

 Navigation

 	
 index

 	
 next |

 	Zenoss Labs Documentation

Zenoss Labs

Herein lies documentation created by Zenoss Labs. This will have to do until a
better home can be found.

Warning

The zenpacklib documentation [http://zenpacklib.zenoss.com/] has replaced the ZenPack Development Guide
that used to be here.

Contents

	ZenPack Documentation
	Standards Guide

	Documentation Template

	Example Documentation

	ZenPack Taxonomy
	ZenPack Classifications

	Example ZenPack Classifications

Documentation Formats

This documentation is available in the following formats.

	HTML [http://docs.zenosslabs.com/en/latest/]

	PDF [http://media.readthedocs.org/pdf/zenosslabs/latest/zenosslabs.pdf]

	Epub [http://media.readthedocs.org/epub/zenosslabs/latest/zenosslabs.epub]

	Manpage [http://media.readthedocs.org/man/zenosslabs/latest/zenosslabs.1]

Contribution

This documentation is generated automatically every time a change is made to
the zenosslabs repository [https://github.com/zenoss/zenosslabs]. The most direct route for contribution would be
to fork that repository, make the desired change to the documentation and send
a pull request.

See GitHub’s Fork a Repo [http://help.github.com/fork-a-repo/] documentation if you’re unfamiliar with this
process. Otherwise, email the address below to have someone incorporate your
changes for you.

Contact

Questions and comments related to this documentation should sent to
labs@zenoss.com.

 Copyright 2011-2014, Zenoss, Inc..
 Last updated on Sep 21, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zenoss Labs Documentation

ZenPack Documentation

ZenPacks must be documented using reStructuredText. The minimum documentation
requirement is that each ZenPack have a README.rst located in its top-level
directory.

An optional top-level docs/ directory containing at least one file named
index.rst can also be created to suplement the README.rst. This would
be the recommended approach if a ZenPack’s documentation requires the
additional complexity of additional structure, files, or Sphinx extensions.

Contents:

	Standards Guide
	Assumptions

	File Locations

	License Compliance

	Coding Standards

	Monitoring Template Standards

	ETL Standards

	Documentation

	Testing

	Versioning

	Reviews

	Packaging & Delivery

	Documentation Template
	About

	Usage

	Appendix

	Example Documentation
	About

	Usage

	Appendixes

 Copyright 2011-2014, Zenoss, Inc..
 Last updated on Sep 21, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zenoss Labs Documentation

 	ZenPack Documentation

ZenPack Standards Guide

This document describes all requirements and recommendations for ZenPack
development. The intended audience is all Zenoss, Inc. employees who create or
modify ZenPacks including engineering, services and support. The intended
audience also includes any third-parties that create or modify ZenPacks that
are delivered to Zenoss customers by Zenoss, Inc.

Assumptions

Some assumptions are made in this document regarding access to test facilities.

Product Inclusion

ZenPacks must always be developed with the understanding that the potential
exists for them to become part of the product. Even in cases were ownership of
the ZenPack does not rest with Zenoss this must be observed because ownership
can change in the future. For this reason, special attention must be paid to
document the inclusion of any sensitive company data in ZenPacks.

Access to Test Environment

In cases where the ZenPack developer(s) do not have access to endpoints
necessary for integration and testing work some standard operating procedures
must be suspended.

File Locations

The location of specific files within a ZenPack’s directory structure is
technically mandated in some circumstances, and open to the developer’s desires
in others. To make it easier for other developers to more easily get up to
speed with the ZenPack in the future, the following recommendations for file
locations should be used.

	ZenPacks.<namespace.PackName>/

	ZenPacks.<namespace.PackName>/ZenPacks/namespace/PackName/

	analytics/

The analytics bundle in .zip format: analytics-bundle.zip

	browser/ (Note: Pre-ZPL only. See resources/ below)

	configure.zcml

All ZCML definitions related to defining browser views or wiring
browser-only concerns. This configure.zcml should be included by the
default configure.zcml in its parent directory.

	resources/

	css/ - All stylesheets loaded by users’ browsers.

	img/ - All images loaded by users’ browsers.

	js/ - All javascript loaded by users’ browser.

	resources/ (Note: ZPL, See browser/ above)

Any javascript code that modifies views go here.
Especially note these JS file correlations:

	device.js - Modifies the default device page.

	ComponentClass.js - Modifies the component ComponentClass page.

Folders inside resources have the following properties:

	icon/ (Note: ZPL)

All images and icons loaded by the browser.
Within this folder note the following name correspondence:

	DeviceClass.png` - Icon used in top left corner.

	ComponentClass.png` - Icon used in Impact diagrams for component.

	datasources/

All datasources plugin files. Ensure your datasource has a descriptive name
that closely correlates to the plugin name.

	lib/

Any third-party modules included with the ZenPack should be located in this
directory. In the case of pure-Python modules they can be located directly
here. In the case of binary modules the build process must install them
here. See the section of License Compliance below for more information on
how to properly handle third-party content.

	libexec/

Any scripts intended to be run by the zencommand daemon must be located in
this directory.

	migrate/

All migration code.

	modeler/

All modeling plugins.

	objects/

There should only ever be a single file called objects.xml in this
directory. While the ZenPack installation code will load objects from any
file in this directory with a .xml extension, the ZenPack export code
will dump all objects back to objects.xml so creating other files only
creates future confusion between installation and export.

	parsers/

All custom parsers.

	patches/

All monkeypatches. Note: your patches/__init__.py must specify patch
loading.

	protocols/

AMQP schema: Javascript code is read into the AMQP protocol to modify
queues and exchanges.

	services/

Custom collector services plugins.

	service-definition/ (Note: 5.X+)

Service definitions for 5.X services containers.

	skins/

All TAL template skins in .pt format. These change the UI look.

	tests/

All unit tests.

	facades.py

All facades (classes implementing Products.Zuul.interfaces.IFacade)
should be defined in this file. In ZenPacks where this single file becomes
hard to maintain, a facades/ directory should be created containing
individual files named for the group of facades they contain.

	info.py

All info adapters (classes implementing Products.Zuul.interfaces.IInfo)
should be defined in this file. In ZenPacks where this single file becomes
hard to maintain, an info/ directory should be created containing
individual files named for the group of info adapters they contain.

	interfaces.py

All interfaces (classes extending zope.interface.Interface) should be
defined in this file. In ZenPacks where this single file becomes hard to
maintain, an interfaces/ directory should be created containing
individual files named for the group of interfaces they contain.

	routers.py

All routers (classes extending Products.ZenUtils.Ext.DirectRouter)
should be defined in this file. In ZenPacks where this single file becomes
hard to maintain, a routers/ directory should be created containing
individual files named for the group of routers they contain.

License Compliance

All ZenPack content must be compliant with the license of the ZenPack being
developed. If you intend to include a third-party module with a GPL license,
the ZenPack must also carry a GPL license and not include any other code that
would violate the GPL license. Always run third-party module inclusion through
legal to make sure there is no conflict.

Coding Standards

All code and configuration in ZenPacks should be developed according to the
following public style guides.

	Python
	PEP 8 – Style Guide or Python Code

	PEP 257 – Docstring Conventions

	ZCML
	Zope’s ZCML Style Guide

Monitoring Template Standards

Performance templates are one of the easiest places to make a real user
experience difference when new features are added to Zenoss. Spending a very
small amount of time to get the templates right goes a long way towards
improving the overall user experience. For this reason, the following checklist
should be used to determine if your monitoring template is acceptable.

Templates

	Is the template worthwhile? Should it be removed?

	Is the template at the correct point in the model?

	Does the template have a description? Is the description a good one?

Data Sources

	Can your datasource be named better?

	Is it a common metric that is being collected from other devices in
another way? If so, name yours the same. This makes global reporting much
easier.

	camelCaseNames seem to be the standard. Use them.

	Never use absolute paths for COMMAND datasource command templates. This will
end up causing problems on one of the three platforms we deal with. Link
your plugin into zenPath(‘libexec’) instead.

Data Points

	Using a COUNTER? You might want to think otherwise.

	Unnoticed counter rollovers can result in extremely skewed data.

	Using a DERIVE with a minimum of 0 will record unknown instead of wrong
data.

	Enter the minimum and/or maximum possible values for the data point if you
know them.

	This again will allow unknown to be recorded instead of bad data.

Data Point Aliases

	Include the unit in the alias name if it is in any way not obvious. For
example, use cpu_percent instead of cpu_usage.

	Use an RPN to calculate the base unit if the data point isn’t already
collected that way. For example, use 1024,* to convert a data point
collected in KBytes to bytes.

Thresholds

	Don’t include a number in your threshold’s name.

	This makes people have to recreate the threshold if they want to change
it.

Graph Definitions

	Have you entered the units? Do it!

	This will become the y-axis label and should be all lowercase.

	Always use the base units. Never kbps or MBs. bps or bytes are better.

	Do you know the minimum/maximum allowable values? Enter them!

	Common scenarios include percentage graphing with minimum 0 and maximum
100.

	Think about the order of your graph points. Does it make sense?

	Are there other templates that show similar data to yours?

	If so, you should try hard to mimic their appearance to create a
consistent experience.

Graph Points

	Have you changed the legend? Do it!

	Adjust the format so that it makes sense.

	%5.2lf%s is good for values you want RRDTool to auto-scale.

	%6.2lf%% is good for percentages.

	%4.0lf is good for four digit numbers with no decimal precision or
scaling.

	Should you be using areas or lines?

	Lines are good for most values.

	Areas are good for things that can be thought of as a volume or quantity.

	Does stacking the values to present a visual aggregate makes sense?

ETL Standards

ETL is an acronym for Extract, Transform, Load. When writing ETL adapters
you’re defining how Zenoss model data is extracted and transformed into the
Zenoss Analytics schema. The following guidelines should be used to keep
reporting consistent.

	The reportProperties implementation in IReportable adapters must
include the units in the name if not immediately obvious. For example, use
cpu_used_percent instead of cpu_used.

Documentation

ZenPacks must be documented according to the
ZenPack.example.Name template. The
ZenPacks.zenoss.SolarisMonitor documentation can be used as an example
of a ZenPack that has been documented using this template.

Code Documentation

Python code must be documented in docstrings in the locations specified in
PEP-8 and according to the style of PEP-257. Links to these standards can be
found in the Coding Standards section. Inline code comments should also be
used when the code isn’t obvious.

Testing

The following types of testing must be performed. All test results should be
recorded in the ZenPack’s test result matrix. The matrix will have the ZenPack
version on one axis and the Zenoss version on the other axis. At the
intersection will be the result of unit testing, internal integration testing
and live integration testing.

Unit Tests

Unit tests must be written for all public interfaces of ZenPack-specific code.
Unit tests will be the only mechanism for automated regression testing in some
cases, and the primary source in all others.

Internal Integration Testing

ZenPacks must be tested internally using the packaged .egg that is will be
delivered to the customer. The test server must be the exact same version of
Zenoss being used by the customer. The test environment must match the
customer’s environment as closely as possible. The only exception to internal
integration testing is cases where it is not possible to replicate the test
environment internally.

Live Integration Testing

ZenPacks must be tested in their live deployment environment. A development or
staging instance of Zenoss that matches the production environment as closely
as possible should be used.

Versioning

The first feature-complete ZenPack delivered to a customer should be version
1.0.0. Subsequent versions must increment the micro version if they contain
only bugfixes or tweaks (i.e. 1.0.1.) Subsequent versions must increment the
minor version if the contain new features (i.e. 1.1.0.)

A ZenPack’s version must be incremented each time it is delivered to a customer
if there has been any change to it whatsoever.

Reviews

Peer review is a strong mechanism to catch potential issues before integration
testing is performed. To that end the following reviews must be performed.

Design Review

The initial design of a ZenPack must be peer reviewed before coding begins.

Code Review

All code, including updates, must be peer reviewed before being committed to
the mainline development branch or any stable release branch.

Packaging & Delivery

All ZenPacks must be delivered in their packaged .egg format. If arrangements
have been made for the customer to also get the source for the ZenPack it
should be provided in addition to the packaged egg as a tarball of the
development directory.

ZenPacks must be built using the same environment that the customer will be
installing them into. If the customer is installing into multiple environments
a separate egg should be built and delivered for each environment. In this
context the same environment is defined as the following.

	Exact same version of Zenoss

	Same major version of operating system

	Same architecture (i.e. i386 or x86_64)

All files including documentation must be delivered to customers in a ZenDesk
ticket.

 Copyright 2011-2014, Zenoss, Inc..
 Last updated on Sep 21, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zenoss Labs Documentation

 	ZenPack Documentation

ZenPack.example.Name

About

Introduction to the ZenPack and any potentially foreign concepts such as the
target that is being monitored or integrated with.

Features

High-level overview of the ZenPack’s features and functionality. Focus on the
value proposition. Target audience would be people trying to understand Zenoss’
capabilities, not Zenoss administrators.

Prerequisites

Requirements and dependencies that must be satisfied. This section should cover
the following at a minimum and where applicable.

	Minimum required Zenoss version

	Maximum supported Zenoss version if known

	ZenPack dependencies (with specific versions if known)

	Other installation dependencies if known (e.g. operating system packages)

	Supported versions of the monitoring or integration target

Limitations

Note any shortcomings that the user might otherwise be left curious about. This
section is optional.

Usage

The target audience for the entire Usage section is a Zenoss administrator.

Installing

Standard installation steps plus any other installation steps or notes specific
to this ZenPack.

Using

One or more ad-hoc usage related sections. This (or these) sections will likely
contain the bulk of the ZenPack’s custom documentation. The section(s) will not
necessarily be called Using.

Removing

Standard ZenPack removal steps plus any removal steps or notes specific to this
ZenPack. Be especially careful to cover anything that will result in data loss
such as removal of device classes and their contained devices.

Troubleshooting

Document common problems users of the ZenPack may run into such as what happens
in the result of authentication failures or other configuration mistakes.

Appendix

The two examples appendixes below will very commonly be used. Additional
reference material can be made available in additional appendixes. The
Appendixes section can only be omitted if the ZenPack installs no items as
described below, and requires no non-platform daemons as described below.

Appendex A: Installed Items

Detail the items installed by the ZenPack. Items include the following.

	Device Classes

	Configuration Properties

	Modeler Plugins

	Command Parsers

	Monitoring Templates

	Process Classes

	IP Service Classes

	Windows Service Classes

	Event Classes

	Event Mappings

	MIBs

	Reports

Appendex B: Related Daemons

Detail the daemons outside of the core platform required to take advantage of
all of the ZenPack’s functionality. The core platform daemons listed below
should not be explicitly listed.

	zeoctl

	zeneventserver

	zeneventd

	zenhub

	zenjobs

	zendisc

	zenmodeler

	zenimpactserver

	zenimpactgraph

	zenimpactstate

	zenjserver

Daemons such as the following, plus any daemons delivered with the ZenPack
should be listed.

	zencommand

	zenperfsnmp

	zenprocess

 Copyright 2011-2014, Zenoss, Inc..
 Last updated on Sep 21, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Zenoss Labs Documentation

 	ZenPack Documentation

ZenPacks.zenoss.SolarisMonitor

About

The SolarisMonitor ZenPack enables Resource Manager to use Secure Shell (SSH)
to monitor Solaris hosts. Resource Manager models and monitors devices placed
in the /Server/SSH/Solaris device class by running commands and parsing the
output. Parsing of command output is performed on the Resource Manager server
(if using a local collector) or on a distributed collector. The account used to
monitor the device does not require root access or special privileges.

In addition to the previously described modeling and monitoring features this
ZenPack also enables Resource Manager to model and monitor Sun Solaris LDOM
servers. Resource Manager will model devices utilizing the Simple Network
Management Protocol (SNMP) to collect LDOM information when a device resides
in either the /Server/Solaris or /Server/SSH/Solaris device classes. The
discovered LDOM information will be displayed as components of the LDOM host
server.

Features

The SolarisMonitor ZenPack provides:

	File system and process monitoring

	Network interfaces and route modeling

	CPU utilization information

	Hardware information (memory, number of CPUs, and model numbers)

	OS information (OS-level, command-style information)

	Pkginfo information (such as installed software)

	LDOM monitoring

Prerequisites

	Prerequisite
	Restriction

	Zenoss Platform
	3.1 or greater

	Installed ZenPacks
	ZenPacks.zenoss.SolarisMonitor

	Firewall Acccess
	Collector server to 22/tcp and 161/udp of Solaris server

	Solaris Releases
	OpenSolaris 5.11, Solaris 9 and 10

Limitations

The SolarisMonitor ZenPack does not support monitoring in Solaris Zones or
systems containing Solaris Zones. (Implemented with Solaris 10, Solaris Zones
act as isolated virtual servers within a single operating system instance.)

Usage

Installation

This ZenPack has no special installation considerations. Depending on the
version of Zenoss you’re installing the ZenPack into, you will need to verify
that you have the correct package (.egg) to install.

	Zenoss 4.1 and later: The ZenPack file must end with -py2.7.egg.

	Zenoss 3.0 - 4.0: The ZenPack file must end with -py2.6.egg.

To install the ZenPack you must copy the .egg file to your Zenoss master
server and run the following command as the zenoss user:

zenpack --install <filename.egg>

After installing you must restart Zenoss by running the following command as
the zenoss user on your master Zenoss server:

zenoss restart

If you have distributed collectors you must also update them after installing
the ZenPack.

Configuring

Depending on the version of Solaris you may be able to monitor the server using
either SSH or SNMP. For OpenSolaris and Solaris 10, you can choose to use
either SSH or SNMP monitoring. For Solaris 9, only SSH monitoring is supported.

Configuring SSH Monitoring

Use the following steps to configure Zenoss to monitor your Solaris server(s)
using SSH.

	Navigate to the /Server/SSH/Solaris device class’ configuration
properties.

	Verify that the zCommandUsername and zCommandPassword are set to
valid login credentials.

	Add your Solaris server(s) to the /Server/SSH/Solaris device class.

Configuring SNMP Monitoring

Use the following steps to configure Zenoss to monitor your Solaris server(s)
using SNMP.

	Verify that the snmpd process is running on your Solaris server(s).

	Navigate to the /Server/Solaris device class’ configuration properties.

	Verify that your Solaris server(s) SNMP community strings are listed in the
zSnmpCommunities property.

	Add your Solaris server(s) to the /Server/Solaris device class.

Configuring LDOM Monitoring

For OpenSolaris and Solaris 10 servers you will also get support for monitoring
LDOMs if they’re used on the server. However, this monitoring is always
performed using SNMP. If you’re already monitoring your Solaris server using
SNMP there is no additional configuration required to monitor its LDOMs. If you
configured Zenoss to monitor your Solaris server using SSH you should take the
following steps to monitor LDOMs.

	Verify that the snmpd process is running on your Solaris server(s).

	Navigate to the /Server/SSH/Solaris device class’ configuration
properties.

	Verify that your Solaris server(s) SNMP community strings are listed in the
zSnmpCommunities property.

	Remodel your Solaris server(s) if they’re already in the system. Otherwise
add them to the /Server/SSH/Solaris device class.

Removal

Use caution when removing this ZenPack

	Will permanently remove devices located in /Server/SSH/Solaris device
class.

	Will permanently remove LDOM modeled components for devices located in
/Server/Solaris.

	Will permanently remove associated monitored data for LDOM components.

	Will permanently remove the /Server/SSH/Solaris device class.

To remove this ZenPack you must run the following command as the zenoss
user on your master Zenoss server:

zenpack --remove ZenPacks.zenoss.SolarisMonitor

You must then restart the master Zenoss server by running the following command
as the zenoss user:

zenoss restart

Troubleshooting

Resolving CHANNEL_OPEN_FAILURE Issues

The zencommand daemon’s log file ($ZENHOME/collector/zencommand.log) may
show messages stating:

ERROR zen.SshClient CHANNEL_OPEN_FAILURE: Authentication failure WARNING:zen.SshClient:Open of command failed (error code 1): open failed

If the sshd daemon’s log file on the remote device is examined, it may report
that the MAX_SESSIONS number of connections has been exceeded and that it is
denying the connection request. In the OpenSSH daemons, this MAX_SESSIONS
number is a compile-time option and cannot be reset in a configuration file.

To work around this sshd daemon limitation, use the configuration property
zSshConcurrentSessions to control the number of connections created by
zencommand to the remote device:

	
	Navigate to the device or device class in the Resource Manager interface.

	
	
	If applying changes to a device class:

	
	Select the class in the devices hierarchy.

	Click Details.

	Select Configuration Properties.

	
	If applying changes to a device:

	
	Click the device in the device list.

	Select Configuration Properties.

	Set the zSshConcurrentSessions property. Try 10 first, and 2 if that
doesn’t resolve the problem.

Resolving Command Timeout Issues

The zencommand daemon’s log file ($ZENHOME/collector/zencommand.log) may show
messages stating:

WARNING:zen.zencommand:Command timed out on device device_name: command

If this occurs, it usually indicates that the remote device has taken too long
to return results from the commands. To increase the amount of time to allow
devices to return results, change the configuration property
zCommandCommandTimeout to a larger value.

	
	Navigate to the device or device class in the Resource Manager interface.

	
	
	If applying changes to a device class:

	
	Select the class in the devices hierarchy.

	Click Details.

	Select Configuration Properties.

	
	If applying changes to a device:

	
	Click the device in the device list.

	Select Configuration Properties.

	Increase the zCommandCommandTimeout property incrementally to a maximum
of 240 until the timeout is resolved.

Appendixes

Appendix A: Installed Items

	Type
	Name
	Location

	Device Class
	/SSH/Solaris
	/Devices/Server

	Modeler Plugin
	df_ag
	zenoss.cmd.solaris

	Modeler Plugin
	kstat
	zenoss.cmd.solaris

	Modeler Plugin
	memory
	zenoss.cmd.solaris

	Modeler Plugin
	netstat_an
	zenoss.cmd.solaris

	Modeler Plugin
	netstat_r_vn
	zenoss.cmd.solaris

	Modeler Plugin
	pkginfo
	zenoss.cmd.solaris

	Modeler Plugin
	process
	zenoss.cmd.solaris

	Modeler Plugin
	uname_a
	zenoss.cmd.solaris

	Modeler Plugin
	hostid
	zenoss.snmp.solaris

	Modeler Plugin
	ldommap
	zenoss.snmp.solaris

	Monitoring Template
	Device
	/Server/SSH/Solaris

	Monitoring Template
	FileSystem
	/Server/SSH/Solaris

	Monitoring Template
	OSProcess
	/Server/SSH/Solaris

	Monitoring Template
	ethernetCsmacd
	/Server/SSH/Solaris

	Monitoring Template
	LDOM
	/Server

	Monitoring Template
	LDOMVcpu
	/Server

	Monitoring Template
	LDOMVds
	/Server

	Event Class
	/Status/LDOM
	/

	Event Class
	/Status/LDOM/vCPU
	/

	Event Mapping
	ldomStateChange
	/Change

	Event Mapping
	ldomVCpuChange
	/Change

	Event Mapping
	ldomVccChange
	/Change

	Event Mapping
	ldomVconsChange
	/Change

	Event Mapping
	ldomVdiskChange
	/Change

	Event Mapping
	ldomVdsChange
	/Change

	Event Mapping
	ldomVmemChange
	/Change

	Event Mapping
	ldomVnetChange
	/Change

	Event Mapping
	ldomVswChange
	/Change

	Event Mapping
	ldomCreate
	/Change/Add

	Event Mapping
	ldomDestroy
	/Change/Remove

	MIB
	SUN-LDOM-MIB
	/

Monitoring Templates

Device (/Server/SSH/Solaris)

	Data Points
	cpu_ssCpuIdle

	cpu_ssCpuInterrupt

	cpu_ssCpuSystem

	cpu_ssCpuUser

	io_read

	io_written

	percent_memory_percentMemUsed

	percent_swap_percentSwapUsed

	uptime_laLoadInt1

	uptime_laLoadInt5

	uptime_laLoadInt15

	uptime_sysUpTime

	Thresholds
	CPU Utilization

	high load

	Graphs
	Load Average

	CPU Utilization

	Memory Utilization

	IO

FileSystem (/Server/SSH/Solaris)

	Data Points
	disk_availBlocks

	disk_availNodes

	disk_percentInodesUsed

	disk_totalBlocks

	disk_totalInodes

	disk_usedBlocks

	disk_usedInodes

	Thresholds
	high_disk_usage

	Graphs
	Utilization

	Inode Utilization

OSProcess (/Server/SSH/Solaris)
- Data Points

	ps_count

	ps_cpu

	ps_mem

	Graphs
	CPU Utilization

	Memory

	Process Count

ethernetCsmacd (/Server/SSH/Solaris)
- Data Points

	intf_ifInErrors

	intf_ifInPackets

	intf_ifOutErrors

	intf_ifOutPackets

	intf_octets_ifInOctets

	intf_octets_ifOutOctets

	Thresholds
	Utilization 75 perc

	Graphs
	Throughput

	Packets

LDOM (/Server)

	Data Sources
	ldomOperState

	Thresholds
	operational state

LDOMVcpu (/Server)

	Data Sources
	ldomVcpuOperationalStatus

	ldomVcpuUtilPercent

	Threshold
	operational status

	Graph Definition
	CPU Utilization

LDOMVds (/Server)

	Data Source
	ldomVdsNumofAvailVolume

	ldomVdsNumofUsedVolume

	Graph Definition
	Volumes

Appendix B: Required Daemons

In addition to the core platform daemons the following optional daemons are
required for this ZenPack to fully function.

	zenperfsnmp

	zencommand

 Copyright 2011-2014, Zenoss, Inc..
 Last updated on Sep 21, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Zenoss Labs Documentation

ZenPack Taxonomy

ZenPacks can be used to override almost any functionality of the Zenoss
platform, or to add any new features. This wide-open extensibility is much like
Firefox’s add-on system and has the natural result of people building some
surprising things. For this reason it can be difficult to answer the question,
“What is a ZenPack?”

This document will outline the various ways ZenPacks can be classified to make
it easier to find the ZenPack you need, describe a ZenPack that already exists,
and to serve as an example for what is possible.

ZenPack Classifications

Every ZenPack will be classified using one or more of the elements listed under
each classifier property. Some classifier properties have mutually exclusive
elements, and some do not. This distinction will be made in the definition of
each classifier property. For examples of how some existing representative
ZenPacks are classified see Example ZenPack Classifications.

Functionality

Functionality classifies the high-level type of feature(s) provided.
Specifically its type of interaction with the environment outside of the Zenoss
platform. It is highly recommended that these categories be treated as mutually
exclusive. While it is possible for a ZenPack to build a ZenPack that delivers
functionality in more than one of the following categories, this can lead to
less modularity and confusion about what a ZenPack does.

Monitoring

Monitoring is one or more of status, event and performance collection. The
collection can be through active polling, passive receiving or both. A
monitoring ZenPack provides functionality to perform this collection for a
specific target technology.

	Example:	ZenPacks.zenoss.ApacheMonitor

Integration

Integration is defined as being any interaction with systems outside of Zenoss
not deemed to be a Monitoring interaction.
Examples include pushing or pulling non-monitoring data to or from an external
system, or causing action in a remote system or allowing a remote system to
cause action within Zenoss.

	Example:	ZenPacks.zenoss.RANCIDIntegrator

Platform Extension

A Zenoss platform extension is defined as any functionality that doesn’t
interact with outside systems. The provided functionality is instead used
directly by users or by other parts of the Zenoss platform, or by other
ZenPacks.

	Example:	ZenPacks.zenoss.DistributedCollector

Maintainer

The maintainer of a ZenPack is the organization or individual that controls the
code repository for a ZenPack and is the gate for all changes including defect
and enhancement resolution. The following categories are mutually exclusive.

Zenoss Engineering

Maintained by the product engineering organization at Zenoss, Inc. Ongoing
support is provided by Zenoss, Inc. at the same level as the Zenoss platform
software for customers with an active subscription.

	Example:	ZenPacks.zenoss.Impact

Zenoss Services

Maintained by the services organization at Zenoss, Inc. Ongoing support is
provided under a statement of work.

	Example:	ZenPacks.zenoss.ServiceNowIntegrator

Zenoss Community

Maintained by a member of the Zenoss community. Ongoing support is subject to
the individual maintainers’ control, and is typically provided in the community
web forums, mailing lists and IRC channel.

	Example:	ZenPacks.community.ZenODBC

Availability

Who has access, license and permission to use the ZenPack. The following
elements are mutually exclusive.

Open Source

ZenPack source and packages are available as free open source. Designed to
function properly on a Zenoss system with or without commercial-only ZenPacks
installed.

	Example:	ZenPacks.zenoss.ApacheMonitor

Available with Zenoss Subscription

ZenPack packages are available at no extra cost to anyone with a Zenoss
subscription, but are not installed by default. May have dependencies on
Open Source ZenPacks or other ZenPacks that are
Available with Zenoss Subscription.

	Example:	ZenPacks.zenoss.DatabaseMonitor

Additional Cost with Zenoss Subscription

ZenPack packages are available at an additional cost on top of an existing
Zenoss subscription. May have dependencies on
Open Source ZenPacks, ZenPacks that are
Available with Zenoss Subscription, or other ZenPacks that are
Additional Cost with Zenoss Subscription.

	Example:	ZenPacks.zenoss.Impact

QA Level

The level of automated, manual and field testing A ZenPack has. The elements
are mutually exclusive.

Untested

Insufficient automated testing to qualify as
Automatically Tested, and insufficient manual testing to qualify
as Q.A. Tested.

	Example:	ZenPacks.zenoss.OpenStack

Automatically Tested

Standard automated testing passes plus a minimum of 90% unit test code coverage
with all tests passing.

Q.A. Tested

Tested, and passed, by the quality assurance group of Zenoss, Inc.

Complexity

Defined by the technical difficulty of implementing specific types of
functionality within the ZenPack. The elements are not mutually exclusive, and
most ZenPacks will implement multiple types of functionality as defined below. A
rough total complexity score could be created for each ZenPack by summing the
complexity score of all implemented elements.

Configuration

Built entirely in the web interface. No programming knowledge required.

	Complexity:	1

	Skills:	Zenoss

	Example:	ZenPacks.zenoss.IISMonitor

Scripts

Scripts can be written in any language and do anything. Since all Zenoss
customizations should be packaged as ZenPacks, they’re only included in ZenPacks
as a packaging mechanism. They might not have any direct interaction with the
Zenoss platform.

	Complexity:	2

	Skills:	Scripting (Any Language)

	Example:	ZenPacks.zenoss.RANCIDIntegrator

Command DataSource Plugins

Command datasource plugins can be written in any language and executed either on
the Zenoss server, or remotely using SSH. Without writing a custom parser (see
next item) they must write to STDOUT using either the Nagios or Cacti output
formats and exit using the appropriate Nagios or cacti exit code.

	Complexity:	2

	Skills:	Scripting (Any Language)

	Example:	ZenPacks.zenoss.ApacheMonitor

Event Class Transforms and Mappings

Built in the web interface. Basic Python knowledge required.

	Complexity:	2

	Skills:	Zenoss, Basic Python

	Example:	ZenPacks.zenoss.OpenStack

Command DataSource Parsers

Command datasource parsers must be written in Python and conform to the Zenoss
CommandParser API. These parsers must be written to extract extended data from
the output of command datasource plugins (see previous item), or to handle
output that doesn’t conform to the Nagios or Cacti output formats.

	Complexity:	3

	Skills:	Zenoss, Python

	Example:	ZenPacks.zenoss.SolarisMonitor

DataSource Types

When a new datasource is added in the web interface you must choose the type.
Creating a DataSource type in a ZenPack is a way to add new types to this list.
The ApacheMonitor ZenPack listed as the example below adds the ability to
collect performance metrics from an Apache httpd server using mod_status.

New DataSource types are written in Python and must subclass RRDDataSource
or one of its existing subclasses. Additionally an API adapter must also be
written in Python to define the user interface to the datasource properties.

	Complexity:	4

	Skills:	Zenoss, ZCML, Python

	Example:	ZenPacks.zenoss.ApacheMonitor

Impact Adapters

There are three types of impact adapters. All are written in Python and added to
the system configuration through ZCML directives.

The first is a state provider. These implement the IStateProvider interface
and allow manipulation of how a given node type’s state within the impact graph
is calculated.

The second is a relations provider. These implement the
IRelationshipDataProvider interface and allow manipulation of what other
nodes a given node type impacts, and what other nodes impact it.

The third is a triggers provider. These implement the INodeTriggers
interface and allow manipulation of the default impact policies set on a given
type of node.

	Complexity:	5

	Skills:	Zenoss, ZCML, Python

	Example:	ZenPacks.zenoss.ZenVMware

ETL Adapters

ETL is used to export model, performance and event data from a Zenoss instance
to a Zenoss Analytics instance. However, ETL adapters only need to be written to
manipulate the model data that is exported. There are two types of ETL
adapters. They’re both written in Python and added to the system configuration
through ZCML directives.

The first type is a reportable. These implement the IReportable interface
and allow precise control over which properties of an object type are exported,
and how they’re named and manipulated for export.

The second type is a reportable factory. These implement the
IReportableFactory interface and all manipulation of which objects are
considered for export. By default all devices and components are considered for
extraction so a reportable factory is usually only used when fine-grained
control over the relationships between these objects is needed.

	Complexity:	4

	Skills:	Zenoss, ZCML, Python

	Example:	ZenPacks.zenoss.ZenVMware

User Interface

Modifications to the existing user interface, or entirely new sections of user
interface. The difficulty of these changes varies considerably. See the Skills
field below for the range of skills that could be required to make these kinds
of changes.

The ServiceNowIntegrator example given below adds a new button to the event
console that pops up a new dialog box with some custom options available. Only
ZCML and JavaScript were required for this type of change.

TAL is usually only required when editing or creating old-style pages that
aren’t entirely built using ExtJS.

	Complexity:	5

	Skills:	Zenoss, ZCML, TAL, JavaScript, ExtJS

	Example:	ZenPacks.zenoss.ServiceNowIntegrator

Modeler Plugins - SNMP, COMMAND, WMI

Modeler plugins provide the mapping between data collected from the environment
and the Zenoss model. In the case where the data can be collected using SNMP,
COMMAND (run a command remotely via SSH) or WMI, there is existing
infrastructure to make these tasks easier. However, the modeler plugins are
still written in Python.

If collecting using SNMP the SnmpPlugin class can be extended to do the hard
parts of SNMP gets or walks for you. If collecting by running a command on a
remote system via SSH, the CommandPlugin class can be extended to do the
hard parts of SSH and output parsing for you. If collecting from a Windows
system using WMI, the WmiPlugin class can be extended to do the hard parts
of WQL querying for you.

The only significant logic that must be implemented in these cases is turning
the returned data structures into ObjectMap and RelationshipMap objects
to apply to the Zenoss model.

	Complexity:	6

	Skills:	Zenoss, Python, (SNMP, Scripting or WMI)

	Example:	ZenPacks.zenoss.SolarisMonitor

Modeler Plugins - Python

See Model Extensions above for what modeler plugins
are. Python modeler plugins only differ in that you extend the PythonPlugin
class, and must implement the collection logic in addition to the processing
logic.

The collect method implementation may return data normally, or it may return
a Twisted deferred to take advantage of the asynchronous modeling engine. It
is recommended to use the deferred approach whenever possible to avoid blocking
the zenmodeler daemon while the collect method executes.

	Complexity:	7

	Skills:	Zenoss, Python, Twisted

	Example:	ZenPacks.zenoss.OpenStack

Model Extensions

When the standard model of the Zenoss platform doesn’t cover an object or
property you need in your ZenPack, the model can be extended. Existing model
classes such as Device, FileSystem or IpInterface can be extended, and entirely
new types of components can be created.

The typical requirements for extended the model include at least the following
steps.

	Create a Python class

	Create an API interface and adapter

	Wire up the API with ZCML

	Write JavaScript to tailor the display of your component

	Write a modeler plugin

	Complexity:	8

	Skills:	Zenoss, ZCML, Python, JavaScript

	Example:	ZenPacks.zenoss.OpenStack

Daemons

A new daemon must be written only if none of the existing daemons can perform
the task required by your ZenPack. The zencommand daemon is the usual last
resort for custom collection requirements if none of the more specialized
daemons will work. See Command DataSource Plugins and
Command DataSource Parsers for what can be done by zencommand.

There is a common collector framework that should be used to perform much of the
typical daemon functionality such as configuration and scheduling in a
consistent way. To use this you should create a CollectorDaemon object,
configure it with a class that implements the ICollectorPreferences
interface and create a task class that implements the IScheduledTask
interface.

In almost all cases you will also need to create a ZenHub service to build the
configuration for your new daemon. This service should subclass HubService
or one of its existing more specialized subclasses.

	Complexity:	9

	Skills:	Zenoss, Python, Twisted

	Example:	ZenPacks.zenoss.ZenVMware

Platform Extension

Platform extensions are any implementations added to a ZenPack that doesn’t fall
into any of the previously-defined complexity elements. Due to the flexibility
of ZenPacks, these could be almost anything.

The DistributedCollector example given below falls into this category because
it extends the simple flat collector structure in the core Zenoss platform to be
a tiered hub and collector structure. It also adds extensive hub and collector
management capabilities.

	Complexity:	10

	Skills:	Zenoss, ZCML, Python, JavaScript, etc.

	Example:	ZenPacks.zenoss.DistributedCollector

Example ZenPack Classifications

ZenPacks.zenoss.ApacheMonitor

	Classification
	Value

	Functionality
	Monitoring

	Maintainer
	Zenoss Engineering

	Availability
	Open Source

	QA Level
	Q.A. Tested

	Complexity
	
Configuration

Command DataSource Plugins

DataSource Types

ZenPacks.zenoss.IISMonitor

	Classification
	Value

	Functionality
	Monitoring

	Maintainer
	Zenoss Engineering

	Availability
	Available with Zenoss Subscription

	QA Level
	Q.A. Tested

	Complexity
	
Configuration

ZenPacks.zenoss.DistributedCollector

	Classification
	Value

	Functionality
	Platform Extension

	Maintainer
	Zenoss Engineering

	Availability
	Available with Zenoss Subscription

	QA Level
	Q.A. Tested

	Complexity
	
Configuration

User Interface

Platform Extension

ZenPacks.zenoss.RANCIDIntegrator

	Classification
	Value

	Functionality
	Integration

	Maintainer
	Zenoss Engineering

	Availability
	Available with Zenoss Subscription

	QA Level
	Q.A. Tested

	Complexity
	
Configuration

Event Class Transforms and Mappings

Scripts

ZenPacks.zenoss.DatabaseMonitor

	Classification
	Value

	Functionality
	Monitoring

	Maintainer
	Zenoss Engineering

	Availability
	Available with Zenoss Subscription

	QA Level
	Q.A. Tested

	Complexity
	
Configuration

Command DataSource Plugins

DataSource Types

ZenPacks.zenoss.ZenVMware

	Classification
	Value

	Functionality
	Monitoring

	Maintainer
	Zenoss Engineering

	Availability
	Available with Zenoss Subscription

	QA Level
	Q.A. Tested

	Complexity
	
Configuration

Event Class Transforms and Mappings

DataSource Types

User Interface

Impact Adapters

ETL Adapters

Model Extensions

Daemons

ZenPacks.zenoss.SolarisMonitor

	Classification
	Value

	Functionality
	Monitoring

	Maintainer
	Zenoss Engineering

	Availability
	Available with Zenoss Subscription

	QA Level
	Q.A. Tested

	Complexity
	
Configuration

Command DataSource Plugins

Command DataSource Parsers

Modeler Plugins - SNMP, COMMAND, WMI

ZenPacks.zenoss.Impact

	Classification
	Value

	Functionality
	Platform Extension

	Maintainer
	Zenoss Engineering

	Availability
	Additional Cost with Zenoss Subscription

	QA Level
	Q.A. Tested

	Complexity
	
Configuration

User Interface

Impact Adapters

Daemons

Platform Extension

ZenPacks.zenoss.OpenStack

	Classification
	Value

	Functionality
	Monitoring

	Maintainer
	Zenoss Engineering

	Availability
	Open Source

	QA Level
	Untested

	Complexity
	
Configuration

Event Class Transforms and Mappings

Command DataSource Plugins

Command DataSource Parsers

User Interface

Impact Adapters

Modeler Plugins - Python

Model Extensions

ZenPacks.zenoss.ServiceNowIntegrator

	Classification
	Value

	Functionality
	Integration

	Maintainer
	Zenoss Services

	Availability
	Available with Zenoss Subscription

	QA Level
	Q.A. Tested

	Complexity
	
Configuration

User Interface

Model Extensions

Daemons

ZenPacks.community.ZenODBC

	Classification
	Value

	Functionality
	Platform Extension

	Maintainer
	Zenoss Community

	Availability
	Open Source

	QA Level
	Q.A. Tested

	Complexity
	
DataSource Types

Modeler Plugins - Python

 Copyright 2011-2014, Zenoss, Inc..
 Last updated on Sep 21, 2015.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Zenoss Labs Documentation

Index

 Copyright 2011-2014, Zenoss, Inc..
 Last updated on Sep 21, 2015.
 Created using Sphinx 1.3.1.

 _static/minus.png

_static/comment.png

_static/comment-close.png

_static/up.png

_static/new-zenoss-logo.png

_static/plus.png

_static/comment-bright.png

zenpack_development/index.html

 Navigation

 		
 index

 		Zenoss Labs Documentation »

ZenPack Development Guide

Warning

The zenpacklib documentation [http://zenpacklib.zenoss.com/] has replaced this development guide.

 © Copyright 2011-2014, Zenoss, Inc..
 Last updated on Sep 21, 2015.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/down.png

search.html

 Navigation

 		
 index

 		Zenoss Labs Documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2014, Zenoss, Inc..
 Last updated on Sep 21, 2015.
 Created using Sphinx 1.3.1.

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/headerbg.png

