIFICATIONS;<servicegroup_name>

Enables notifications for all services that are members of a particular servicegroup. In order for notifications to be sent out for these services, notifications must also be enabled on a program-wide basis.

ENABLE_SVC_CHECK

ENABLE_SVC_CHECK;<host_name>;<service_description>

Enables active checks for a particular service.

ENABLE_SVC_EVENT_HANDLER

ENABLE_SVC_EVENT_HANDLER;<host_name>;<service_description>

Enables the event handler for the specified service.

ENABLE_SVC_FLAP_DETECTION

ENABLE_SVC_FLAP_DETECTION;<host_name>;<service_description>

Enables flap detection for the specified service. In order for the flap detection algorithms to be run for the service, flap detection must be enabled on a program-wide basis as well.

ENABLE_SVC_NOTIFICATIONS

ENABLE_SVC_NOTIFICATIONS;<host_name>;<service_description>

Enables notifications for a particular service. Notifications will be sent out for the service only if notifications are enabled on a program-wide basis as well.

LAUNCH_HOST_EVENT_HANDLER

LAUNCH_HOST_EVENT_HANDLER;<host_name>

Runs the event handler for the specified host.

LAUNCH_SVC_EVENT_HANDLER

LAUNCH_SVC_EVENT_HANDLER;<host_name>;<service_description>

Runs the event handler for the specified service.

PROCESS_FILE

PROCESS_FILE;<file_name>;<delete>

Directs Alignak to process all external commands that are found in the file specified by the <file_name> argument. If the <delete> option is non-zero, the file will be deleted once it has been processes. If the <delete> option is set to zero, the file is left untouched.

Note

this command is not currently implemented in Alignak

PROCESS_HOST_CHECK_RESULT

PROCESS_HOST_CHECK_RESULT;<host_name>;<status_code>;<plugin_output>

This is used to submit a passive check result for a particular host. The “status_code” indicates the state of the host check and should be one of the following: 0=UP, 1=DOWN, 2=UNREACHABLE. The “plugin_output” argument contains the text returned from the host check, along with optional performance data.

PROCESS_SERVICE_CHECK_RESULT

PROCESS_SERVICE_CHECK_RESULT;<host_name>;<service_description>;<return_code>;<plugin_output>

This is used to submit a passive check result for a particular service. The “return_code” field should be one of the following: 0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN. The “plugin_output” field contains text output from the service check, along with optional performance data.

READ_STATE_INFORMATION

READ_STATE_INFORMATION

Causes Alignak to load all current monitoring status information from the state retention file. Normally, state retention information is loaded when the Alignak process starts up and before it starts monitoring. WARNING: This command will cause Alignak to discard all current monitoring status information and use the information stored in state retention file! Use with care.

Note

this command is not currently implemented in Alignak

RELOAD_CONFIG

RELOAD_CONFIG

Reloads the Alignak monitoring configuration.

REMOVE_HOST_ACKNOWLEDGEMENT

REMOVE_HOST_ACKNOWLEDGEMENT;<host_name>

This removes the problem acknowledgement for a particular host. Once the acknowledgement has been removed, notifications can once again be sent out for the given host.

REMOVE_SVC_ACKNOWLEDGEMENT

REMOVE_SVC_ACKNOWLEDGEMENT;<host_name>;<service_description>

This removes the problem acknowledgement for a particular service. Once the acknowledgement has been removed, notifications can once again be sent out for the given service.

RESTART_PROGRAM

RESTART_PROGRAM

Restarts the Alignak daemons.

SAVE_STATE_INFORMATION

SAVE_STATE_INFORMATION

Causes Alignak to save all current monitoring status information to the state retention file. Normally, state retention information is saved before the Alignak process shuts down and (potentially) at regularly scheduled intervals. This command allows you to force Alignak to save this information to the state retention file immediately. This does not affect the current status information in the Alignak process.

Note

this command is not currently implemented in Alignak

SCHEDULE_AND_PROPAGATE_HOST_DOWNTIME

SCHEDULE_AND_PROPAGATE_HOST_DOWNTIME;<host_name>;<start_time>;<end_time>;<fixed>;<trigger_id>;<duration>;<author>;<comment>

Schedules downtime for a specified host and all of its children (hosts). If the “fixed” argument is set to one (1), downtime will start and end at the times specified by the “start” and “end” arguments. Otherwise, downtime will begin between the “start” and “end” times and last for “duration” seconds. The “start” and “end” arguments are specified in time_t format (seconds since the UNIX epoch). The specified (parent) host downtime can be triggered by another downtime entry if the “trigger_id” is set to the ID of another scheduled downtime entry. Set the “trigger_id” argument to zero (0) if the downtime for the specified (parent) host should not be triggered by another downtime entry.

Note

this command is not currently implemented in Alignak

SCHEDULE_AND_PROPAGATE_TRIGGERED_HOST_DOWNTIME

SCHEDULE_AND_PROPAGATE_TRIGGERED_HOST_DOWNTIME;<host_name>;<start_time>;<end_time>;<fixed>;<trigger_id>;<duration>;<author>;<comment>

Schedules downtime for a specified host and all of its children (hosts). If the “fixed” argument is set to one (1), downtime will start and end at the times specified by the “start” and “end” arguments. Otherwise, downtime will begin between the “start” and “end” times and last for “duration” seconds. The “start” and “end” arguments are specified in time_t format (seconds since the UNIX epoch). Downtime for child hosts are all set to be triggered by the downtime for the specified (parent) host. The specified (parent) host downtime can be triggered by another downtime entry if the “trigger_id” is set to the ID of another scheduled downtime entry. Set the “trigger_id” argument to zero (0) if the downtime for the specified (parent) host should not be triggered by another downtime entry.

Note

this command is not currently implemented in Alignak

SCHEDULE_FORCED_HOST_CHECK

SCHEDULE_FORCED_HOST_CHECK;<host_name>;<check_time>

Schedules a forced active check of a particular host at “check_time”. The “check_time” argument is specified in time_t format (seconds since the UNIX epoch). Forced checks are performed regardless of what time it is (e.g. timeperiod restrictions are ignored) and whether or not active checks are enabled on a host-specific or program-wide basis.

SCHEDULE_FORCED_HOST_SVC_CHECKS

SCHEDULE_FORCED_HOST_SVC_CHECKS;<host_name>;<check_time>

Schedules a forced active check of all services associated with a particular host at “check_time”. The “check_time” argument is specified in time_t format (seconds since the UNIX epoch). Forced checks are performed regardless of what time it is (e.g. timeperiod restrictions are ignored) and whether or not active checks are enabled on a service-specific or program-wide basis.

SCHEDULE_FORCED_SVC_CHECK

SCHEDULE_FORCED_SVC_CHECK;<host_name>;<service_description>;<check_time>

Schedules a forced active check of a particular service at “check_time”. The “check_time” argument is specified in time_t format (seconds since the UNIX epoch). Forced checks are performed regardless of what time it is (e.g. timeperiod restrictions are ignored) and whether or not active checks are enabled on a service-specific or program-wide basis.

SCHEDULE_HOST_CHECK

SCHEDULE_HOST_CHECK;<host_name>;<check_time>

Schedules the next active check of a particular host at “check_time”. The “check_time” argument is specified in time_t format (seconds since the UNIX epoch). Note that the host may not actually be checked at the time you specify. This could occur for a number of reasons: active checks are disabled on a program-wide or host-specific basis, the host is already scheduled to be checked at an earlier time, etc. If you want to force the host check to occur at the time you specify, look at the SCHEDULE_FORCED_HOST_CHECK command.

SCHEDULE_HOST_DOWNTIME

SCHEDULE_HOST_DOWNTIME;<host_name>;<start_time>;<end_time>;<fixed>;<trigger_id>;<duration>;<author>;<comment>

Schedules a downtime for a specified host.

If the “fixed” argument is set to one (1), the downtime will start and end at the times specified by the “start” and “end” arguments. Otherwise (0), the downtime will begin between the “start” and “end” times and will last for “duration” seconds.

The “start” and “end” arguments are specified in time_t format (seconds since the UNIX epoch). The specified host downtime can be triggered by another downtime entry if the “trigger_id” is set to the ID of another scheduled downtime entry. Set the “trigger_id” argument to zero (0) if the downtime for the specified host should not be triggered by another downtime entry.

Note Alignak will automatically set an acknowledge on the downtimed host when the downtime is scheduled. Thereby, the host problem and the host services problems will be acknowledged.

SCHEDULE_HOST_SVC_CHECKS

SCHEDULE_HOST_SVC_CHECKS;<host_name>;<check_time>

Schedules the next active check of all services on a particular host at “check_time”. The “check_time” argument is specified in time_t format (seconds since the UNIX epoch). Note that the services may not actually be checked at the time you specify. This could occur for a number of reasons: active checks are disabled on a program-wide or service-specific basis, the services are already scheduled to be checked at an earlier time, etc. If you want to force the service checks to occur at the time you specify, look at the SCHEDULE_FORCED_HOST_SVC_CHECKS command.

SCHEDULE_HOST_SVC_DOWNTIME

SCHEDULE_HOST_SVC_DOWNTIME;<host_name>;<start_time>;<end_time>;<fixed>;<trigger_id>;<duration>;<author>;<comment>

Schedules downtime for all services associated with a particular host. If the “fixed” argument is set to one (1), downtime will start and end at the times specified by the “start” and “end” arguments. Otherwise (0), downtime will begin between the “start” and “end” times and last for “duration” seconds.

The “start” and “end” arguments are specified in time_t format (seconds since the UNIX epoch). The service downtime entries can be triggered by another downtime entry if the “trigger_id” is set to the ID of another scheduled downtime entry. Set the “trigger_id” argument to zero (0) if the downtime for the services should not be triggered by another downtime entry.

SCHEDULE_HOSTGROUP_HOST_DOWNTIME

SCHEDULE_HOSTGROUP_HOST_DOWNTIME;<hostgroup_name>;<start_time>;<end_time>;<fixed>;<trigger_id>;<duration>;<author>;<comment>

Schedules downtime for all hosts in a specified hostgroup. If the “fixed” argument is set to one (1), downtime will start and end at the times specified by the “start” and “end” arguments. Otherwise, downtime will begin between the “start” and “end” times and last for “duration” seconds. The “start” and “end” arguments are specified in time_t format (seconds since the UNIX epoch). The host downtime entries can be triggered by another downtime entry if the “trigger_id” is set to the ID of another scheduled downtime entry. Set the “trigger_id” argument to zero (0) if the downtime for the hosts should not be triggered by another downtime entry.

SCHEDULE_HOSTGROUP_SVC_DOWNTIME

SCHEDULE_HOSTGROUP_SVC_DOWNTIME;<hostgroup_name>;<start_time>;<end_time>;<fixed>;<trigger_id>;<duration>;<author>;<comment>

Schedules downtime for all services associated with hosts in a specified hostgroup. If the “fixed” argument is set to one (1), downtime will start and end at the times specified by the “start” and “end” arguments. Otherwise, downtime will begin between the “start” and “end” times and last for “duration” seconds. The “start” and “end” arguments are specified in time_t format (seconds since the UNIX epoch). The service downtime entries can be triggered by another downtime entry if the “trigger_id” is set to the ID of another scheduled downtime entry. Set the “trigger_id” argument to zero (0) if the downtime for the services should not be triggered by another downtime entry.

SCHEDULE_SERVICEGROUP_HOST_DOWNTIME

SCHEDULE_SERVICEGROUP_HOST_DOWNTIME;<servicegroup_name>;<start_time>;<end_time>;<fixed>;<trigger_id>;<duration>;<author>;<comment>

Schedules downtime for all hosts that have services in a specified servicegroup. If the “fixed” argument is set to one (1), downtime will start and end at the times specified by the “start” and “end” arguments. Otherwise, downtime will begin between the “start” and “end” times and last for “duration” seconds. The “start” and “end” arguments are specified in time_t format (seconds since the UNIX epoch). The host downtime entries can be triggered by another downtime entry if the “trigger_id” is set to the ID of another scheduled downtime entry. Set the “trigger_id” argument to zero (0) if the downtime for the hosts should not be triggered by another downtime entry.

SCHEDULE_SERVICEGROUP_SVC_DOWNTIME

SCHEDULE_SERVICEGROUP_SVC_DOWNTIME;<servicegroup_name>;<start_time>;<end_time>;<fixed>;<trigger_id>;<duration>;<author>;<comment>

Schedules downtime for all services in a specified servicegroup. If the “fixed” argument is set to one (1), downtime will start and end at the times specified by the “start” and “end” arguments. Otherwise, downtime will begin between the “start” and “end” times and last for “duration” seconds. The “start” and “end” arguments are specified in time_t format (seconds since the UNIX epoch). The service downtime entries can be triggered by another downtime entry if the “trigger_id” is set to the ID of another scheduled downtime entry. Set the “trigger_id” argument to zero (0) if the downtime for the services should not be triggered by another downtime entry.

SCHEDULE_SVC_CHECK

SCHEDULE_SVC_CHECK;<host_name>;<service_description>;<check_time>

Schedules the next active check of a specified service at “check_time”. The “check_time” argument is specified in time_t format (seconds since the UNIX epoch). Note that the service may not actually be checked at the time you specify. This could occur for a number of reasons: active checks are disabled on a program-wide or service-specific basis, the service is already scheduled to be checked at an earlier time, etc. If you want to force the service check to occur at the time you specify, look at the SCHEDULE_FORCED_SVC_CHECK command.

SCHEDULE_SVC_DOWNTIME

SCHEDULE_SVC_DOWNTIME;<host_name>;<service_description>;<start_time>;<end_time>;<fixed>;<trigger_id>;<duration>;<author>;<comment>

Schedules downtime for a specified service. If the “fixed” argument is set to one (1), downtime will start and end at the times specified by the “start” and “end” arguments. Otherwise, downtime will begin between the “start” and “end” times and last for “duration” seconds. The “start” and “end” arguments are specified in time_t format (seconds since the UNIX epoch). The specified service downtime can be triggered by another downtime entry if the “trigger_id” is set to the ID of another scheduled downtime entry. Set the “trigger_id” argument to zero (0) if the downtime for the specified service should not be triggered by another downtime entry.

Note Alignak will automatically set an acknowledge on the downtimed service.

SEND_CUSTOM_HOST_NOTIFICATION

SEND_CUSTOM_HOST_NOTIFICATION;<host_name>;<options>;<author>;<comment>

Allows you to send a custom host notification. Very useful in dire situations, emergencies or to communicate with all admins that are responsible for a particular host. When the host notification is sent out, the $NOTIFICATIONTYPE$ macro will be set to “CUSTOM”. The <options> field is a logical OR of the following integer values that affect aspects of the notification that are sent out: 0 = No option (default), 1 = Broadcast (send notification to all normal and all escalated contacts for the host), 2 = Forced (notification is sent out regardless of current time, whether or not notifications are enabled, etc.), 4 = Increment current notification # for the host (this is not done by default for custom notifications). The contents of the comment field is available in notification commands using the $NOTIFICATIONCOMMENT$ macro.

Note

this command is not currently implemented in Alignak

SEND_CUSTOM_SVC_NOTIFICATION

SEND_CUSTOM_SVC_NOTIFICATION;<host_name>;<service_description>;<options>;<author>;<comment>

Allows you to send a custom service notification. Very useful in dire situations, emergencies or to communicate with all admins that are responsible for a particular service. When the service notification is sent out, the $NOTIFICATIONTYPE$ macro will be set to “CUSTOM”. The <options> field is a logical OR of the following integer values that affect aspects of the notification that are sent out: 0 = No option (default), 1 = Broadcast (send notification to all normal and all escalated contacts for the service), 2 = Forced (notification is sent out regardless of current time, whether or not notifications are enabled, etc.), 4 = Increment current notification # for the service(this is not done by default for custom notifications). The contents of the comment field is available in notification commands using the $NOTIFICATIONCOMMENT$ macro.

Note

this command is not currently implemented in Alignak

SET_HOST_NOTIFICATION_NUMBER

SET_HOST_NOTIFICATION_NUMBER;<host_name>;<notification_number>

Sets the current notification number for a particular host. A value of 0 indicates that no notification has yet been sent for the current host problem. Useful for forcing an escalation (based on notification number) or replicating notification information in redundant monitoring environments. Notification numbers greater than zero have no noticeable affect on the notification process if the host is currently in an UP state.

Note

this command is not currently implemented in Alignak

SET_SVC_NOTIFICATION_NUMBER

SET_SVC_NOTIFICATION_NUMBER;<host_name>;<service_description>;<notification_number>

Sets the current notification number for a particular service. A value of 0 indicates that no notification has yet been sent for the current service problem. Useful for forcing an escalation (based on notification number) or replicating notification information in redundant monitoring environments. Notification numbers greater than zero have no noticeable affect on the notification process if the service is currently in an OK state.

Note

this command is not currently implemented in Alignak

SHUTDOWN_PROGRAM

SHUTDOWN_PROGRAM

Shuts down the Alignak process.

Note

this command is not currently implemented in Alignak

START_ACCEPTING_PASSIVE_HOST_CHECKS

START_ACCEPTING_PASSIVE_HOST_CHECKS

Enables acceptance and processing of passive host checks on a program-wide basis.

START_ACCEPTING_PASSIVE_SVC_CHECKS

START_ACCEPTING_PASSIVE_SVC_CHECKS

Enables passive service checks on a program-wide basis.

START_EXECUTING_HOST_CHECKS

START_EXECUTING_HOST_CHECKS

Enables active host checks on a program-wide basis.

START_EXECUTING_SVC_CHECKS

START_EXECUTING_SVC_CHECKS

Enables active checks of services on a program-wide basis.

START_OBSESSING_OVER_HOST

START_OBSESSING_OVER_HOST;<host_name>

Enables processing of host checks via the OCHP command for the specified host.

START_OBSESSING_OVER_HOST_CHECKS

START_OBSESSING_OVER_HOST_CHECKS

Enables processing of host checks via the OCHP command on a program-wide basis.

START_OBSESSING_OVER_SVC

START_OBSESSING_OVER_SVC;<host_name>;<service_description>

Enables processing of service checks via the OCSP command for the specified service.

START_OBSESSING_OVER_SVC_CHECKS

START_OBSESSING_OVER_SVC_CHECKS

Enables processing of service checks via the OCSP command on a program-wide basis.

STOP_ACCEPTING_PASSIVE_HOST_CHECKS

STOP_ACCEPTING_PASSIVE_HOST_CHECKS

Disables acceptance and processing of passive host checks on a program-wide basis.

STOP_ACCEPTING_PASSIVE_SVC_CHECKS

STOP_ACCEPTING_PASSIVE_SVC_CHECKS

Disables passive service checks on a program-wide basis.

STOP_EXECUTING_HOST_CHECKS

STOP_EXECUTING_HOST_CHECKS

Disables active host checks on a program-wide basis.

STOP_EXECUTING_SVC_CHECKS

STOP_EXECUTING_SVC_CHECKS

Disables active checks of services on a program-wide basis.

STOP_OBSESSING_OVER_HOST

STOP_OBSESSING_OVER_HOST;<host_name>

Disables processing of host checks via the OCHP command for the specified host.

STOP_OBSESSING_OVER_HOST_CHECKS

STOP_OBSESSING_OVER_HOST_CHECKS``

Disables processing of host checks via the OCHP command on a program-wide basis.

STOP_OBSESSING_OVER_SVC

STOP_OBSESSING_OVER_SVC;<host_name>;<service_description>

Disables processing of service checks via the OCSP command for the specified service.

STOP_OBSESSING_OVER_SVC_CHECKS

STOP_OBSESSING_OVER_SVC_CHECKS

Disables processing of service checks via the OCSP command on a program-wide basis.

Alignak check plugins API

Alignak aims at maintaining compatibilty with Nagios. As such, all Nagios available plugins are fully compatible and can be used with Alignak.

Some resources

If you’re looking at writing your own plugins for Alignak or Nagios, please make sure to visit:

	The official `Monitoring plugins project website`_

	The official `Monitoring plugins development guidelines`_

Plugin Overview

Scripts and executables must do two things (at minimum) in order to function as Alignak plugins:

	Exit with one of several possible return values

	Print at least one line of text output to the standard stdout

Alignak do not matter about the inner workings of a plugin. Only the interface between Alignak and the plugin is of any concern.

If you are interested in having a plugin that is very performant to use with Alignak, you should consider making it an Alignak Worker or Module and it will be daemonized by the Alignak poller or receiver daemon. You can look at the existing modules…

Return code

Alignak determines the status of an host or service by evaluating the return code from its check plugin.
The following table shows a list of valid return codes, along with their corresponding service or host states.

	Plugin Return Code

	Service State

	Host State

	0

	OK

	UP

	1

	WARNING

	DOWN/UNREACHABLE*

	2

	CRITICAL

	DOWN/UNREACHABLE

	3

	UNKNOWN

	DOWN/UNREACHABLE

The process by which Alignak determines whether or not a host is DOWN or UNREACHABLE is discussed here.

Plugin output

At minimum, plugins should return at least one of text output. Plugins can optionally return multiple lines of output. Plugins may also return optional performance data that can be processed by external applications. The basic format for plugin output is shown below:

TEXT OUTPUT | OPTIONAL PERFDATA
LONG TEXT LINE 1
LONG TEXT LINE 2
...
LONG TEXT LINE N | PERFDATA LINE 2
PERFDATA LINE 3
...
PERFDATA LINE N

The performance data are optional.

If a plugin returns performance data in its output, it must separate the performance data from the other text output using a pipe (|) symbol.

Additional lines of long text output are also optional.

Some examples

Some examples of possible plugin output…

Case 1: One line of output (text only)

Assume we have a plugin that returns one line of output that looks like this:

DISK OK - free space: / 3326 MB (56%);

If this plugin was used to perform a service check, the entire line of output will be stored in the $SERVICEOUTPUT$ macro.

Case 2: One line of output (text and perfdata)

A plugin can return optional performance data for use by external applications. To do this, the performance data must be separated from the text output with a pipe (|) symbol like such as:

DISK OK - free space: / 3326 MB (56%)|/=2643MB;5948;5958;0;5968

If this plugin was used to perform a service check, the left part of the output (before the pipe separator) will be stored in the $SERVICEOUTPUT$ macro and the right part of the output (after the pipe separator) will be stored in the $SERVICEPERFDATA$ macro.

Case 3: Multiple lines of output (text and perfdata)

A plugin may optionally return multiple lines of both text output and perfdata, like such as:

DISK OK - free space: / 3326 MB (56%);|/=2643MB;5948;5958;0;5968
/ 15272 MB (77%);
/boot 68 MB (69%);
/home 69357 MB (27%);
/var/log 819 MB (84%);|/boot=68MB;88;93;0;98
/home=69357MB;253404;253409;0;253414
/var/log=818MB;970;975;0;980

If this plugin was used to perform a service check, the left part of the first line of output (before the pipe separator) will be stored in the $SERVICEOUTPUT$ macro. The right part of the first line and the subsequent lines are concatenated (with spaces) and stored in the $SERVICEPERFDATA$ macro. The blue portions of the 2nd _ 5th lines of output will be concatenated (with escaped newlines) and stored in $LONGSERVICEOUTPUT$ the macro.

The final content of each macro is listed below:

	Macro

	Value

	$SERVICEOUTPUT$

	DISK OK - free space: / 3326 MB (56%);

	$SERVICEPERFDATA$

	/=2643MB;5948;5958;0;5968”/boot=68MB;88;93;0;98”/home=69357MB;253404;253409;0;253414”/var/log=818MB;970;975;0;980

	$LONGSERVICEOUTPUT$

	/ 15272 MB (77%);n/boot 68 MB (69%);n/var/log 819 MB (84%);

With regards to multiple lines of output, you have the following options for returning performance data:

	You can choose to return no performance data whatsoever

	You can return performance data on the first line only

	You can return performance data only in subsequent lines (after the first)

	You can return performance data in both the first line and subsequent lines (as shown above)

Plugin output length restrictions

Alignak will only read the first 8 KB of data that a plugin returns. This is done in order to prevent runaway plugins from dumping megs or gigs of data back to Alignak. This 8 KB output limit is easy to change if you need. Simply edit the value of the max_plugins_output_length variable in the configuration file.

Command Definition

A command definition is just that. It defines a command. Commands that can be defined include service checks, service notifications, service event handlers, host checks, host notifications, and host event handlers. Command definitions can contain macros, but you must make sure that you include only some macros that are “valid” when the command is executed. More information on which macros are available and when they are “valid” can be found here. The different arguments to a command definition are outlined below.

Tip

If you need to have the ‘$’ character in one of your command (and not referring to a macro), please put “$$” instead. Alignak will make the substitution

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define command{

	

	command_name

	command_name

	command_line

	command_line

	enable_environment_macros

	[0,1]

	timeout

	[-1, timeout value]

	poller_tag

	

	reactionner_tag

	

	}

	

Example

define command{
 command_name check_pop
 command_line /var/lib/shinken/libexec/check_pop -H $HOSTADDRESS$
}

Variables

	command_name

	This directive is the short name used to identify the command. It is referenced in contact, host, and service definitions (in notification, check, and event handler directives), among other places.

	command_line

	This directive is used to define what is actually executed by Alignak when the command is used for service or host checks, notifications, or event handlers. Before the command line is executed, all valid macros are replaced with their respective values. See the documentation on macros for determining when you can use different macros. Note that the command line is not surrounded in quotes. Also, if you want to pass a dollar sign ($) on the command line, you have to escape it with another dollar sign.

You may not include a semicolon (;) in the command_line directive, because everything after it will be ignored as a configuration file comment. You can workaround this limitation by setting one of the $USERn$ macros in your configuration to a semicolon and then referencing the appropriate $USER$ macro in the command_line directive in place of the semicolon.

If you want to pass arguments to commands during runtime, you can use $ARGn$ macros in the command_line directive of the command definition and then separate individual arguments from the command name (and from each other) using bang (!) characters in the object definition directive (host check command, service event handler command, etc.) that references the command. More information on how arguments in command definitions are processed during runtime can be found in the documentation on macros.

	enable_environment_macros

	This directive enabbles passing command parameters through the environment. See the global enable_environment_macros for more details. Enabling it on a command rather than globally allows to limit how much commands will receive environment macros. This is the preferred way, as processing environment macros and passing them to the command has a high cost in term of CPU and Memory.

	poller_tag

	This directive is used to define the poller tag of this command. This parameter may be defined, in order of precedence, on a`command`, a host or a service. If a poller tag is set, only pollers holding the same tag will handle the corresponding action.

By default there is no poller_tag, so all untagged pollers can execute the corresponding action.

	reactionner_tag

	This directive is used to define the reactionner tag of this command. This parameter may be defined, in order of precedence, on a`command`, a host or a service. If a reactionner tag is set, only reactionners holding the same tag will handle the corresponding action.

By default there is no reactionner_tag, so all untagged reactionners can execute the corresponding action.

	priority

	This options defines the command’s priority regarding checks execution. When a poller or a reactionner is asking for new actions to execute to the scheduler, it will return the highest priority tasks first (the lower the number, the higher the priority). The priority parameter may be set, in order of ascending precedence, on a command, on a host and on a service. Priority defaults to 100.

Time Period Definition

A time period is a list of times during various days that are considered to be “valid” times for notifications and service checks. It consists of time ranges for each day of the week that “rotate” once the week has come to an end. Different types of exceptions to the normal weekly time are supported, including: specific weekdays, days of generic months, days of specific months, and calendar dates.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define timeperiod{

	

	timeperiod_name

	timeperiod_name

	alias

	alias

	[weekday]

	timeranges

	[exception]

	timeranges

	exclude

	[timeperiod1,timeperiod2,…,timeperiodn]

	}

	

Example

define timeperiod{
 timeperiod_name nonworkhours
 alias Non-Work Hours
 sunday 00:00-24:00 ; Every Sunday of every week
 monday 00:00-09:00,17:00-24:00 ; Every Monday of every week
 tuesday 00:00-09:00,17:00-24:00 ; Every Tuesday of every week
 wednesday 00:00-09:00,17:00-24:00 ; Every Wednesday of every week
 thursday 00:00-09:00,17:00-24:00 ; Every Thursday of every week
 friday 00:00-09:00,17:00-24:00 ; Every Friday of every week
 saturday 00:00-24:00 ; Every Saturday of every week
}

define timeperiod{
 timeperiod_name misc-single-days
 alias Misc Single Days
 1999-01-28 00:00-24:00 ; January 28th, 1999
 monday 3 00:00-24:00 ; 3rd Monday of every month
 day 2 00:00-24:00 ; 2nd day of every month
 february 10 00:00-24:00 ; February 10th of every year
 february -1 00:00-24:00 ; Last day in February of every year
 friday -2 00:00-24:00 ; 2nd to last Friday of every month
 thursday -1 november 00:00-24:00 ; Last Thursday in November of every year
}

define timeperiod{
 timeperiod_name misc-date-ranges
 alias Misc Date Ranges
 2007-01-01 - 2008-02-01 00:00-24:00 ; January 1st, 2007 to February 1st, 2008
 monday 3 - thursday 4 00:00-24:00 ; 3rd Monday to 4th Thursday of every month
 day 1 - 15 00:00-24:00 ; 1st to 15th day of every month
 day 20 - -1 00:00-24:00 ; 20th to the last day of every month
 july 10 - 15 00:00-24:00 ; July 10th to July 15th of every year
 april 10 - may 15 00:00-24:00 ; April 10th to May 15th of every year
 tuesday 1 april - friday 2 may 00:00-24:00 ; 1st Tuesday in April to 2nd Friday in May of every year
}

define timeperiod{
 timeperiod_name misc-skip-ranges
 alias Misc Skip Ranges
 2007-01-01 - 2008-02-01 / 3 00:00-24:00 ; Every 3 days from January 1st, 2007 to February 1st, 2008
 2008-04-01 / 7 00:00-24:00 ; Every 7 days from April 1st, 2008 (continuing forever)
 monday 3 - thursday 4 / 2 00:00-24:00 ; Every other day from 3rd Monday to 4th Thursday of every month
 day 1 - 15 / 5 00:00-24:00 ; Every 5 days from the 1st to the 15th day of every month
 july 10 - 15 / 2 00:00-24:00 ; Every other day from July 10th to July 15th of every year
 tuesday 1 april - friday 2 may / 6 00:00-24:00 ; Every 6 days from the 1st Tuesday in April to the 2nd Friday in May of every year
}

Variables

	timeperiod_name

	This directives is the short name used to identify the time period.

	alias

	This directive is a longer name or description used to identify the time period.

	[weekday]

	The weekday directives (“sunday” through “saturday”)are comma-delimited lists of time ranges that are “valid” times for a particular day of the week. Notice that there are seven different days for which you can define time ranges (Sunday through Saturday). Each time range is in the form of HH:MM-HH:MM, where hours are Specified on a 24 hour clock. For example, 00:15-24:00 means 12:15am in the morning for this day until 12:00am midnight (a 23 hour, 45 minute total time range). If you wish to exclude an entire day from the timeperiod, simply do not include it in the timeperiod definition.

	The daterange format are multiples :

	
	Calendar Daterange : look like a standard date, so like 2005-04-04 - 2008-09-19.

	Month Week Day: Then there are the month week day daterange same than before, but without the year and with day names That give something like : tuesday 2 january - thursday 4 august / 5

	Now Month Date Daterange: It looks like : february 1 - march 15 / 3

	Now Month Day Daterange. It looks like day 13 - 14

	Now Standard Daterange: Ok this time it’s quite easy: monday

	[exception]

	You can specify several different types of exceptions to the standard rotating weekday schedule. Exceptions can take a number of different forms including single days of a specific or generic month, single weekdays in a month, or single calendar dates. You can also specify a range of days/dates and even specify skip intervals to obtain functionality described by “every 3 days between these dates”. Rather than list all the possible formats for exception strings, I’ll let you look at the example timeperiod definitions above to see what’s possible. :-) Weekdays and different types of exceptions all have different levels of precedence, so its important to understand how they can affect each other. More information on this can be found in the documentation on timeperiods.

	exclude

	This directive is used to specify the short names of other timeperiod definitions whose time ranges should be excluded from this timeperiod. Multiple timeperiod names should be separated with a comma.

Note

The day skip functionality is not managed from now, so it’s like all is / 1

Realm Definition

The realms is an Alignak optional, despite recommended, feature which is very useful if the administrator wants to group / separate the monitored resources.

The Realm definition is optional. If no realm is defined, Alignak will “create” one for the user and it will be the default one.

Syntax

Bold variables are required, while others are optional.

	define realm{

	

	realm_name

	realm_name

	alias

	alias

	realm_members

	realm_members

	group_members

	group_members

	members

	members

	higher_realms

	higher_realms

	default

	[0/1]

	}

	

Example

Define the default realm with its sub-realms:

define realm{
 realm_name World
 realm_members Europe,America,Asia
 default 1
}

All the hosts and hosts groups that do not have a realm defined will belong to this default realm.

Variables

	realm_name

	This variable is used to identify the short name of the realm.

	alias

	This variable is used to define the friendly name of the realm.

	higher_realms

	This variable is used to define the parent realms of this realms. It is a comma separated list of realms short names that contain the parents realms of the current realm.

	realm_members

	This variable is used to define the sub-realms of this realms. It is a comma separated list of realms short names that contain the children realms of the current realm.

	group_members

	This variable is used to define the sub-realms of this realms. It is a comma separated list of hostgroups short names. You can also define the realm an hostgroup belongs to in the host definition.

	members

	This variable is used to define the hosts of this realms. It is a comma separated list of hosts short names. You can also define the realm an host belongs to in the host definition.

	default

	This optional directive is used to define that this realm is the default one (untagged host and daemons will be attached to the default realm). The default value is 0.

Contact Definition

A contact definition is used to identify someone who should be contacted in the event of a problem on your network. The different arguments to a contact definition are described below.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define contact{

	

	contact_name

	contact_name

	alias

	alias

	contactgroups

	contactgroup_names

	host_notifications_enabled

	[0/1]

	service_notifications_enabled

	[0/1]

	host_notification_period

	timeperiod_name

	service_notification_period

	timeperiod_name

	host_notification_options

	[d,u,r,f,s,n]

	service_notification_options

	[w,u,c,r,f,s,n]

	host_notification_commands

	command_name

	service_notification_commands

	command_name

	email

	email_address

	pager

	pager_number or pager_email_gateway

	address*x*

	additional_contact_address

	can_submit_commands

	[0/1]

	is_admin

	[0/1]

	min_business_impact

	[0/1/2/3/4/5]

	}

	

Example

define contact{
 contact_name jdoe
 alias John Doe
 host_notifications_enabled 1
 service_notifications_enabled 1
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options w,u,c,r
 host_notification_options d,u,r
 service_notification_commands notify-service-by-email
 host_notification_commands notify-host-by-email
 email jdoe@localhost.localdomain
 pager 555-5555@pagergateway.localhost.localdomain
 address1 xxxxx.xyyy@icq.com
 address2 555-555-5555
 can_submit_commands 1
}

Variables

	contact_name

	This directive is used to define a short name used to identify the contact. It is referenced in contact group definitions. Under the right circumstances, the $CONTACTNAME$ macro will contain this value.

	alias

	This directive is used to define a longer name or description for the contact. Under the rights circumstances, the $CONTACTALIAS$ macro will contain this value. If not specified, the contact_name will be used as the alias.

	contactgroups

	This directive is used to identify the short name(s) of the contactgroup(s) that the contact belongs to. Multiple contactgroups should be separated by commas. This directive may be used as an alternative to (or in addition to) using the members directive in contactgroup definitions.

	host_notifications_enabled

	This directive is used to determine whether or not the contact will receive notifications about host problems and recoveries. Values :

	0 = don’t send notifications

	1 = send notifications

	service_notifications_enabled

	This directive is used to determine whether or not the contact will receive notifications about service problems and recoveries. Values:

	0 = don’t send notifications

	1 = send notifications

	host_notification_period

	This directive is used to specify the short name of the time period during which the contact can be notified about host problems or recoveries. You can think of this as an “on call” time for host notifications for the contact. Read the documentation on time periods for more information on how this works and potential problems that may result from improper use.

	service_notification_period

	This directive is used to specify the short name of the time period during which the contact can be notified about service problems or recoveries. You can think of this as an “on call” time for service notifications for the contact. Read the documentation on time periods for more information on how this works and potential problems that may result from improper use.

	host_notification_commands

	This directive is used to define a list of the short names of the commands used to notify the contact of a host problem or recovery. Multiple notification commands should be separated by commas. All notification commands are executed when the contact needs to be notified. The maximum amount of time that a notification command can run is controlled by the notification_timeout option.

	host_notification_options

	This directive is used to define the host states for which notifications can be sent out to this contact. Valid options are a combination of one or more of the following:

	d = notify on DOWN host states

	u = notify on UNREACHABLE host states

	r = notify on host recoveries (UP states)

	f = notify when the host starts and stops flapping,

	s = send notifications when host or service scheduled downtime starts and ends. If you specify n (none) as an option, the contact will not receive any type of host notifications.

	service_notification_options

	This directive is used to define the service states for which notifications can be sent out to this contact. Valid options are a combination of one or more of the following:

	w = notify on WARNING service states

	u = notify on UNKNOWN service states

	c = notify on CRITICAL service states

	r = notify on service recoveries (OK states)

	f = notify when the service starts and stops flapping.

	n = (none) : the contact will not receive any type of service notifications.

	service_notification_commands

	This directive is used to define a list of the short names of the commands used to notify the contact of a service problem or recovery. Multiple notification commands should be separated by commas. All notification commands are executed when the contact needs to be notified. The maximum amount of time that a notification command can run is controlled by the notification_timeout option.

	email

	This directive is used to define an email address for the contact. Depending on how you configure your notification commands, it can be used to sendout an alert email to the contact. Under the right circumstances, the $CONTACTEMAIL$ macro will contain this value.

	pager

	This directive is used to define a pager number for the contact. It can also be an email address to a pager gateway (i.e. pagejoe@pagenet.com). Depending on how you configure your notification commands, it can be used to send out an alert page to the contact. Under the right circumstances, the $CONTACTPAGER$ macro will contain this value.

	address*x*

	Address directives are used to define additional “addresses” for the contact. These addresses can be anything - cell phone numbers, instant messaging addresses, etc. Depending on how you configure your notification commands, they can be used to send out an alert o the contact. Up to six addresses can be defined using these directives (address1 through address6). The $CONTACTADDRESS*x*$ macro will contain this value.

	can_submit_commands

	This directive is used to determine whether or not the contact can submit external commands to Alignak from the WebUI. Values:

	0 = don’t allow contact to submit commands

	1 = allow contact to submit commands.

	is_admin

	This directive is used to determine whether or not the contact can see all objects in the User Interface and if he/she can send commands from the UI. Values:

	0 = normal user, can see all objects he is in contact

	1 = allow contact to see all objects

	min_business_impact

	This directive is use to define the minimum business criticity level of a service/host the contact will be notified. Please see root_problems_and_impacts for more details.

	0 = less important

	1 = more important than 0

	2 = more important than 1

	3 = more important than 2

	4 = more important than 3

	5 = most important

Host Definition

An host definition is used to define a physical server, workstation, device, etc. that resides on your network.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define host{

	

	host_name

	host_name

	alias

	alias

	display_name

	display_name

	address

	address

	parents

	host_names

	hostgroups

	hostgroup_names

	check_command

	command_name

	initial_state

	[o,d,u]

	initial_output

	output

	max_check_attempts

	#

	check_interval

	#

	retry_interval

	#

	active_checks_enabled

	[0/1]

	passive_checks_enabled

	[0/1]

	check_period

	timeperiod_name

	check_freshness

	[0/1]

	freshness_threshold

	#

	freshness_state

	[o,d,x]

	event_handler

	command_name

	event_handler_enabled

	[0/1]

	flap_detection_enabled

	[0/1]

	flap_detection_options

	[o,d,x]

	low_flap_threshold

	#

	high_flap_threshold

	#

	process_perf_data

	[0/1]

	contacts

	contacts

	contact_groups

	contact_groups

	notification_interval

	#

	first_notification_delay

	#

	notification_period

	timeperiod_name

	notification_options

	[d,u,r,f,s]

	notifications_enabled

	[0/1]

	stalking_options

	[o,d,u]

	notes

	note_string

	notes_url

	url

	action_url

	url

	realm

	realm

	poller_tag

	poller_tag

	reactionner_tag

	reactionner_tag

	business_impact

	[0/1/2/3/4/5]

	resultmodulations

	resultmodulations

	escalations

	escalations names

	business_impact_modulations

	business_impact_modulations names

	maintenance_period

	timeperiod_name

	service_overrides

	service_description,directive value

	service_excludes

	service_description,…

	service_includes

	service_description,…

	labels

	labels

	business_rule_output_template

	template

	business_rule_smart_notifications

	[0/1]

	business_rule_downtime_as_ack

	[0/1]

	business_rule_host_notification_options

	[d,u,r,f,s]

	business_rule_service_notification_options

	[w,u,c,r,f,s]

	snapshot_enabled

	[0/1]

	snapshot_command

	command_name

	snapshot_period

	timeperiod_name

	snapshot_criteria

	[d,u]

	snapshot_interval

	#

	}

	

Example

define host{
 host_name bogus-router
 alias Bogus Router #1
 address 192.168.1.254
 parents server-backbone
 check_command check-host-alive
 check_interval 5
 retry_interval 1
 max_check_attempts 5
 check_period 24x7
 process_perf_data 0
 retain_nonstatus_information 0
 contact_groups router-admins
 notification_interval 30
 notification_period 24x7
 notification_options d,u,r
 realm Europe
 poller_tag DMZ
 icon_set server
 }

Variables

	host_name

	This directive is used to define a short name used to identify the host. It is used in host group and service definitions to reference this particular host. Hosts can have multiple services (which are monitored) associated with them. When used properly, the $HOSTNAME$ macro will contain this short name.

	alias

	This directive is used to define a longer name or description used to identify the host. It is provided in order to allow you to more easily identify a particular host. When used properly, the $HOSTALIAS$ macro will contain this alias/description.

	address

	This directive is used to define the address of the host. Normally, this is an IP address, although it could really be anything you want (so long as it can be used to check the status of the host). You can use a FQDN to identify the host instead of an IP address, but if “DNS” services are not available this could cause problems. When used properly, the $HOSTADDRESS$ macro will contain this address.

Note

If you do not specify an address directive in a host definition, the name of the host will be used as its address. A word of caution about doing this, however - if “DNS” fails, most of your service checks will fail because the plugins will be unable to resolve the host name.

	display_name

	This directive is used to define an alternate name that should be displayed in the web interface for this host. If not specified, this defaults to the value you specify for the host_name directive.

	parents

	This directive is used to define a comma-delimited list of short names of the “parent” hosts for this particular host. Parent hosts are typically routers, switches, firewalls, etc. that lie between the monitoring host and a remote hosts. A router, switch, etc. which is closest to the remote host is considered to be that host’s “parent”. Read the “Determining Status and Reachability of Network Hosts” document located here for more information. If this host is on the same network segment as the host doing the monitoring (without any intermediate routers, etc.) the host is considered to be on the local network and will not have a parent host. Leave this value blank if the host does not have a parent host (i.e. it is on the same segment as the Alignak host). The order in which you specify parent hosts has no effect on how things are monitored.

	hostgroups

	This directive is used to identify the short name(s) of the hostgroup(s) that the host belongs to. Multiple hostgroups should be separated by commas. This directive may be used as an alternative to (or in addition to) using the members directive in hostgroup definitions.

	check_command

	This directive is used to specify the short name of the command that should be used to check if the host is up or down. Typically, this command would try and ping the host to see if it is “alive”. The command must return a status of OK (0) or Alignak will assume the host is down. If you leave this argument blank, the host will not be actively checked. Thus, Alignak will likely always assume the host is up (it may show up as being in a “PENDING” state in the web interface). This is useful if you are monitoring printers or other devices that are frequently turned off. The maximum amount of time that the notification command can run is controlled by the host_check_timeout option.

	initial_state

	By default Alignak will assume that all hosts are in PENDING state when in starts. You can override the initial state for a host by using this directive. Valid options are: o = UP, d = DOWN, and u = UNREACHABLE.

	initial_output

	As of the initial state, the initial check output may also be overridden by this directive.

	max_check_attempts

	This directive is used to define the number of times that Alignak will retry the host check command if it returns any state other than an OK state. Setting this value to 1 will cause Alignak to generate an alert without retrying the host check again.

If you do not want to check the status of the host, you must still set this to a minimum value of 1. To bypass the host check, just leave the “check_command” option blank.

	check_interval

	This directive is used to define the number of “time units” between periodical scheduled checks of the host. Unless you’ve changed the interval_length global variable from the default value of 60, this number will mean minutes.

	retry_interval

	This directive is used to define the number of “time units” to wait before scheduling a re-check of the hosts. Hosts are rescheduled at the retry interval when they have changed to a non-UP state. Once the host has been retried max_check_attempts times without a change in its status, it will revert to being scheduled at its “normal” rate as defined by the check_interval value. Unless you’ve changed the interval_length global variable from the default value of 60, this number will mean minutes.

	active_checks_enabled

	This directive is used to determine whether or not active checks (either regularly scheduled or on-demand) of this host are enabled. Values: 0 = disable active host checks, 1 = enable active host checks.

	passive_checks_enabled

	This directive is used to determine whether or not passive checks are enabled for this host. Values: 0 = disable passive host checks, 1 = enable passive host checks.

	check_period

	This directive is used to specify the short name of the time period during which active checks of this host can be made.

	check_freshness

	This directive is used to determine whether or not freshness checks are enabled for this host. Values: 0 = disable freshness checks, 1 = enable freshness checks.

	freshness_threshold

	This directive is used to specify the freshness threshold (in seconds) for this host. If you set this directive to a value of 0, Alignak will determine a freshness threshold to use automatically.

	event_handler

	This directive is used to specify the name of the command that should be run whenever a change in the state of the host is detected (i.e. whenever it goes down or recovers). Read the documentation on event handlers for a more detailed explanation of how to write scripts for handling events. The maximum amount of time that the event handler command can run is controlled by the event_handler_timeout option.

	event_handler_enabled

	This directive is used to determine whether or not the event handler for this host is enabled. Values: 0 = disable host event handler, 1 = enable host event handler.

	low_flap_threshold

	This directive is used to specify the low state change threshold used in flap detection for this host. More information on flap detection can be found here. If you set this directive to a value of 0, the program-wide value specified by the low_host_flap_threshold directive will be used.

	high_flap_threshold

	This directive is used to specify the high state change threshold used in flap detection for this host. More information on flap detection can be found here. If you set this directive to a value of 0, the program-wide value specified by the high_host_flap_threshold directive will be used.

	flap_detection_enabled

	This directive is used to determine whether or not flap detection is enabled for this host. More information on flap detection can be found here. Values: 0 = disable host flap detection, 1 = enable host flap detection.

	flap_detection_options

	This directive is used to determine what host states the flap detection logic will use for this host. Valid options are a combination of one or more of the following: o = UP states, d = DOWN states, u = UNREACHABLE states.

	process_perf_data

	This directive is used to determine whether or not the processing of performance data is enabled for this host. Values: 0 = disable performance data processing, 1 = enable performance data processing.

	contacts

	This is a list of the short names of the contacts that should be notified whenever there are problems (or recoveries) with this host. Multiple contacts should be separated by commas. Useful if you want notifications to go to just a few people and don’t want to configure contact groups. You must specify at least one contact or contact group in each host definition.

	contact_groups

	This is a list of the short names of the contact groups that should be notified whenever there are problems (or recoveries) with this host. Multiple contact groups should be separated by commas. You must specify at least one contact or contact group in each host definition.

	notification_interval

	This directive is used to define the number of “time units” to wait before re-notifying a contact that this service is still down or unreachable. Unless you’ve changed the interval_length global variable from the default value of 60, this number will mean minutes. If you set this value to 0, Alignak will not re-notify contacts about problems for this host - only one problem notification will be sent out.

	first_notification_delay

	This directive is used to define the number of “time units” to wait before sending out the first problem notification when this host enters a non-UP state. Unless you’ve changed the interval_length global variable from the default value of 60, this number will mean minutes. If you set this value to 0, Alignak will start sending out notifications immediately.

	notification_period

	This directive is used to specify the short name of the time period during which notifications of events for this host can be sent out to contacts. If a host goes down, becomes unreachable, or recoveries during a time which is not covered by the time period, no notifications will be sent out.

	notification_options

	This directive is used to determine when notifications for the host should be sent out. Valid options are a combination of one or more of the following: d = send notifications on a DOWN state, u = send notifications on an UNREACHABLE state, r = send notifications on recoveries (OK state), f = send notifications when the host starts and stops flapping, and s = send notifications when scheduled downtime starts and ends. If you specify n (none) as an option, no host notifications will be sent out. If you do not specify any notification options, Alignak will assume that you want notifications to be sent out for all possible states.

If you specify d,r in this field, notifications will only be sent out when the host goes DOWN and when it recovers from a DOWN state.

	notifications_enabled

	This directive is used to determine whether or not notifications for this host are enabled. Values: 0 = disable host notifications, 1 = enable host notifications.

	stalking_options

	This directive determines which host states “stalking” is enabled for. Valid options are a combination of one or more of the following: o = stalk on UP states, d = stalk on DOWN states, and u = stalk on UNREACHABLE states. More information on state stalking can be found here.

	notes

	This directive is used to define an optional string of notes pertaining to the host. If you specify a note here, you will see the it in the extended information CGI (when you are viewing information about the specified host).

	notes_url

	This variable is used to define an optional URL that can be used to provide more information about the host. If you specify an URL, you will see a red folder icon in the CGIs (when you are viewing host information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base path will the the same as what is used to access the CGIs (i.e. ///cgi-bin/Alignak///). This can be very useful if you want to make detailed information on the host, emergency contact methods, etc. available to other support staff.

	action_url

	This directive is used to define one or more optional URL that can be used to provide more actions to be performed on the host. If you specify an URL, you will see a red “splat” icon in the CGIs (when you are viewing host information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base path will the the same as what is used to access the CGIs (i.e. /cgi-bin/Alignak/).

	realm

	This variable is used to define the realm where the host will be put. By putting the host in a realm, it will be manage by one of the scheduler of this realm.

	poller_tag

	This variable is used to define the poller_tag of the host. All checks of this hosts will only take by pollers that have this value in their poller_tags parameter.

By default the poller_tag value is ‘None’, so all untagged pollers can take it because None is set by default for them.

	reactionner_tag

	This variable is used to define the reactionner_tag of notifications_commands from this service. All of theses notifications will be taken by reactionners that have this value in their reactionner_tags parameter.

By default there is no reactionner_tag, so all untagged reactionners can take it.

	business_impact

	This variable is used to set the importance we gave to this host for the business from the less important (0 = nearly nobody will see if it’s in error) to the maximum (5 = you lost your job if it fail). The default value is 2.

	resultmodulations

	This variable is used to link with resultmodulations objects. It will allow such modulation to apply, like change a warning in critical for this host.

	escalations

	This variable is used to link with escalations objects. It will allow such escalations rules to apply. Look at escalations objects for more details.

	business_impact_modulations

	This variable is used to link with business_impact_modulations objects. It will allow such modulation to apply (for example if the host is a payment server, it will be important only in a specific timeperiod: near the pay day). Look at business_impact_modulations objects for more details.

	maintenance_period

	Alignak-specific variable to specify a recurring downtime period. This works like a scheduled downtime, so unlike a check_period with exclusions, checks will still be made.

	service_overrides

	This variable may be used to override services directives for a specific host. This is especially useful when services are inherited (for instance from packs), because it allows to have a host attached service set one of its directives a specific value. For example, on a set of web servers, HTTP service (inherited from http pack) on production servers should have notifications enabled 24x7, and staging server should only notify during workhours. To do so, staging server should be set the following directive: service_overrides HTTP,notification_period workhours. Several overrides may be specified, each override should be written on a single line. Caution, service_overrides may be inherited (through the use directive), but specifying an override on a host overloads all values inherited from parent hosts, it does not append it (as of any single valued attribute). See inheritance description for more details.

	service_excludes

	This variable may be used to exclude a service from a host. It addresses the situations where a set of services is inherited from a pack or attached from a hostgroup, and an identified host should NOT have one (or more, comma separated) services defined. This allows to manage exceptions in the service assignment without having to define intermediary templates/hostgroups. See inheritance description for more details.
This will be ignored if there is service_includes

	service_includes

	This variable may be used to include only a service from a host. It addresses the situations where a set of services is inherited from a pack or attached from a hostgroup, and an identified host should have only one (or more, comma separated) services defined. This allows to manage exceptions in the service assignment without having to define intermediary templates/hostgroups. See inheritance description for more details.
This variable is considered before service_excludes

	labels

	This variable may be used to place arbitrary labels (separated by comma character). Those labels may be used in other configuration objects such as business rules grouping expressions.

	business_rule_output_template

	Classic host check output is managed by the underlying plugin (the check output is the plugin stdout). For business rules, as there’s no real plugin behind, the output may be controlled by a template string defined in business_rule_output_template directive.

	business_rule_smart_notifications

	This variable may be used to activate smart notifications on business rules. This allows to stop sending notification if all underlying problems have been acknowledged.

	business_rule_smart_notifications

	By default, downtimes are not taken into account by business rules smart notifications processing. This variable allows to extend smart notifications to underlying hosts or service checks under downtime (they are treated as if they were acknowledged).

	business_rule_host_notification_options

	This option allows to enforce business rules underlying hosts notification options to easily compose a consolidated meta check. This is especially useful for business rules relying on grouping expansion.

	business_rule_service_notification_options

	This option allows to enforce business rules underlying services notification options to easily compose a consolidated meta check. This is especially useful for business rules relying on grouping expansion.

	snapshot_enabled

	This option allows to enable snapshots on this element.

	snapshot_command

	Command to launch when a snapshot launch occurs

	snapshot_period

	Timeperiod when the snapshot call is allowed

	snapshot_criteria

	List of states that enable the snapshot launch. Mainly bad states.

	snapshot_interval

	Minimum interval between two launch of snapshots to not hammering the host, in interval_length units (by default 60s) :)

Service Definition

A service definition is used to identify a “service” that runs on a host. The term “service” is used very loosely. It can mean an actual service that runs on the host (POP, “SMTP”, “HTTP”, etc.) or some other type of metric associated with the host (response to a ping, number of logged in users, free disk space, etc.). The different arguments to a service definition are outlined below.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define service{

	

	host_name

	host_name

	hostgroup_name

	hostgroup_name

	service_description

	service_description

	display_name

	display_name

	servicegroups

	servicegroup_names

	is_volatile

	[0/1]

	check_command

	command_name

	initial_state

	[o,w,u,c]

	initial_output

	output

	max_check_attempts

	#

	check_interval

	#

	retry_interval

	#

	active_checks_enabled

	[0/1]

	passive_checks_enabled

	[0/1]

	check_period

	timeperiod_name

	obsess_over_service

	[0/1]

	check_freshness

	[0/1]

	freshness_threshold

	#

	event_handler

	command_name

	event_handler_enabled

	[0/1]

	low_flap_threshold

	#

	high_flap_threshold

	#

	flap_detection_enabled

	[0/1]

	flap_detection_options

	[o,w,c,u]

	process_perf_data

	[0/1]

	retain_status_information

	[0/1]

	retain_nonstatus_information

	[0/1]

	notification_interval

	#

	first_notification_delay

	#

	notification_period

	timeperiod_name

	notification_options

	[w,u,c,r,f,s]

	notifications_enabled

	[0/1]

	contacts

	contacts

	contact_groups

	contact_groups

	stalking_options

	[o,w,u,c]

	notes

	note_string

	notes_url

	url

	action_url

	url

	poller_tag

	poller_tag

	reactionner_tag

	reactionner_tag

	duplicate_foreach

	$MACRO$

	service_dependencies

	host,service_description

	business_impact

	[0/1/2/3/4/5]

	maintenance_period

	timeperiod_name

	host_dependency_enabled

	[0/1]

	labels

	labels

	business_rule_output_template

	template

	business_rule_smart_notifications

	[0/1]

	business_rule_downtime_as_ack

	[0/1]

	business_rule_host_notification_options

	[d,u,r,f,s]

	business_rule_service_notification_options

	[w,u,c,r,f,s]

	snapshot_enabled

	[0/1]

	snapshot_command

	command_name

	snapshot_period

	timeperiod_name

	snapshot_criteria

	[w,c,u]

	snapshot_interval

	#

	priority

	priority

	}

	

Example

define service{
 host_name linux-server
 service_description check-disk-sda1
 check_command check-disk!/dev/sda1
 max_check_attempts 5
 check_interval 5
 retry_interval 3
 check_period 24x7
 notification_interval 30
 notification_period 24x7
 notification_options w,c,r
 contact_groups linux-admins
 poller_tag DMZ
 icon_set server
 }

Variables

	host_name

	This directive is used to specify the short name(s) of the host(s) that the service “runs” on or is associated with. Multiple hosts should be separated by commas.

	hostgroup_name

	This directive is used to specify the short name(s) of the hostgroup(s) that the service “runs” on or is associated with. Multiple hostgroups should be separated by commas. The hostgroup_name may be used instead of, or in addition to, the host_name directive.

This is possible to define “complex” hostgroup expression with the following operators :

	& : it’s use to make an AND betweens groups

	
: it’s use to make an OR betweens groups

	! : it’s use to make a NOT of a group or expression

	, : it’s use to make a OR, like the | sign.

	(and) : they are use like in all math expressions.

For example the above definition is valid

hostgroup_name=(linux|windows)&!qualification,routers

This service wil be apply on hosts that are in the routers group or (in linux or windows and not in qualification group).

	service_description

	This directive is used to define the description of the service, which may contain spaces, dashes, and colons (semicolons, apostrophes, and quotation marks should be avoided). No two services associated with the same host can have the same description. Services are uniquely identified with their host_name and service_description directives.

	display_name

	This directive is used to define an alternate name that should be displayed in the web interface for this service. If not specified, this defaults to the value you specify for the service_description directive.

The current CGIs do not use this option, although future versions of the web interface will.

	servicegroups

	This directive is used to identify the short name(s) of the servicegroup(s) that the service belongs to. Multiple servicegroups should be separated by commas. This directive may be used as an alternative to using the members directive in servicegroup definitions.

	is_volatile

	This directive is used to denote whether the service is “volatile”. Services are normally not volatile. More information on volatile service and how they differ from normal services can be found here. Value: 0 = service is not volatile, 1 = service is volatile.

	check_command

	This directive is used to specify the short name of the command that Alignak will run in order to check the status of the service. The maximum amount of time that the service check command can run is controlled by the service_check_timeout option.
There is also a command with the reserved name “bp_rule”. It is defined internally and has a special meaning. Unlike other commands it mustn’t be registered in a command definition. It’s purpose is not to execute a plugin but to represent a logical operation on the statuses of other services. It is possible to define logical relationships with the following operators :

	& : it’s use to make an AND betweens statuses

	
: it’s use to make an OR betweens statuses

	! : it’s use to make a NOT of a status or expression

	, : it’s use to make a OR, like the | sign.

	(and) : they are used like in all math expressions

For example the following definition of a business process rule is valid

bp_rule!(websrv1,apache | websrv2,apache) & dbsrv1,oracle

If at least one of the apaches on servers websrv1 and websrv2 is OK and if the oracle database on dbsrv1 is OK then the rule and thus the service is OK

	initial_state

	By default Alignak will assume that all services are in PENDING state when in starts. You can override the initial state for a service by using this directive. Valid options are:

	o = OK

	w = WARNING

	u = UNKNOWN

	c = CRITICAL.

	initial_output

	As of the initial state, the initial check output may also be overridden by this directive.

	max_check_attempts

	This directive is used to define the number of times that Alignak will retry the service check command if it returns any state other than an OK state. Setting this value to 1 will cause Alignak to generate an alert without retrying the service check again.

	check_interval

	This directive is used to define the number of “time units” to wait before scheduling the next “regular” check of the service. “Regular” checks are those that occur when the service is in an OK state or when the service is in a non-OK state, but has already been rechecked max_check_attempts number of times. Unless you’ve changed the interval_length global variable from the default value of 60, this number will mean minutes.

	retry_interval

	This directive is used to define the number of “time units” to wait before scheduling a re-check of the service. Services are rescheduled at the retry interval when they have changed to a non-OK state. Once the service has been retried max_check_attempts times without a change in its status, it will revert to being scheduled at its “normal” rate as defined by the check_interval value. Unless you’ve changed the interval_length global variable from the default value of 60, this number will mean minutes.

	active_checks_enabled

	This directive is used to determine whether or not active checks of this service are enabled. Values:

	0 = disable active service checks

	1 = enable active service checks.

	passive_checks_enabled

	This directive is used to determine whether or not passive checks of this service are enabled. Values:

	0 = disable passive service checks

	1 = enable passive service checks.

	check_period

	This directive is used to specify the short name of the time period during which active checks of this service can be made.

	check_freshness

	This directive is used to determine whether or not freshness checks are enabled for this service. Values:

	0 = disable freshness checks

	1 = enable freshness checks

	freshness_threshold

	This directive is used to specify the freshness threshold (in seconds) for this service. If you set this directive to a value of 0, Alignak will determine a freshness threshold to use automatically.

	event_handler

	This directive is used to specify the short name of the command that should be run whenever a change in the state of the service is detected (i.e. whenever it goes down or recovers). Read the documentation on event handlers for a more detailed explanation of how to write scripts for handling events. The maximum amount of time that the event handler command can run is controlled by the event_handler_timeout option.

	event_handler_enabled

	This directive is used to determine whether or not the event handler for this service is enabled. Values:

	0 = disable service event handler

	1 = enable service event handler.

	low_flap_threshold

	This directive is used to specify the low state change threshold used in flap detection for this service. More information on flap detection can be found here. If you set this directive to a value of 0, the program-wide value specified by the low_service_flap_threshold directive will be used.

	high_flap_threshold

	This directive is used to specify the high state change threshold used in flap detection for this service. More information on flap detection can be found here. If you set this directive to a value of 0, the program-wide value specified by the high_service_flap_threshold directive will be used.

	flap_detection_enabled

	This directive is used to determine whether or not flap detection is enabled for this service. More information on flap detection can be found here. Values:

	0 = disable service flap detection

	1 = enable service flap detection.

	flap_detection_options

	This directive is used to determine what service states the flap detection logic will use for this service. Valid options are a combination of one or more of the following :

	o = OK states

	w = WARNING states

	c = CRITICAL states

	u = UNKNOWN states.

	process_perf_data

	This directive is used to determine whether or not the processing of performance data is enabled for this service. Values:

	0 = disable performance data processing

	1 = enable performance data processing

	notification_interval

	This directive is used to define the number of “time units” to wait before re-notifying a contact that this service is still in a non-OK state. Unless you’ve changed the interval_length directive from the default value of 60, this number will mean minutes. If you set this value to 0, Alignak will not re-notify contacts about problems for this service - only one problem notification will be sent out.

	first_notification_delay

	This directive is used to define the number of “time units” to wait before sending out the first problem notification when this service enters a non-OK state. Unless you’ve changed the interval_length directive from the default value of 60, this number will mean minutes. If you set this value to 0, Alignak will start sending out notifications immediately.

	notification_period

	This directive is used to specify the short name of the time period during which notifications of events for this service can be sent out to contacts. No service notifications will be sent out during times which is not covered by the time period.

	notification_options

	This directive is used to determine when notifications for the service should be sent out. Valid options are a combination of one or more of the following:

	w = send notifications on a WARNING state

	u = send notifications on an UNKNOWN state

	c = send notifications on a CRITICAL state

	r = send notifications on recoveries (OK state)

	f = send notifications when the service starts and stops flapping

	s = send notifications when scheduled downtime starts and ends

	n (none) as an option, no service notifications will be sent out. If you do not specify any notification options, Alignak will assume that you want notifications to be sent out for all possible states

If you specify w,r in this field, notifications will only be sent out when the service goes into a WARNING state and when it recovers from a WARNING state.

	notifications_enabled

	This directive is used to determine whether or not notifications for this service are enabled. Values:

	0 = disable service notifications

	1 = enable service notifications.

	contacts

	This is a list of the short names of the contacts that should be notified whenever there are problems (or recoveries) with this service. Multiple contacts should be separated by commas. Useful if you want notifications to go to just a few people and don’t want to configure contact groups. You must specify at least one contact or contact group in each service definition.

	contact_groups

	This is a list of the short names of the contact groups that should be notified whenever there are problems (or recoveries) with this service. Multiple contact groups should be separated by commas. You must specify at least one contact or contact group in each service definition. If there is no contact or contact_groups defined, it’s host’s contact/contactgroup wich is used by object_inheritance.

	stalking_options

	This directive determines which service states “stalking” is enabled for. Valid options are a combination of one or more of the following :

	o = stalk on OK states

	w = stalk on WARNING states

	u = stalk on UNKNOWN states

	c = stalk on CRITICAL states

More information on state stalking can be found here.

	notes

	This directive is used to define an optional string of notes pertaining to the service. If you specify a note here, you will see the it in the User Interface (when you are viewing information about the specified service).

	notes_url

	This directive is used to define an optional URL that can be used to provide more information about the service. If you specify an URL, you will see a red folder icon in the CGIs (when you are viewing service information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base path will the same as what is used to access the CGIs (i.e. ///cgi-bin/shinken///). This can be very useful if you want to make detailed information on the service, emergency contact methods, etc. available to other support staff.

	action_url

	This directive is used to define an optional URL that can be used to provide more actions to be performed on the service. If you specify an URL, you will see a red “splat” icon in the CGIs (when you are viewing service information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base path will the same as what is used to access the CGIs (i.e. ///cgi-bin/shinken///).

	poller_tag

	This directive is used to define the poller_tag of this command. This parameter may be defined, in order of precedence, on a`command`, a host or a service. If a poller tag is set, only pollers holding the same tag will handle the corresponding action.

By default there is no poller_tag, so all untagged pollers can take it.

	reactionner_tag

	This directive is used to define the reactionner_tag of this command. This parameter may be defined, in order of precedence, on a`command`, a host or a service. If a reactionner tag is set, only reactionners holding the same tag will handle the corresponding action.

By default there is no reactionner_tag, so all untagged reactionners can take it.

	duplicate_foreach

	This is used to generate several service with only one service declaration.
Alignak understands this statement as : “Create a service for each key in the variable”.
Usually, this statement come with a “KEY” string in the service_description (to have a different name) and in the check_command (you want also a different check)
Moreover, one or several variables can be associated to each key. Then, values can be used in the service definition with $VALUE$ or $VALUEn$ macros.

define host {
 host_name linux-server
 ...
 _partitions var $(/var)$, root $(/)$
 _openvpns vpn1 $(tun1)$$(10.8.0.1)$, vpn2 $(tun2)$$(192.168.3.254)$
 ...
}

define service{
 host_name linux-server
 service_description disk-KEY
 check_command check_disk!$VALUE$
 ...
 duplicate_foreach _partitions
}

define service{
 host_name linux-server
 service_description openvpn-KEY-check-interface
 check_command check_int!$VALUE1$
 ...
 duplicate_foreach _openvpns
}

define service{
 host_name linux-server
 service_description openvpn-KEY-check-gateway
 check_command check_ping!$VALUE2$
 ...
 duplicate_foreach _openvpns
}

	service_dependencies

	This variable is used to define services that this service is dependent of for notifications. It’s a comma separated list of services: host,service_description,host,service_description. For each service a service_dependency will be created with default values (notification_failure_criteria as ‘u,c,w’ and no dependency_period). For more complex failure criteria or dependency period you must create a service_dependency object, as described in advanced dependency configuraton. The host can be omitted from the configuration, which means that the service dependency is for the same host.

service_dependencies hostA,service_descriptionA,hostB,service_descriptionB
service_dependencies ,service_descriptionA,,service_descriptionB,hostC,service_descriptionC

By default this value is void so there is no linked dependencies. This is typically used to make a service dependent on an agent software, like an NRPE check dependent on the availability of the NRPE agent.

	business_impact

	This variable is used to set the importance we gave to this service from the less important (0 = nearly nobody will see if it’s in error) to the maximum (5 = you lost your job if it fail). The default value is 2.

	maintenance_period

	Alignak-specific variable to specify a recurring downtime period. This works like a scheduled downtime, so unlike a check_period with exclusions, checks will still be made.

	host_dependency_enabled

	This variable may be used to remove the dependency between a service and its parent host. Used for volatile services that need notification related to itself and not depend on the host notifications.

	labels

	This variable may be used to place arbitrary labels (separated by comma character). Those labels may be used in other configuration objects such as business rules to identify groups of services.

	business_rule_output_template

	Classic service check output is managed by the underlying plugin (the check output is the plugin stdout). For business rules, as there’s no real plugin behind, the output may be controlled by a template string defined in business_rule_output_template directive.

	business_rule_smart_notifications

	This variable may be used to activate smart notifications on business rules. This allows to stop sending notification if all underlying problems have been acknowledged.

	business_rule_smart_notifications

	By default, downtimes are not taken into account by business rules smart notifications processing. This variable allows to extend smart notifications to underlying hosts or service checks under downtime (they are treated as if they were acknowledged).

	business_rule_host_notification_options

	This option allows to enforce business rules underlying hosts notification options to easily compose a consolidated meta check. This is especially useful for business rules relying on grouping expansion.

	business_rule_service_notification_options

	This option allows to enforce business rules underlying services notification options to easily compose a consolidated meta check. This is especially useful for business rules relying on grouping expansion.

	snapshot_enabled

	This option allows to enable snapshots snapshots on this element.

	snapshot_command

	Command to launch when a snapshot launch occurs

	snapshot_period

	Timeperiod when the snapshot call is allowed

	snapshot_criteria

	List of states that enable the snapshot launch. Mainly bad states.

	snapshot_interval

	Minimum interval between two launch of snapshots to not hammering the host, in interval_length units (by default 60s) :)

	priority

	This options defines the service’s priority regarding checks execution. When a poller is asking for new actions to execute to the scheduler, it will return the highest priority tasks first (the lower the number, the higher the priority). The priority parameter may be set, in order of ascending precedence, on a command, on a host and on a service. Priority defaults to 100.

Contact Group Definition

A contact group definition is used to group one or more contacts together for the purpose of sending out alert/recovery notifications.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define contactgroup{

	

	contactgroup_name

	contactgroup_name

	alias

	alias

	members

	contacts

	contactgroup_members

	contactgroups

	}

	

Example

define contactgroup{
 contactgroup_name novell-admins
 alias Novell Administrators
 members jdoe,rtobert,tzach
}

Variables

	contactgroup_name

	This directive is a short name used to identify the contact group.

	alias

	This directive is used to define a longer name or description used to identify the contact group.

	members

	This directive is used to define a list of the short names of contacts that should be included in this group. Multiple contact names should be separated by commas. This directive may be used as an alternative to (or in addition to) using the contactgroups directive in contact definitions.

	contactgroup_members

	This optional directive can be used to include contacts from other “sub” contact groups in this contact group. Specify a comma-delimited list of short names of other contact groups whose members should be included in this group.

Hostgroup Definition

A hostgroup definition is used to define a group of hosts.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define hostgroup{

	

	hostgroup_name

	hostgroup_name

	alias

	alias

	display_name

	display_name

	…

	

	To be updated / completed

	

	…

	

	}

	

Example

define hostgroup{
 hostgroup_name my_hostgroup
}

Variables

	hostgroup_name

	This directive is used to define a short name used to identify the hosts group.

Service Group Definition

A service group definition is used to group one or more services together for simplifying configuration or display purposes in the User Interface.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define servicegroup{

	

	servicegroup_name

	servicegroup_name

	alias

	alias

	members

	services

	servicegroup_members

	servicegroups

	notes

	note_string

	notes_url

	url

	action_url

	url

	}

	

Example

define servicegroup{
 servicegroup_name dbservices
 alias Database Services
 members ms1,SQL Server,ms1,SQL Serverc Agent,ms1,SQL DTC
}

Variables

	servicegroup_name

	This directive is used to define a short name used to identify the service group.

	alias

	This directive is used to define is a longer name or description used to identify the service group. It is provided in order to allow you to more easily identify a particular service group.

	members

	This is a list of the descriptions of services (and the names of their corresponding hosts) that should be included in this group. Host and service names should be separated by commas. This directive may be used as an alternative to the servicegroups directive in service definitions. The format of the member directive is as follows (note that a host name must precede a service name/description):

members=<host1>,<service1>,<host2>,<service2>,...,<host*n*>,<service*n*>

	servicegroup_members

	This optional directive can be used to include services from other “sub” service groups in this service group. Specify a comma-delimited list of short names of other service groups whose members should be included in this group.

	notes

	This directive is used to define an optional string of notes pertaining to the service group in the User Interface.

	notes_url

	This directive is used to define an optional URL that can be used to provide more information about the service group. If you specify an URL, you will see a red folder icon in the CGIs (when you are viewing service group information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base path will the the same as what is used to access the CGIs (i.e. ///cgi-bin/shinken///). This can be very useful if you want to make detailed information on the service group, emergency contact methods, etc. available to other support staff.

	action_url

	This directive is used to define an optional URL that can be used to provide more actions to be performed on the service group. If you specify an URL, you will see a red “splat” icon in the CGIs (when you are viewing service group information) that links to the URL you specify here. Any valid URL can be used. If you plan on using relative paths, the base path will the the same as what is used to access the CGIs (i.e. ///cgi-bin/shinken///).

Host Dependency Definition

Host dependencies are an advanced feature of Alignak that allows you to suppress notifications for hosts based on the status of one or more other hosts. Host dependencies are optional and are mainly targeted at advanced users who have complicated monitoring setups. More information on how host dependencies work (read this!) can be found here.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define hostdependency{

	

	dependent_host_name

	host_name

	dependent_hostgroup_name

	hostgroup_name

	host_name

	host_name

	hostgroup_name

	hostgroup_name

	inherits_parent

	[0/1]

	execution_failure_criteria

	[o,d,u,p,n]

	notification_failure_criteria

	[o,d,u,p,n]

	dependency_period

	timeperiod_name

	}

	

Example

define hostdependency{
 host_name WWW1
 dependent_host_name DBASE1
 notification_failure_criteria d,u
}

Variables

	dependent_host_name

	This directive is used to identify the short name(s) of the dependent host(s). Multiple hosts should be separated by commas.

	dependent_hostgroup_name

	This directive is used to identify the short name(s) of the dependent hostgroup(s). Multiple hostgroups should be separated by commas. The dependent_hostgroup_name may be used instead of, or in addition to, the dependent_host_name directive.

	host_name

	This directive is used to identify the short name(s) of the host(s) that is being depended upon (also referred to as the master host). Multiple hosts should be separated by commas.

	hostgroup_name

	This directive is used to identify the short name(s) of the hostgroup(s) that is being depended upon (also referred to as the master host). Multiple hostgroups should be separated by commas. The hostgroup_name may be used instead of, or in addition to, the host_name directive.

	inherits_parent

	This directive indicates whether or not the dependency inherits dependencies of the host that is being depended upon (also referred to as the master host). In other words, if the master host is dependent upon other hosts and any one of those dependencies fail, this dependency will also fail.

	execution_failure_criteria

	This directive is used to specify the criteria that determine when the dependent host should not be actively checked. If the master host is in one of the failure states we specify, the dependent host will not be actively checked. Valid options are a combination of one or more of the following (multiple options are separated with commas):

	o = fail on an UP state

	d = fail on a DOWN state

	u = fail on an UNREACHABLE state

	p = fail on a pending state (e.g. the host has not yet been checked)

	n (none) : the execution dependency will never fail and the dependent host will always be actively checked (if other conditions allow for it to be).

If you specify u,d in this field, the dependent host will not be actively checked if the master host is in either an UNREACHABLE or DOWN state.

	notification_failure_criteria

	This directive is used to define the criteria that determine when notifications for the dependent host should not be sent out. If the master host is in one of the failure states we specify, notifications for the dependent host will not be sent to contacts. Valid options are a combination of one or more of the following:

	o = fail on an UP state

	d = fail on a DOWN state

	u = fail on an UNREACHABLE state

	p = fail on a pending state (e.g. the host has not yet been checked)

	n = (none) : the notification dependency will never fail and notifications for the dependent host will always be sent out.

If you specify d in this field, the notifications for the dependent host will not be sent out if the master host is in a DOWN state.

	dependency_period

	This directive is used to specify the short name of the time period during which this dependency is valid. If this directive is not specified, the dependency is considered to be valid during all times.

Service Dependency Definition

Service dependencies are an advanced feature of Alignak that allow you to suppress notifications and active checks of services based on the status of one or more other services. Service dependencies are optional and are mainly targeted at advanced users who have complicated monitoring setups. More information on how service dependencies work (read this!) can be found here.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define servicedependency{

	

	dependent_host_name

	host_name

	dependent_hostgroup_name

	hostgroup_name

	dependent_service_description

	service_description

	host_name

	host_name

	hostgroup_name

	hostgroup_name

	service_description

	service_description

	inherits_parent

	[0/1]

	execution_failure_criteria

	[o,w,u,c,p,n]

	notification_failure_criteria

	[o,w,u,c,p,n]

	dependency_period

	timeperiod_name

	}

	

Example

define servicedependency{
 host_name WWW1
 service_description Apache Web Server
 dependent_host_name WWW1
 dependent_service_description Main Web Site
 execution_failure_criteria n
 notification_failure_criteria w,u,c
}

Variables

	dependent_host_name

	This directive is used to identify the short name(s) of the host(s) that the dependent service “runs” on or is associated with. Multiple hosts should be separated by commas. Leaving this directive blank can be used to create “same host” dependencies.

	dependent_hostgroup

	This directive is used to specify the short name(s) of the hostgroup(s) that the dependent service “runs” on or is associated with. Multiple hostgroups should be separated by commas. The “dependent_hostgroup” may be used instead of, or in addition to, the “dependent_host” directive.

	dependent_service_description

	This directive is used to identify the description of the dependent service.

	host_name

	This directive is used to identify the short name(s) of the host(s) that the service that is being depended upon (also referred to as the master service) “runs” on or is associated with. Multiple hosts should be separated by commas.

	hostgroup_name

	This directive is used to identify the short name(s) of the hostgroup(s) that the service that is being depended upon (also referred to as the master service) “runs” on or is associated with. Multiple hostgroups should be separated by commas. The “hostgroup_name” may be used instead of, or in addition to, the “host_name” directive.

	service_description

	This directive is used to identify the description of the service that is being depended upon (also referred to as the master service).

	inherits_parent

	This directive indicates whether or not the dependency inherits dependencies of the service that is being depended upon (also referred to as the master service). In other words, if the master service is dependent upon other services and any one of those dependencies fail, this dependency will also fail.

	execution_failure_criteria

	This directive is used to specify the criteria that determine when the dependent service should not be actively checked. If the master service is in one of the failure states we specify, the dependent service will not be actively checked. Valid options are a combination of one or more of the following (multiple options are separated with commas):

	o = fail on an OK state

	w = fail on a WARNING state

	u = fail on an UNKNOWN state

	c = fail on a CRITICAL state

	p = fail on a pending state (e.g. the service has not yet been checked).

	n (none) : the execution dependency will never fail and checks of the dependent service will always be actively checked (if other conditions allow for it to be).

If you specify o,c,u in this field, the dependent service will not be actively checked if the master service is in either an OK, a CRITICAL, or an UNKNOWN state.

	notification_failure_criteria

	This directive is used to define the criteria that determine when notifications for the dependent service should not be sent out. If the master service is in one of the failure states we specify, notifications for the dependent service will not be sent to contacts. Valid options are a combination of one or more of the following:

	o = fail on an OK state

	w = fail on a WARNING state

	u = fail on an UNKNOWN state

	c = fail on a CRITICAL state

	p = fail on a pending state (e.g. the service has not yet been checked).

	n = (none) : the notification dependency will never fail and notifications for the dependent service will always be sent out.

If you specify w in this field, the notifications for the dependent service will not be sent out if the master service is in a WARNING state.

	dependency_period

	This directive is used to specify the short name of the time period during which this dependency is valid. If this directive is not specified, the dependency is considered to be valid during all times.

Host Escalation Definition

Host escalations are completely optional and are used to escalate notifications for a particular host. More information on how notification escalations work can be found here.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define hostescalation{

	

	host_name

	host_name

	hostgroup_name

	hostgroup_name

	contacts

	contacts

	contact_groups

	contactgroup_name

	first_notification

	#

	last_notification

	#

	first_notification_time

	#

	last_notification_time

	#

	notification_interval

	#

	escalation_period

	timeperiod_name

	escalation_options

	[d,u,r]

	}

	

Example

Escalate to all-router-admins after one hour of problem, and stop after 2 hours.

define hostescalation{
 host_name router-34
 first_notification_time 60
 last_notification_time 120
 notification_interval 60
 contact_groups all-router-admins
}

Variables

	host_name

	This directive is used to identify the short name of the host that the escalation should apply to.

	hostgroup_name

	This directive is used to identify the short name(s) of the hostgroup(s) that the escalation should apply to. Multiple hostgroups should be separated by commas. If this is used, the escalation will apply to all hosts that are members of the specified hostgroup(s).

	first_notification

	This directive is a number that identifies the first notification for which this escalation is effective. For instance, if you set this value to 3, this escalation will only be used if the host is down or unreachable long enough for a third notification to go out.

	last_notification

	This directive is a number that identifies the last notification for which this escalation is effective. For instance, if you set this value to 5, this escalation will not be used if more than five notifications are sent out for the host. Setting this value to 0 means to keep using this escalation entry forever (no matter how many notifications go out).

	first_notification_time

	This directive is the number of “time intervals” (60 seconds by default) until that makes the first notification for which this escalation is effective. For instance, if you set this value to 60, this escalation will only be used if the host is in a non-OK state long enough for 60 minutes notification to go out.

	last_notification_time

	This directive is a number of “time intervals” (60 seconds by default) until that makes the last notification for which this escalation is effective. For instance, if you set this value to 120, this escalation will not be used if more than two hours after then notifications are sent out for the service. Setting this value to 0 means to keep using this host entry forever (no matter how many notifications go out).

	contacts

	This is a list of the short names of the contacts that should be notified whenever there are problems (or recoveries) with this host. Multiple contacts should be separated by commas. Useful if you want notifications to go to just a few people and don’t want to configure contact groups. You must specify at least one contact or contact group in each host escalation definition.

	contact_groups

	This directive is used to identify the short name of the contact group that should be notified when the host notification is escalated. Multiple contact groups should be separated by commas. You must specify at least one contact or contact group in each host escalation definition.

	notification_interval

	This directive is used to determine the interval at which notifications should be made while this escalation is valid. If you specify a value of 0 for the interval, Alignak will send the first notification when this escalation definition is valid, but will then prevent any more problem notifications from being sent out for the host. Notifications are sent out again until the host recovers. This is useful if you want to stop having notifications sent out after a certain amount of time.

If multiple escalation entries for a host overlap for one or more notification ranges, the smallest notification interval from all escalation entries is used.

	escalation_period

	This directive is used to specify the short name of the time period during which this escalation is valid. If this directive is not specified, the escalation is considered to be valid during all times.

	escalation_options

	This directive is used to define the criteria that determine when this host escalation is used. The escalation is used only if the host is in one of the states specified in this directive. If this directive is not specified in a host escalation, the escalation is considered to be valid during all host states. Valid options are a combination of one or more of the following :

	r = escalate on an UP (recovery) state

	d = escalate on a DOWN state

	u = escalate on an UNREACHABLE state

If you specify d in this field, the escalation will only be used if the host is in a DOWN state.

Note

You can define generic escalation with the statement “define escalation” instead of hostescalation. There are less required parameter (as there is not type) but you still have to defined them to make it work

Service Escalation Definition

Service escalations are completely optional and are used to escalate notifications for a particular service. More information on how notification escalations work can be found here.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define serviceescalation{

	

	host_name

	host_name

	hostgroup_name

	hostgroup_name

	service_description

	service_description

	contacts

	contacts

	contact_groups

	contactgroup_name

	first_notification

	#

	last_notification

	#

	first_notification_time

	#

	last_notification_time

	#

	notification_interval

	#

	escalation_period

	timeperiod_name

	escalation_options

	[w,u,c,r]

	}

	

Example

Here for an escalation that will escalade to “the_managers” after one hour problem and ends after 2 hours.

define serviceescalation{
 host_name nt-3
 service_description Processor Load
 first_notification_time 60
 last_notification_time 120
 notification_interval 30
 contact_groups the_managers
}

Variables

	host_name

	This directive is used to identify the short name(s) of the host(s) that the service escalation should apply to or is associated with.

	hostgroup_name

	This directive is used to specify the short name(s) of the hostgroup(s) that the service escalation should apply to or is associated with. Multiple hostgroups should be separated by commas. The “hostgroup_name” may be used instead of, or in addition to, the “host_name” directive.

	service_description

	This directive is used to identify the description of the service the escalation should apply to.

	first_notification

	This directive is a number that identifies the first notification for which this escalation is effective. For instance, if you set this value to 3, this escalation will only be used if the service is in a non-OK state long enough for a third notification to go out.

	last_notification

	This directive is a number that identifies the last notification for which this escalation is effective. For instance, if you set this value to 5, this escalation will not be used if more than five notifications are sent out for the service. Setting this value to 0 means to keep using this escalation entry forever (no matter how many notifications go out).

	first_notification_time

	This directive is the number of “time intervals” (60 seconds by default) until that makes the first notification for which this escalation is effective. For instance, if you set this value to 60, this escalation will only be used if the service is in a non-OK state long enough for 60 minutes notification to go out.

	last_notification_time

	This directive is a number of “time intervals” (60 seconds by default) until that makes the last notification for which this escalation is effective. For instance, if you set this value to 120, this escalation will not be used if more than two hours after then notifications are sent out for the service. Setting this value to 0 means to keep using this escalation entry forever (no matter how many notifications go out).

	contacts

	This is a list of the short names of the contacts that should be notified whenever there are problems (or recoveries) with this service. Multiple contacts should be separated by commas. Useful if you want notifications to go to just a few people and don’t want to configure contact groups. You must specify at least one contact or contact group in each service escalation definition.

	contact_groups

	This directive is used to identify the short name of the contact group that should be notified when the service notification is escalated. Multiple contact groups should be separated by commas. You must specify at least one contact or contact group in each service escalation definition.

	notification_interval

	This directive is used to determine the interval at which notifications should be made while this escalation is valid. If you specify a value of 0 for the interval, Alignak will send the first notification when this escalation definition is valid, but will then prevent any more problem notifications from being sent out for the host. Notifications are sent out again until the host recovers. This is useful if you want to stop having notifications sent out after a certain amount of time.

If multiple escalation entries for a host overlap for one or more notification ranges, the smallest notification interval from all escalation entries is used.

	escalation_period

	This directive is used to specify the short name of the time period during which this escalation is valid. If this directive is not specified, the escalation is considered to be valid during all times.

	escalation_options

	This directive is used to define the criteria that determine when this service escalation is used. The escalation is used only if the service is in one of the states specified in this directive. If this directive is not specified in a service escalation, the escalation is considered to be valid during all service states. Valid options are a combination of one or more of the following:

	r = escalate on an OK (recovery) state

	w = escalate on a WARNING state

	u = escalate on an UNKNOWN state

	c = escalate on a CRITICAL state

If you specify w in this field, the escalation will only be used if the service is in a WARNING state.

Note

You can define generic escalation with the statement “define escalation” instead of serviceescalation.

There are less required parameter (as there is not type) but you still have to defined them to make it work

Notification Way Definition

A notificationway definition is used to define the way a contact is notified.

Syntax

Bold variables are required, while others are optional.
Emphasized variables are Alignak extensions with reference to the Nagios legacy definition.

	define notificationway{

	

	notificationway_name

	notificationway_name

	host_notification_period

	timeperiod_name

	service_notification_period

	timeperiod_name

	host_notification_options

	[d,u,r,f,s,n]

	service_notification_options

	[w,u,c,r,f,s,n]

	host_notification_commands

	command_name

	service_notification_commands

	command_name

	min_business_impact

	[0/1/2/3/4/5]

	}

	

Example

Email the whole 24x7 is okay
define notificationway{
 notificationway_name email_in_day
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options w,u,c,r,f
 host_notification_options d,u,r,f,s
 service_notification_commands notify-service
 host_notification_commands notify-host
}

Variables

	notificationway_name

	This directive define the name of the notification witch be specified further in a contact definition

	host_notification_period

	This directive is used to specify the short name of the time period during which the contact can be notified about host problems or recoveries. You can think of this as an “on call” time for host notifications for the contact. Read the documentation on time periods for more information on how this works and potential problems that may result from improper use.

	service_notification_period

	This directive is used to specify the short name of the time period during which the contact can be notified about service problems or recoveries. You can think of this as an “on call” time for service notifications for the contact. Read the documentation on time periods for more information on how this works and potential problems that may result from improper use.

	host_notification_commands

	This directive is used to define a list of the short names of the commands used to notify the contact of a host problem or recovery. Multiple notification commands should be separated by commas. All notification commands are executed when the contact needs to be notified. The maximum amount of time that a notification command can run is controlled by the notification_timeout option.

	service_notification_commands

	This directive is used to define a list of the short names of the commands used to notify the contact of a service problem or recovery. Multiple notification commands should be separated by commas. All notification commands are executed when the contact needs to be notified. The maximum amount of time that a notification command can run is controlled by the notification_timeout option.

	host_notification_options

	This directive is used to define the host states for which notifications can be sent out to this contact. Valid options are a combination of one or more of the following:

	d = notify on DOWN host states

	u = notify on UNREACHABLE host states

	r = notify on host recoveries (UP states)

	f = notify when the host starts and stops flapping,

	s = send notifications when host or service scheduled downtime starts and ends. If you specify n (none) as an option, the contact will not receive any type of host notifications.

	service_notification_options

	This directive is used to define the service states for which notifications can be sent out to this contact. Valid options are a combination of one or more of the following:

	w = notify on WARNING service states

	u = notify on UNKNOWN service states

	c = notify on CRITICAL service states

	r = notify on service recoveries (OK states)

	f = notify when the service starts and stops flapping.

	n = (none) : the contact will not receive any type of service notifications.

	min_business_impact

	This directive is used to define the minimum business criticity level of a service/host the contact will be notified. Please see root_problems_and_impacts for more details.

	0 = less important

	1 = more important than 0

	2 = more important than 1

	3 = more important than 2

	4 = more important than 3

	5 = most important

Index

Alignak livesynthesis

On the arbiter endpoint: /livesynthesis

{
"alignak": "My Alignak",
"livesynthesis": {
 "_overall": {
 "_freshness": 1534237749,
 "livesynthesis": {
 "hosts_acknowledged": 0,
 "hosts_down_hard": 0,
 "hosts_down_soft": 0,
 "hosts_flapping": 0,
 "hosts_in_downtime": 0,
 "hosts_not_monitored": 0,
 "hosts_total": 13,
 "hosts_unreachable_hard": 0,
 "hosts_unreachable_soft": 0,
 "hosts_up_hard": 13,
 "hosts_up_soft": 0,
 "services_acknowledged": 0,
 "services_critical_hard": 6,
 "services_critical_soft": 4,
 "services_flapping": 0,
 "services_in_downtime": 0,
 "services_not_monitored": 0,
 "services_ok_hard": 70,
 "services_ok_soft": 0,
 "services_total": 100,
 "services_unknown_hard": 4,
 "services_unknown_soft": 6,
 "services_unreachable_hard": 0,
 "services_unreachable_soft": 0,
 "services_warning_hard": 5,
 "services_warning_soft": 5
 }
 },
 "scheduler-master": {
 "_freshness": 1534237747,
 "livesynthesis": {
 "hosts_acknowledged": 0,
 "hosts_down_hard": 0,
 "hosts_down_soft": 0,
 "hosts_flapping": 0,
 "hosts_in_downtime": 0,
 "hosts_not_monitored": 0,
 "hosts_total": 13,
 "hosts_unreachable_hard": 0,
 "hosts_unreachable_soft": 0,
 "hosts_up_hard": 13,
 "hosts_up_soft": 0,
 "services_acknowledged": 0,
 "services_critical_hard": 6,
 "services_critical_soft": 4,
 "services_flapping": 0,
 "services_in_downtime": 0,
 "services_not_monitored": 0,
 "services_ok_hard": 70,
 "services_ok_soft": 0,
 "services_total": 100,
 "services_unknown_hard": 4,
 "services_unknown_soft": 6,
 "services_unreachable_hard": 0,
 "services_unreachable_soft": 0,
 "services_warning_hard": 5,
 "services_warning_soft": 5
 }
 }
},
"name": "arbiter-master",
"running_id": "1534237614.73657398",
"start_time": 1534237614,
"type": "arbiter",
"version": "2.0.0rc2"

}

Alignak monitoring problems

On a scheduler endpoint: /monitoring_problems

{
"alignak": "My Alignak",
"livesynthesis": {
 "hosts_acknowledged": 0,
 "hosts_down_hard": 0,
 "hosts_down_soft": 0,
 "hosts_flapping": 0,
 "hosts_in_downtime": 0,
 "hosts_not_monitored": 0,
 "hosts_total": 13,
 "hosts_unreachable_hard": 0,
 "hosts_unreachable_soft": 0,
 "hosts_up_hard": 13,
 "hosts_up_soft": 0,
 "services_acknowledged": 0,
 "services_critical_hard": 7,
 "services_critical_soft": 3,
 "services_flapping": 0,
 "services_in_downtime": 0,
 "services_not_monitored": 0,
 "services_ok_hard": 70,
 "services_ok_soft": 0,
 "services_total": 100,
 "services_unknown_hard": 4,
 "services_unknown_soft": 6,
 "services_unreachable_hard": 0,
 "services_unreachable_soft": 0,
 "services_warning_hard": 6,
 "services_warning_soft": 4
},
"name": "scheduler-master",
"problems": {
 "19fef53f-3b9d-4d61-818f-a7354a7c8afa": {
 "host": "host-all-5",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237740,
 "last_state": "CRITICAL",
 "last_state_change": 1534237679,
 "last_state_type": "SOFT",
 "last_state_update": 1534237740,
 "output": "Hi, checking host-all-5/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "475e66d2-b53b-400a-9cfb-517456194932": {
 "host": "host-all-3",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237729,
 "last_state": "CRITICAL",
 "last_state_change": 1534237669,
 "last_state_type": "SOFT",
 "last_state_update": 1534237729,
 "output": "Hi, checking host-all-3/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "48df8941-0bc0-49f6-9e8b-ab2e2c956a24": {
 "host": "host-all-5",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237740,
 "last_state": "WARNING",
 "last_state_change": 1534237679,
 "last_state_type": "SOFT",
 "last_state_update": 1534237740,
 "output": "Hi, checking host-all-5/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "5146fd28-eb1b-4780-a884-da0e7ac8f678": {
 "host": "host-all-4",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237726,
 "last_state": "CRITICAL",
 "last_state_change": 1534237666,
 "last_state_type": "SOFT",
 "last_state_update": 1534237726,
 "output": "Hi, checking host-all-4/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "525abed4-f9bc-4c10-9d0e-1365b37909a5": {
 "host": "host-all-9",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237748,
 "last_state": "WARNING",
 "last_state_change": 1534237688,
 "last_state_type": "SOFT",
 "last_state_update": 1534237748,
 "output": "Hi, checking host-all-9/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "68438fc6-adc6-4c69-9ed1-a3b312f9a626": {
 "host": "host-all-9",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237748,
 "last_state": "CRITICAL",
 "last_state_change": 1534237688,
 "last_state_type": "SOFT",
 "last_state_update": 1534237748,
 "output": "Hi, checking host-all-9/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "7f1e2f28-4617-4091-bc2d-cd9f523fd3be": {
 "host": "host-all-7",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237712,
 "last_state": "WARNING",
 "last_state_change": 1534237651,
 "last_state_type": "SOFT",
 "last_state_update": 1534237712,
 "output": "Hi, checking host-all-7/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "89076df5-c886-4596-9631-9de7ec37ec1f": {
 "host": "host-all-6",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237726,
 "last_state": "CRITICAL",
 "last_state_change": 1534237666,
 "last_state_type": "SOFT",
 "last_state_update": 1534237726,
 "output": "Hi, checking host-all-6/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "8bffc83b-ae6c-4e0f-8019-3ecb8ed413c0": {
 "host": "host-all-0",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237744,
 "last_state": "CRITICAL",
 "last_state_change": 1534237684,
 "last_state_type": "SOFT",
 "last_state_update": 1534237744,
 "output": "Hi, checking host-all-0/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "9be4a873-b99c-4e02-8d86-8eb446ab5cd9": {
 "host": "host-all-1",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237734,
 "last_state": "WARNING",
 "last_state_change": 1534237674,
 "last_state_type": "SOFT",
 "last_state_update": 1534237734,
 "output": "Hi, checking host-all-1/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "c03cd3ce-fb1a-42c6-ad85-312fd2f50cb9": {
 "host": "host-all-4",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237745,
 "last_state": "WARNING",
 "last_state_change": 1534237685,
 "last_state_type": "SOFT",
 "last_state_update": 1534237745,
 "output": "Hi, checking host-all-4/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "c3ab6204-61d8-4bef-9db6-83c4b5fe7eff": {
 "host": "host-all-0",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237744,
 "last_state": "WARNING",
 "last_state_change": 1534237684,
 "last_state_type": "SOFT",
 "last_state_update": 1534237744,
 "output": "Hi, checking host-all-0/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "eba3c2c0-4312-41b5-b925-4a06c52bb455": {
 "host": "host-all-1",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237734,
 "last_state": "CRITICAL",
 "last_state_change": 1534237674,
 "last_state_type": "SOFT",
 "last_state_update": 1534237734,
 "output": "Hi, checking host-all-1/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 }
},
"running_id": "1534237617.26046306",
"start_time": 1534237617,
"type": "scheduler",
"version": "2.0.0rc2"

}

On the arbiter endpoint: /monitoring_problems

{
"_freshness": 1534237749,
"alignak": "My Alignak",
"name": "arbiter-master",
"problems": {
 "scheduler-master": {
 "problems": {
 "19fef53f-3b9d-4d61-818f-a7354a7c8afa": {
 "host": "host-all-5",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237740,
 "last_state": "CRITICAL",
 "last_state_change": 1534237679,
 "last_state_type": "SOFT",
 "last_state_update": 1534237740,
 "output": "Hi, checking host-all-5/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "475e66d2-b53b-400a-9cfb-517456194932": {
 "host": "host-all-3",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237729,
 "last_state": "CRITICAL",
 "last_state_change": 1534237669,
 "last_state_type": "SOFT",
 "last_state_update": 1534237729,
 "output": "Hi, checking host-all-3/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "48df8941-0bc0-49f6-9e8b-ab2e2c956a24": {
 "host": "host-all-5",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237740,
 "last_state": "WARNING",
 "last_state_change": 1534237679,
 "last_state_type": "SOFT",
 "last_state_update": 1534237740,
 "output": "Hi, checking host-all-5/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "5146fd28-eb1b-4780-a884-da0e7ac8f678": {
 "host": "host-all-4",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237726,
 "last_state": "CRITICAL",
 "last_state_change": 1534237666,
 "last_state_type": "SOFT",
 "last_state_update": 1534237726,
 "output": "Hi, checking host-all-4/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "525abed4-f9bc-4c10-9d0e-1365b37909a5": {
 "host": "host-all-9",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237748,
 "last_state": "WARNING",
 "last_state_change": 1534237688,
 "last_state_type": "SOFT",
 "last_state_update": 1534237748,
 "output": "Hi, checking host-all-9/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "68438fc6-adc6-4c69-9ed1-a3b312f9a626": {
 "host": "host-all-9",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237748,
 "last_state": "CRITICAL",
 "last_state_change": 1534237688,
 "last_state_type": "SOFT",
 "last_state_update": 1534237748,
 "output": "Hi, checking host-all-9/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "7f1e2f28-4617-4091-bc2d-cd9f523fd3be": {
 "host": "host-all-7",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237712,
 "last_state": "WARNING",
 "last_state_change": 1534237651,
 "last_state_type": "SOFT",
 "last_state_update": 1534237712,
 "output": "Hi, checking host-all-7/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "89076df5-c886-4596-9631-9de7ec37ec1f": {
 "host": "host-all-6",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237726,
 "last_state": "CRITICAL",
 "last_state_change": 1534237666,
 "last_state_type": "SOFT",
 "last_state_update": 1534237726,
 "output": "Hi, checking host-all-6/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "8bffc83b-ae6c-4e0f-8019-3ecb8ed413c0": {
 "host": "host-all-0",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237744,
 "last_state": "CRITICAL",
 "last_state_change": 1534237684,
 "last_state_type": "SOFT",
 "last_state_update": 1534237744,
 "output": "Hi, checking host-all-0/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 },
 "9be4a873-b99c-4e02-8d86-8eb446ab5cd9": {
 "host": "host-all-1",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237734,
 "last_state": "WARNING",
 "last_state_change": 1534237674,
 "last_state_type": "SOFT",
 "last_state_update": 1534237734,
 "output": "Hi, checking host-all-1/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "c03cd3ce-fb1a-42c6-ad85-312fd2f50cb9": {
 "host": "host-all-4",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237745,
 "last_state": "WARNING",
 "last_state_change": 1534237685,
 "last_state_type": "SOFT",
 "last_state_update": 1534237745,
 "output": "Hi, checking host-all-4/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "c3ab6204-61d8-4bef-9db6-83c4b5fe7eff": {
 "host": "host-all-0",
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1534237744,
 "last_state": "WARNING",
 "last_state_change": 1534237684,
 "last_state_type": "SOFT",
 "last_state_update": 1534237744,
 "output": "Hi, checking host-all-0/dummy_warning -> exit=1",
 "service": "dummy_warning",
 "state": "WARNING",
 "state_type": "HARD"
 },
 "eba3c2c0-4312-41b5-b925-4a06c52bb455": {
 "host": "host-all-1",
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1534237734,
 "last_state": "CRITICAL",
 "last_state_change": 1534237674,
 "last_state_type": "SOFT",
 "last_state_update": 1534237734,
 "output": "Hi, checking host-all-1/dummy_critical -> exit=2",
 "service": "dummy_critical",
 "state": "CRITICAL",
 "state_type": "HARD"
 }
 }
 }
},
"running_id": "1534237614.73657398",
"start_time": 1534237614,
"type": "arbiter",
"version": "2.0.0rc2"

}

Alignak overall status

An Alignak overall status example:

{
"livestate": {
 "long_output": "broker-master - daemon is alive and reachable.\npoller-master - daemon is alive and reachable.\nreactionner-master - daemon is not reachable.\nreceiver-master - daemon is alive and reachable.\nscheduler-master - daemon is alive and reachable.",
 "output": "Some of my daemons are not reachable.",
 "perf_data": "'modules'=2 'timeperiods'=4 'services'=100 'servicegroups'=1 'commands'=10 'hosts'=13 'hostgroups'=5 'contacts'=2 'contactgroups'=2 'notificationways'=2 'checkmodulations'=0 'macromodulations'=0 'servicedependencies'=40 'hostdependencies'=0 'arbiters'=1 'schedulers'=1 'reactionners'=1 'brokers'=1 'receivers'=1 'pollers'=1 'realms'=1 'resultmodulations'=0 'businessimpactmodulations'=0 'escalations'=0 'hostsextinfo'=0 'servicesextinfo'=0",
 "state": "up",
 "timestamp": 1542611507
},
"name": "My Alignak",
"services": [
 {
 "livestate": {
 "long_output": "",
 "output": "warning because some daemons are not reachable.",
 "perf_data": "",
 "state": "warning",
 "timestamp": 1542611507
 },
 "name": "arbiter-master"
 },
 {
 "livestate": {
 "long_output": "Realm: All (True). Listening on: http://127.0.0.1:7772/",
 "name": "broker_broker-master",
 "output": "daemon is alive and reachable.",
 "perf_data": "last_check=0.00",
 "state": "ok",
 "timestamp": 1542611507
 },
 "name": "broker-master"
 },
 {
 "livestate": {
 "long_output": "Realm: All (True). Listening on: http://127.0.0.1:7771/",
 "name": "poller_poller-master",
 "output": "daemon is alive and reachable.",
 "perf_data": "last_check=0.00",
 "state": "ok",
 "timestamp": 1542611507
 },
 "name": "poller-master"
 },
 {
 "livestate": {
 "long_output": "Realm: All (True). Listening on: http://127.0.0.1:7769/",
 "name": "reactionner_reactionner-master",
 "output": "daemon is not reachable.",
 "perf_data": "last_check=0.00",
 "state": "warning",
 "timestamp": 1542611507
 },
 "name": "reactionner-master"
 },
 {
 "livestate": {
 "long_output": "Realm: All (True). Listening on: http://127.0.0.1:7773/",
 "name": "receiver_receiver-master",
 "output": "daemon is alive and reachable.",
 "perf_data": "last_check=0.00",
 "state": "ok",
 "timestamp": 1542611507
 },
 "name": "receiver-master"
 },
 {
 "livestate": {
 "long_output": "Realm: All (True). Listening on: http://127.0.0.1:7768/",
 "name": "scheduler_scheduler-master",
 "output": "daemon is alive and reachable.",
 "perf_data": "last_check=0.00",
 "state": "ok",
 "timestamp": 1542611507
 },
 "name": "scheduler-master"
 }
],
"template": {
 "_templates": [
 "alignak",
 "important"
],
 "active_checks_enabled": false,
 "alias": "My Alignak",
 "notes": "",
 "passive_checks_enabled": true
},
"variables": {}

}

Alignak daemons API

Daemon type: arbiter

/api

	Python source code documentation

	List the methods available on the daemon Web service interface

 :return: a list of methods and parameters
 :rtype: dict

/backend_notification

	Python source code documentation

	The Alignak backend raises an event to the Alignak arbiter

 Possible events are:
 - creation, for a realm or an host creation
 - deletion, for a realm or an host deletion

 Calls the reload configuration function if event is creation or deletion

 Else, nothing for the moment!

 In case of any error, this function returns an object containing some properties:
 '_status': 'ERR' because of the error
 `_message`: some more explanations about the error

 The `_status` field is 'OK' with an according `_message` to explain what the Arbiter
 will do depending upon the notification.

 :return: dict

/command

	Python source code documentation

	Request to execute an external command

 Allowed parameters are:
 `command`: mandatory parameter containing the whole command line or only the command name

 `timestamp`: optional parameter containing the timestamp. If not present, the
 current timestamp is added in the command line

 `element`: the targeted element that will be appended after the command name (`command`).
 If element contains a '/' character it is split to make an host and service.

 `host`, `service` or `user`: the targeted host, service or user. Takes precedence over
 the `element` to target a specific element

 `parameters`: the parameter that will be appended after all the arguments

 When using this endpoint with the HTTP GET method, the semi colons that are commonly used
 to separate the parameters must be replace with %3B! This because the ; is an accepted
 URL query parameters separator...

 Indeed, the recommended way of using this endpoint is to use the HTTP POST method.

 In case of any error, this function returns an object containing some properties:
 '_status': 'ERR' because of the error
 `_message`: some more explanations about the error

 The `_status` field is 'OK' with an according `_message` to explain what the Arbiter
 will do depending upon the notification. The `command` property contains the formatted
 external command.

 :return: dict

/dump

	Python source code documentation

	Dump an host (all hosts) from the arbiter.

 The arbiter will get the host (all hosts) information from all its schedulers.

 This gets the main host information from the scheduler. If details is set, then some
 more information are provided. This will not get all the host known attributes but only
 a reduced set that will inform about the host and its services status

 If raw is set the information are provided in two string lists formated as CSV strings.
 The first list element contains the hosts information and the second one contains the
 services information.

 If an host name is provided, this function will get only this host information, else
 all the scheduler hosts are returned.

 As an example (in raw format):
 {
 scheduler-master-3: [
 [
 "type;host;name;last_check;state_id;state;state_type;is_problem;
 is_impact;output",
 "localhost;host;localhost;1532451740;0;UP;HARD;False;False;
 Host assumed to be UP",
 "host_2;host;host_2;1532451988;1;DOWN;HARD;True;False;I am always Down"
],
 [
 "type;host;name",
 "host_2;service;dummy_no_output;1532451981;0;OK;HARD;False;True;
 Service internal check result: 0",
 "host_2;service;dummy_warning;1532451960;4;UNREACHABLE;HARD;False;True;
 host_2-dummy_warning-1",
 "host_2;service;dummy_unreachable;1532451987;4;UNREACHABLE;HARD;False;True;
 host_2-dummy_unreachable-4",
 "host_2;service;dummy_random;1532451949;4;UNREACHABLE;HARD;False;True;
 Service internal check result: 2",
 "host_2;service;dummy_ok;1532452002;0;OK;HARD;False;True;host_2",
 "host_2;service;dummy_critical;1532451953;4;UNREACHABLE;HARD;False;True;
 host_2-dummy_critical-2",
 "host_2;service;dummy_unknown;1532451945;4;UNREACHABLE;HARD;False;True;
 host_2-dummy_unknown-3",
 "host_2;service;dummy_echo;1532451973;4;UNREACHABLE;HARD;False;True;"
]
],
 scheduler-master-2: [
 [
 "type;host;name;last_check;state_id;state;state_type;is_problem;is_impact;output",
 "host_0;host;host_0;1532451993;0;UP;HARD;False;False;I am always Up",
 "BR_host;host;BR_host;1532451991;0;UP;HARD;False;False;Host assumed to be UP"
],
 [
 "type;host;name;last_check;state_id;state;state_type;is_problem;is_impact;output",
 "host_0;service;dummy_no_output;1532451970;0;OK;HARD;False;False;
 Service internal check result: 0",
 "host_0;service;dummy_unknown;1532451964;3;UNKNOWN;HARD;True;False;
 host_0-dummy_unknown-3",
 "host_0;service;dummy_random;1532451991;1;WARNING;HARD;True;False;
 Service internal check result: 1",
 "host_0;service;dummy_warning;1532451945;1;WARNING;HARD;True;False;
 host_0-dummy_warning-1",
 "host_0;service;dummy_unreachable;1532451986;4;UNREACHABLE;HARD;True;False;
 host_0-dummy_unreachable-4",
 "host_0;service;dummy_ok;1532452012;0;OK;HARD;False;False;host_0",
 "host_0;service;dummy_critical;1532451987;2;CRITICAL;HARD;True;False;
 host_0-dummy_critical-2",
 "host_0;service;dummy_echo;1532451963;0;OK;HARD;False;False;",
 "BR_host;service;dummy_critical;1532451970;2;CRITICAL;HARD;True;False;
 BR_host-dummy_critical-2",
 "BR_host;service;BR_Simple_And;1532451895;1;WARNING;HARD;True;True;",
 "BR_host;service;dummy_unreachable;1532451981;4;UNREACHABLE;HARD;True;False;
 BR_host-dummy_unreachable-4",
 "BR_host;service;dummy_no_output;1532451975;0;OK;HARD;False;False;
 Service internal check result: 0",
 "BR_host;service;dummy_unknown;1532451955;3;UNKNOWN;HARD;True;False;
 BR_host-dummy_unknown-3",
 "BR_host;service;dummy_echo;1532451981;0;OK;HARD;False;False;",
 "BR_host;service;dummy_warning;1532451972;1;WARNING;HARD;True;False;
 BR_host-dummy_warning-1",
 "BR_host;service;dummy_random;1532451976;4;UNREACHABLE;HARD;True;False;
 Service internal check result: 4",
 "BR_host;service;dummy_ok;1532451972;0;OK;HARD;False;False;BR_host"
]
],
 ...

 More information are available in the scheduler correponding API endpoint.

 :param o_type: searched object type
 :type o_type: str
 :param o_name: searched object name (or uuid)
 :type o_name: str
 :return: serialized object information
 :rtype: str

/events_log

	Python source code documentation

	Get the most recent Alignak events

 The arbiter maintains a list of the most recent Alignak events. This endpoint
 provides this list.

 The default format is:
 [
 "2018-07-23 15:14:43 - E - SERVICE NOTIFICATION: guest;host_0;dummy_random;CRITICAL;1;
 notify-service-by-log;Service internal check result: 2",
 "2018-07-23 15:14:43 - E - SERVICE NOTIFICATION: admin;host_0;dummy_random;CRITICAL;1;
 notify-service-by-log;Service internal check result: 2",
 "2018-07-23 15:14:42 - E - SERVICE ALERT: host_0;dummy_critical;CRITICAL;SOFT;1;
 host_0-dummy_critical-2",
 "2018-07-23 15:14:42 - E - SERVICE ALERT: host_0;dummy_random;CRITICAL;HARD;2;
 Service internal check result: 2",
 "2018-07-23 15:14:42 - I - SERVICE ALERT: host_0;dummy_unknown;UNKNOWN;HARD;2;
 host_0-dummy_unknown-3"
]

 If you request on this endpoint with the *details* parameter (whatever its value...),
 you will get a detailed JSON output:
 [
 {
 timestamp: 1535517701.1817362,
 date: "2018-07-23 15:16:35",
 message: "SERVICE ALERT: host_11;dummy_echo;UNREACHABLE;HARD;2;",
 level: "info"
 },
 {
 timestamp: 1535517701.1817362,
 date: "2018-07-23 15:16:32",
 message: "SERVICE NOTIFICATION: guest;host_0;dummy_random;OK;0;
 notify-service-by-log;Service internal check result: 0",
 level: "info"
 },
 {
 timestamp: 1535517701.1817362,
 date: "2018-07-23 15:16:32",
 message: "SERVICE NOTIFICATION: admin;host_0;dummy_random;OK;0;
 notify-service-by-log;Service internal check result: 0",
 level: "info"
 },
 {
 timestamp: 1535517701.1817362,
 date: "2018-07-23 15:16:32",
 message: "SERVICE ALERT: host_0;dummy_random;OK;HARD;2;
 Service internal check result: 0",
 level: "info"
 },
 {
 timestamp: 1535517701.1817362,
 date: "2018-07-23 15:16:19",
 message: "SERVICE ALERT: host_11;dummy_random;OK;HARD;2;
 Service internal check result: 0",
 level: "info"
 }
]

 In this example, only the 5 most recent events are provided whereas the default value is
 to provide the 100 last events. This default counter may be changed thanks to the
 ``events_log_count`` configuration variable or
 ``ALIGNAK_EVENTS_LOG_COUNT`` environment variable.

 The date format may also be changed thanks to the ``events_date_format`` configuration
 variable.

 :return: list of the most recent events
 :rtype: list

/external_commands

	Python source code documentation

	Get the external commands from the daemon

 Use a lock for this function to protect

 :return: serialized external command list
 :rtype: str

/get_log_level

	Python source code documentation

	Get the current daemon log level

 Returns an object with the daemon identity and a `log_level` property.

 running_id
 :return: current log level
 :rtype: str

/host

	Python source code documentation

	Get a passive checks for an host and its services

 This function builds the external commands corresponding to the host and services
 provided information

 :param host_name: host name
 :param data: dictionary of the host properties to be modified
 :return: command line

/identity

	Python source code documentation

	Get the daemon identity

 This will return an object containing some properties:
 - alignak: the Alignak instance name
 - version: the Alignak version
 - type: the daemon type
 - name: the daemon name

 :return: daemon identity
 :rtype: dict

/index

	Python source code documentation

	Wrapper to call api from /

 This will return the daemon identity and main information

 :return: function list

/livesynthesis

	Python source code documentation

	Get Alignak live synthesis

 This will return an object containing the properties of the `identity`, plus a
 `livesynthesis`
 object which contains 2 properties for each known scheduler:
 - _freshness, which is the timestamp when the provided data were fetched
 - livesynthesis, which is an object with the scheduler live synthesis.

 An `_overall` fake scheduler is also contained in the schedulers list to provide the
 cumulated live synthesis. Before sending the results, the arbiter sums-up all its
 schedulers live synthesis counters in the `_overall` live synthesis.

 {
 ...

 "livesynthesis": {
 "_overall": {
 "_freshness": 1528947526,
 "livesynthesis": {
 "hosts_total": 11,
 "hosts_not_monitored": 0,
 "hosts_up_hard": 11,
 "hosts_up_soft": 0,
 "hosts_down_hard": 0,
 "hosts_down_soft": 0,
 "hosts_unreachable_hard": 0,
 "hosts_unreachable_soft": 0,
 "hosts_flapping": 0,
 "hosts_problems": 0,
 "hosts_acknowledged": 0,
 "hosts_in_downtime": 0,
 "services_total": 100,
 "services_not_monitored": 0,
 "services_ok_hard": 70,
 "services_ok_soft": 0,
 "services_warning_hard": 4,
 "services_warning_soft": 6,
 "services_critical_hard": 6,
 "services_critical_soft": 4,
 "services_unknown_hard": 3,
 "services_unknown_soft": 7,
 "services_unreachable_hard": 0,
 "services_unreachable_soft": 0,
 "services_flapping": 0,
 "services_problems": 0,
 "services_acknowledged": 0,
 "services_in_downtime": 0
 }
 }
 },
 "scheduler-master": {
 "_freshness": 1528947522,
 "livesynthesis": {
 "hosts_total": 11,
 "hosts_not_monitored": 0,
 "hosts_up_hard": 11,
 "hosts_up_soft": 0,
 "hosts_down_hard": 0,
 "hosts_down_soft": 0,
 "hosts_unreachable_hard": 0,
 "hosts_unreachable_soft": 0,
 "hosts_flapping": 0,
 "hosts_problems": 0,
 "hosts_acknowledged": 0,
 "hosts_in_downtime": 0,
 "services_total": 100,
 "services_not_monitored": 0,
 "services_ok_hard": 70,
 "services_ok_soft": 0,
 "services_warning_hard": 4,
 "services_warning_soft": 6,
 "services_critical_hard": 6,
 "services_critical_soft": 4,
 "services_unknown_hard": 3,
 "services_unknown_soft": 7,
 "services_unreachable_hard": 0,
 "services_unreachable_soft": 0,
 "services_flapping": 0,
 "services_problems": 0,
 "services_acknowledged": 0,
 "services_in_downtime": 0
 }
 }
 }
 }
 }

 :return: scheduler live synthesis
 :rtype: dict

/managed_configurations

	Python source code documentation

	Get the arbiter configuration managed by the daemon

 For an arbiter daemon, it returns an empty object

 For all other daemons it returns a dictionary formated list of the scheduler
 links managed by the daemon:
 {
 'instance_id': {
 'hash': ,
 'push_flavor': ,
 'managed_conf_id':
 }
 }

 If a daemon returns an empty list, it means that it has not yet received its configuration
 from the arbiter.

 :return: managed configuration
 :rtype: list

/monitoring_problems

	Python source code documentation

	Get Alignak detailed monitoring status

 This will return an object containing the properties of the `identity`, plus a `problems`
 object which contains 2 properties for each known scheduler:
 - _freshness, which is the timestamp when the provided data were fetched
 - problems, which is an object with the scheduler known problems:

 {
 ...

 "problems": {
 "scheduler-master": {
 "_freshness": 1528903945,
 "problems": {
 "fdfc986d-4ab4-4562-9d2f-4346832745e6": {
 "last_state": "CRITICAL",
 "service": "dummy_critical",
 "last_state_type": "SOFT",
 "last_state_update": 1528902442,
 "last_hard_state": "CRITICAL",
 "last_hard_state_change": 1528902442,
 "last_state_change": 1528902381,
 "state": "CRITICAL",
 "state_type": "HARD",
 "host": "host-all-8",
 "output": "Hi, checking host-all-8/dummy_critical -> exit=2"
 },
 "2445f2a3-2a3b-4b13-96ed-4cfb60790e7e": {
 "last_state": "WARNING",
 "service": "dummy_warning",
 "last_state_type": "SOFT",
 "last_state_update": 1528902463,
 "last_hard_state": "WARNING",
 "last_hard_state_change": 1528902463,
 "last_state_change": 1528902400,
 "state": "WARNING",
 "state_type": "HARD",
 "host": "host-all-6",
 "output": "Hi, checking host-all-6/dummy_warning -> exit=1"
 },
 ...
 }
 }
 }
 }

 :return: schedulers live synthesis list
 :rtype: dict

/object

	Python source code documentation

	Get a monitored object from the arbiter.

 Indeed, the arbiter requires the object from its schedulers. It will iterate in
 its schedulers list until a matching object is found. Else it will return a Json
 structure containing _status and _message properties.

 When found, the result is a serialized object which is a Json structure containing:
 - content: the serialized object content
 - __sys_python_module__: the python class of the returned object

 The Alignak unserialize function of the alignak.misc.serialization package allows
 to restore the initial object.

 .. code-block:: python

 from alignak.misc.serialization import unserialize
 from alignak.objects.hostgroup import Hostgroup
 raw_data = req.get("http://127.0.0.1:7768/object/hostgroup/allhosts")
 print("Got: %s / %s" % (raw_data.status_code, raw_data.content))
 assert raw_data.status_code == 200
 object = raw_data.json()
 group = unserialize(object, True)
 assert group.__class__ == Hostgroup
 assert group.get_name() == 'allhosts'

 As an example:
 {
 "__sys_python_module__": "alignak.objects.hostgroup.Hostgroup",
 "content": {
 "uuid": "32248642-97dd-4f39-aaa2-5120112a765d",
 "name": "",
 "hostgroup_name": "allhosts",
 "use": [],
 "tags": [],
 "alias": "All Hosts",
 "notes": "",
 "definition_order": 100,
 "register": true,
 "unknown_members": [],
 "notes_url": "",
 "action_url": "",

 "imported_from": "unknown",
 "conf_is_correct": true,
 "configuration_errors": [],
 "configuration_warnings": [],
 "realm": "",
 "downtimes": {},
 "hostgroup_members": [],
 "members": [
 "553d47bc-27aa-426c-a664-49c4c0c4a249",
 "f88093ca-e61b-43ff-a41e-613f7ad2cea2",
 "df1e2e13-552d-43de-ad2a-fe80ad4ba979",
 "d3d667dd-f583-4668-9f44-22ef3dcb53ad"
]
 }
 }

 :param o_type: searched object type
 :type o_type: str
 :param o_name: searched object name (or uuid)
 :type o_name: str
 :return: serialized object information
 :rtype: str

/problems

	Python source code documentation

	Alias for monitoring_problems

/query

	Python source code documentation

	Request object passed to datasource.query function:

{
 'timezone': 'browser',
 'panelId': 38,
 'range': {
 'from': '2018-08-29T02:38:09.633Z',
 'to': '2018-08-29T03:38:09.633Z',
 'raw': {'from': 'now-1h', 'to': 'now'}
 },
 'rangeRaw': {'from': 'now-1h', 'to': 'now'},
 'interval': '10s',
 'intervalMs': 10000,
 'targets': [
 {
 'target': 'problems', 'refId': 'A', 'type': 'table'}
],
 'format': 'json',
 'maxDataPoints': 314,
 'scopedVars': {
 '__interval': {'text': '10s', 'value': '10s'},
 '__interval_ms': {'text': 10000, 'value': 10000}
 }
}

Only the first target is considered. If several targets are required, an error is raised.

The target is a string that is searched in the target_queries dictionary. If found
the corresponding query is executed and the result is returned.

Table response from datasource.query. An array of:

[
 {
 "type": "table",
 "columns": [
 {
 "text": "Time",
 "type": "time",
 "sort": true,
 "desc": true,
 },
 {
 "text": "mean",
 },
 {
 "text": "sum",
 }
],
 "rows": [
 [
 1457425380000,
 null,
 null
],
 [
 1457425370000,
 1002.76215352,
 1002.76215352
],
]
 }
]
:return: See upper comment
:rtype: list

/realms

	Python source code documentation

	Return the realms / satellites configuration

 Returns an object containing the hierarchical realms configuration with the main
 information about each realm:
 {
 All: {
 satellites: {
 pollers: [
 "poller-master"
],
 reactionners: [
 "reactionner-master"
],
 schedulers: [
 "scheduler-master", "scheduler-master-3", "scheduler-master-2"
],
 brokers: [
 "broker-master"
],
 receivers: [
 "receiver-master", "receiver-nsca"
]
 },
 children: { },
 name: "All",
 members: [
 "host_1", "host_0", "host_3", "host_2", "host_11", "localhost"
],
 level: 0
 },
 North: {
 ...
 }
 }

 Sub realms defined inside a realm are provided in the `children` property of their
 parent realm and they contain the same information as their parent..
 The `members` realm contain the list of the hosts members of the realm.

 If ``details`` is required, each realm will contain more information about each satellite
 involved in the realm management:
 {
 All: {
 satellites: {
 pollers: [
 {
 passive: false,
 name: "poller-master",
 livestate_output: "poller/poller-master is up and running.",
 reachable: true,
 uri: "http://127.0.0.1:7771/",
 alive: true,
 realm_name: "All",
 manage_sub_realms: true,
 spare: false,
 polling_interval: 5,
 configuration_sent: true,
 active: true,
 livestate: 0,
 max_check_attempts: 3,
 last_check: 1532242300.593074,
 type: "poller"
 }
],
 reactionners: [
 {
 passive: false,
 name: "reactionner-master",
 livestate_output: "reactionner/reactionner-master is up and running.",
 reachable: true,
 uri: "http://127.0.0.1:7769/",
 alive: true,
 realm_name: "All",
 manage_sub_realms: true,
 spare: false,
 polling_interval: 5,
 configuration_sent: true,
 active: true,
 livestate: 0,
 max_check_attempts: 3,
 last_check: 1532242300.587762,
 type: "reactionner"
 }
]

 :return: dict containing realms / satellites
 :rtype: dict

/reload_configuration

	Python source code documentation

	Ask to the arbiter to reload the monitored configuration

 Note tha the arbiter will not reload its main configuration file (eg. alignak.ini)
 but it will reload the monitored objects from the Nagios legacy files or from the
 Alignak backend!

 In case of any error, this function returns an object containing some properties:
 '_status': 'ERR' because of the error
 `_message`: some more explanations about the error

 :return: True if configuration reload is accepted

/satellites_configuration

	Python source code documentation

	Return all the configuration data of satellites

 :return: dict containing satellites data
 Output looks like this ::

 {'arbiter' : [{'property1':'value1' ..}, {'property2', 'value11' ..}, ..],
 'scheduler': [..],
 'poller': [..],
 'reactionner': [..],
 'receiver': [..],
 'broker: [..]'
 }

 :rtype: dict

/satellites_list

	Python source code documentation

	Get the arbiter satellite names sorted by type

 Returns a list of the satellites as in:
 {
 reactionner: [
 "reactionner-master"
],
 broker: [
 "broker-master"
],
 arbiter: [
 "arbiter-master"
],
 scheduler: [
 "scheduler-master-3",
 "scheduler-master",
 "scheduler-master-2"
],
 receiver: [
 "receiver-nsca",
 "receiver-master"
],
 poller: [
 "poller-master"
]
 }

 If a specific daemon type is requested, the list is reduced to this unique daemon type:
 {
 scheduler: [
 "scheduler-master-3",
 "scheduler-master",
 "scheduler-master-2"
]
 }

 :param daemon_type: daemon type to filter
 :type daemon_type: str
 :return: dict with key *daemon_type* and value list of daemon name
 :rtype: dict

/search

	Python source code documentation

	Request available queries

Posted data: {u'target': u''}

Return the list of available target queries

:return: See upper comment
:rtype: list

/set_log_level

	Python source code documentation

	Set the current log level for the daemon

 The `log_level` parameter must be in [DEBUG, INFO, WARNING, ERROR, CRITICAL]

 In case of any error, this function returns an object containing some properties:
 '_status': 'ERR' because of the error
 `_message`: some more explanations about the error

 Else, this function returns True

 :param log_level: a value in one of the above
 :type log_level: str
 :return: see above
 :rtype: dict

/stats

	Python source code documentation

	Get statistics and information from the daemon

 Returns an object with the daemon identity, the daemon start_time
 and some extra properties depending upon the daemon type.

 All daemons provide these ones:
 - program_start: the Alignak start timestamp
 - spare: to indicate if the daemon is a spare one
 - load: the daemon load
 - modules: the daemon modules information
 - counters: the specific daemon counters

 :param details: Details are required (different from 0)
 :type details str

 :return: daemon stats
 :rtype: dict

/status

	Python source code documentation

	Get the overall alignak status

 Returns a list of the satellites as in:
 {
 services: [
 {
 livestate: {
 perf_data: "",
 timestamp: 1532106561,
 state: "ok",
 long_output: "",
 output: "all daemons are up and running."
 },
 name: "arbiter-master"
 },
 {
 livestate: {
 name: "poller_poller-master",
 timestamp: 1532106561,
 long_output: "Realm: (True). Listening on: http://127.0.0.1:7771/",
 state: "ok",
 output: "daemon is alive and reachable.",
 perf_data: "last_check=1532106560.17"
 },
 name: "poller-master"
 },
 ...
 ...
],
 variables: { },
 livestate: {
 timestamp: 1532106561,
 long_output: "broker-master - daemon is alive and reachable.
 poller-master - daemon is alive and reachable.
 reactionner-master - daemon is alive and reachable.
 receiver-master - daemon is alive and reachable.
 receiver-nsca - daemon is alive and reachable.
 scheduler-master - daemon is alive and reachable.
 scheduler-master-2 - daemon is alive and reachable.
 scheduler-master-3 - daemon is alive and reachable.",
 state: "up",
 output: "All my daemons are up and running.",
 perf_data: "
 'servicesextinfo'=0 'businessimpactmodulations'=0 'hostgroups'=2
 'resultmodulations'=0 'escalations'=0 'schedulers'=3 'hostsextinfo'=0
 'contacts'=2 'servicedependencies'=0 'servicegroups'=1 'pollers'=1
 'arbiters'=1 'receivers'=2 'macromodulations'=0 'reactionners'=1
 'contactgroups'=2 'brokers'=1 'realms'=3 'services'=32 'commands'=11
 'notificationways'=2 'timeperiods'=4 'modules'=0 'checkmodulations'=0
 'hosts'=6 'hostdependencies'=0"
 },
 name: "My Alignak",
 template: {
 notes: "",
 alias: "My Alignak",
 _templates: [
 "alignak",
 "important"
],
 active_checks_enabled: false,
 passive_checks_enabled: true
 }
 }

 :param details: Details are required (different from 0)
 :type details bool

 :return: dict with key *daemon_type* and value list of daemon name
 :rtype: dict

/stop_request

	Python source code documentation

	Request the daemon to stop

 If `stop_now` is set to '1' the daemon will stop now. Else, the daemon
 will enter the stop wait mode. In this mode the daemon stops its activity and
 waits until it receives a new `stop_now` request to stop really.

 :param stop_now: stop now or go to stop wait mode
 :type stop_now: bool
 :return: None

/system

	Python source code documentation

	Return the realms / satellites configuration

 Returns an object containing the hierarchical realms configuration with the main
 information about each realm:
 {
 All: {
 satellites: {
 pollers: [
 "poller-master"
],
 reactionners: [
 "reactionner-master"
],
 schedulers: [
 "scheduler-master", "scheduler-master-3", "scheduler-master-2"
],
 brokers: [
 "broker-master"
],
 receivers: [
 "receiver-master", "receiver-nsca"
]
 },
 children: { },
 name: "All",
 members: [
 "host_1", "host_0", "host_3", "host_2", "host_11", "localhost"
],
 level: 0
 },
 North: {
 ...
 }
 }

 Sub realms defined inside a realm are provided in the `children` property of their
 parent realm and they contain the same information as their parent..
 The `members` realm contain the list of the hosts members of the realm.

 If ``details`` is required, each realm will contain more information about each satellite
 involved in the realm management:
 {
 All: {
 satellites: {
 pollers: [
 {
 passive: false,
 name: "poller-master",
 livestate_output: "poller/poller-master is up and running.",
 reachable: true,
 uri: "http://127.0.0.1:7771/",
 alive: true,
 realm_name: "All",
 manage_sub_realms: true,
 spare: false,
 polling_interval: 5,
 configuration_sent: true,
 active: true,
 livestate: 0,
 max_check_attempts: 3,
 last_check: 1532242300.593074,
 type: "poller"
 }
],
 reactionners: [
 {
 passive: false,
 name: "reactionner-master",
 livestate_output: "reactionner/reactionner-master is up and running.",
 reachable: true,
 uri: "http://127.0.0.1:7769/",
 alive: true,
 realm_name: "All",
 manage_sub_realms: true,
 spare: false,
 polling_interval: 5,
 configuration_sent: true,
 active: true,
 livestate: 0,
 max_check_attempts: 3,
 last_check: 1532242300.587762,
 type: "reactionner"
 }
]

 :return: dict containing realms / satellites
 :rtype: dict

Daemon type: broker

/api

	Python source code documentation

	List the methods available on the daemon Web service interface

 :return: a list of methods and parameters
 :rtype: dict

/get_log_level

	Python source code documentation

	Get the current daemon log level

 Returns an object with the daemon identity and a `log_level` property.

 running_id
 :return: current log level
 :rtype: str

/identity

	Python source code documentation

	Get the daemon identity

 This will return an object containing some properties:
 - alignak: the Alignak instance name
 - version: the Alignak version
 - type: the daemon type
 - name: the daemon name

 :return: daemon identity
 :rtype: dict

/index

	Python source code documentation

	Wrapper to call api from /

 This will return the daemon identity and main information

 :return: function list

/managed_configurations

	Python source code documentation

	Get the arbiter configuration managed by the daemon

 For an arbiter daemon, it returns an empty object

 For all other daemons it returns a dictionary formated list of the scheduler
 links managed by the daemon:
 {
 'instance_id': {
 'hash': ,
 'push_flavor': ,
 'managed_conf_id':
 }
 }

 If a daemon returns an empty list, it means that it has not yet received its configuration
 from the arbiter.

 :return: managed configuration
 :rtype: list

/set_log_level

	Python source code documentation

	Set the current log level for the daemon

 The `log_level` parameter must be in [DEBUG, INFO, WARNING, ERROR, CRITICAL]

 In case of any error, this function returns an object containing some properties:
 '_status': 'ERR' because of the error
 `_message`: some more explanations about the error

 Else, this function returns True

 :param log_level: a value in one of the above
 :type log_level: str
 :return: see above
 :rtype: dict

/stats

	Python source code documentation

	Get statistics and information from the daemon

 Returns an object with the daemon identity, the daemon start_time
 and some extra properties depending upon the daemon type.

 All daemons provide these ones:
 - program_start: the Alignak start timestamp
 - spare: to indicate if the daemon is a spare one
 - load: the daemon load
 - modules: the daemon modules information
 - counters: the specific daemon counters

 :param details: Details are required (different from 0)
 :type details str

 :return: daemon stats
 :rtype: dict

/stop_request

	Python source code documentation

	Request the daemon to stop

 If `stop_now` is set to '1' the daemon will stop now. Else, the daemon
 will enter the stop wait mode. In this mode the daemon stops its activity and
 waits until it receives a new `stop_now` request to stop really.

 :param stop_now: stop now or go to stop wait mode
 :type stop_now: bool
 :return: None

Daemon type: poller

/api

	Python source code documentation

	List the methods available on the daemon Web service interface

 :return: a list of methods and parameters
 :rtype: dict

/get_log_level

	Python source code documentation

	Get the current daemon log level

 Returns an object with the daemon identity and a `log_level` property.

 running_id
 :return: current log level
 :rtype: str

/identity

	Python source code documentation

	Get the daemon identity

 This will return an object containing some properties:
 - alignak: the Alignak instance name
 - version: the Alignak version
 - type: the daemon type
 - name: the daemon name

 :return: daemon identity
 :rtype: dict

/index

	Python source code documentation

	Wrapper to call api from /

 This will return the daemon identity and main information

 :return: function list

/managed_configurations

	Python source code documentation

	Get the arbiter configuration managed by the daemon

 For an arbiter daemon, it returns an empty object

 For all other daemons it returns a dictionary formated list of the scheduler
 links managed by the daemon:
 {
 'instance_id': {
 'hash': ,
 'push_flavor': ,
 'managed_conf_id':
 }
 }

 If a daemon returns an empty list, it means that it has not yet received its configuration
 from the arbiter.

 :return: managed configuration
 :rtype: list

/set_log_level

	Python source code documentation

	Set the current log level for the daemon

 The `log_level` parameter must be in [DEBUG, INFO, WARNING, ERROR, CRITICAL]

 In case of any error, this function returns an object containing some properties:
 '_status': 'ERR' because of the error
 `_message`: some more explanations about the error

 Else, this function returns True

 :param log_level: a value in one of the above
 :type log_level: str
 :return: see above
 :rtype: dict

/stats

	Python source code documentation

	Get statistics and information from the daemon

 Returns an object with the daemon identity, the daemon start_time
 and some extra properties depending upon the daemon type.

 All daemons provide these ones:
 - program_start: the Alignak start timestamp
 - spare: to indicate if the daemon is a spare one
 - load: the daemon load
 - modules: the daemon modules information
 - counters: the specific daemon counters

 :param details: Details are required (different from 0)
 :type details str

 :return: daemon stats
 :rtype: dict

/stop_request

	Python source code documentation

	Request the daemon to stop

 If `stop_now` is set to '1' the daemon will stop now. Else, the daemon
 will enter the stop wait mode. In this mode the daemon stops its activity and
 waits until it receives a new `stop_now` request to stop really.

 :param stop_now: stop now or go to stop wait mode
 :type stop_now: bool
 :return: None

Daemon type: reactionner

/api

	Python source code documentation

	List the methods available on the daemon Web service interface

 :return: a list of methods and parameters
 :rtype: dict

/get_log_level

	Python source code documentation

	Get the current daemon log level

 Returns an object with the daemon identity and a `log_level` property.

 running_id
 :return: current log level
 :rtype: str

/identity

	Python source code documentation

	Get the daemon identity

 This will return an object containing some properties:
 - alignak: the Alignak instance name
 - version: the Alignak version
 - type: the daemon type
 - name: the daemon name

 :return: daemon identity
 :rtype: dict

/index

	Python source code documentation

	Wrapper to call api from /

 This will return the daemon identity and main information

 :return: function list

/managed_configurations

	Python source code documentation

	Get the arbiter configuration managed by the daemon

 For an arbiter daemon, it returns an empty object

 For all other daemons it returns a dictionary formated list of the scheduler
 links managed by the daemon:
 {
 'instance_id': {
 'hash': ,
 'push_flavor': ,
 'managed_conf_id':
 }
 }

 If a daemon returns an empty list, it means that it has not yet received its configuration
 from the arbiter.

 :return: managed configuration
 :rtype: list

/set_log_level

	Python source code documentation

	Set the current log level for the daemon

 The `log_level` parameter must be in [DEBUG, INFO, WARNING, ERROR, CRITICAL]

 In case of any error, this function returns an object containing some properties:
 '_status': 'ERR' because of the error
 `_message`: some more explanations about the error

 Else, this function returns True

 :param log_level: a value in one of the above
 :type log_level: str
 :return: see above
 :rtype: dict

/stats

	Python source code documentation

	Get statistics and information from the daemon

 Returns an object with the daemon identity, the daemon start_time
 and some extra properties depending upon the daemon type.

 All daemons provide these ones:
 - program_start: the Alignak start timestamp
 - spare: to indicate if the daemon is a spare one
 - load: the daemon load
 - modules: the daemon modules information
 - counters: the specific daemon counters

 :param details: Details are required (different from 0)
 :type details str

 :return: daemon stats
 :rtype: dict

/stop_request

	Python source code documentation

	Request the daemon to stop

 If `stop_now` is set to '1' the daemon will stop now. Else, the daemon
 will enter the stop wait mode. In this mode the daemon stops its activity and
 waits until it receives a new `stop_now` request to stop really.

 :param stop_now: stop now or go to stop wait mode
 :type stop_now: bool
 :return: None

Daemon type: receiver

/api

	Python source code documentation

	List the methods available on the daemon Web service interface

 :return: a list of methods and parameters
 :rtype: dict

/get_log_level

	Python source code documentation

	Get the current daemon log level

 Returns an object with the daemon identity and a `log_level` property.

 running_id
 :return: current log level
 :rtype: str

/identity

	Python source code documentation

	Get the daemon identity

 This will return an object containing some properties:
 - alignak: the Alignak instance name
 - version: the Alignak version
 - type: the daemon type
 - name: the daemon name

 :return: daemon identity
 :rtype: dict

/index

	Python source code documentation

	Wrapper to call api from /

 This will return the daemon identity and main information

 :return: function list

/managed_configurations

	Python source code documentation

	Get the arbiter configuration managed by the daemon

 For an arbiter daemon, it returns an empty object

 For all other daemons it returns a dictionary formated list of the scheduler
 links managed by the daemon:
 {
 'instance_id': {
 'hash': ,
 'push_flavor': ,
 'managed_conf_id':
 }
 }

 If a daemon returns an empty list, it means that it has not yet received its configuration
 from the arbiter.

 :return: managed configuration
 :rtype: list

/set_log_level

	Python source code documentation

	Set the current log level for the daemon

 The `log_level` parameter must be in [DEBUG, INFO, WARNING, ERROR, CRITICAL]

 In case of any error, this function returns an object containing some properties:
 '_status': 'ERR' because of the error
 `_message`: some more explanations about the error

 Else, this function returns True

 :param log_level: a value in one of the above
 :type log_level: str
 :return: see above
 :rtype: dict

/stats

	Python source code documentation

	Get statistics and information from the daemon

 Returns an object with the daemon identity, the daemon start_time
 and some extra properties depending upon the daemon type.

 All daemons provide these ones:
 - program_start: the Alignak start timestamp
 - spare: to indicate if the daemon is a spare one
 - load: the daemon load
 - modules: the daemon modules information
 - counters: the specific daemon counters

 :param details: Details are required (different from 0)
 :type details str

 :return: daemon stats
 :rtype: dict

/stop_request

	Python source code documentation

	Request the daemon to stop

 If `stop_now` is set to '1' the daemon will stop now. Else, the daemon
 will enter the stop wait mode. In this mode the daemon stops its activity and
 waits until it receives a new `stop_now` request to stop really.

 :param stop_now: stop now or go to stop wait mode
 :type stop_now: bool
 :return: None

Daemon type: scheduler

/api

	Python source code documentation

	List the methods available on the daemon Web service interface

 :return: a list of methods and parameters
 :rtype: dict

/dump

	Python source code documentation

	Dump an host (all hosts) from the scheduler.

 This gets the main host information from the scheduler. If details is set, then some
 more information are provided. This will not get all the host known attributes but only
 a reduced set that will inform about the host and its services status

 If raw is set the information are provided in two string lists formated as CSV strings.
 The first list element contains the hosts information and the second one contains the
 services information.

 If an host name is provided, this function will get only this host information, else
 all the scheduler hosts are returned.

 As an example (raw format):
 [
 [# Host information
 "type;host;name;last_check;state_id;state;state_type;is_problem;is_impact;output",
 "BR_host;host;BR_host;1532451511;0;UP;HARD;False;False;Host assumed to be UP"
],
 [# Services information
 "type;host;name;last_check;state_id;state;state_type;is_problem;is_impact;output",
 "BR_host;service;dummy_critical;1532451490;2;CRITICAL;SOFT;False;False;
 BR_host-dummy_critical-2",
 "BR_host;service;BR_Simple_And;0;0;OK;HARD;False;False;",
 "BR_host;service;dummy_unreachable;1532451501;4;UNREACHABLE;SOFT;False;False;
 BR_host-dummy_unreachable-4",
 "BR_host;service;dummy_no_output;1532451495;0;OK;HARD;False;False;
 Service internal check result: 0",
 "BR_host;service;dummy_unknown;1532451475;3;UNKNOWN;SOFT;False;False;
 BR_host-dummy_unknown-3",
 "BR_host;service;dummy_echo;1532451501;0;OK;HARD;False;False;",
 "BR_host;service;dummy_warning;1532451492;1;WARNING;SOFT;False;False;
 BR_host-dummy_warning-1",
 "BR_host;service;dummy_random;1532451496;2;CRITICAL;SOFT;False;False;
 Service internal check result: 2",
 "BR_host;service;dummy_ok;1532451492;0;OK;HARD;False;False;BR_host"
]
]

 As an example (json format):
 {
 is_impact: false,
 name: "BR_host",
 state: "UP",
 last_check: 1532451811,
 state_type: "HARD",
 host: "BR_host",
 output: "Host assumed to be UP",
 services: [
 {
 is_impact: false,
 name: "dummy_critical",
 state: "CRITICAL",
 last_check: 1532451790,
 state_type: "HARD",
 host: "BR_host",
 output: "BR_host-dummy_critical-2",
 state_id: 2,
 type: "service",
 is_problem: true
 },
 {
 is_impact: true,
 name: "BR_Simple_And",
 state: "WARNING",
 last_check: 1532451775,
 state_type: "SOFT",
 host: "BR_host",
 output: "",
 state_id: 1,
 type: "service",
 is_problem: false
 },

 },
 state_id: 0,
 type: "host",
 is_problem: false
 }

 :param o_name: searched host name (or uuid)
 :type o_name: str
 :param details: less or more details
 :type details: bool
 :param raw: json or raw text format
 :type raw: bool
 :return: list of host and services information
 :rtype: list

/get_log_level

	Python source code documentation

	Get the current daemon log level

 Returns an object with the daemon identity and a `log_level` property.

 running_id
 :return: current log level
 :rtype: str

/identity

	Python source code documentation

	Get the daemon identity

 This will return an object containing some properties:
 - alignak: the Alignak instance name
 - version: the Alignak version
 - type: the daemon type
 - name: the daemon name

 :return: daemon identity
 :rtype: dict

/index

	Python source code documentation

	Wrapper to call api from /

 This will return the daemon identity and main information

 :return: function list

/managed_configurations

	Python source code documentation

	Get the arbiter configuration managed by the daemon

 For an arbiter daemon, it returns an empty object

 For all other daemons it returns a dictionary formated list of the scheduler
 links managed by the daemon:
 {
 'instance_id': {
 'hash': ,
 'push_flavor': ,
 'managed_conf_id':
 }
 }

 If a daemon returns an empty list, it means that it has not yet received its configuration
 from the arbiter.

 :return: managed configuration
 :rtype: list

/monitoring_problems

	Python source code documentation

	Get Alignak scheduler monitoring status

 Returns an object with the scheduler livesynthesis
 and the known problems

 :return: scheduler live synthesis
 :rtype: dict

/object

	Python source code documentation

	Get an object from the scheduler.

 The result is a serialized object which is a Json structure containing:
 - content: the serialized object content
 - __sys_python_module__: the python class of the returned object

 The Alignak unserialize function of the alignak.misc.serialization package allows
 to restore the initial object.

 .. code-block:: python

 from alignak.misc.serialization import unserialize
 from alignak.objects.hostgroup import Hostgroup
 raw_data = req.get("http://127.0.0.1:7768/object/hostgroup/allhosts")
 print("Got: %s / %s" % (raw_data.status_code, raw_data.content))
 assert raw_data.status_code == 200
 object = raw_data.json()
 group = unserialize(object, True)
 assert group.__class__ == Hostgroup
 assert group.get_name() == 'allhosts'

 As an example:
 {
 "__sys_python_module__": "alignak.objects.hostgroup.Hostgroup",
 "content": {
 "uuid": "32248642-97dd-4f39-aaa2-5120112a765d",
 "name": "",
 "hostgroup_name": "allhosts",
 "use": [],
 "tags": [],
 "alias": "All Hosts",
 "notes": "",
 "definition_order": 100,
 "register": true,
 "unknown_members": [],
 "notes_url": "",
 "action_url": "",

 "imported_from": "unknown",
 "conf_is_correct": true,
 "configuration_errors": [],
 "configuration_warnings": [],
 "realm": "",
 "downtimes": {},
 "hostgroup_members": [],
 "members": [
 "553d47bc-27aa-426c-a664-49c4c0c4a249",
 "f88093ca-e61b-43ff-a41e-613f7ad2cea2",
 "df1e2e13-552d-43de-ad2a-fe80ad4ba979",
 "d3d667dd-f583-4668-9f44-22ef3dcb53ad"
]
 }
 }

 :param o_type: searched object type
 :type o_type: str
 :param o_name: searched object name (or uuid)
 :type o_name: str
 :return: serialized object information
 :rtype: str

/put_results

	Python source code documentation

	Put results to scheduler, used by poller or reactionner when they are
 in active mode (passive = False)

 This function is not intended for external use. Let the poller and reactionner
 manage all this stuff by themselves ;)

 :param from: poller/reactionner identification
 :type from: str
 :param results: list of actions results
 :type results: list
 :return: True
 :rtype: bool

/set_log_level

	Python source code documentation

	Set the current log level for the daemon

 The `log_level` parameter must be in [DEBUG, INFO, WARNING, ERROR, CRITICAL]

 In case of any error, this function returns an object containing some properties:
 '_status': 'ERR' because of the error
 `_message`: some more explanations about the error

 Else, this function returns True

 :param log_level: a value in one of the above
 :type log_level: str
 :return: see above
 :rtype: dict

/stats

	Python source code documentation

	Get statistics and information from the daemon

 Returns an object with the daemon identity, the daemon start_time
 and some extra properties depending upon the daemon type.

 All daemons provide these ones:
 - program_start: the Alignak start timestamp
 - spare: to indicate if the daemon is a spare one
 - load: the daemon load
 - modules: the daemon modules information
 - counters: the specific daemon counters

 :param details: Details are required (different from 0)
 :type details str

 :return: daemon stats
 :rtype: dict

/stop_request

	Python source code documentation

	Request the daemon to stop

 If `stop_now` is set to '1' the daemon will stop now. Else, the daemon
 will enter the stop wait mode. In this mode the daemon stops its activity and
 waits until it receives a new `stop_now` request to stop really.

 :param stop_now: stop now or go to stop wait mode
 :type stop_now: bool
 :return: None

Alignak daemons statistics

Daemon type: receiver

	A receiver daemon statistics example:

	{
"alignak": "My Alignak",
"counters": {
 "broks": 0,
 "events": 0,
 "external-commands": 0,
 "external-commands-unprocessed": 0,
 "modules": 0,
 "satellites.arbiters": 1,
 "satellites.schedulers": 1,
 "satellites.workers": 0
},
"load": 0.8907917912480041,
"metrics": [],
"modules": {
 "external": {},
 "internal": {}
},
"name": "receiver-master",
"program_start": 1534237165.25945,
"running_id": "1534237165.49084404",
"spare": false,
"start_time": 1534237165,
"type": "receiver",
"version": "2.0.0rc2"

}

Daemon type: arbiter

	A arbiter daemon statistics example:

	{
"alignak": "My Alignak",
"counters": {
 "arbiters": 1,
 "brokers": 1,
 "broks": 0,
 "businessimpactmodulations": 0,
 "checkmodulations": 0,
 "commands": 10,
 "contactgroups": 2,
 "contacts": 2,
 "dispatcher.arbiters": 1,
 "dispatcher.brokers": 1,
 "dispatcher.pollers": 1,
 "dispatcher.reactionners": 1,
 "dispatcher.receivers": 1,
 "dispatcher.schedulers": 1,
 "escalations": 0,
 "external-commands": 0,
 "hostdependencies": 0,
 "hostgroups": 5,
 "hosts": 13,
 "hostsextinfo": 0,
 "macromodulations": 0,
 "modules": 0,
 "notificationways": 2,
 "pollers": 1,
 "reactionners": 1,
 "realms": 1,
 "receivers": 1,
 "resultmodulations": 0,
 "schedulers": 1,
 "servicedependencies": 40,
 "servicegroups": 1,
 "services": 100,
 "servicesextinfo": 0,
 "timeperiods": 4
},
"daemons_states": {
 "broker-master": {
 "active": true,
 "alive": true,
 "configuration_sent": true,
 "last_check": 1534237171.968572,
 "livestate": 0,
 "livestate_output": "broker/broker-master is up and running.",
 "manage_sub_realms": true,
 "max_check_attempts": 3,
 "name": "broker-master",
 "passive": false,
 "polling_interval": 5,
 "reachable": true,
 "realm_name": "All",
 "spare": false,
 "type": "broker",
 "uri": "http://127.0.0.1:7772/"
 },
 "poller-master": {
 "active": true,
 "alive": true,
 "configuration_sent": true,
 "last_check": 1534237171.9596844,
 "livestate": 0,
 "livestate_output": "poller/poller-master is up and running.",
 "manage_sub_realms": true,
 "max_check_attempts": 3,
 "name": "poller-master",
 "passive": false,
 "polling_interval": 5,
 "reachable": true,
 "realm_name": "All",
 "spare": false,
 "type": "poller",
 "uri": "http://127.0.0.1:7771/"
 },
 "reactionner-master": {
 "active": true,
 "alive": true,
 "configuration_sent": true,
 "last_check": 1534237171.9512877,
 "livestate": 0,
 "livestate_output": "reactionner/reactionner-master is up and running.",
 "manage_sub_realms": true,
 "max_check_attempts": 3,
 "name": "reactionner-master",
 "passive": false,
 "polling_interval": 5,
 "reachable": true,
 "realm_name": "All",
 "spare": false,
 "type": "reactionner",
 "uri": "http://127.0.0.1:7769/"
 },
 "receiver-master": {
 "active": true,
 "alive": true,
 "configuration_sent": true,
 "last_check": 1534237171.9824684,
 "livestate": 0,
 "livestate_output": "receiver/receiver-master is up and running.",
 "manage_sub_realms": true,
 "max_check_attempts": 3,
 "name": "receiver-master",
 "passive": false,
 "polling_interval": 5,
 "reachable": true,
 "realm_name": "All",
 "spare": false,
 "type": "receiver",
 "uri": "http://127.0.0.1:7773/"
 },
 "scheduler-master": {
 "active": true,
 "alive": true,
 "configuration_sent": true,
 "last_check": 1534237171.9889188,
 "livestate": 0,
 "livestate_output": "scheduler/scheduler-master is up and running.",
 "manage_sub_realms": true,
 "max_check_attempts": 3,
 "name": "scheduler-master",
 "passive": false,
 "polling_interval": 5,
 "reachable": true,
 "realm_name": "All",
 "spare": false,
 "type": "scheduler",
 "uri": "http://127.0.0.1:7768/"
 }
},
"livestate": {
 "daemons": {
 "broker-master": 0,
 "poller-master": 0,
 "reactionner-master": 0,
 "receiver-master": 0,
 "scheduler-master": 0
 },
 "output": "all daemons are up and running.",
 "state": 0,
 "timestamp": 1534237174
},
"load": 0.6959144899451211,
"metrics": [],
"modules": {
 "external": {},
 "internal": {}
},
"name": "arbiter-master",
"program_start": 1534237163.3206577,
"running_id": "1534237163.58716598",
"spare": false,
"start_time": 1534237163,
"type": "arbiter",
"version": "2.0.0rc2"

}

Daemon type: reactionner

	A reactionner daemon statistics example:

	{
"alignak": "My Alignak",
"counters": {
 "broks": 0,
 "events": 0,
 "external-commands": 0,
 "modules": 0,
 "satellites.arbiters": 0,
 "satellites.schedulers": 1,
 "satellites.workers": 1
},
"load": 0.8278832937496876,
"metrics": [],
"modules": {
 "external": {},
 "internal": {}
},
"name": "reactionner-master",
"program_start": 1534237165.3795972,
"running_id": "1534237165.85748172",
"spare": false,
"start_time": 1534237165,
"type": "reactionner",
"version": "2.0.0rc2"

}

Daemon type: broker

	A broker daemon statistics example:

	{
"alignak": "My Alignak",
"counters": {
 "broks-arbiter": 0,
 "broks-external": 0,
 "broks-internal": 0,
 "external-commands": 0,
 "modules": 0,
 "satellites.arbiters": 1,
 "satellites.pollers": 1,
 "satellites.reactionners": 1,
 "satellites.receivers": 1,
 "satellites.schedulers": 1
},
"load": 0.8269539405320478,
"metrics": [],
"modules": {
 "external": {},
 "internal": {}
},
"name": "broker-master",
"program_start": 1534237165.6222887,
"running_id": "1534237165.31324091",
"spare": false,
"start_time": 1534237165,
"type": "broker",
"version": "2.0.0rc2"

}

Daemon type: poller

	A poller daemon statistics example:

	{
"alignak": "My Alignak",
"counters": {
 "broks": 0,
 "events": 0,
 "external-commands": 0,
 "modules": 0,
 "satellites.arbiters": 0,
 "satellites.schedulers": 1,
 "satellites.workers": 2
},
"load": 0.8269462984091107,
"metrics": [],
"modules": {
 "external": {},
 "internal": {}
},
"name": "poller-master",
"program_start": 1534237165.425305,
"running_id": "1534237165.67645452",
"spare": false,
"start_time": 1534237165,
"type": "poller",
"version": "2.0.0rc2"

}

Daemon type: scheduler

	A scheduler daemon statistics example:

	{
"_freshness": 1534237174,
"alignak": "My Alignak",
"counters": {
 "actions.count": 0,
 "actions.in_poller": 5,
 "actions.scheduled": 107,
 "actions.zombie": 0,
 "brokers": 1,
 "checks.count": 112,
 "checks.in_poller": 5,
 "checks.scheduled": 107,
 "checks.zombie": 0,
 "external-commands": 0,
 "modules": 0,
 "pollers": 1,
 "reactionners": 1,
 "receivers": 0,
 "satellites.arbiters": 0,
 "satellites.schedulers": 0
},
"latency": {
 "avg": 0.0,
 "max": 0.0,
 "min": 0.0
},
"livesynthesis": {
 "hosts_acknowledged": 0,
 "hosts_down_hard": 0,
 "hosts_down_soft": 0,
 "hosts_flapping": 0,
 "hosts_in_downtime": 0,
 "hosts_not_monitored": 0,
 "hosts_total": 13,
 "hosts_unreachable_hard": 0,
 "hosts_unreachable_soft": 0,
 "hosts_up_hard": 13,
 "hosts_up_soft": 0,
 "services_acknowledged": 0,
 "services_critical_hard": 0,
 "services_critical_soft": 0,
 "services_flapping": 0,
 "services_in_downtime": 0,
 "services_not_monitored": 0,
 "services_ok_hard": 100,
 "services_ok_soft": 0,
 "services_total": 100,
 "services_unknown_hard": 0,
 "services_unknown_soft": 0,
 "services_unreachable_hard": 0,
 "services_unreachable_soft": 0,
 "services_warning_hard": 0,
 "services_warning_soft": 0
},
"load": 0.8928079710206434,
"metrics": [],
"modules": {
 "external": {},
 "internal": {}
},
"monitored_objects": {
 "arbiters": 0,
 "brokers": 0,
 "businessimpactmodulations": 0,
 "checkmodulations": 0,
 "commands": 10,
 "contactgroups": 2,
 "contacts": 2,
 "escalations": 0,
 "hostdependencies": 0,
 "hostescalations": 0,
 "hostgroups": 5,
 "hosts": 13,
 "hostsextinfo": 0,
 "macromodulations": 0,
 "modules": 0,
 "notificationways": 2,
 "pollers": 0,
 "reactionners": 0,
 "realms": 0,
 "receivers": 0,
 "resultmodulations": 0,
 "schedulers": 0,
 "servicedependencies": 0,
 "serviceescalations": 0,
 "servicegroups": 1,
 "services": 100,
 "servicesextinfo": 0,
 "timeperiods": 4
},
"name": "scheduler-master",
"program_start": 1534237165.786159,
"running_id": "1534237165.64076814",
"spare": false,
"start_time": 1534237165,
"type": "scheduler",
"version": "2.0.0rc2"

}

 _images/alignak-architecture-isolated-realms.png

_images/activechecks.png
nnnnnnn

_images/alignak-architecture-global-realm.png
2 @ B o
3

(\lcr\, L\A‘PP\I) User

Realm World

_images/Alignak-architecture-1.png
Web services.

- commands

- status Notifications: mail, SMS, Slack,
- statistics

Notifications'y Monitoring
execution

orders / results s

monitored
configurdfion

Alignak backend

database
Dispatch the

monitored configuration
to the schedulers

System og
Monitoring

events log

Nagios
A Check plu X
configuration exoeution Python logger:

files orders / results files,

or mail,
Alignak backend syslog,
database

Multiple workers
to parallelize
active checks

acquisition: acquisition:
NRPE, SNMP, SSH, ... NSCA, WS,

Nagios
mpatible che
plugins

