

Django documentation contents

	Getting started
	Django at a glance
	Design your model

	Install it

	Enjoy the free API

	A dynamic admin interface: it’s not just scaffolding – it’s the whole house

	Design your URLs

	Write your views

	Design your templates

	This is just the surface

	Quick install guide
	Install Python

	Set up a database

	Remove any old versions of Django

	Install Django

	Verifying

	That’s it!

	Writing your first Django app, part 1
	Creating a project

	Creating models

	Activating models

	Playing with the API

	Writing your first Django app, part 2
	Creating an admin user

	Start the development server

	Enter the admin site

	Make the poll app modifiable in the admin

	Explore the free admin functionality

	Customize the admin form

	Adding related objects

	Customize the admin change list

	Customize the admin look and feel

	Customize the admin index page

	Writing your first Django app, part 3
	Philosophy

	Write your first view

	Writing more views

	Write views that actually do something

	Raising a 404 error

	Use the template system

	Removing hardcoded URLs in templates

	Namespacing URL names

	Writing your first Django app, part 4
	Write a simple form

	Use generic views: Less code is better

	Writing your first Django app, part 5
	Introducing automated testing

	Basic testing strategies

	Writing our first test

	Test a view

	When testing, more is better

	Further testing

	What’s next?

	Writing your first Django app, part 6
	Customize your app’s look and feel

	Adding a background-image

	What’s next?

	Advanced tutorial: How to write reusable apps
	Reusability matters

	Your project and your reusable app

	Installing some prerequisites

	Packaging your app

	Using your own package

	Publishing your app

	Installing Python packages with virtualenv

	What to read next
	Finding documentation

	How the documentation is organized

	How documentation is updated

	Where to get it

	Differences between versions

	Writing your first patch for Django
	Introduction

	Installing Git

	Getting a copy of Django’s development version

	Rolling back to a previous revision of Django

	Running Django’s test suite for the first time

	Writing some tests for your ticket

	Writing the code for your ticket

	Running Django’s test suite for the second time

	Writing Documentation

	Generating a patch for your changes

	So what do I do next?

	Using Django
	How to install Django
	Install Python

	Install Apache and mod_wsgi

	Get your database running

	Remove any old versions of Django

	Install the Django code

	Models and databases
	Models

	Making queries

	Aggregation

	Managers

	Performing raw SQL queries

	Database transactions

	Multiple databases

	Tablespaces

	Database access optimization

	Examples of model relationship API usage

	Handling HTTP requests
	URL dispatcher

	Writing views

	View decorators

	File Uploads

	Django shortcut functions

	Generic views

	Middleware

	How to use sessions

	Working with forms
	HTML forms

	Django’s role in forms

	Forms in Django

	Building a form

	More about Django Form classes

	Working with form templates

	Further topics

	The Django template language
	Templates

	Variables

	Filters

	Tags

	Comments

	Template inheritance

	Automatic HTML escaping

	Accessing method calls

	Custom tag and filter libraries

	Class-based views
	Introduction to Class-based views

	Built-in Class-based generic views

	Form handling with class-based views

	Using mixins with class-based views

	Basic examples

	Simple usage in your URLconf

	Subclassing generic views

	Migrations
	A Brief History

	The Commands

	Backend Support

	Workflow

	Dependencies

	Migration files

	Adding migrations to apps

	Historical models

	Data Migrations

	Squashing migrations

	Serializing values

	Supporting Python 2 and 3

	Supporting multiple Django versions

	Upgrading from South

	Managing files
	Using files in models

	The File object

	File storage

	Testing in Django
	Writing and running tests

	Testing tools

	Advanced testing topics

	User authentication in Django
	Overview

	Installation

	Usage

	Django’s cache framework
	Setting up the cache

	The per-site cache

	The per-view cache

	Template fragment caching

	The low-level cache API

	Downstream caches

	Using Vary headers

	Controlling cache: Using other headers

	Order of MIDDLEWARE_CLASSES

	Conditional View Processing
	The condition decorator

	Shortcuts for only computing one value

	Using the decorators with other HTTP methods

	Comparison with middleware conditional processing

	Cryptographic signing
	Protecting the SECRET_KEY

	Using the low-level API

	Sending email
	Quick example

	send_mail()

	send_mass_mail()

	mail_admins()

	mail_managers()

	Examples

	Preventing header injection

	The EmailMessage class

	Email backends

	Configuring email for development

	Internationalization and localization
	Overview

	Definitions

	The “local flavor” add-ons
	Supported countries

	Internationalization of localflavors

	How to migrate

	Deprecation policy

	Logging
	A quick logging primer

	Using logging

	Configuring logging

	Django’s logging extensions

	Django’s default logging configuration

	Pagination
	Example

	Using Paginator in a view

	Paginator objects

	InvalidPage exceptions

	Page objects

	Porting to Python 3
	Philosophy

	Porting tips

	Coding guidelines

	Security in Django
	Cross site scripting (XSS) protection

	Cross site request forgery (CSRF) protection

	SQL injection protection

	Clickjacking protection

	SSL/HTTPS

	Host header validation

	Session security

	User-uploaded content

	Additional security topics

	Performance and optimization
	Introduction

	General approaches

	Caching

	Understanding laziness

	Databases

	HTTP performance

	Template performance

	Using different versions of available software

	Serializing Django objects
	Serializing data

	Deserializing data

	Serialization formats

	Natural keys

	Django settings
	The basics

	Designating the settings

	Default settings

	Using settings in Python code

	Altering settings at runtime

	Security

	Available settings

	Creating your own settings

	Using settings without setting DJANGO_SETTINGS_MODULE

	Signals
	Listening to signals

	Defining and sending signals

	Disconnecting signals

	System check framework
	Writing your own checks

	“How-to” guides
	Authentication using REMOTE_USER
	Configuration

	Writing custom django-admin commands
	Management commands and locales

	Testing

	Command objects

	Writing custom model fields
	Introduction

	Background theory

	Writing a field subclass

	Writing a FileField subclass

	Custom Lookups
	A simple lookup example

	A simple transformer example

	Writing an efficient abs__lt lookup

	Writing alternative implementations for existing lookups

	How Django determines the lookups and transforms which are used

	Custom template tags and filters
	Code layout

	Writing custom template filters

	Writing custom template tags

	Writing a custom storage system

	Deploying Django
	How to deploy with WSGI

	Deployment checklist

	How to use Django with FastCGI, SCGI, or AJP

	Upgrading Django to a newer version
	Required Reading

	Dependencies

	Installation

	Testing

	Deployment

	Error reporting
	Email reports

	Filtering error reports

	Providing initial data for models
	Providing initial data with fixtures

	Providing initial SQL data

	Running Django on Jython
	Installing Jython

	Creating a servlet container

	Installing Django

	Installing Jython platform support libraries

	Differences with Django on Jython

	Integrating Django with a legacy database
	Give Django your database parameters

	Auto-generate the models

	Install the core Django tables

	Test and tweak

	Outputting CSV with Django
	Using the Python CSV library

	Using the template system

	Other text-based formats

	Outputting PDFs with Django
	Install ReportLab

	Write your view

	Complex PDFs

	Further resources

	Other formats

	Managing static files (CSS, images)
	Configuring static files

	Serving static files during development.

	Serving files uploaded by a user during development.

	Testing

	Deployment

	Learn more

	Deploying static files
	Serving static files in production

	Learn more

	How to install Django on Windows
	Install Python

	Install Setuptools

	Install PIP

	Install Django

	Common pitfalls

	Django FAQ
	FAQ: General
	Why does this project exist?

	What does “Django” mean, and how do you pronounce it?

	Is Django stable?

	Does Django scale?

	Who’s behind this?

	Which sites use Django?

	Django appears to be a MVC framework, but you call the Controller the “view”, and the View the “template”. How come you don’t use the standard names?

	<Framework X> does <feature Y> – why doesn’t Django?

	Why did you write all of Django from scratch, instead of using other Python libraries?

	Is Django a content-management-system (CMS)?

	How can I download the Django documentation to read it offline?

	Where can I find Django developers for hire?

	How do I cite Django?

	FAQ: Installation
	How do I get started?

	What are Django’s prerequisites?

	What Python version can I use with Django?

	What Python version should I use with Django?

	Should I use the stable version or development version?

	FAQ: Using Django
	Why do I get an error about importing DJANGO_SETTINGS_MODULE?

	I can’t stand your template language. Do I have to use it?

	Do I have to use your model/database layer?

	How do I use image and file fields?

	How do I make a variable available to all my templates?

	FAQ: Getting Help
	How do I do X? Why doesn’t Y work? Where can I go to get help?

	Why hasn’t my message appeared on django-users?

	Nobody on django-users answered my question! What should I do?

	I think I’ve found a bug! What should I do?

	I think I’ve found a security problem! What should I do?

	FAQ: Databases and models
	How can I see the raw SQL queries Django is running?

	Can I use Django with a pre-existing database?

	If I make changes to a model, how do I update the database?

	Do Django models support multiple-column primary keys?

	Does Django support NoSQL databases?

	How do I add database-specific options to my CREATE TABLE statements, such as specifying MyISAM as the table type?

	FAQ: The admin
	I can’t log in. When I enter a valid username and password, it just brings up the login page again, with no error messages.

	I can’t log in. When I enter a valid username and password, it brings up the login page again, with a “Please enter a correct username and password” error.

	How do I automatically set a field’s value to the user who last edited the object in the admin?

	How do I limit admin access so that objects can only be edited by the users who created them?

	My admin-site CSS and images showed up fine using the development server, but they’re not displaying when using mod_wsgi.

	My “list_filter” contains a ManyToManyField, but the filter doesn’t display.

	Some objects aren’t appearing in the admin.

	How can I customize the functionality of the admin interface?

	The dynamically-generated admin site is ugly! How can I change it?

	What browsers are supported for using the admin?

	FAQ: Contributing code
	How can I get started contributing code to Django?

	I submitted a bug fix in the ticket system several weeks ago. Why are you ignoring my patch?

	When and how might I remind the core team of a patch I care about?

	But I’ve reminded you several times and you keep ignoring my patch!

	Troubleshooting
	Problems running django-admin.py

	Miscellaneous

	API Reference
	Applications
	Projects and applications

	Configuring applications

	Application configuration

	Application registry

	Initialization process

	System check framework
	Builtin tags

	Core system checks

	Admin

	Auth

	Content Types

	Sites

	Database

	Built-in Class-based views API
	Base views

	Generic display views

	Generic editing views

	Generic date views

	Class-based views mixins

	Class-based generic views - flattened index

	Specification

	Base vs Generic views

	Clickjacking Protection
	An example of clickjacking

	Preventing clickjacking

	How to use it

	Limitations

	contrib packages
	The Django admin site

	django.contrib.auth

	User

	Anonymous users

	Permission

	Group

	Login and logout signals

	Authentication backends

	Django’s comments framework

	The contenttypes framework

	Cross Site Request Forgery protection

	The flatpages app

	django.contrib.formtools

	GeoDjango

	django.contrib.humanize

	The messages framework

	The redirects app

	The sitemap framework

	The “sites” framework

	The staticfiles app

	The syndication feed framework

	django.contrib.webdesign

	admin

	auth

	comments

	contenttypes

	csrf

	flatpages

	formtools

	gis

	humanize

	messages

	redirects

	sessions

	sites

	sitemaps

	syndication

	webdesign

	Other add-ons

	Databases
	General notes

	PostgreSQL notes

	MySQL notes

	SQLite notes

	Oracle notes

	Using a 3rd-party database backend

	django-admin.py and manage.py
	Usage

	Available commands

	Commands provided by applications

	Default options

	Common options

	Extra niceties

	Running management commands from your code
	Output redirection

	Django Exceptions
	Django Core Exceptions

	URL Resolver exceptions

	Database Exceptions

	Http Exceptions

	Transaction Exceptions

	Python Exceptions

	File handling
	The File object

	File storage API

	Uploaded Files and Upload Handlers

	Forms
	The Forms API

	Form fields

	Model Form Functions

	Formset Functions

	Widgets

	Form and field validation

	Middleware
	Available middleware

	Middleware ordering

	Migration Operations
	Schema Operations

	Special Operations

	Writing your own

	Models
	Model field reference

	Related objects reference

	Model Meta options

	Model instance reference

	QuerySet API reference

	Query-related classes

	Lookup API reference

	Request and response objects
	Quick overview

	HttpRequest objects

	QueryDict objects

	HttpResponse objects

	JsonResponse objects

	StreamingHttpResponse objects

	SchemaEditor
	Methods

	Attributes

	Settings
	Core settings

	Auth

	Comments

	Messages

	Sessions

	Sites

	Static files

	Core Settings Topical Index

	Signals
	Model signals

	Management signals

	Request/response signals

	Test signals

	Database Wrappers

	Templates
	Built-in template tags and filters

	The Django template language: For Python programmers

	TemplateResponse and SimpleTemplateResponse
	SimpleTemplateResponse objects

	TemplateResponse objects

	The rendering process

	Using TemplateResponse and SimpleTemplateResponse

	Unicode data
	Creating the database

	General string handling

	Models

	The database API

	Templates

	Email

	Form submission

	django.core.urlresolvers utility functions
	reverse()

	reverse_lazy()

	resolve()

	get_script_prefix()

	django.conf.urls utility functions
	patterns()

	static()

	url()

	include()

	handler400

	handler403

	handler404

	handler500

	Django Utils
	django.utils.cache

	django.utils.datastructures

	django.utils.dateparse

	django.utils.decorators

	django.utils.encoding

	django.utils.feedgenerator

	django.utils.functional

	django.utils.html

	django.utils.http

	django.utils.module_loading

	django.utils.safestring

	django.utils.text

	django.utils.timezone

	django.utils.translation

	django.utils.tzinfo

	Validators
	Writing validators

	How validators are run

	Built-in validators

	Built-in Views
	Serving files in development

	Error views

	Meta-documentation and miscellany
	API stability
	What “stable” means

	Stable APIs

	Exceptions

	Design philosophies
	Overall

	Models

	Database API

	URL design

	Template system

	Views

	Cache Framework

	Third-party distributions of Django
	For distributors

	Glossary

	Release notes
	Final releases
	1.7 release

	1.6 release

	1.5 release

	1.4 release

	1.3 release

	1.2 release

	1.1 release

	1.0 release

	Pre-1.0 releases

	Security releases

	Django internals
	Contributing to Django
	Advice for new contributors

	Reporting bugs and requesting features

	Triaging tickets

	Writing code

	Writing documentation

	Localizing Django

	Committing code

	Mailing lists
	django-users

	django-core-mentorship

	django-developers

	django-i18n

	django-announce

	django-updates

	Django committers
	The original team

	Current developers

	Developers Emeritus

	Django’s security policies
	Reporting security issues

	Supported versions

	How Django discloses security issues

	Who receives advance notification

	Requesting notifications

	Django’s release process
	Official releases

	Supported versions

	Long-term support (LTS) releases

	Release process

	Django Deprecation Timeline
	1.9

	1.8

	1.7

	1.6

	1.5

	1.4

	1.3

	The Django source code repository
	High-level overview

	The master branch

	Other branches

	Tags

	How is Django Formed?
	Overview

	Prerequisites

	Pre-release tasks

	Preparing for release

	Actually rolling the release

	Making the release(s) available to the public

	Post-release

	Notes on setting the VERSION tuple

Indices, glossary and tables

	Index

	Module Index

	Glossary

Django documentation

Everything you need to know about Django.

Getting help

Having trouble? We’d like to help!

	Try the FAQ – it’s got answers to many common questions.

	Looking for specific information? Try the Index, Module Index or
the detailed table of contents.

	Search for information in the archives of the django-users mailing list, or
post a question [https://groups.google.com/d/forum/django-users].

	Ask a question in the #django IRC channel, or search the IRC logs [http://django-irc-logs.com/] to see
if it’s been asked before.

	Report bugs with Django in our ticket tracker [https://code.djangoproject.com/].

First steps

Are you new to Django or to programming? This is the place to start!

	From scratch:
Overview |
Installation

	Tutorial:
Part 1: Models |
Part 2: The admin site |
Part 3: Views and templates |
Part 4: Forms and generic views |
Part 5: Testing |
Part 6: Static files

	Advanced Tutorials:
How to write reusable apps |
Writing your first patch for Django

The model layer

Django provides an abstraction layer (the “models”) for structuring and
manipulating the data of your Web application. Learn more about it below:

	Models:
Model syntax |
Field types |
Meta options

	QuerySets:
Executing queries |
QuerySet method reference |
Query-related classes |
Lookup expressions

	Model instances:
Instance methods |
Accessing related objects

	Migrations:
Introduction to Migrations |
Operations reference |
SchemaEditor

	Advanced:
Managers |
Raw SQL |
Transactions |
Aggregation |
Custom fields |
Multiple databases |
Custom lookups

	Other:
Supported databases |
Legacy databases |
Providing initial data |
Optimize database access

The view layer

Django has the concept of “views” to encapsulate the logic responsible for
processing a user’s request and for returning the response. Find all you need
to know about views via the links below:

	The basics:
URLconfs |
View functions |
Shortcuts |
Decorators

	Reference:
Built-in Views |
Request/response objects |
TemplateResponse objects

	File uploads:
Overview |
File objects |
Storage API |
Managing files |
Custom storage

	Class-based views:
Overview |
Built-in display views |
Built-in editing views |
Using mixins |
API reference |
Flattened index

	Advanced:
Generating CSV |
Generating PDF

	Middleware:
Overview |
Built-in middleware classes

The template layer

The template layer provides a designer-friendly syntax for rendering the
information to be presented to the user. Learn how this syntax can be used by
designers and how it can be extended by programmers:

	For designers:
Syntax overview |
Built-in tags and filters |
Web design helpers |
Humanization

	For programmers:
Template API |
Custom tags and filters

Forms

Django provides a rich framework to facilitate the creation of forms and the
manipulation of form data.

	The basics:
Overview |
Form API |
Built-in fields |
Built-in widgets

	Advanced:
Forms for models |
Integrating media |
Formsets |
Customizing validation

	Extras:
Form preview |
Form wizard

The development process

Learn about the various components and tools to help you in the development and
testing of Django applications:

	Settings:
Overview |
Full list of settings

	Applications:
Overview

	Exceptions:
Overview

	django-admin.py and manage.py:
Overview |
Adding custom commands

	Testing:
Introduction |
Writing and running tests |
Included testing tools |
Advanced topics

	Deployment:
Overview |
WSGI servers |
FastCGI/SCGI/AJP (deprecated) |
Deploying static files |
Tracking code errors by email

The admin

Find all you need to know about the automated admin interface, one of Django’s
most popular features:

	Admin site

	Admin actions

	Admin documentation generator

Security

Security is a topic of paramount importance in the development of Web
applications and Django provides multiple protection tools and mechanisms:

	Security overview

	Disclosed security issues in Django

	Clickjacking protection

	Cross Site Request Forgery protection

	Cryptographic signing

Internationalization and localization

Django offers a robust internationalization and localization framework to
assist you in the development of applications for multiple languages and world
regions:

	Overview |
Internationalization |
Localization |
Localized Web UI formatting and form input

	“Local flavor”

	Time zones

Performance and optimization

There are a variety of techniques and tools that can help get your code running
more efficiently - faster, and using fewer system resources.

	Performance and optimization overview

Python compatibility

Django aims to be compatible with multiple different flavors and versions of
Python:

	Jython support

	Python 3 compatibility

Geographic framework

GeoDjango intends to be a world-class geographic
Web framework. Its goal is to make it as easy as possible to build GIS Web
applications and harness the power of spatially enabled data.

Common Web application tools

Django offers multiple tools commonly needed in the development of Web
applications:

	Authentication

	Caching

	Logging

	Sending emails

	Syndication feeds (RSS/Atom)

	Pagination

	Messages framework

	Serialization

	Sessions

	Sitemaps

	Static files management

	Data validation

Other core functionalities

Learn about some other core functionalities of the Django framework:

	Conditional content processing

	Content types and generic relations

	Flatpages

	Redirects

	Signals

	System check framework

	The sites framework

	Unicode in Django

The Django open-source project

Learn about the development process for the Django project itself and about how
you can contribute:

	Community:
How to get involved |
The release process |
Team of committers |
The Django source code repository |
Security policies |
Mailing lists

	Design philosophies:
Overview

	Documentation:
About this documentation

	Third-party distributions:
Overview

	Django over time:
API stability |
Release notes and upgrading instructions |
Deprecation Timeline

“How-to” guides

Here you’ll find short answers to “How do I....?” types of questions. These
how-to guides don’t cover topics in depth – you’ll find that material in the
Using Django and the API Reference. However, these guides will help
you quickly accomplish common tasks.

	Authentication using REMOTE_USER

	Writing custom django-admin commands

	Writing custom model fields

	Custom Lookups

	Custom template tags and filters

	Writing a custom storage system

	Deploying Django

	Upgrading Django to a newer version

	Error reporting

	Providing initial data for models

	Running Django on Jython

	Integrating Django with a legacy database

	Outputting CSV with Django

	Outputting PDFs with Django

	Managing static files (CSS, images)

	Deploying static files

	How to install Django on Windows

See also

The Django community aggregator [https://www.djangoproject.com/community/], where we aggregate content from the
global Django community. Many writers in the aggregator write this sort of
how-to material.

Authentication using REMOTE_USER

This document describes how to make use of external authentication sources
(where the Web server sets the REMOTE_USER environment variable) in your
Django applications. This type of authentication solution is typically seen on
intranet sites, with single sign-on solutions such as IIS and Integrated
Windows Authentication or Apache and mod_authnz_ldap [http://httpd.apache.org/docs/2.2/mod/mod_authnz_ldap.html], CAS [http://www.jasig.org/cas], Cosign [http://weblogin.org],
WebAuth [http://www.stanford.edu/services/webauth/], mod_auth_sspi [http://sourceforge.net/projects/mod-auth-sspi], etc.

When the Web server takes care of authentication it typically sets the
REMOTE_USER environment variable for use in the underlying application. In
Django, REMOTE_USER is made available in the request.META attribute. Django can be configured to make
use of the REMOTE_USER value using the RemoteUserMiddleware and
RemoteUserBackend classes found in
django.contrib.auth.

Configuration

First, you must add the
django.contrib.auth.middleware.RemoteUserMiddleware to the
MIDDLEWARE_CLASSES setting after the
django.contrib.auth.middleware.AuthenticationMiddleware:

MIDDLEWARE_CLASSES = (
 '...',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.auth.middleware.RemoteUserMiddleware',
 '...',
)

Next, you must replace the ModelBackend
with RemoteUserBackend in the
AUTHENTICATION_BACKENDS setting:

AUTHENTICATION_BACKENDS = (
 'django.contrib.auth.backends.RemoteUserBackend',
)

With this setup, RemoteUserMiddleware will detect the username in
request.META['REMOTE_USER'] and will authenticate and auto-login that user
using the RemoteUserBackend.

Be aware that this particular setup disables authentication with the default
ModelBackend. This means that if the REMOTE_USER value is not set
then the user is unable to log in, even using Django’s admin interface.
Adding 'django.contrib.auth.backends.ModelBackend' to the
AUTHENTICATION_BACKENDS list will use ModelBackend as a fallback
if REMOTE_USER is absent, which will solve these issues.

Django’s user management, such as the views in contrib.admin and
the createsuperuser management command, doesn’t integrate with
remote users. These interfaces work with users stored in the database
regardless of AUTHENTICATION_BACKENDS.

Note

Since the RemoteUserBackend inherits from ModelBackend, you will
still have all of the same permissions checking that is implemented in
ModelBackend.

If your authentication mechanism uses a custom HTTP header and not
REMOTE_USER, you can subclass RemoteUserMiddleware and set the
header attribute to the desired request.META key. For example:

from django.contrib.auth.middleware import RemoteUserMiddleware

class CustomHeaderMiddleware(RemoteUserMiddleware):
 header = 'HTTP_AUTHUSER'

Warning

Be very careful if using a RemoteUserMiddleware subclass with a custom
HTTP header. You must be sure that your front-end web server always sets or
strips that header based on the appropriate authentication checks, never
permitting an end-user to submit a fake (or “spoofed”) header value. Since
the HTTP headers X-Auth-User and X-Auth_User (for example) both
normalize to the HTTP_X_AUTH_USER key in request.META, you must
also check that your web server doesn’t allow a spoofed header using
underscores in place of dashes.

This warning doesn’t apply to RemoteUserMiddleware in its default
configuration with header = 'REMOTE_USER', since a key that doesn’t
start with HTTP_ in request.META can only be set by your WSGI
server, not directly from an HTTP request header.

If you need more control, you can create your own authentication backend
that inherits from RemoteUserBackend and
override one or more of its attributes and methods.

Writing custom django-admin commands

Applications can register their own actions with manage.py. For example,
you might want to add a manage.py action for a Django app that you’re
distributing. In this document, we will be building a custom closepoll
command for the polls application from the
tutorial.

To do this, just add a management/commands directory to the application.
Django will register a manage.py command for each Python module in that
directory whose name doesn’t begin with an underscore. For example:

polls/
 __init__.py
 models.py
 management/
 __init__.py
 commands/
 __init__.py
 _private.py
 closepoll.py
 tests.py
 views.py

On Python 2, be sure to include __init__.py files in both the
management and management/commands directories as done above or your
command will not be detected.

In this example, the closepoll command will be made available to any project
that includes the polls application in INSTALLED_APPS.

The _private.py module will not be available as a management command.

The closepoll.py module has only one requirement – it must define a class
Command that extends BaseCommand or one of its
subclasses.

Standalone scripts

Custom management commands are especially useful for running standalone
scripts or for scripts that are periodically executed from the UNIX crontab
or from Windows scheduled tasks control panel.

To implement the command, edit polls/management/commands/closepoll.py to
look like this:

from django.core.management.base import BaseCommand, CommandError
from polls.models import Poll

class Command(BaseCommand):
 args = '<poll_id poll_id ...>'
 help = 'Closes the specified poll for voting'

 def handle(self, *args, **options):
 for poll_id in args:
 try:
 poll = Poll.objects.get(pk=int(poll_id))
 except Poll.DoesNotExist:
 raise CommandError('Poll "%s" does not exist' % poll_id)

 poll.opened = False
 poll.save()

 self.stdout.write('Successfully closed poll "%s"' % poll_id)

Note

When you are using management commands and wish to provide console
output, you should write to self.stdout and self.stderr,
instead of printing to stdout and stderr directly. By
using these proxies, it becomes much easier to test your custom
command. Note also that you don’t need to end messages with a newline
character, it will be added automatically, unless you specify the ending
parameter:

self.stdout.write("Unterminated line", ending='')

The new custom command can be called using python manage.py closepoll
<poll_id>.

The handle() method takes zero or more poll_ids and sets poll.opened
to False for each one. If the user referenced any nonexistent polls, a
CommandError is raised. The poll.opened attribute does not exist
in the tutorial and was added to
polls.models.Poll for this example.

The same closepoll could be easily modified to delete a given poll instead
of closing it by accepting additional command line options. These custom options
must be added to option_list like this:

from optparse import make_option

class Command(BaseCommand):
 option_list = BaseCommand.option_list + (
 make_option('--delete',
 action='store_true',
 dest='delete',
 default=False,
 help='Delete poll instead of closing it'),
)

 def handle(self, *args, **options):
 # ...
 if options['delete']:
 poll.delete()
 # ...

The option (delete in our example) is available in the options dict
parameter of the handle method. See the optparse [http://docs.python.org/3/library/optparse.html#module-optparse] Python documentation
for more about make_option usage.

In addition to being able to add custom command line options, all
management commands can accept some
default options such as --verbosity and --traceback.

Management commands and locales

By default, the BaseCommand.execute() method sets the hardcoded ‘en-us’
locale because some commands shipped with Django perform several tasks
(for example, user-facing content rendering and database population) that
require a system-neutral string language (for which we use ‘en-us’).

If, for some reason, your custom management command needs to use a fixed locale
different from ‘en-us’, you should manually activate and deactivate it in your
handle() or handle_noargs() method using
the functions provided by the I18N support code:

from django.core.management.base import BaseCommand, CommandError
from django.utils import translation

class Command(BaseCommand):
 ...
 can_import_settings = True

 def handle(self, *args, **options):

 # Activate a fixed locale, e.g. Russian
 translation.activate('ru')

 # Or you can activate the LANGUAGE_CODE # chosen in the settings:
 #
 #from django.conf import settings
 #translation.activate(settings.LANGUAGE_CODE)

 # Your command logic here
 # ...

 translation.deactivate()

Another need might be that your command simply should use the locale set in
settings and Django should be kept from forcing it to ‘en-us’. You can achieve
it by using the BaseCommand.leave_locale_alone option.

When working on the scenarios described above though, take into account that
system management commands typically have to be very careful about running in
non-uniform locales, so you might need to:

	Make sure the USE_I18N setting is always True when running
the command (this is a good example of the potential problems stemming
from a dynamic runtime environment that Django commands avoid offhand by
always using a fixed locale).

	Review the code of your command and the code it calls for behavioral
differences when locales are changed and evaluate its impact on
predictable behavior of your command.

Testing

Information on how to test custom management commands can be found in the
testing docs.

Command objects

	
class BaseCommand[source]

	

The base class from which all management commands ultimately derive.

Use this class if you want access to all of the mechanisms which
parse the command-line arguments and work out what code to call in
response; if you don’t need to change any of that behavior,
consider using one of its subclasses.

Subclassing the BaseCommand class requires that you implement the
handle() method.

Attributes

All attributes can be set in your derived class and can be used in
BaseCommand’s subclasses.

	
BaseCommand.args

	A string listing the arguments accepted by the command,
suitable for use in help messages; e.g., a command which takes
a list of application names might set this to ‘<app_label
app_label ...>’.

	
BaseCommand.can_import_settings

	A boolean indicating whether the command needs to be able to
import Django settings; if True, execute() will verify
that this is possible before proceeding. Default value is
True.

	
BaseCommand.help

	A short description of the command, which will be printed in the
help message when the user runs the command
python manage.py help <command>.

	
BaseCommand.option_list

	This is the list of optparse options which will be fed
into the command’s OptionParser for parsing arguments.

	
BaseCommand.output_transaction

	A boolean indicating whether the command outputs SQL
statements; if True, the output will automatically be
wrapped with BEGIN; and COMMIT;. Default value is
False.

	
BaseCommand.requires_system_checks

	

New in Django 1.7: A boolean; if True, the entire Django project will be checked for
potential problems prior to executing the command. If
requires_system_checks is missing, the value of
requires_model_validation is used. If the latter flag is missing
as well, the default value (True) is used. Defining both
requires_system_checks and requires_model_validation will result
in an error.

	
BaseCommand.requires_model_validation

	

Deprecated since version 1.7: Replaced by requires_system_checks

A boolean; if True, validation of installed models will be
performed prior to executing the command. Default value is
True. To validate an individual application’s models
rather than all applications’ models, call
validate() from handle().

	
BaseCommand.leave_locale_alone

	A boolean indicating whether the locale set in settings should be preserved
during the execution of the command instead of being forcibly set to ‘en-us’.

Default value is False.

Make sure you know what you are doing if you decide to change the value of
this option in your custom command if it creates database content that
is locale-sensitive and such content shouldn’t contain any translations (like
it happens e.g. with django.contrib.auth permissions) as making the locale
differ from the de facto default ‘en-us’ might cause unintended effects. See
the Management commands and locales section above for further details.

This option can’t be False when the
can_import_settings option is set to False too
because attempting to set the locale needs access to settings. This condition
will generate a CommandError.

New in Django 1.6: The leave_locale_alone option was added in Django 1.6.

Methods

BaseCommand has a few methods that can be overridden but only
the handle() method must be implemented.

Implementing a constructor in a subclass

If you implement __init__ in your subclass of BaseCommand,
you must call BaseCommand’s __init__.

class Command(BaseCommand):
 def __init__(self, *args, **kwargs):
 super(Command, self).__init__(*args, **kwargs)
 # ...

	
BaseCommand.get_version()[source]

	Returns the Django version, which should be correct for all built-in Django
commands. User-supplied commands can override this method to return their
own version.

	
BaseCommand.execute(*args, **options)[source]

	Tries to execute this command, performing system checks if needed (as
controlled by the requires_system_checks attribute). If the command
raises a CommandError, it’s intercepted and printed to stderr.

Calling a management command in your code

execute() should not be called directly from your code to execute a
command. Use call_command instead.

	
BaseCommand.handle(*args, **options)[source]

	The actual logic of the command. Subclasses must implement this method.

	
BaseCommand.check(app_configs=None, tags=None, display_num_errors=False)[source]

	

New in Django 1.7: Uses the system check framework to inspect the entire Django project for
potential problems. Serious problems are raised as a CommandError;
warnings are output to stderr; minor notifications are output to stdout.

If app_configs and tags are both None, all system checks are
performed. tags can be a list of check tags, like compatibility or
models.

	
BaseCommand.validate(app=None, display_num_errors=False)[source]

	

Deprecated since version 1.7: Replaced with the check command

If app is None, then all installed apps are checked for errors.

BaseCommand subclasses

	
class AppCommand

	

A management command which takes one or more installed application labels as
arguments, and does something with each of them.

Rather than implementing handle(), subclasses must
implement handle_app_config(), which will be called once for
each application.

	
AppCommand.handle_app_config(app_config, **options)

	Perform the command’s actions for app_config, which will be an
AppConfig instance corresponding to an application
label given on the command line.

Changed in Django 1.7: Previously, AppCommand subclasses had to implement
handle_app(app, **options) where app was a models module. The new
API makes it possible to handle applications without a models module. The
fastest way to migrate is as follows:

def handle_app_config(app_config, **options):
 if app_config.models_module is None:
 return # Or raise an exception.
 app = app_config.models_module
 # Copy the implementation of handle_app(app_config, **options) here.

However, you may be able to simplify the implementation by using directly
the attributes of app_config.

	
class LabelCommand

	

A management command which takes one or more arbitrary arguments
(labels) on the command line, and does something with each of
them.

Rather than implementing handle(), subclasses must implement
handle_label(), which will be called once for each label.

	
LabelCommand.handle_label(label, **options)

	Perform the command’s actions for label, which will be the
string as given on the command line.

	
class NoArgsCommand

	

A command which takes no arguments on the command line.

Rather than implementing handle(), subclasses must implement
handle_noargs(); handle() itself is
overridden to ensure no arguments are passed to the command.

	
NoArgsCommand.handle_noargs(**options)

	Perform this command’s actions

Command exceptions

	
class CommandError[source]

	

Exception class indicating a problem while executing a management
command.

If this exception is raised during the execution of a management
command from a command line console, it will be caught and turned into a
nicely-printed error message to the appropriate output stream (i.e., stderr);
as a result, raising this exception (with a sensible description of the
error) is the preferred way to indicate that something has gone
wrong in the execution of a command.

If a management command is called from code through
call_command, it’s up to you to catch the exception
when needed.

Writing custom model fields

Introduction

The model reference documentation explains how to use
Django’s standard field classes – CharField,
DateField, etc. For many purposes, those classes are
all you’ll need. Sometimes, though, the Django version won’t meet your precise
requirements, or you’ll want to use a field that is entirely different from
those shipped with Django.

Django’s built-in field types don’t cover every possible database column type –
only the common types, such as VARCHAR and INTEGER. For more obscure
column types, such as geographic polygons or even user-created types such as
PostgreSQL custom types [http://www.postgresql.org/docs/current/interactive/sql-createtype.html], you can define your own Django Field subclasses.

Alternatively, you may have a complex Python object that can somehow be
serialized to fit into a standard database column type. This is another case
where a Field subclass will help you use your object with your models.

Our example object

Creating custom fields requires a bit of attention to detail. To make things
easier to follow, we’ll use a consistent example throughout this document:
wrapping a Python object representing the deal of cards in a hand of Bridge [http://en.wikipedia.org/wiki/Contract_bridge].
Don’t worry, you don’t have to know how to play Bridge to follow this example.
You only need to know that 52 cards are dealt out equally to four players, who
are traditionally called north, east, south and west. Our class looks
something like this:

class Hand(object):
 """A hand of cards (bridge style)"""

 def __init__(self, north, east, south, west):
 # Input parameters are lists of cards ('Ah', '9s', etc)
 self.north = north
 self.east = east
 self.south = south
 self.west = west

 # ... (other possibly useful methods omitted) ...

This is just an ordinary Python class, with nothing Django-specific about it.
We’d like to be able to do things like this in our models (we assume the
hand attribute on the model is an instance of Hand):

example = MyModel.objects.get(pk=1)
print(example.hand.north)

new_hand = Hand(north, east, south, west)
example.hand = new_hand
example.save()

We assign to and retrieve from the hand attribute in our model just like
any other Python class. The trick is to tell Django how to handle saving and
loading such an object.

In order to use the Hand class in our models, we do not have to change
this class at all. This is ideal, because it means you can easily write
model support for existing classes where you cannot change the source code.

Note

You might only be wanting to take advantage of custom database column
types and deal with the data as standard Python types in your models;
strings, or floats, for example. This case is similar to our Hand
example and we’ll note any differences as we go along.

Background theory

Database storage

The simplest way to think of a model field is that it provides a way to take a
normal Python object – string, boolean, datetime, or something more
complex like Hand – and convert it to and from a format that is useful
when dealing with the database (and serialization, but, as we’ll see later,
that falls out fairly naturally once you have the database side under control).

Fields in a model must somehow be converted to fit into an existing database
column type. Different databases provide different sets of valid column types,
but the rule is still the same: those are the only types you have to work
with. Anything you want to store in the database must fit into one of
those types.

Normally, you’re either writing a Django field to match a particular database
column type, or there’s a fairly straightforward way to convert your data to,
say, a string.

For our Hand example, we could convert the card data to a string of 104
characters by concatenating all the cards together in a pre-determined order –
say, all the north cards first, then the east, south and west cards. So
Hand objects can be saved to text or character columns in the database.

What does a field class do?

All of Django’s fields (and when we say fields in this document, we always
mean model fields and not form fields) are subclasses
of django.db.models.Field. Most of the information that Django records
about a field is common to all fields – name, help text, uniqueness and so
forth. Storing all that information is handled by Field. We’ll get into the
precise details of what Field can do later on; for now, suffice it to say
that everything descends from Field and then customizes key pieces of the
class behavior.

It’s important to realize that a Django field class is not what is stored in
your model attributes. The model attributes contain normal Python objects. The
field classes you define in a model are actually stored in the Meta class
when the model class is created (the precise details of how this is done are
unimportant here). This is because the field classes aren’t necessary when
you’re just creating and modifying attributes. Instead, they provide the
machinery for converting between the attribute value and what is stored in the
database or sent to the serializer.

Keep this in mind when creating your own custom fields. The Django Field
subclass you write provides the machinery for converting between your Python
instances and the database/serializer values in various ways (there are
differences between storing a value and using a value for lookups, for
example). If this sounds a bit tricky, don’t worry – it will become clearer in
the examples below. Just remember that you will often end up creating two
classes when you want a custom field:

	The first class is the Python object that your users will manipulate.
They will assign it to the model attribute, they will read from it for
displaying purposes, things like that. This is the Hand class in our
example.

	The second class is the Field subclass. This is the class that knows
how to convert your first class back and forth between its permanent
storage form and the Python form.

Writing a field subclass

When planning your Field subclass, first give some
thought to which existing Field class your new field
is most similar to. Can you subclass an existing Django field and save yourself
some work? If not, you should subclass the Field
class, from which everything is descended.

Initializing your new field is a matter of separating out any arguments that are
specific to your case from the common arguments and passing the latter to the
__init__() method of Field (or your parent
class).

In our example, we’ll call our field HandField. (It’s a good idea to call
your Field subclass <Something>Field, so it’s
easily identifiable as a Field subclass.) It doesn’t
behave like any existing field, so we’ll subclass directly from
Field:

from django.db import models

class HandField(models.Field):

 description = "A hand of cards (bridge style)"

 def __init__(self, *args, **kwargs):
 kwargs['max_length'] = 104
 super(HandField, self).__init__(*args, **kwargs)

Our HandField accepts most of the standard field options (see the list
below), but we ensure it has a fixed length, since it only needs to hold 52
card values plus their suits; 104 characters in total.

Note

Many of Django’s model fields accept options that they don’t do anything
with. For example, you can pass both
editable and
auto_now to a
django.db.models.DateField and it will simply ignore the
editable parameter
(auto_now being set implies
editable=False). No error is raised in this case.

This behavior simplifies the field classes, because they don’t need to
check for options that aren’t necessary. They just pass all the options to
the parent class and then don’t use them later on. It’s up to you whether
you want your fields to be more strict about the options they select, or to
use the simpler, more permissive behavior of the current fields.

The Field.__init__() method takes the following parameters:

	verbose_name

	name

	primary_key

	max_length

	unique

	blank

	null

	db_index

	rel: Used for related fields (like ForeignKey). For advanced
use only.

	default

	editable

	serialize: If False, the field will not be serialized when the model
is passed to Django’s serializers. Defaults to
True.

	unique_for_date

	unique_for_month

	unique_for_year

	choices

	help_text

	db_column

	db_tablespace: Only for index creation, if the
backend supports tablespaces. You can usually
ignore this option.

	auto_created: True if the field was automatically created, as for the
OneToOneField used by model inheritance. For
advanced use only.

All of the options without an explanation in the above list have the same
meaning they do for normal Django fields. See the field documentation for examples and details.

Field deconstruction

New in Django 1.7: deconstruct() is part of the migrations framework in Django 1.7 and
above. If you have custom fields from previous versions they will
need this method added before you can use them with migrations.

The counterpoint to writing your __init__() method is writing the
deconstruct() method. This method tells Django how to take an instance
of your new field and reduce it to a serialized form - in particular, what
arguments to pass to __init__() to re-create it.

If you haven’t added any extra options on top of the field you inherited from,
then there’s no need to write a new deconstruct() method. If, however,
you’re, changing the arguments passed in __init__() (like we are in
HandField), you’ll need to supplement the values being passed.

The contract of deconstruct() is simple; it returns a tuple of four items:
the field’s attribute name, the full import path of the field class, the
positional arguments (as a list), and the keyword arguments (as a dict). Note
this is different from the deconstruct() method for custom classes which returns a tuple of three things.

As a custom field author, you don’t need to care about the first two values;
the base Field class has all the code to work out the field’s attribute
name and import path. You do, however, have to care about the positional
and keyword arguments, as these are likely the things you are changing.

For example, in our HandField class we’re always forcibly setting
max_length in __init__(). The deconstruct() method on the base Field
class will see this and try to return it in the keyword arguments; thus,
we can drop it from the keyword arguments for readability:

from django.db import models

class HandField(models.Field):

 def __init__(self, *args, **kwargs):
 kwargs['max_length'] = 104
 super(HandField, self).__init__(*args, **kwargs)

 def deconstruct(self):
 name, path, args, kwargs = super(HandField, self).deconstruct()
 del kwargs["max_length"]
 return name, path, args, kwargs

If you add a new keyword argument, you need to write code to put its value
into kwargs yourself:

from django.db import models

class CommaSepField(models.Field):
 "Implements comma-separated storage of lists"

 def __init__(self, separator=",", *args, **kwargs):
 self.separator = separator
 super(CommaSepField, self).__init__(*args, **kwargs)

 def deconstruct(self):
 name, path, args, kwargs = super(CommaSepField, self).deconstruct()
 # Only include kwarg if it's not the default
 if self.separator != ",":
 kwargs['separator'] = self.separator
 return name, path, args, kwargs

More complex examples are beyond the scope of this document, but remember -
for any configuration of your Field instance, deconstruct() must return
arguments that you can pass to __init__ to reconstruct that state.

Pay extra attention if you set new default values for arguments in the
Field superclass; you want to make sure they’re always included, rather
than disappearing if they take on the old default value.

In addition, try to avoid returning values as positional arguments; where
possible, return values as keyword arguments for maximum future compatibility.
Of course, if you change the names of things more often than their position
in the constructor’s argument list, you might prefer positional, but bear in
mind that people will be reconstructing your field from the serialized version
for quite a while (possibly years), depending how long your migrations live for.

You can see the results of deconstruction by looking in migrations that include
the field, and you can test deconstruction in unit tests by just deconstructing
and reconstructing the field:

name, path, args, kwargs = my_field_instance.deconstruct()
new_instance = MyField(*args, **kwargs)
self.assertEqual(my_field_instance.some_attribute, new_instance.some_attribute)

The SubfieldBase metaclass

	
class django.db.models.SubfieldBase

	

As we indicated in the introduction, field subclasses are often needed for
two reasons: either to take advantage of a custom database column type, or to
handle complex Python types. Obviously, a combination of the two is also
possible. If you’re only working with custom database column types and your
model fields appear in Python as standard Python types direct from the
database backend, you don’t need to worry about this section.

If you’re handling custom Python types, such as our Hand class, we need to
make sure that when Django initializes an instance of our model and assigns a
database value to our custom field attribute, we convert that value into the
appropriate Python object. The details of how this happens internally are a
little complex, but the code you need to write in your Field class is
simple: make sure your field subclass uses a special metaclass:

For example, on Python 2:

class HandField(models.Field):

 description = "A hand of cards (bridge style)"

 __metaclass__ = models.SubfieldBase

 def __init__(self, *args, **kwargs):
 ...

On Python 3, in lieu of setting the __metaclass__ attribute, add
metaclass to the class definition:

class HandField(models.Field, metaclass=models.SubfieldBase):
 ...

If you want your code to work on Python 2 & 3, you can use
six.with_metaclass() [http://pythonhosted.org/six/index.html#six.with_metaclass]:

from django.utils.six import with_metaclass

class HandField(with_metaclass(models.SubfieldBase, models.Field)):
 ...

This ensures that the to_python() method will always be called when the
attribute is initialized.

ModelForms and custom fields

If you use SubfieldBase, to_python() will be
called every time an instance of the field is assigned a value (in addition to
its usual call when retrieving the value from the database). This means that
whenever a value may be assigned to the field, you need to ensure that it will
be of the correct datatype, or that you handle any exceptions.

This is especially important if you use ModelForms. When saving a ModelForm, Django will use
form values to instantiate model instances. However, if the cleaned
form data can’t be used as valid input to the field, the normal form
validation process will break.

Therefore, you must ensure that the form field used to represent your
custom field performs whatever input validation and data cleaning is
necessary to convert user-provided form input into a
to_python()-compatible model field value. This may require writing a
custom form field, and/or implementing the formfield() method on
your field to return a form field class whose to_python() returns the
correct datatype.

Documenting your custom field

As always, you should document your field type, so users will know what it is.
In addition to providing a docstring for it, which is useful for developers,
you can also allow users of the admin app to see a short description of the
field type via the django.contrib.admindocs application. To do this simply provide
descriptive text in a description class attribute of your custom
field. In the above example, the description displayed by the admindocs
application for a HandField will be ‘A hand of cards (bridge style)’.

In the django.contrib.admindocs display, the field description is
interpolated with field.__dict__ which allows the description to
incorporate arguments of the field. For example, the description for
CharField is:

description = _("String (up to %(max_length)s)")

Useful methods

Once you’ve created your Field subclass and set up
the __metaclass__, you might consider overriding a few standard methods,
depending on your field’s behavior. The list of methods below is in
approximately decreasing order of importance, so start from the top.

Custom database types

Say you’ve created a PostgreSQL custom type called mytype. You can
subclass Field and implement the db_type() method, like so:

from django.db import models

class MytypeField(models.Field):
 def db_type(self, connection):
 return 'mytype'

Once you have MytypeField, you can use it in any model, just like any other
Field type:

class Person(models.Model):
 name = models.CharField(max_length=80)
 something_else = MytypeField()

If you aim to build a database-agnostic application, you should account for
differences in database column types. For example, the date/time column type
in PostgreSQL is called timestamp, while the same column in MySQL is called
datetime. The simplest way to handle this in a db_type()
method is to check the connection.settings_dict['ENGINE'] attribute.

For example:

class MyDateField(models.Field):
 def db_type(self, connection):
 if connection.settings_dict['ENGINE'] == 'django.db.backends.mysql':
 return 'datetime'
 else:
 return 'timestamp'

The db_type() method is called by Django when the framework
constructs the CREATE TABLE statements for your application – that is,
when you first create your tables. It is also called when constructing a
WHERE clause that includes the model field – that is, when you retrieve data
using QuerySet methods like get(), filter(), and exclude() and have
the model field as an argument. It’s not called at any other time, so it can afford to
execute slightly complex code, such as the connection.settings_dict check in
the above example.

Some database column types accept parameters, such as CHAR(25), where the
parameter 25 represents the maximum column length. In cases like these,
it’s more flexible if the parameter is specified in the model rather than being
hard-coded in the db_type() method. For example, it wouldn’t make much
sense to have a CharMaxlength25Field, shown here:

This is a silly example of hard-coded parameters.
class CharMaxlength25Field(models.Field):
 def db_type(self, connection):
 return 'char(25)'

In the model:
class MyModel(models.Model):
 # ...
 my_field = CharMaxlength25Field()

The better way of doing this would be to make the parameter specifiable at run
time – i.e., when the class is instantiated. To do that, just implement
Field.__init__(), like so:

This is a much more flexible example.
class BetterCharField(models.Field):
 def __init__(self, max_length, *args, **kwargs):
 self.max_length = max_length
 super(BetterCharField, self).__init__(*args, **kwargs)

 def db_type(self, connection):
 return 'char(%s)' % self.max_length

In the model:
class MyModel(models.Model):
 # ...
 my_field = BetterCharField(25)

Finally, if your column requires truly complex SQL setup, return None from
db_type(). This will cause Django’s SQL creation code to skip
over this field. You are then responsible for creating the column in the right
table in some other way, of course, but this gives you a way to tell Django to
get out of the way.

Converting database values to Python objects

If your custom Field class deals with data structures that are more
complex than strings, dates, integers or floats, then you’ll need to override
to_python(). As a general rule, the method should deal gracefully
with any of the following arguments:

	An instance of the correct type (e.g., Hand in our ongoing example).

	A string (e.g., from a deserializer).

	Whatever the database returns for the column type you’re using.

In our HandField class, we’re storing the data as a VARCHAR field in the
database, so we need to be able to process strings and Hand instances in
to_python():

import re

class HandField(models.Field):
 # ...

 def to_python(self, value):
 if isinstance(value, Hand):
 return value

 # The string case.
 p1 = re.compile('.{26}')
 p2 = re.compile('..')
 args = [p2.findall(x) for x in p1.findall(value)]
 if len(args) != 4:
 raise ValidationError("Invalid input for a Hand instance")
 return Hand(*args)

Notice that we always return a Hand instance from this method. That’s the
Python object type we want to store in the model’s attribute. If anything is
going wrong during value conversion, you should raise a
ValidationError exception.

Remember: If your custom field needs the to_python() method to be
called when it is created, you should be using The SubfieldBase metaclass
mentioned earlier. Otherwise to_python() won’t be called
automatically.

Warning

If your custom field allows null=True, any field method that takes
value as an argument, like to_python() and
get_prep_value(), should handle the case when value is
None.

Converting Python objects to query values

Since using a database requires conversion in both ways, if you override
to_python() you also have to override get_prep_value()
to convert Python objects back to query values.

For example:

class HandField(models.Field):
 # ...

 def get_prep_value(self, value):
 return ''.join([''.join(l) for l in (value.north,
 value.east, value.south, value.west)])

Warning

If your custom field uses the CHAR, VARCHAR or TEXT
types for MySQL, you must make sure that get_prep_value()
always returns a string type. MySQL performs flexible and unexpected
matching when a query is performed on these types and the provided
value is an integer, which can cause queries to include unexpected
objects in their results. This problem cannot occur if you always
return a string type from get_prep_value().

Converting query values to database values

Some data types (for example, dates) need to be in a specific format
before they can be used by a database backend.
get_db_prep_value() is the method where those conversions should
be made. The specific connection that will be used for the query is
passed as the connection parameter. This allows you to use
backend-specific conversion logic if it is required.

For example, Django uses the following method for its
BinaryField:

def get_db_prep_value(self, value, connection, prepared=False):
 value = super(BinaryField, self).get_db_prep_value(value, connection, prepared)
 if value is not None:
 return connection.Database.Binary(value)
 return value

In case your custom field needs a special conversion when being saved that is
not the same as the conversion used for normal query parameters, you can
override get_db_prep_save().

Preprocessing values before saving

If you want to preprocess the value just before saving, you can use
pre_save(). For example, Django’s
DateTimeField uses this method to set the attribute
correctly in the case of auto_now or
auto_now_add.

If you do override this method, you must return the value of the attribute at
the end. You should also update the model’s attribute if you make any changes
to the value so that code holding references to the model will always see the
correct value.

Preparing values for use in database lookups

As with value conversions, preparing a value for database lookups is a
two phase process.

get_prep_lookup() performs the first phase of lookup preparation:
type conversion and data validation.

Prepares the value for passing to the database when used in a lookup (a
WHERE constraint in SQL). The lookup_type parameter will be one of the
valid Django filter lookups: exact, iexact, contains, icontains,
gt, gte, lt, lte, in, startswith, istartswith,
endswith, iendswith, range, year, month, day,
isnull, search, regex, and iregex.

New in Django 1.7: If you are using Custom lookups the
lookup_type can be any lookup_name used by the project’s custom
lookups.

Your method must be prepared to handle all of these lookup_type values and
should raise either a ValueError if the value is of the wrong sort (a
list when you were expecting an object, for example) or a TypeError if
your field does not support that type of lookup. For many fields, you can get
by with handling the lookup types that need special handling for your field
and pass the rest to the get_db_prep_lookup() method of the parent
class.

If you needed to implement get_db_prep_save(), you will usually need to
implement get_prep_lookup(). If you don’t, get_prep_value() will
be called by the default implementation, to manage exact, gt, gte,
lt, lte, in and range lookups.

You may also want to implement this method to limit the lookup types that could
be used with your custom field type.

Note that, for "range" and "in" lookups, get_prep_lookup will receive
a list of objects (presumably of the right type) and will need to convert them
to a list of things of the right type for passing to the database. Most of the
time, you can reuse get_prep_value(), or at least factor out some common
pieces.

For example, the following code implements get_prep_lookup to limit the
accepted lookup types to exact and in:

class HandField(models.Field):
 # ...

 def get_prep_lookup(self, lookup_type, value):
 # We only handle 'exact' and 'in'. All others are errors.
 if lookup_type == 'exact':
 return self.get_prep_value(value)
 elif lookup_type == 'in':
 return [self.get_prep_value(v) for v in value]
 else:
 raise TypeError('Lookup type %r not supported.' % lookup_type)

For performing database-specific data conversions required by a lookup,
you can override get_db_prep_lookup().

Specifying the form field for a model field

To customize the form field used by ModelForm, you can
override formfield().

The form field class can be specified via the form_class and
choices_form_class arguments; the latter is used if the field has choices
specified, the former otherwise. If these arguments are not provided,
CharField or TypedChoiceField
will be used.

All of the kwargs dictionary is passed directly to the form field’s
__init__() method. Normally, all you need to do is set up a good default
for the form_class (and maybe choices_form_class) argument and then
delegate further handling to the parent class. This might require you to write
a custom form field (and even a form widget). See the forms documentation for information about this.

Continuing our ongoing example, we can write the formfield() method
as:

class HandField(models.Field):
 # ...

 def formfield(self, **kwargs):
 # This is a fairly standard way to set up some defaults
 # while letting the caller override them.
 defaults = {'form_class': MyFormField}
 defaults.update(kwargs)
 return super(HandField, self).formfield(**defaults)

This assumes we’ve imported a MyFormField field class (which has its own
default widget). This document doesn’t cover the details of writing custom form
fields.

Emulating built-in field types

If you have created a db_type() method, you don’t need to worry about
get_internal_type() – it won’t be used much. Sometimes, though, your
database storage is similar in type to some other field, so you can use that
other field’s logic to create the right column.

For example:

class HandField(models.Field):
 # ...

 def get_internal_type(self):
 return 'CharField'

No matter which database backend we are using, this will mean that
migrate and other SQL commands create the right column type for
storing a string.

If get_internal_type() returns a string that is not known to Django for
the database backend you are using – that is, it doesn’t appear in
django.db.backends.<db_name>.creation.data_types – the string will still be
used by the serializer, but the default db_type() method will
return None. See the documentation of db_type() for reasons why
this might be useful. Putting a descriptive string in as the type of the field
for the serializer is a useful idea if you’re ever going to be using the
serializer output in some other place, outside of Django.

Converting field data for serialization

To customize how the values are serialized by a serializer, you can override
value_to_string(). Calling Field._get_val_from_obj(obj) is the
best way to get the value serialized. For example, since our HandField uses
strings for its data storage anyway, we can reuse some existing conversion code:

class HandField(models.Field):
 # ...

 def value_to_string(self, obj):
 value = self._get_val_from_obj(obj)
 return self.get_prep_value(value)

Some general advice

Writing a custom field can be a tricky process, particularly if you’re doing
complex conversions between your Python types and your database and
serialization formats. Here are a couple of tips to make things go more
smoothly:

	Look at the existing Django fields (in
django/db/models/fields/__init__.py) for inspiration. Try to find
a field that’s similar to what you want and extend it a little bit,
instead of creating an entirely new field from scratch.

	Put a __str__() (__unicode__() on Python 2) method on the class you’re
wrapping up as a field. There are a lot of places where the default
behavior of the field code is to call
force_text() on the value. (In our
examples in this document, value would be a Hand instance, not a
HandField). So if your __str__() method (__unicode__() on
Python 2) automatically converts to the string form of your Python object,
you can save yourself a lot of work.

Writing a FileField subclass

In addition to the above methods, fields that deal with files have a few other
special requirements which must be taken into account. The majority of the
mechanics provided by FileField, such as controlling database storage and
retrieval, can remain unchanged, leaving subclasses to deal with the challenge
of supporting a particular type of file.

Django provides a File class, which is used as a proxy to the file’s
contents and operations. This can be subclassed to customize how the file is
accessed, and what methods are available. It lives at
django.db.models.fields.files, and its default behavior is explained in the
file documentation.

Once a subclass of File is created, the new FileField subclass must be
told to use it. To do so, simply assign the new File subclass to the special
attr_class attribute of the FileField subclass.

A few suggestions

In addition to the above details, there are a few guidelines which can greatly
improve the efficiency and readability of the field’s code.

	The source for Django’s own ImageField (in
django/db/models/fields/files.py) is a great example of how to
subclass FileField to support a particular type of file, as it
incorporates all of the techniques described above.

	Cache file attributes wherever possible. Since files may be stored in
remote storage systems, retrieving them may cost extra time, or even
money, that isn’t always necessary. Once a file is retrieved to obtain
some data about its content, cache as much of that data as possible to
reduce the number of times the file must be retrieved on subsequent
calls for that information.

Custom Lookups

New in Django 1.7.

Django offers a wide variety of built-in lookups for
filtering (for example, exact and icontains). This documentation
explains how to write custom lookups and how to alter the working of existing
lookups. For the API references of lookups, see the Lookup API reference.

A simple lookup example

Let’s start with a simple custom lookup. We will write a custom lookup ne
which works opposite to exact. Author.objects.filter(name__ne='Jack')
will translate to the SQL:

"author"."name" <> 'Jack'

This SQL is backend independent, so we don’t need to worry about different
databases.

There are two steps to making this work. Firstly we need to implement the
lookup, then we need to tell Django about it. The implementation is quite
straightforward:

from django.db.models import Lookup

class NotEqual(Lookup):
 lookup_name = 'ne'

 def as_sql(self, qn, connection):
 lhs, lhs_params = self.process_lhs(qn, connection)
 rhs, rhs_params = self.process_rhs(qn, connection)
 params = lhs_params + rhs_params
 return '%s <> %s' % (lhs, rhs), params

To register the NotEqual lookup we will just need to call
register_lookup on the field class we want the lookup to be available. In
this case, the lookup makes sense on all Field subclasses, so we register
it with Field directly:

from django.db.models.fields import Field
Field.register_lookup(NotEqual)

We can now use foo__ne for any field foo. You will need to ensure that
this registration happens before you try to create any querysets using it. You
could place the implementation in a models.py file, or register the lookup
in the ready() method of an AppConfig.

Taking a closer look at the implementation, the first required attribute is
lookup_name. This allows the ORM to understand how to interpret name__ne
and use NotEqual to generate the SQL. By convention, these names are always
lowercase strings containing only letters, but the only hard requirement is
that it must not contain the string __.

We then need to define the as_sql method. This takes a SQLCompiler
object, called qn, and the active database connection. SQLCompiler
objects are not documented, but the only thing we need to know about them is
that they have a compile() method which returns a tuple containing a SQL
string, and the parameters to be interpolated into that string. In most cases,
you don’t need to use it directly and can pass it on to process_lhs() and
process_rhs().

A Lookup works against two values, lhs and rhs, standing for
left-hand side and right-hand side. The left-hand side is usually a field
reference, but it can be anything implementing the query expression API. The right-hand is the value given by the user. In the
example Author.objects.filter(name__ne='Jack'), the left-hand side is a
reference to the name field of the Author model, and 'Jack' is the
right-hand side.

We call process_lhs and process_rhs to convert them into the values we
need for SQL using the qn object described before. These methods return
tuples containing some SQL and the parameters to be interpolated into that SQL,
just as we need to return from our as_sql method. In the above example,
process_lhs returns ('"author"."name"', []) and process_rhs returns
('"%s"', ['Jack']). In this example there were no parameters for the left
hand side, but this would depend on the object we have, so we still need to
include them in the parameters we return.

Finally we combine the parts into a SQL expression with <>, and supply all
the parameters for the query. We then return a tuple containing the generated
SQL string and the parameters.

A simple transformer example

The custom lookup above is great, but in some cases you may want to be able to
chain lookups together. For example, let’s suppose we are building an
application where we want to make use of the abs() operator.
We have an Experiment model which records a start value, end value, and the
change (start - end). We would like to find all experiments where the change
was equal to a certain amount (Experiment.objects.filter(change__abs=27)),
or where it did not exceed a certain amount
(Experiment.objects.filter(change__abs__lt=27)).

Note

This example is somewhat contrived, but it nicely demonstrates the range of
functionality which is possible in a database backend independent manner,
and without duplicating functionality already in Django.

We will start by writing a AbsoluteValue transformer. This will use the SQL
function ABS() to transform the value before comparison:

from django.db.models import Transform

class AbsoluteValue(Transform):
 lookup_name = 'abs'

 def as_sql(self, qn, connection):
 lhs, params = qn.compile(self.lhs)
 return "ABS(%s)" % lhs, params

Next, lets register it for IntegerField:

from django.db.models import IntegerField
IntegerField.register_lookup(AbsoluteValue)

We can now run the queries we had before.
Experiment.objects.filter(change__abs=27) will generate the following SQL:

SELECT ... WHERE ABS("experiments"."change") = 27

By using Transform instead of Lookup it means we are able to chain
further lookups afterwards. So
Experiment.objects.filter(change__abs__lt=27) will generate the following
SQL:

SELECT ... WHERE ABS("experiments"."change") < 27

Subclasses of Transform usually only operate on the left-hand side of the
expression. Further lookups will work on the transformed value. Note that in
this case where there is no other lookup specified, Django interprets
change__abs=27 as change__abs__exact=27.

When looking for which lookups are allowable after the Transform has been
applied, Django uses the output_field attribute. We didn’t need to specify
this here as it didn’t change, but supposing we were applying AbsoluteValue
to some field which represents a more complex type (for example a point
relative to an origin, or a complex number) then we may have wanted to specify
that the transform returns a FloatField type for further lookups. This can
be done by adding an output_field attribute to the transform:

from django.db.models import FloatField, Transform

class AbsoluteValue(Transform):
 lookup_name = 'abs'

 def as_sql(self, qn, connection):
 lhs, params = qn.compile(self.lhs)
 return "ABS(%s)" % lhs, params

 @property
 def output_field(self):
 return FloatField()

This ensures that further lookups like abs__lte behave as they would for
a FloatField.

Writing an efficient abs__lt lookup

When using the above written abs lookup, the SQL produced will not use
indexes efficiently in some cases. In particular, when we use
change__abs__lt=27, this is equivalent to change__gt=-27 AND
change__lt=27. (For the lte case we could use the SQL BETWEEN).

So we would like Experiment.objects.filter(change__abs__lt=27) to generate
the following SQL:

SELECT .. WHERE "experiments"."change" < 27 AND "experiments"."change" > -27

The implementation is:

from django.db.models import Lookup

class AbsoluteValueLessThan(Lookup):
 lookup_name = 'lt'

 def as_sql(self, qn, connection):
 lhs, lhs_params = qn.compile(self.lhs.lhs)
 rhs, rhs_params = self.process_rhs(qn, connection)
 params = lhs_params + rhs_params + lhs_params + rhs_params
 return '%s < %s AND %s > -%s' % (lhs, rhs, lhs, rhs), params

AbsoluteValue.register_lookup(AbsoluteValueLessThan)

There are a couple of notable things going on. First, AbsoluteValueLessThan
isn’t calling process_lhs(). Instead it skips the transformation of the
lhs done by AbsoluteValue and uses the original lhs. That is, we
want to get 27 not ABS(27). Referring directly to self.lhs.lhs is
safe as AbsoluteValueLessThan can be accessed only from the
AbsoluteValue lookup, that is the lhs is always an instance of
AbsoluteValue.

Notice also that as both sides are used multiple times in the query the params
need to contain lhs_params and rhs_params multiple times.

The final query does the inversion (27 to -27) directly in the
database. The reason for doing this is that if the self.rhs is something else
than a plain integer value (for example an F() reference) we can’t do the
transformations in Python.

Note

In fact, most lookups with __abs could be implemented as range queries
like this, and on most database backends it is likely to be more sensible to
do so as you can make use of the indexes. However with PostgreSQL you may
want to add an index on abs(change) which would allow these queries to
be very efficient.

Writing alternative implementations for existing lookups

Sometimes different database vendors require different SQL for the same
operation. For this example we will rewrite a custom implementation for
MySQL for the NotEqual operator. Instead of <> we will be using !=
operator. (Note that in reality almost all databases support both, including
all the official databases supported by Django).

We can change the behavior on a specific backend by creating a subclass of
NotEqual with a as_mysql method:

class MySQLNotEqual(NotEqual):
 def as_mysql(self, qn, connection):
 lhs, lhs_params = self.process_lhs(qn, connection)
 rhs, rhs_params = self.process_rhs(qn, connection)
 params = lhs_params + rhs_params
 return '%s != %s' % (lhs, rhs), params

Field.register_lookup(MySQLNotEqual)

We can then register it with Field. It takes the place of the original
NotEqual class as it has the same lookup_name.

When compiling a query, Django first looks for as_%s % connection.vendor
methods, and then falls back to as_sql. The vendor names for the in-built
backends are sqlite, postgresql, oracle and mysql.

How Django determines the lookups and transforms which are used

In some cases you may wish to dynamically change which Transform or
Lookup is returned based on the name passed in, rather than fixing it. As
an example, you could have a field which stores coordinates or an arbitrary
dimension, and wish to allow a syntax like .filter(coords__x7=4) to return
the objects where the 7th coordinate has value 4. In order to do this, you
would override get_lookup with something like:

class CoordinatesField(Field):
 def get_lookup(self, lookup_name):
 if lookup_name.startswith('x'):
 try:
 dimension = int(lookup_name[1:])
 except ValueError:
 pass
 finally:
 return get_coordinate_lookup(dimension)
 return super(CoordinatesField, self).get_lookup(lookup_name)

You would then define get_coordinate_lookup appropriately to return a
Lookup subclass which handles the relevant value of dimension.

There is a similarly named method called get_transform(). get_lookup()
should always return a Lookup subclass, and get_transform() a
Transform subclass. It is important to remember that Transform
objects can be further filtered on, and Lookup objects cannot.

When filtering, if there is only one lookup name remaining to be resolved, we
will look for a Lookup. If there are multiple names, it will look for a
Transform. In the situation where there is only one name and a Lookup
is not found, we look for a Transform and then the exact lookup on that
Transform. All call sequences always end with a Lookup. To clarify:

	.filter(myfield__mylookup) will call myfield.get_lookup('mylookup').

	.filter(myfield__mytransform__mylookup) will call
myfield.get_transform('mytransform'), and then
mytransform.get_lookup('mylookup').

	.filter(myfield__mytransform) will first call
myfield.get_lookup('mytransform'), which will fail, so it will fall back
to calling myfield.get_transform('mytransform') and then
mytransform.get_lookup('exact').

Custom template tags and filters

Django’s template system comes with a wide variety of built-in
tags and filters designed to address the
presentation logic needs of your application. Nevertheless, you may
find yourself needing functionality that is not covered by the core
set of template primitives. You can extend the template engine by
defining custom tags and filters using Python, and then make them
available to your templates using the {% load %} tag.

Code layout

Custom template tags and filters must live inside a Django app. If they relate
to an existing app it makes sense to bundle them there; otherwise, you should
create a new app to hold them.

The app should contain a templatetags directory, at the same level as
models.py, views.py, etc. If this doesn’t already exist, create it -
don’t forget the __init__.py file to ensure the directory is treated as a
Python package. After adding this module, you will need to restart your server
before you can use the tags or filters in templates.

Your custom tags and filters will live in a module inside the templatetags
directory. The name of the module file is the name you’ll use to load the tags
later, so be careful to pick a name that won’t clash with custom tags and
filters in another app.

For example, if your custom tags/filters are in a file called
poll_extras.py, your app layout might look like this:

polls/
 __init__.py
 models.py
 templatetags/
 __init__.py
 poll_extras.py
 views.py

And in your template you would use the following:

{% load poll_extras %}

The app that contains the custom tags must be in INSTALLED_APPS in
order for the {% load %} tag to work. This is a security feature:
It allows you to host Python code for many template libraries on a single host
machine without enabling access to all of them for every Django installation.

There’s no limit on how many modules you put in the templatetags package.
Just keep in mind that a {% load %} statement will load
tags/filters for the given Python module name, not the name of the app.

To be a valid tag library, the module must contain a module-level variable
named register that is a template.Library instance, in which all the
tags and filters are registered. So, near the top of your module, put the
following:

from django import template

register = template.Library()

Behind the scenes

For a ton of examples, read the source code for Django’s default filters
and tags. They’re in django/template/defaultfilters.py and
django/template/defaulttags.py, respectively.

For more information on the load tag, read its documentation.

Writing custom template filters

Custom filters are just Python functions that take one or two arguments:

	The value of the variable (input) – not necessarily a string.

	The value of the argument – this can have a default value, or be left
out altogether.

For example, in the filter {{ var|foo:"bar" }}, the filter foo would be
passed the variable var and the argument "bar".

Usually any exception raised from a template filter will be exposed as a server
error. Thus, filter functions should avoid raising exceptions if there is a
reasonable fallback value to return. In case of input that represents a clear
bug in a template, raising an exception may still be better than silent failure
which hides the bug.

Here’s an example filter definition:

def cut(value, arg):
 """Removes all values of arg from the given string"""
 return value.replace(arg, '')

And here’s an example of how that filter would be used:

{{ somevariable|cut:"0" }}

Most filters don’t take arguments. In this case, just leave the argument out of
your function. Example:

def lower(value): # Only one argument.
 """Converts a string into all lowercase"""
 return value.lower()

Registering custom filters

	
django.template.Library.filter()

	

Once you’ve written your filter definition, you need to register it with
your Library instance, to make it available to Django’s template language:

register.filter('cut', cut)
register.filter('lower', lower)

The Library.filter() method takes two arguments:

	The name of the filter – a string.

	The compilation function – a Python function (not the name of the
function as a string).

You can use register.filter() as a decorator instead:

@register.filter(name='cut')
def cut(value, arg):
 return value.replace(arg, '')

@register.filter
def lower(value):
 return value.lower()

If you leave off the name argument, as in the second example above, Django
will use the function’s name as the filter name.

Finally, register.filter() also accepts three keyword arguments,
is_safe, needs_autoescape, and expects_localtime. These arguments
are described in filters and auto-escaping and
filters and time zones below.

Template filters that expect strings

	
django.template.defaultfilters.stringfilter()

	

If you’re writing a template filter that only expects a string as the first
argument, you should use the decorator stringfilter. This will
convert an object to its string value before being passed to your function:

from django import template
from django.template.defaultfilters import stringfilter

register = template.Library()

@register.filter
@stringfilter
def lower(value):
 return value.lower()

This way, you’ll be able to pass, say, an integer to this filter, and it
won’t cause an AttributeError (because integers don’t have lower()
methods).

Filters and auto-escaping

When writing a custom filter, give some thought to how the filter will interact
with Django’s auto-escaping behavior. Note that three types of strings can be
passed around inside the template code:

	Raw strings are the native Python str or unicode types. On
output, they’re escaped if auto-escaping is in effect and presented
unchanged, otherwise.

	Safe strings are strings that have been marked safe from further
escaping at output time. Any necessary escaping has already been done.
They’re commonly used for output that contains raw HTML that is intended
to be interpreted as-is on the client side.

Internally, these strings are of type SafeBytes or SafeText.
They share a common base class of SafeData, so you can test
for them using code like:

if isinstance(value, SafeData):
 # Do something with the "safe" string.
 ...

	Strings marked as “needing escaping” are always escaped on
output, regardless of whether they are in an autoescape block or
not. These strings are only escaped once, however, even if auto-escaping
applies.

Internally, these strings are of type EscapeBytes or
EscapeText. Generally you don’t have to worry about these; they
exist for the implementation of the escape filter.

Template filter code falls into one of two situations:

	Your filter does not introduce any HTML-unsafe characters (<, >,
', " or &) into the result that were not already present. In
this case, you can let Django take care of all the auto-escaping
handling for you. All you need to do is set the is_safe flag to True
when you register your filter function, like so:

@register.filter(is_safe=True)
def myfilter(value):
 return value

This flag tells Django that if a “safe” string is passed into your
filter, the result will still be “safe” and if a non-safe string is
passed in, Django will automatically escape it, if necessary.

You can think of this as meaning “this filter is safe – it doesn’t
introduce any possibility of unsafe HTML.”

The reason is_safe is necessary is because there are plenty of
normal string operations that will turn a SafeData object back into
a normal str or unicode object and, rather than try to catch
them all, which would be very difficult, Django repairs the damage after
the filter has completed.

For example, suppose you have a filter that adds the string xx to
the end of any input. Since this introduces no dangerous HTML characters
to the result (aside from any that were already present), you should
mark your filter with is_safe:

@register.filter(is_safe=True)
def add_xx(value):
 return '%sxx' % value

When this filter is used in a template where auto-escaping is enabled,
Django will escape the output whenever the input is not already marked
as “safe”.

By default, is_safe is False, and you can omit it from any filters
where it isn’t required.

Be careful when deciding if your filter really does leave safe strings
as safe. If you’re removing characters, you might inadvertently leave
unbalanced HTML tags or entities in the result. For example, removing a
> from the input might turn <a> into <a, which would need to
be escaped on output to avoid causing problems. Similarly, removing a
semicolon (;) can turn & into &, which is no longer a
valid entity and thus needs further escaping. Most cases won’t be nearly
this tricky, but keep an eye out for any problems like that when
reviewing your code.

Marking a filter is_safe will coerce the filter’s return value to
a string. If your filter should return a boolean or other non-string
value, marking it is_safe will probably have unintended
consequences (such as converting a boolean False to the string
‘False’).

	Alternatively, your filter code can manually take care of any necessary
escaping. This is necessary when you’re introducing new HTML markup into
the result. You want to mark the output as safe from further
escaping so that your HTML markup isn’t escaped further, so you’ll need
to handle the input yourself.

To mark the output as a safe string, use
django.utils.safestring.mark_safe().

Be careful, though. You need to do more than just mark the output as
safe. You need to ensure it really is safe, and what you do depends on
whether auto-escaping is in effect. The idea is to write filters that
can operate in templates where auto-escaping is either on or off in
order to make things easier for your template authors.

In order for your filter to know the current auto-escaping state, set the
needs_autoescape flag to True when you register your filter function.
(If you don’t specify this flag, it defaults to False). This flag tells
Django that your filter function wants to be passed an extra keyword
argument, called autoescape, that is True if auto-escaping is in
effect and False otherwise.

For example, let’s write a filter that emphasizes the first character of
a string:

from django import template
from django.utils.html import conditional_escape
from django.utils.safestring import mark_safe

register = template.Library()

@register.filter(needs_autoescape=True)
def initial_letter_filter(text, autoescape=None):
 first, other = text[0], text[1:]
 if autoescape:
 esc = conditional_escape
 else:
 esc = lambda x: x
 result = '%s%s' % (esc(first), esc(other))
 return mark_safe(result)

The needs_autoescape flag and the autoescape keyword argument mean
that our function will know whether automatic escaping is in effect when the
filter is called. We use autoescape to decide whether the input data
needs to be passed through django.utils.html.conditional_escape or not.
(In the latter case, we just use the identity function as the “escape”
function.) The conditional_escape() function is like escape() except
it only escapes input that is not a SafeData instance. If a
SafeData instance is passed to conditional_escape(), the data is
returned unchanged.

Finally, in the above example, we remember to mark the result as safe
so that our HTML is inserted directly into the template without further
escaping.

There’s no need to worry about the is_safe flag in this case
(although including it wouldn’t hurt anything). Whenever you manually
handle the auto-escaping issues and return a safe string, the
is_safe flag won’t change anything either way.

Warning

Avoiding XSS vulnerabilities when reusing built-in filters

Be careful when reusing Django’s built-in filters. You’ll need to pass
autoescape=True to the filter in order to get the proper autoescaping
behavior and avoid a cross-site script vulnerability.

For example, if you wanted to write a custom filter called
urlize_and_linebreaks that combined the urlize and
linebreaksbr filters, the filter would look like:

from django.template.defaultfilters import linebreaksbr, urlize

@register.filter
def urlize_and_linebreaks(text):
 return linebreaksbr(urlize(text, autoescape=True), autoescape=True)

Then:

{{ comment|urlize_and_linebreaks }}

would be equivalent to:

{{ comment|urlize|linebreaksbr }}

Filters and time zones

If you write a custom filter that operates on datetime [http://docs.python.org/3/library/datetime.html#datetime.datetime]
objects, you’ll usually register it with the expects_localtime flag set to
True:

@register.filter(expects_localtime=True)
def businesshours(value):
 try:
 return 9 <= value.hour < 17
 except AttributeError:
 return ''

When this flag is set, if the first argument to your filter is a time zone
aware datetime, Django will convert it to the current time zone before passing
it to your filter when appropriate, according to rules for time zones
conversions in templates.

Writing custom template tags

Tags are more complex than filters, because tags can do anything.

A quick overview

Above, this document explained that the template system works in a two-step
process: compiling and rendering. To define a custom template tag, you specify
how the compilation works and how the rendering works.

When Django compiles a template, it splits the raw template text into
‘’nodes’‘. Each node is an instance of django.template.Node and has
a render() method. A compiled template is, simply, a list of Node
objects. When you call render() on a compiled template object, the template
calls render() on each Node in its node list, with the given context.
The results are all concatenated together to form the output of the template.

Thus, to define a custom template tag, you specify how the raw template tag is
converted into a Node (the compilation function), and what the node’s
render() method does.

Writing the compilation function

For each template tag the template parser encounters, it calls a Python
function with the tag contents and the parser object itself. This function is
responsible for returning a Node instance based on the contents of the tag.

For example, let’s write a template tag, {% current_time %}, that displays
the current date/time, formatted according to a parameter given in the tag, in
strftime() [http://docs.python.org/3/library/time.html#time.strftime] syntax. It’s a good idea to decide the tag syntax before
anything else. In our case, let’s say the tag should be used like this:

<p>The time is {% current_time "%Y-%m-%d %I:%M %p" %}.</p>

The parser for this function should grab the parameter and create a Node
object:

from django import template
def do_current_time(parser, token):
 try:
 # split_contents() knows not to split quoted strings.
 tag_name, format_string = token.split_contents()
 except ValueError:
 raise template.TemplateSyntaxError(
 "%r tag requires a single argument" % token.contents.split()[0]
)
 if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
 raise template.TemplateSyntaxError(
 "%r tag's argument should be in quotes" % tag_name
)
 return CurrentTimeNode(format_string[1:-1])

Notes:

	parser is the template parser object. We don’t need it in this
example.

	token.contents is a string of the raw contents of the tag. In our
example, it’s 'current_time "%Y-%m-%d %I:%M %p"'.

	The token.split_contents() method separates the arguments on spaces
while keeping quoted strings together. The more straightforward
token.contents.split() wouldn’t be as robust, as it would naively
split on all spaces, including those within quoted strings. It’s a good
idea to always use token.split_contents().

	This function is responsible for raising
django.template.TemplateSyntaxError, with helpful messages, for
any syntax error.

	The TemplateSyntaxError exceptions use the tag_name variable.
Don’t hard-code the tag’s name in your error messages, because that
couples the tag’s name to your function. token.contents.split()[0]
will ‘’always’’ be the name of your tag – even when the tag has no
arguments.

	The function returns a CurrentTimeNode with everything the node needs
to know about this tag. In this case, it just passes the argument –
"%Y-%m-%d %I:%M %p". The leading and trailing quotes from the
template tag are removed in format_string[1:-1].

	The parsing is very low-level. The Django developers have experimented
with writing small frameworks on top of this parsing system, using
techniques such as EBNF grammars, but those experiments made the template
engine too slow. It’s low-level because that’s fastest.

Writing the renderer

The second step in writing custom tags is to define a Node subclass that
has a render() method.

Continuing the above example, we need to define CurrentTimeNode:

import datetime
from django import template

class CurrentTimeNode(template.Node):
 def __init__(self, format_string):
 self.format_string = format_string
 def render(self, context):
 return datetime.datetime.now().strftime(self.format_string)

Notes:

	__init__() gets the format_string from do_current_time().
Always pass any options/parameters/arguments to a Node via its
__init__().

	The render() method is where the work actually happens.

	render() should generally fail silently, particularly in a production
environment where DEBUG and TEMPLATE_DEBUG are
False. In some cases however, particularly if TEMPLATE_DEBUG is
True, this method may raise an exception to make debugging easier. For
example, several core tags raise django.template.TemplateSyntaxError
if they receive the wrong number or type of arguments.

Ultimately, this decoupling of compilation and rendering results in an
efficient template system, because a template can render multiple contexts
without having to be parsed multiple times.

Auto-escaping considerations

The output from template tags is not automatically run through the
auto-escaping filters. However, there are still a couple of things you should
keep in mind when writing a template tag.

If the render() function of your template stores the result in a context
variable (rather than returning the result in a string), it should take care
to call mark_safe() if appropriate. When the variable is ultimately
rendered, it will be affected by the auto-escape setting in effect at the
time, so content that should be safe from further escaping needs to be marked
as such.

Also, if your template tag creates a new context for performing some
sub-rendering, set the auto-escape attribute to the current context’s value.
The __init__ method for the Context class takes a parameter called
autoescape that you can use for this purpose. For example:

from django.template import Context

def render(self, context):
 # ...
 new_context = Context({'var': obj}, autoescape=context.autoescape)
 # ... Do something with new_context ...

This is not a very common situation, but it’s useful if you’re rendering a
template yourself. For example:

def render(self, context):
 t = template.loader.get_template('small_fragment.html')
 return t.render(Context({'var': obj}, autoescape=context.autoescape))

If we had neglected to pass in the current context.autoescape value to our
new Context in this example, the results would have always been
automatically escaped, which may not be the desired behavior if the template
tag is used inside a {% autoescape off %} block.

Thread-safety considerations

Once a node is parsed, its render method may be called any number of times.
Since Django is sometimes run in multi-threaded environments, a single node may
be simultaneously rendering with different contexts in response to two separate
requests. Therefore, it’s important to make sure your template tags are thread
safe.

To make sure your template tags are thread safe, you should never store state
information on the node itself. For example, Django provides a builtin
cycle template tag that cycles among a list of given strings each time
it’s rendered:

{% for o in some_list %}
 <tr class="{% cycle 'row1' 'row2' %}">
 ...
 </tr>
{% endfor %}

A naive implementation of CycleNode might look something like this:

import itertools
from django import template

class CycleNode(template.Node):
 def __init__(self, cyclevars):
 self.cycle_iter = itertools.cycle(cyclevars)
 def render(self, context):
 return next(self.cycle_iter)

But, suppose we have two templates rendering the template snippet from above at
the same time:

	Thread 1 performs its first loop iteration, CycleNode.render()
returns ‘row1’

	Thread 2 performs its first loop iteration, CycleNode.render()
returns ‘row2’

	Thread 1 performs its second loop iteration, CycleNode.render()
returns ‘row1’

	Thread 2 performs its second loop iteration, CycleNode.render()
returns ‘row2’

The CycleNode is iterating, but it’s iterating globally. As far as Thread 1
and Thread 2 are concerned, it’s always returning the same value. This is
obviously not what we want!

To address this problem, Django provides a render_context that’s associated
with the context of the template that is currently being rendered. The
render_context behaves like a Python dictionary, and should be used to
store Node state between invocations of the render method.

Let’s refactor our CycleNode implementation to use the render_context:

class CycleNode(template.Node):
 def __init__(self, cyclevars):
 self.cyclevars = cyclevars
 def render(self, context):
 if self not in context.render_context:
 context.render_context[self] = itertools.cycle(self.cyclevars)
 cycle_iter = context.render_context[self]
 return next(cycle_iter)

Note that it’s perfectly safe to store global information that will not change
throughout the life of the Node as an attribute. In the case of
CycleNode, the cyclevars argument doesn’t change after the Node is
instantiated, so we don’t need to put it in the render_context. But state
information that is specific to the template that is currently being rendered,
like the current iteration of the CycleNode, should be stored in the
render_context.

Note

Notice how we used self to scope the CycleNode specific information
within the render_context. There may be multiple CycleNodes in a
given template, so we need to be careful not to clobber another node’s
state information. The easiest way to do this is to always use self as
the key into render_context. If you’re keeping track of several state
variables, make render_context[self] a dictionary.

Registering the tag

Finally, register the tag with your module’s Library instance, as explained
in “Writing custom template filters” above. Example:

register.tag('current_time', do_current_time)

The tag() method takes two arguments:

	The name of the template tag – a string. If this is left out, the
name of the compilation function will be used.

	The compilation function – a Python function (not the name of the
function as a string).

As with filter registration, it is also possible to use this as a decorator:

@register.tag(name="current_time")
def do_current_time(parser, token):
 ...

@register.tag
def shout(parser, token):
 ...

If you leave off the name argument, as in the second example above, Django
will use the function’s name as the tag name.

Passing template variables to the tag

Although you can pass any number of arguments to a template tag using
token.split_contents(), the arguments are all unpacked as
string literals. A little more work is required in order to pass dynamic
content (a template variable) to a template tag as an argument.

While the previous examples have formatted the current time into a string and
returned the string, suppose you wanted to pass in a
DateTimeField from an object and have the template
tag format that date-time:

<p>This post was last updated at {% format_time blog_entry.date_updated "%Y-%m-%d %I:%M %p" %}.</p>

Initially, token.split_contents() will return three values:

	The tag name format_time.

	The string "blog_entry.date_updated" (without the surrounding
quotes).

	The formatting string "%Y-%m-%d %I:%M %p". The return value from
split_contents() will include the leading and trailing quotes for
string literals like this.

Now your tag should begin to look like this:

from django import template

def do_format_time(parser, token):
 try:
 # split_contents() knows not to split quoted strings.
 tag_name, date_to_be_formatted, format_string = token.split_contents()
 except ValueError:
 raise template.TemplateSyntaxError(
 "%r tag requires exactly two arguments" % token.contents.split()[0]
)
 if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
 raise template.TemplateSyntaxError(
 "%r tag's argument should be in quotes" % tag_name
)
 return FormatTimeNode(date_to_be_formatted, format_string[1:-1])

You also have to change the renderer to retrieve the actual contents of the
date_updated property of the blog_entry object. This can be
accomplished by using the Variable() class in django.template.

To use the Variable class, simply instantiate it with the name of the
variable to be resolved, and then call variable.resolve(context). So,
for example:

class FormatTimeNode(template.Node):
 def __init__(self, date_to_be_formatted, format_string):
 self.date_to_be_formatted = template.Variable(date_to_be_formatted)
 self.format_string = format_string

 def render(self, context):
 try:
 actual_date = self.date_to_be_formatted.resolve(context)
 return actual_date.strftime(self.format_string)
 except template.VariableDoesNotExist:
 return ''

Variable resolution will throw a VariableDoesNotExist exception if it
cannot resolve the string passed to it in the current context of the page.

Simple tags

	
django.template.Library.simple_tag()

	

Many template tags take a number of arguments – strings or template variables
– and return a string after doing some processing based solely on
the input arguments and some external information. For example, the
current_time tag we wrote above is of this variety: we give it a format
string, it returns the time as a string.

To ease the creation of these types of tags, Django provides a helper function,
simple_tag. This function, which is a method of
django.template.Library, takes a function that accepts any number of
arguments, wraps it in a render function and the other necessary bits
mentioned above and registers it with the template system.

Our earlier current_time function could thus be written like this:

import datetime
from django import template

register = template.Library()

def current_time(format_string):
 return datetime.datetime.now().strftime(format_string)

register.simple_tag(current_time)

The decorator syntax also works:

@register.simple_tag
def current_time(format_string):
 ...

A few things to note about the simple_tag helper function:

	Checking for the required number of arguments, etc., has already been
done by the time our function is called, so we don’t need to do that.

	The quotes around the argument (if any) have already been stripped away,
so we just receive a plain string.

	If the argument was a template variable, our function is passed the
current value of the variable, not the variable itself.

If your template tag needs to access the current context, you can use the
takes_context argument when registering your tag:

The first argument *must* be called "context" here.
def current_time(context, format_string):
 timezone = context['timezone']
 return your_get_current_time_method(timezone, format_string)

register.simple_tag(takes_context=True)(current_time)

Or, using decorator syntax:

@register.simple_tag(takes_context=True)
def current_time(context, format_string):
 timezone = context['timezone']
 return your_get_current_time_method(timezone, format_string)

For more information on how the takes_context option works, see the section
on inclusion tags.

If you need to rename your tag, you can provide a custom name for it:

register.simple_tag(lambda x: x - 1, name='minusone')

@register.simple_tag(name='minustwo')
def some_function(value):
 return value - 2

simple_tag functions may accept any number of positional or keyword
arguments. For example:

@register.simple_tag
def my_tag(a, b, *args, **kwargs):
 warning = kwargs['warning']
 profile = kwargs['profile']
 ...
 return ...

Then in the template any number of arguments, separated by spaces, may be
passed to the template tag. Like in Python, the values for keyword arguments
are set using the equal sign (“=”) and must be provided after the
positional arguments. For example:

{% my_tag 123 "abcd" book.title warning=message|lower profile=user.profile %}

Inclusion tags

Another common type of template tag is the type that displays some data by
rendering another template. For example, Django’s admin interface uses custom
template tags to display the buttons along the bottom of the “add/change” form
pages. Those buttons always look the same, but the link targets change
depending on the object being edited – so they’re a perfect case for using a
small template that is filled with details from the current object. (In the
admin’s case, this is the submit_row tag.)

These sorts of tags are called “inclusion tags”.

Writing inclusion tags is probably best demonstrated by example. Let’s write a
tag that outputs a list of choices for a given Poll object, such as was
created in the tutorials. We’ll use the tag like this:

{% show_results poll %}

...and the output will be something like this:

 First choice
 Second choice
 Third choice

First, define the function that takes the argument and produces a dictionary of
data for the result. The important point here is we only need to return a
dictionary, not anything more complex. This will be used as a template context
for the template fragment. Example:

def show_results(poll):
 choices = poll.choice_set.all()
 return {'choices': choices}

Next, create the template used to render the tag’s output. This template is a
fixed feature of the tag: the tag writer specifies it, not the template
designer. Following our example, the template is very simple:

{% for choice in choices %}
 {{ choice }}
{% endfor %}

Now, create and register the inclusion tag by calling the inclusion_tag()
method on a Library object. Following our example, if the above template is
in a file called results.html in a directory that’s searched by the
template loader, we’d register the tag like this:

Here, register is a django.template.Library instance, as before
register.inclusion_tag('results.html')(show_results)

Alternatively it is possible to register the inclusion tag using a
django.template.Template instance:

from django.template.loader import get_template
t = get_template('results.html')
register.inclusion_tag(t)(show_results)

As always, decorator syntax works as well, so we could have written:

@register.inclusion_tag('results.html')
def show_results(poll):
 ...

...when first creating the function.

Sometimes, your inclusion tags might require a large number of arguments,
making it a pain for template authors to pass in all the arguments and remember
their order. To solve this, Django provides a takes_context option for
inclusion tags. If you specify takes_context in creating a template tag,
the tag will have no required arguments, and the underlying Python function
will have one argument – the template context as of when the tag was called.

For example, say you’re writing an inclusion tag that will always be used in a
context that contains home_link and home_title variables that point
back to the main page. Here’s what the Python function would look like:

The first argument *must* be called "context" here.
def jump_link(context):
 return {
 'link': context['home_link'],
 'title': context['home_title'],
 }
Register the custom tag as an inclusion tag with takes_context=True.
register.inclusion_tag('link.html', takes_context=True)(jump_link)

(Note that the first parameter to the function must be called context.)

In that register.inclusion_tag() line, we specified takes_context=True
and the name of the template. Here’s what the template link.html might look
like:

Jump directly to {{ title }}.

Then, any time you want to use that custom tag, load its library and call it
without any arguments, like so:

{% jump_link %}

Note that when you’re using takes_context=True, there’s no need to pass
arguments to the template tag. It automatically gets access to the context.

The takes_context parameter defaults to False. When it’s set to
True, the tag is passed the context object, as in this example. That’s the
only difference between this case and the previous inclusion_tag example.

inclusion_tag functions may accept any number of positional or keyword
arguments. For example:

@register.inclusion_tag('my_template.html')
def my_tag(a, b, *args, **kwargs):
 warning = kwargs['warning']
 profile = kwargs['profile']
 ...
 return ...

Then in the template any number of arguments, separated by spaces, may be
passed to the template tag. Like in Python, the values for keyword arguments
are set using the equal sign (“=”) and must be provided after the
positional arguments. For example:

{% my_tag 123 "abcd" book.title warning=message|lower profile=user.profile %}

Setting a variable in the context

The above examples simply output a value. Generally, it’s more flexible if your
template tags set template variables instead of outputting values. That way,
template authors can reuse the values that your template tags create.

To set a variable in the context, just use dictionary assignment on the context
object in the render() method. Here’s an updated version of
CurrentTimeNode that sets a template variable current_time instead of
outputting it:

import datetime
from django import template

class CurrentTimeNode2(template.Node):
 def __init__(self, format_string):
 self.format_string = format_string
 def render(self, context):
 context['current_time'] = datetime.datetime.now().strftime(self.format_string)
 return ''

Note that render() returns the empty string. render() should always
return string output. If all the template tag does is set a variable,
render() should return the empty string.

Here’s how you’d use this new version of the tag:

{% current_time "%Y-%M-%d %I:%M %p" %}<p>The time is {{ current_time }}.</p>

Variable scope in context

Any variable set in the context will only be available in the same
block of the template in which it was assigned. This behavior is
intentional; it provides a scope for variables so that they don’t conflict
with context in other blocks.

But, there’s a problem with CurrentTimeNode2: The variable name
current_time is hard-coded. This means you’ll need to make sure your
template doesn’t use {{ current_time }} anywhere else, because the
{% current_time %} will blindly overwrite that variable’s value. A cleaner
solution is to make the template tag specify the name of the output variable,
like so:

{% current_time "%Y-%M-%d %I:%M %p" as my_current_time %}
<p>The current time is {{ my_current_time }}.</p>

To do that, you’ll need to refactor both the compilation function and Node
class, like so:

class CurrentTimeNode3(template.Node):
 def __init__(self, format_string, var_name):
 self.format_string = format_string
 self.var_name = var_name
 def render(self, context):
 context[self.var_name] = datetime.datetime.now().strftime(self.format_string)
 return ''

import re
def do_current_time(parser, token):
 # This version uses a regular expression to parse tag contents.
 try:
 # Splitting by None == splitting by spaces.
 tag_name, arg = token.contents.split(None, 1)
 except ValueError:
 raise template.TemplateSyntaxError(
 "%r tag requires arguments" % token.contents.split()[0]
)
 m = re.search(r'(.*?) as (\w+)', arg)
 if not m:
 raise template.TemplateSyntaxError("%r tag had invalid arguments" % tag_name)
 format_string, var_name = m.groups()
 if not (format_string[0] == format_string[-1] and format_string[0] in ('"', "'")):
 raise template.TemplateSyntaxError(
 "%r tag's argument should be in quotes" % tag_name
)
 return CurrentTimeNode3(format_string[1:-1], var_name)

The difference here is that do_current_time() grabs the format string and
the variable name, passing both to CurrentTimeNode3.

Finally, if you only need to have a simple syntax for your custom
context-updating template tag, you might want to consider using an
assignment tag.

Assignment tags

To ease the creation of tags setting a variable in the context, Django provides
a helper function, assignment_tag. This function works the same way as
simple_tag, except that it
stores the tag’s result in a specified context variable instead of directly
outputting it.

Our earlier current_time function could thus be written like this:

def get_current_time(format_string):
 return datetime.datetime.now().strftime(format_string)

register.assignment_tag(get_current_time)

The decorator syntax also works:

@register.assignment_tag
def get_current_time(format_string):
 ...

You may then store the result in a template variable using the as argument
followed by the variable name, and output it yourself where you see fit:

{% get_current_time "%Y-%m-%d %I:%M %p" as the_time %}
<p>The time is {{ the_time }}.</p>

If your template tag needs to access the current context, you can use the
takes_context argument when registering your tag:

The first argument *must* be called "context" here.
def get_current_time(context, format_string):
 timezone = context['timezone']
 return your_get_current_time_method(timezone, format_string)

register.assignment_tag(takes_context=True)(get_current_time)

Or, using decorator syntax:

@register.assignment_tag(takes_context=True)
def get_current_time(context, format_string):
 timezone = context['timezone']
 return your_get_current_time_method(timezone, format_string)

For more information on how the takes_context option works, see the section
on inclusion tags.

assignment_tag functions may accept any number of positional or keyword
arguments. For example:

@register.assignment_tag
def my_tag(a, b, *args, **kwargs):
 warning = kwargs['warning']
 profile = kwargs['profile']
 ...
 return ...

Then in the template any number of arguments, separated by spaces, may be
passed to the template tag. Like in Python, the values for keyword arguments
are set using the equal sign (“=”) and must be provided after the
positional arguments. For example:

{% my_tag 123 "abcd" book.title warning=message|lower profile=user.profile as the_result %}

Parsing until another block tag

Template tags can work in tandem. For instance, the standard
{% comment %} tag hides everything until {% endcomment %}.
To create a template tag such as this, use parser.parse() in your
compilation function.

Here’s how a simplified {% comment %} tag might be implemented:

def do_comment(parser, token):
 nodelist = parser.parse(('endcomment',))
 parser.delete_first_token()
 return CommentNode()

class CommentNode(template.Node):
 def render(self, context):
 return ''

Note

The actual implementation of {% comment %} is slightly
different in that it allows broken template tags to appear between
{% comment %} and {% endcomment %}. It does so by calling
parser.skip_past('endcomment') instead of parser.parse(('endcomment',))
followed by parser.delete_first_token(), thus avoiding the generation of a
node list.

parser.parse() takes a tuple of names of block tags ‘’to parse until’‘. It
returns an instance of django.template.NodeList, which is a list of
all Node objects that the parser encountered ‘’before’’ it encountered
any of the tags named in the tuple.

In "nodelist = parser.parse(('endcomment',))" in the above example,
nodelist is a list of all nodes between the {% comment %} and
{% endcomment %}, not counting {% comment %} and {% endcomment %}
themselves.

After parser.parse() is called, the parser hasn’t yet “consumed” the
{% endcomment %} tag, so the code needs to explicitly call
parser.delete_first_token().

CommentNode.render() simply returns an empty string. Anything between
{% comment %} and {% endcomment %} is ignored.

Parsing until another block tag, and saving contents

In the previous example, do_comment() discarded everything between
{% comment %} and {% endcomment %}. Instead of doing that, it’s
possible to do something with the code between block tags.

For example, here’s a custom template tag, {% upper %}, that capitalizes
everything between itself and {% endupper %}.

Usage:

{% upper %}This will appear in uppercase, {{ your_name }}.{% endupper %}

As in the previous example, we’ll use parser.parse(). But this time, we
pass the resulting nodelist to the Node:

def do_upper(parser, token):
 nodelist = parser.parse(('endupper',))
 parser.delete_first_token()
 return UpperNode(nodelist)

class UpperNode(template.Node):
 def __init__(self, nodelist):
 self.nodelist = nodelist
 def render(self, context):
 output = self.nodelist.render(context)
 return output.upper()

The only new concept here is the self.nodelist.render(context) in
UpperNode.render().

For more examples of complex rendering, see the source code for
{% if %}, {% for %}, {% ifequal %}
or {% ifchanged %}. They live in
django/template/defaulttags.py.

Writing a custom storage system

If you need to provide custom file storage – a common example is storing files
on some remote system – you can do so by defining a custom storage class.
You’ll need to follow these steps:

	Your custom storage system must be a subclass of
django.core.files.storage.Storage:

from django.core.files.storage import Storage

class MyStorage(Storage):
 ...

	Django must be able to instantiate your storage system without any arguments.
This means that any settings should be taken from django.conf.settings:

from django.conf import settings
from django.core.files.storage import Storage

class MyStorage(Storage):
 def __init__(self, option=None):
 if not option:
 option = settings.CUSTOM_STORAGE_OPTIONS
 ...

	Your storage class must implement the _open() and _save()
methods, along with any other methods appropriate to your storage class. See
below for more on these methods.

In addition, if your class provides local file storage, it must override
the path() method.

	Your storage class must be deconstructible
so it can be serialized when it’s used on a field in a migration. As long
as your field has arguments that are themselves
serializable, you can use the
django.utils.deconstruct.deconstructible class decorator for this
(that’s what Django uses on FileSystemStorage).

By default, the following methods raise NotImplementedError and will
typically have to be overridden:

	Storage.delete()

	Storage.exists()

	Storage.listdir()

	Storage.size()

	Storage.url()

Note however that not all these methods are required and may be deliberately
omitted. As it happens, it is possible to leave each method unimplemented and
still have a working Storage.

By way of example, if listing the contents of certain storage backends turns
out to be expensive, you might decide not to implement Storage.listdir.

Another example would be a backend that only handles writing to files. In this
case, you would not need to implement any of the above methods.

Ultimately, which of these methods are implemented is up to you. Leaving some
methods unimplemented will result in a partial (possibly broken) interface.

You’ll also usually want to use hooks specifically designed for custom storage
objects. These are:

	
_open(name, mode='rb')

	

Required.

Called by Storage.open(), this is the actual mechanism the storage class
uses to open the file. This must return a File object, though in most cases,
you’ll want to return some subclass here that implements logic specific to the
backend storage system.

	
_save(name, content)

	

Called by Storage.save(). The name will already have gone through
get_valid_name() and get_available_name(), and the content will be a
File object itself.

Should return the actual name of name of the file saved (usually the name
passed in, but if the storage needs to change the file name return the new name
instead).

	
get_valid_name(name)

	

Returns a filename suitable for use with the underlying storage system. The
name argument passed to this method is the original filename sent to the
server, after having any path information removed. Override this to customize
how non-standard characters are converted to safe filenames.

The code provided on Storage retains only alpha-numeric characters, periods
and underscores from the original filename, removing everything else.

	
get_available_name(name)

	

Returns a filename that is available in the storage mechanism, possibly taking
the provided filename into account. The name argument passed to this method
will have already cleaned to a filename valid for the storage system, according
to the get_valid_name() method described above.

Changed in Django 1.7: If a file with name already exists, an underscore plus a random 7
character alphanumeric string is appended to the filename before the
extension.

Previously, an underscore followed by a number (e.g. "_1", "_2",
etc.) was appended to the filename until an available name in the destination
directory was found. A malicious user could exploit this deterministic
algorithm to create a denial-of-service attack. This change was also made
in Django 1.6.6, 1.5.9, and 1.4.14.

Deploying Django

Django’s chock-full of shortcuts to make Web developer’s lives easier, but all
those tools are of no use if you can’t easily deploy your sites. Since Django’s
inception, ease of deployment has been a major goal. There’s a number of good
ways to easily deploy Django:

	How to deploy with WSGI

	Deployment checklist

FastCGI support is deprecated and will be removed in Django 1.9.

	How to use Django with FastCGI, SCGI, or AJP

If you’re new to deploying Django and/or Python, we’d recommend you try
mod_wsgi first. In most cases it’ll be
the easiest, fastest, and most stable deployment choice.

See also

	Chapter 12 of the Django Book (second edition) [http://djangobook.com/en/2.0/chapter12.html] discusses deployment
and especially scaling in more detail. However, note that this edition
was written against Django version 1.1 and has not been updated since
mod_python was first deprecated, then completely removed in
Django 1.5.

How to deploy with WSGI

Django’s primary deployment platform is WSGI [http://www.wsgi.org], the Python standard for web
servers and applications.

Django’s startproject management command sets up a simple default
WSGI configuration for you, which you can tweak as needed for your project,
and direct any WSGI-compliant application server to use.

Django includes getting-started documentation for the following WSGI servers:

	How to use Django with Apache and mod_wsgi

	Authenticating against Django’s user database from Apache

	How to use Django with Gunicorn

	How to use Django with uWSGI

The application object

The key concept of deploying with WSGI is the application callable which
the application server uses to communicate with your code. It’s commonly
provided as an object named application in a Python module accessible to
the server.

The startproject command creates a file
<project_name>/wsgi.py that contains such an application callable.

It’s used both by Django’s development server and in production WSGI
deployments.

WSGI servers obtain the path to the application callable from their
configuration. Django’s built-in servers, namely the runserver and
runfcgi commands, read it from the WSGI_APPLICATION
setting. By default, it’s set to <project_name>.wsgi.application, which
points to the application callable in <project_name>/wsgi.py.

Configuring the settings module

When the WSGI server loads your application, Django needs to import the
settings module — that’s where your entire application is defined.

Django uses the DJANGO_SETTINGS_MODULE environment variable to
locate the appropriate settings module. It must contain the dotted path to the
settings module. You can use a different value for development and production;
it all depends on how you organize your settings.

If this variable isn’t set, the default wsgi.py sets it to
mysite.settings, where mysite is the name of your project. That’s how
runserver discovers the default settings file by default.

Note

Since environment variables are process-wide, this doesn’t work when you
run multiple Django sites in the same process. This happens with mod_wsgi.

To avoid this problem, use mod_wsgi’s daemon mode with each site in its
own daemon process, or override the value from the environment by
enforcing os.environ["DJANGO_SETTINGS_MODULE"] = "mysite.settings" in
your wsgi.py.

Applying WSGI middleware

To apply WSGI middleware [http://www.python.org/dev/peps/pep-3333/#middleware-components-that-play-both-sides] you can simply wrap the application object. For
instance you could add these lines at the bottom of wsgi.py:

from helloworld.wsgi import HelloWorldApplication
application = HelloWorldApplication(application)

You could also replace the Django WSGI application with a custom WSGI
application that later delegates to the Django WSGI application, if you want
to combine a Django application with a WSGI application of another framework.

Note

Some third-party WSGI middleware do not call close on the response
object after handling a request — most notably Sentry’s error reporting
middleware up to version 2.0.7. In those cases the
request_finished signal isn’t sent. This can
result in idle connections to database and memcache servers.

How to use Django with Apache and mod_wsgi

Deploying Django with Apache [http://httpd.apache.org/] and mod_wsgi [http://code.google.com/p/modwsgi/] is a tried and tested way to get
Django into production.

mod_wsgi is an Apache module which can host any Python WSGI [http://www.wsgi.org] application,
including Django. Django will work with any version of Apache which supports
mod_wsgi.

The official mod_wsgi documentation [http://code.google.com/p/modwsgi/] is fantastic; it’s your source for all
the details about how to use mod_wsgi. You’ll probably want to start with the
installation and configuration documentation [http://code.google.com/p/modwsgi/wiki/InstallationInstructions].

Basic configuration

Once you’ve got mod_wsgi installed and activated, edit your Apache server’s
httpd.conf file and add the following. If you are using a version of Apache
older than 2.4, replace Require all granted with Allow from all and
also add the line Order deny,allow above it.

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py
WSGIPythonPath /path/to/mysite.com

<Directory /path/to/mysite.com/mysite>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

The first bit in the WSGIScriptAlias line is the base URL path you want to
serve your application at (/ indicates the root url), and the second is the
location of a “WSGI file” – see below – on your system, usually inside of
your project package (mysite in this example). This tells Apache to serve
any request below the given URL using the WSGI application defined in that
file.

The WSGIPythonPath line ensures that your project package is available for
import on the Python path; in other words, that import mysite works.

The <Directory> piece just ensures that Apache can access your
wsgi.py file.

Next we’ll need to ensure this wsgi.py with a WSGI application object
exists. As of Django version 1.4, startproject will have created one
for you; otherwise, you’ll need to create it. See the WSGI overview
documentation for the default contents you
should put in this file, and what else you can add to it.

Warning

If multiple Django sites are run in a single mod_wsgi process, all of them
will use the settings of whichever one happens to run first. This can be
solved by changing:

os.environ.setdefault("DJANGO_SETTINGS_MODULE", "{{ project_name }}.settings")

in wsgi.py, to:

os.environ["DJANGO_SETTINGS_MODULE"] = "{{ project_name }}.settings"

or by using mod_wsgi daemon mode and ensuring that each
site runs in its own daemon process.

Using a virtualenv

If you install your project’s Python dependencies inside a virtualenv [http://www.virtualenv.org],
you’ll need to add the path to this virtualenv’s site-packages directory to
your Python path as well. To do this, add an additional path to your
WSGIPythonPath directive, with multiple paths separated by a colon (:)
if using a UNIX-like system, or a semicolon (;) if using Windows. If any
part of a directory path contains a space character, the complete argument
string to WSGIPythonPath must be quoted:

WSGIPythonPath /path/to/mysite.com:/path/to/your/venv/lib/python2.X/site-packages

Make sure you give the correct path to your virtualenv, and replace
python2.X with the correct Python version (e.g. python2.7).

Using mod_wsgi daemon mode

“Daemon mode” is the recommended mode for running mod_wsgi (on non-Windows
platforms). To create the required daemon process group and delegate the
Django instance to run in it, you will need to add appropriate
WSGIDaemonProcess and WSGIProcessGroup directives. A further change
required to the above configuration if you use daemon mode is that you can’t
use WSGIPythonPath; instead you should use the python-path option to
WSGIDaemonProcess, for example:

WSGIDaemonProcess example.com python-path=/path/to/mysite.com:/path/to/venv/lib/python2.7/site-packages
WSGIProcessGroup example.com

If you want to serve your project in a subdirectory
(http://example.com/mysite in this example), you can add WSGIScriptAlias
to the configuration above:

WSGIScriptAlias /mysite /path/to/mysite.com/mysite/wsgi.py process-group=example.com

See the official mod_wsgi documentation for details on setting up daemon
mode [http://code.google.com/p/modwsgi/wiki/QuickConfigurationGuide#Delegation_To_Daemon_Process].

Serving files

Django doesn’t serve files itself; it leaves that job to whichever Web
server you choose.

We recommend using a separate Web server – i.e., one that’s not also running
Django – for serving media. Here are some good choices:

	lighttpd [http://www.lighttpd.net/]

	Nginx [http://wiki.nginx.org/Main]

	TUX [http://en.wikipedia.org/wiki/TUX_web_server]

	A stripped-down version of Apache [http://httpd.apache.org/]

	Cherokee [http://www.cherokee-project.com/]

If, however, you have no option but to serve media files on the same Apache
VirtualHost as Django, you can set up Apache to serve some URLs as
static media, and others using the mod_wsgi interface to Django.

This example sets up Django at the site root, but explicitly serves
robots.txt, favicon.ico, any CSS file, and anything in the
/static/ and /media/ URL space as a static file. All other URLs
will be served using mod_wsgi:

Alias /robots.txt /path/to/mysite.com/static/robots.txt
Alias /favicon.ico /path/to/mysite.com/static/favicon.ico

Alias /media/ /path/to/mysite.com/media/
Alias /static/ /path/to/mysite.com/static/

<Directory /path/to/mysite.com/static>
Require all granted
</Directory>

<Directory /path/to/mysite.com/media>
Require all granted
</Directory>

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py

<Directory /path/to/mysite.com/mysite>
<Files wsgi.py>
Require all granted
</Files>
</Directory>

If you are using a version of Apache older than 2.4, replace
Require all granted with Allow from all and also add the line
Order deny,allow above it.

Serving the admin files

When django.contrib.staticfiles is in INSTALLED_APPS, the
Django development server automatically serves the static files of the
admin app (and any other installed apps). This is however not the case when you
use any other server arrangement. You’re responsible for setting up Apache, or
whichever Web server you’re using, to serve the admin files.

The admin files live in (django/contrib/admin/static/admin) of the
Django distribution.

We strongly recommend using django.contrib.staticfiles to handle the
admin files (along with a Web server as outlined in the previous section; this
means using the collectstatic management command to collect the
static files in STATIC_ROOT, and then configuring your Web server to
serve STATIC_ROOT at STATIC_URL), but here are three
other approaches:

	Create a symbolic link to the admin static files from within your
document root (this may require +FollowSymLinks in your Apache
configuration).

	Use an Alias directive, as demonstrated above, to alias the appropriate
URL (probably STATIC_URL + admin/) to the actual location of
the admin files.

	Copy the admin static files so that they live within your Apache
document root.

Authenticating against Django’s user database from Apache

Django provides a handler to allow Apache to authenticate users directly
against Django’s authentication backends. See the mod_wsgi authentication
documentation.

If you get a UnicodeEncodeError

If you’re taking advantage of the internationalization features of Django (see
Internationalization and localization) and you intend to allow users to upload files, you must
ensure that the environment used to start Apache is configured to accept
non-ASCII file names. If your environment is not correctly configured, you
will trigger UnicodeEncodeError exceptions when calling functions like
the ones in os.path [http://docs.python.org/3/library/os.path.html#module-os.path] on filenames that contain non-ASCII characters.

To avoid these problems, the environment used to start Apache should contain
settings analogous to the following:

export LANG='en_US.UTF-8'
export LC_ALL='en_US.UTF-8'

Consult the documentation for your operating system for the appropriate syntax
and location to put these configuration items; /etc/apache2/envvars is a
common location on Unix platforms. Once you have added these statements
to your environment, restart Apache.

Authenticating against Django’s user database from Apache

Since keeping multiple authentication databases in sync is a common problem when
dealing with Apache, you can configure Apache to authenticate against Django’s
authentication system directly. This requires Apache
version >= 2.2 and mod_wsgi >= 2.0. For example, you could:

	Serve static/media files directly from Apache only to authenticated users.

	Authenticate access to a Subversion [http://subversion.tigris.org/] repository against Django users with
a certain permission.

	Allow certain users to connect to a WebDAV share created with mod_dav [http://httpd.apache.org/docs/2.2/mod/mod_dav.html].

Note

If you have installed a custom User model and
want to use this default auth handler, it must support an is_active
attribute. If you want to use group based authorization, your custom user
must have a relation named ‘groups’, referring to a related object that has
a ‘name’ field. You can also specify your own custom mod_wsgi
auth handler if your custom cannot conform to these requirements.

Authentication with mod_wsgi

Note

The use of WSGIApplicationGroup %{GLOBAL} in the configurations below
presumes that your Apache instance is running only one Django application.
If you are running more than one Django application, please refer to the
Defining Application Groups [https://code.google.com/p/modwsgi/wiki/ConfigurationGuidelines#Defining_Application_Groups] section of the mod_wsgi docs for more
information about this setting.

Make sure that mod_wsgi is installed and activated and that you have
followed the steps to setup Apache with mod_wsgi.

Next, edit your Apache configuration to add a location that you want
only authenticated users to be able to view:

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py
WSGIPythonPath /path/to/mysite.com

WSGIProcessGroup %{GLOBAL}
WSGIApplicationGroup %{GLOBAL}

<Location "/secret">
 AuthType Basic
 AuthName "Top Secret"
 Require valid-user
 AuthBasicProvider wsgi
 WSGIAuthUserScript /path/to/mysite.com/mysite/wsgi.py
</Location>

The WSGIAuthUserScript directive tells mod_wsgi to execute the
check_password function in specified wsgi script, passing the user name and
password that it receives from the prompt. In this example, the
WSGIAuthUserScript is the same as the WSGIScriptAlias that defines your
application that is created by django-admin.py startproject.

Using Apache 2.2 with authentication

Make sure that mod_auth_basic and mod_authz_user are loaded.

These might be compiled statically into Apache, or you might need to use
LoadModule to load them dynamically in your httpd.conf:

LoadModule auth_basic_module modules/mod_auth_basic.so
LoadModule authz_user_module modules/mod_authz_user.so

Finally, edit your WSGI script mysite.wsgi to tie Apache’s authentication
to your site’s authentication mechanisms by importing the check_password
function:

import os

os.environ['DJANGO_SETTINGS_MODULE'] = 'mysite.settings'

from django.contrib.auth.handlers.modwsgi import check_password

from django.core.handlers.wsgi import WSGIHandler
application = WSGIHandler()

Requests beginning with /secret/ will now require a user to authenticate.

The mod_wsgi access control mechanisms documentation [http://code.google.com/p/modwsgi/wiki/AccessControlMechanisms] provides additional
details and information about alternative methods of authentication.

Authorization with mod_wsgi and Django groups

mod_wsgi also provides functionality to restrict a particular location to
members of a group.

In this case, the Apache configuration should look like this:

WSGIScriptAlias / /path/to/mysite.com/mysite/wsgi.py

WSGIProcessGroup %{GLOBAL}
WSGIApplicationGroup %{GLOBAL}

<Location "/secret">
 AuthType Basic
 AuthName "Top Secret"
 AuthBasicProvider wsgi
 WSGIAuthUserScript /path/to/mysite.com/mysite/wsgi.py
 WSGIAuthGroupScript /path/to/mysite.com/mysite/wsgi.py
 Require group secret-agents
 Require valid-user
</Location>

To support the WSGIAuthGroupScript directive, the same WSGI script
mysite.wsgi must also import the groups_for_user function which
returns a list groups the given user belongs to.

from django.contrib.auth.handlers.modwsgi import check_password, groups_for_user

Requests for /secret/ will now also require user to be a member of the
“secret-agents” group.

How to use Django with Gunicorn

Gunicorn [http://gunicorn.org/] (‘Green Unicorn’) is a pure-Python WSGI server for UNIX. It has no
dependencies and is easy to install and use.

Installing Gunicorn

Installing gunicorn is as easy as sudo pip install gunicorn. For more
details, see the gunicorn documentation [http://docs.gunicorn.org/en/latest/install.html].

Running Django in Gunicorn as a generic WSGI application

When Gunicorn is installed, a gunicorn command is available which starts
the Gunicorn server process. At its simplest, gunicorn just needs to be called
with the location of a module containing a WSGI application object named
application. So for a typical Django project, invoking gunicorn would look
like:

gunicorn myproject.wsgi

This will start one process running one thread listening on 127.0.0.1:8000.
It requires that your project be on the Python path; the simplest way to ensure
that is to run this command from the same directory as your manage.py file.

See Gunicorn’s deployment documentation [http://docs.gunicorn.org/en/latest/deploy.html] for additional tips.

How to use Django with uWSGI

uWSGI [http://projects.unbit.it/uwsgi/] is a fast, self-healing and developer/sysadmin-friendly application
container server coded in pure C.

See also

The uWSGI docs offer a tutorial [https://uwsgi.readthedocs.org/en/latest/tutorials/Django_and_nginx.html] covering Django, nginx, and uWSGI (one
possible deployment setup of many). The docs below are focused on how to
integrate Django with uWSGI.

Prerequisite: uWSGI

The uWSGI wiki describes several installation procedures [http://uwsgi-docs.readthedocs.org/en/latest/Install.html]. Using pip, the
Python package manager, you can install any uWSGI version with a single
command. For example:

Install current stable version.
$ sudo pip install uwsgi

Or install LTS (long term support).
$ sudo pip install http://projects.unbit.it/downloads/uwsgi-lts.tar.gz

Warning

Some distributions, including Debian and Ubuntu, ship an outdated version
of uWSGI that does not conform to the WSGI specification. Versions prior to
1.2.6 do not call close on the response object after handling a
request. In those cases the request_finished
signal isn’t sent. This can result in idle connections to database and
memcache servers.

uWSGI model

uWSGI operates on a client-server model. Your Web server (e.g., nginx, Apache)
communicates with a django-uwsgi “worker” process to serve dynamic content.
See uWSGI’s background documentation [http://projects.unbit.it/uwsgi/wiki/Background] for more detail.

Configuring and starting the uWSGI server for Django

uWSGI supports multiple ways to configure the process. See uWSGI’s
configuration documentation [https://uwsgi.readthedocs.org/en/latest/Configuration.html] and examples [http://projects.unbit.it/uwsgi/wiki/Example].

Here’s an example command to start a uWSGI server:

uwsgi --chdir=/path/to/your/project \
 --module=mysite.wsgi:application \
 --env DJANGO_SETTINGS_MODULE=mysite.settings \
 --master --pidfile=/tmp/project-master.pid \
 --socket=127.0.0.1:49152 \ # can also be a file
 --processes=5 \ # number of worker processes
 --uid=1000 --gid=2000 \ # if root, uwsgi can drop privileges
 --harakiri=20 \ # respawn processes taking more than 20 seconds
 --max-requests=5000 \ # respawn processes after serving 5000 requests
 --vacuum \ # clear environment on exit
 --home=/path/to/virtual/env \ # optional path to a virtualenv
 --daemonize=/var/log/uwsgi/yourproject.log # background the process

This assumes you have a top-level project package named mysite, and
within it a module mysite/wsgi.py that contains a WSGI application
object. This is the layout you’ll have if you ran django-admin.py
startproject mysite (using your own project name in place of mysite) with
a recent version of Django. If this file doesn’t exist, you’ll need to create
it. See the How to deploy with WSGI documentation for the default
contents you should put in this file and what else you can add to it.

The Django-specific options here are:

	chdir: The path to the directory that needs to be on Python’s import
path – i.e., the directory containing the mysite package.

	module: The WSGI module to use – probably the mysite.wsgi module
that startproject creates.

	env: Should probably contain at least DJANGO_SETTINGS_MODULE.

	home: Optional path to your project virtualenv.

Example ini configuration file:

[uwsgi]
chdir=/path/to/your/project
module=mysite.wsgi:application
master=True
pidfile=/tmp/project-master.pid
vacuum=True
max-requests=5000
daemonize=/var/log/uwsgi/yourproject.log

Example ini configuration file usage:

uwsgi --ini uwsgi.ini

See the uWSGI docs on managing the uWSGI process [http://uwsgi-docs.readthedocs.org/en/latest/Management.html] for information on
starting, stopping and reloading the uWSGI workers.

Deployment checklist

The Internet is a hostile environment. Before deploying your Django project,
you should take some time to review your settings, with security, performance,
and operations in mind.

Django includes many security features. Some are
built-in and always enabled. Others are optional because they aren’t always
appropriate, or because they’re inconvenient for development. For example,
forcing HTTPS may not be suitable for all websites, and it’s impractical for
local development.

Performance optimizations are another category of trade-offs with convenience.
For instance, caching is useful in production, less so for local development.
Error reporting needs are also widely different.

The following checklist includes settings that:

	must be set properly for Django to provide the expected level of security;

	are expected to be different in each environment;

	enable optional security features;

	enable performance optimizations;

	provide error reporting.

Many of these settings are sensitive and should be treated as confidential. If
you’re releasing the source code for your project, a common practice is to
publish suitable settings for development, and to use a private settings
module for production.

Critical settings

SECRET_KEY

The secret key must be a large random value and it must be kept secret.

Make sure that the key used in production isn’t used anywhere else and avoid
committing it to source control. This reduces the number of vectors from which
an attacker may acquire the key.

Instead of hardcoding the secret key in your settings module, consider loading
it from an environment variable:

import os
SECRET_KEY = os.environ['SECRET_KEY']

or from a file:

with open('/etc/secret_key.txt') as f:
 SECRET_KEY = f.read().strip()

DEBUG

You must never enable debug in production.

You’re certainly developing your project with DEBUG = True,
since this enables handy features like full tracebacks in your browser.

For a production environment, though, this is a really bad idea, because it
leaks lots of information about your project: excerpts of your source code,
local variables, settings, libraries used, etc.

Environment-specific settings

ALLOWED_HOSTS

When DEBUG = False, Django doesn’t work at all without a
suitable value for ALLOWED_HOSTS.

This setting is required to protect your site against some CSRF attacks. If
you use a wildcard, you must perform your own validation of the Host HTTP
header, or otherwise ensure that you aren’t vulnerable to this category of
attacks.

CACHES

If you’re using a cache, connection parameters may be different in development
and in production.

Cache servers often have weak authentication. Make sure they only accept
connections from your application servers.

If you’re using Memcached, consider using cached sessions to improve performance.

DATABASES

Database connection parameters are probably different in development and in
production.

Database passwords are very sensitive. You should protect them exactly like
SECRET_KEY.

For maximum security, make sure database servers only accept connections from
your application servers.

If you haven’t set up backups for your database, do it right now!

EMAIL_BACKEND and related settings

If your site sends emails, these values need to be set correctly.

STATIC_ROOT and STATIC_URL

Static files are automatically served by the development server. In
production, you must define a STATIC_ROOT directory where
collectstatic will copy them.

See Managing static files (CSS, images) for more information.

MEDIA_ROOT and MEDIA_URL

Media files are uploaded by your users. They’re untrusted! Make sure your web
server never attempt to interpret them. For instance, if a user uploads a
.php file , the web server shouldn’t execute it.

Now is a good time to check your backup strategy for these files.

HTTPS

Any website which allows users to log in should enforce site-wide HTTPS to
avoid transmitting access tokens in clear. In Django, access tokens include
the login/password, the session cookie, and password reset tokens. (You can’t
do much to protect password reset tokens if you’re sending them by email.)

Protecting sensitive areas such as the user account or the admin isn’t
sufficient, because the same session cookie is used for HTTP and HTTPS. Your
web server must redirect all HTTP traffic to HTTPS, and only transmit HTTPS
requests to Django.

Once you’ve set up HTTPS, enable the following settings.

CSRF_COOKIE_SECURE

Set this to True to avoid transmitting the CSRF cookie over HTTP
accidentally.

SESSION_COOKIE_SECURE

Set this to True to avoid transmitting the session cookie over HTTP
accidentally.

Performance optimizations

Setting DEBUG = False disables several features that are
only useful in development. In addition, you can tune the following settings.

CONN_MAX_AGE

Enabling persistent database connections can result in a nice speed-up when
connecting to the database accounts for a significant part of the request
processing time.

This helps a lot on virtualized hosts with limited network performance.

TEMPLATE_LOADERS

Enabling the cached template loader often improves performance drastically, as
it avoids compiling each template every time it needs to be rendered. See the
template loaders docs for more information.

Error reporting

By the time you push your code to production, it’s hopefully robust, but you
can’t rule out unexpected errors. Thankfully, Django can capture errors and
notify you accordingly.

LOGGING

Review your logging configuration before putting your website in production,
and check that it works as expected as soon as you have received some traffic.

See Logging for details on logging.

ADMINS and MANAGERS

ADMINS will be notified of 500 errors by email.

MANAGERS will be notified of 404 errors.
IGNORABLE_404_URLS can help filter out spurious reports.

See Error reporting for details on error reporting by email.

Customize the default error views

Django includes default views and templates for several HTTP error codes. You
may want to override the default templates by creating the following templates
in your root template directory: 404.html, 500.html, 403.html, and
400.html. The default views should suffice for 99% of Web applications, but
if you desire to customize them, see these instructions which also contain
details about the default templates:

	The 404 (page not found) view

	The 500 (server error) view

	The 403 (HTTP Forbidden) view

	The 400 (bad request) view

Miscellaneous

ALLOWED_INCLUDE_ROOTS

This setting is required if you’re using the ssi template tag.

Python Options

It’s strongly recommended that you invoke the Python process running your
Django application using the -R [http://docs.python.org/2.7/using/cmdline.html#cmdoption-R] option or with the
PYTHONHASHSEED [http://docs.python.org/3/using/cmdline.html#envvar-PYTHONHASHSEED] environment variable set to random.

These options help protect your site from denial-of-service (DoS)
attacks triggered by carefully crafted inputs. Such an attack can
drastically increase CPU usage by causing worst-case performance when
creating dict instances. See oCERT advisory #2011-003 [http://www.ocert.org/advisories/ocert-2011-003.html] for more information.

How to use Django with FastCGI, SCGI, or AJP

Deprecated since version 1.7: FastCGI support is deprecated and will be removed in Django 1.9.

Although WSGI is the preferred deployment
platform for Django, many people use shared hosting, on which protocols such as
FastCGI, SCGI or AJP are the only viable options.

Note

This document primarily focuses on FastCGI. Other protocols, such as SCGI
and AJP, are also supported, through the flup Python package. See the
Protocols section below for specifics about SCGI and AJP.

Essentially, FastCGI is an efficient way of letting an external application
serve pages to a Web server. The Web server delegates the incoming Web requests
(via a socket) to FastCGI, which executes the code and passes the response back
to the Web server, which, in turn, passes it back to the client’s Web browser.

Like WSGI, FastCGI allows code to stay in memory, allowing requests to be
served with no startup time. While
e.g. mod_wsgi can either be configured
embedded in the Apache Web server process or as a separate daemon process, a
FastCGI process never runs inside the Web server process, always in a separate,
persistent process.

Why run code in a separate process?

The traditional mod_* arrangements in Apache embed various scripting
languages (most notably PHP, Python and Perl) inside the process space of
your Web server. Although this lowers startup time – because code doesn’t
have to be read off disk for every request – it comes at the cost of
memory use.

Due to the nature of FastCGI, it’s even possible to have processes that run
under a different user account than the Web server process. That’s a nice
security benefit on shared systems, because it means you can secure your
code from other users.

Prerequisite: flup

Before you can start using FastCGI with Django, you’ll need to install flup [http://www.saddi.com/software/flup/], a
Python library for dealing with FastCGI. Version 0.5 or newer should work fine.

Starting your FastCGI server

FastCGI operates on a client-server model, and in most cases you’ll be starting
the FastCGI process on your own. Your Web server (be it Apache, lighttpd, or
otherwise) only contacts your Django-FastCGI process when the server needs a
dynamic page to be loaded. Because the daemon is already running with the code
in memory, it’s able to serve the response very quickly.

Note

If you’re on a shared hosting system, you’ll probably be forced to use
Web server-managed FastCGI processes. See the section below on running
Django with Web server-managed processes for more information.

A Web server can connect to a FastCGI server in one of two ways: It can use
either a Unix domain socket (a “named pipe” on Win32 systems), or it can use a
TCP socket. What you choose is a manner of preference; a TCP socket is usually
easier due to permissions issues.

To start your server, first change into the directory of your project (wherever
your manage.py is), and then run the
runfcgi command:

./manage.py runfcgi [options]

If you specify help as the only option after runfcgi, it’ll
display a list of all the available options.

You’ll need to specify either a socket, a protocol
or both host and port. Then, when you set up your
Web server, you’ll just need to point it at the host/port or socket you
specified when starting the FastCGI server. See the examples, below.

Protocols

Django supports all the protocols that flup [http://www.saddi.com/software/flup/] does, namely fastcgi [http://www.fastcgi.com/], SCGI [http://python.ca/scgi/protocol.txt] and
AJP1.3 [http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html] (the Apache JServ Protocol, version 1.3). Select your preferred
protocol by using the protocol=<protocol_name> option
with ./manage.py runfcgi – where <protocol_name> may be one of:
fcgi (the default), scgi or ajp. For example:

./manage.py runfcgi protocol=scgi

Examples

Running a threaded server on a TCP port:

./manage.py runfcgi method=threaded host=127.0.0.1 port=3033

Running a preforked server on a Unix domain socket:

./manage.py runfcgi method=prefork socket=/home/user/mysite.sock pidfile=django.pid

Socket security

Django’s default umask requires that the web server and the Django fastcgi
process be run with the same group and user. For increased security,
you can run them under the same group but as different users. If you do
this, you will need to set the umask to 0002 using the umask argument
to runfcgi.

Run without daemonizing (backgrounding) the process (good for debugging):

./manage.py runfcgi daemonize=false socket=/tmp/mysite.sock maxrequests=1

Stopping the FastCGI daemon

If you have the process running in the foreground, it’s easy enough to stop it:
Simply hitting Ctrl-C will stop and quit the FastCGI server. However, when
you’re dealing with background processes, you’ll need to resort to the Unix
kill command.

If you specify the pidfile option to runfcgi, you can
kill the running FastCGI daemon like this:

kill `cat $PIDFILE`

...where $PIDFILE is the pidfile you specified.

To easily restart your FastCGI daemon on Unix, try this small shell script:

#!/bin/bash

Replace these three settings.
PROJDIR="/home/user/myproject"
PIDFILE="$PROJDIR/mysite.pid"
SOCKET="$PROJDIR/mysite.sock"

cd $PROJDIR
if [-f $PIDFILE]; then
 kill `cat -- $PIDFILE`
 rm -f -- $PIDFILE
fi

exec /usr/bin/env - \
 PYTHONPATH="../python:.." \
 ./manage.py runfcgi socket=$SOCKET pidfile=$PIDFILE

Apache setup

To use Django with Apache and FastCGI, you’ll need Apache installed and
configured, with mod_fastcgi [http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html] installed and enabled. Consult the Apache
documentation for instructions.

Once you’ve got that set up, point Apache at your Django FastCGI instance by
editing the httpd.conf (Apache configuration) file. You’ll need to do two
things:

	Use the FastCGIExternalServer directive to specify the location of
your FastCGI server.

	Use mod_rewrite to point URLs at FastCGI as appropriate.

Specifying the location of the FastCGI server

The FastCGIExternalServer directive tells Apache how to find your FastCGI
server. As the FastCGIExternalServer docs [http://www.fastcgi.com/mod_fastcgi/docs/mod_fastcgi.html#FastCgiExternalServer] explain, you can specify either a
socket or a host. Here are examples of both:

Connect to FastCGI via a socket / named pipe.
FastCGIExternalServer /home/user/public_html/mysite.fcgi -socket /home/user/mysite.sock

Connect to FastCGI via a TCP host/port.
FastCGIExternalServer /home/user/public_html/mysite.fcgi -host 127.0.0.1:3033

In either case, the file /home/user/public_html/mysite.fcgi doesn’t
actually have to exist. It’s just a URL used by the Web server internally – a
hook for signifying which requests at a URL should be handled by FastCGI. (More
on this in the next section.)

Using mod_rewrite to point URLs at FastCGI

The second step is telling Apache to use FastCGI for URLs that match a certain
pattern. To do this, use the mod_rewrite [http://httpd.apache.org/docs/2.0/mod/mod_rewrite.html] module and rewrite URLs to
mysite.fcgi (or whatever you specified in the FastCGIExternalServer
directive, as explained in the previous section).

In this example, we tell Apache to use FastCGI to handle any request that
doesn’t represent a file on the filesystem and doesn’t start with /media/.
This is probably the most common case, if you’re using Django’s admin site:

<VirtualHost 12.34.56.78>
 ServerName example.com
 DocumentRoot /home/user/public_html
 Alias /media /home/user/python/django/contrib/admin/media
 RewriteEngine On
 RewriteRule ^/(media.*)$ /$1 [QSA,L,PT]
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^/(.*)$ /mysite.fcgi/$1 [QSA,L]
</VirtualHost>

Django will automatically use the pre-rewrite version of the URL when
constructing URLs with the {% url %} template tag (and similar
methods).

Using mod_fcgid as alternative to mod_fastcgi

Another way to serve applications through FastCGI is by using Apache’s
mod_fcgid [http://httpd.apache.org/mod_fcgid/] module. Compared to mod_fastcgi mod_fcgid handles FastCGI
applications differently in that it manages the spawning of worker processes
by itself and doesn’t offer something like FastCGIExternalServer. This
means that the configuration looks slightly different.

In effect, you have to go the way of adding a script handler similar to what
is described later on regarding running Django in a shared-hosting
environment. For further details please refer to the
mod_fcgid reference [http://httpd.apache.org/mod_fcgid/mod/mod_fcgid.html]

lighttpd setup

lighttpd [http://www.lighttpd.net/] is a lightweight Web server commonly used for serving static files. It
supports FastCGI natively and, thus, is a good choice for serving both static
and dynamic pages, if your site doesn’t have any Apache-specific needs.

Make sure mod_fastcgi is in your modules list, somewhere after
mod_rewrite and mod_access, but not after mod_accesslog. You’ll
probably want mod_alias as well, for serving admin media.

Add the following to your lighttpd config file:

server.document-root = "/home/user/public_html"
fastcgi.server = (
 "/mysite.fcgi" => (
 "main" => (
 # Use host / port instead of socket for TCP fastcgi
 # "host" => "127.0.0.1",
 # "port" => 3033,
 "socket" => "/home/user/mysite.sock",
 "check-local" => "disable",
)
),
)
alias.url = (
 "/media" => "/home/user/django/contrib/admin/media/",
)

url.rewrite-once = (
 "^(/media.*)$" => "$1",
 "^/favicon\.ico$" => "/media/favicon.ico",
 "^(/.*)$" => "/mysite.fcgi$1",
)

Running multiple Django sites on one lighttpd

lighttpd lets you use “conditional configuration” to allow configuration to be
customized per host. To specify multiple FastCGI sites, just add a conditional
block around your FastCGI config for each site:

If the hostname is 'www.example1.com'...
$HTTP["host"] == "www.example1.com" {
 server.document-root = "/foo/site1"
 fastcgi.server = (
 ...
)
 ...
}

If the hostname is 'www.example2.com'...
$HTTP["host"] == "www.example2.com" {
 server.document-root = "/foo/site2"
 fastcgi.server = (
 ...
)
 ...
}

You can also run multiple Django installations on the same site simply by
specifying multiple entries in the fastcgi.server directive. Add one
FastCGI host for each.

Cherokee setup

Cherokee is a very fast, flexible and easy to configure Web Server. It
supports the widespread technologies nowadays: FastCGI, SCGI, PHP, CGI, SSI,
TLS and SSL encrypted connections, Virtual hosts, Authentication, on the fly
encoding, Load Balancing, Apache compatible log files, Data Base Balancer,
Reverse HTTP Proxy and much more.

The Cherokee project provides a documentation to setting up Django [http://www.cherokee-project.com/doc/cookbook_django.html] with Cherokee.

Running Django on a shared-hosting provider with Apache

Many shared-hosting providers don’t allow you to run your own server daemons or
edit the httpd.conf file. In these cases, it’s still possible to run Django
using Web server-spawned processes.

Note

If you’re using Web server-spawned processes, as explained in this section,
there’s no need for you to start the FastCGI server on your own. Apache
will spawn a number of processes, scaling as it needs to.

In your Web root directory, add this to a file named .htaccess:

AddHandler fastcgi-script .fcgi
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ mysite.fcgi/$1 [QSA,L]

Then, create a small script that tells Apache how to spawn your FastCGI
program. Create a file mysite.fcgi and place it in your Web directory, and
be sure to make it executable:

#!/usr/bin/python
import sys, os

Add a custom Python path.
sys.path.insert(0, "/home/user/python")

Switch to the directory of your project. (Optional.)
os.chdir("/home/user/myproject")

Set the DJANGO_SETTINGS_MODULE environment variable.
os.environ['DJANGO_SETTINGS_MODULE'] = "myproject.settings"

from django.core.servers.fastcgi import runfastcgi
runfastcgi(method="threaded", daemonize="false")

This works if your server uses mod_fastcgi. If, on the other hand, you are
using mod_fcgid the setup is mostly the same except for a slight change in the
.htaccess file. Instead of adding a fastcgi-script handler, you have to
add a fcgid-handler:

AddHandler fcgid-script .fcgi
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ mysite.fcgi/$1 [QSA,L]

Restarting the spawned server

If you change any Python code on your site, you’ll need to tell FastCGI the
code has changed. But there’s no need to restart Apache in this case. Rather,
just reupload mysite.fcgi, or edit the file, so that the timestamp on the
file will change. When Apache sees the file has been updated, it will restart
your Django application for you.

If you have access to a command shell on a Unix system, you can accomplish this
easily by using the touch command:

touch mysite.fcgi

Serving admin media files

Regardless of the server and configuration you eventually decide to use, you
will also need to give some thought to how to serve the admin media files. The
advice given in the mod_wsgi documentation
is also applicable in the setups detailed above.

Forcing the URL prefix to a particular value

Because many of these fastcgi-based solutions require rewriting the URL at
some point inside the Web server, the path information that Django sees may not
resemble the original URL that was passed in. This is a problem if the Django
application is being served from under a particular prefix and you want your
URLs from the {% url %} tag to look like the prefix, rather than
the rewritten version, which might contain, for example, mysite.fcgi.

Django makes a good attempt to work out what the real script name prefix
should be. In particular, if the Web server sets the SCRIPT_URL (specific
to Apache’s mod_rewrite), or REDIRECT_URL (set by a few servers, including
Apache + mod_rewrite in some situations), Django will work out the original
prefix automatically.

In the cases where Django cannot work out the prefix correctly and where you
want the original value to be used in URLs, you can set the
FORCE_SCRIPT_NAME setting in your main settings file. This sets the
script name uniformly for every URL served via that settings file. Thus you’ll
need to use different settings files if you want different sets of URLs to
have different script names in this case, but that is a rare situation.

As an example of how to use it, if your Django configuration is serving all of
the URLs under '/' and you wanted to use this setting, you would set
FORCE_SCRIPT_NAME = '' in your settings file.

Upgrading Django to a newer version

While it can be a complex process at times, upgrading to the latest Django
version has several benefits:

	New features and improvements are added.

	Bugs are fixed.

	Older version of Django will eventually no longer receive security updates.
(see Supported versions).

	Upgrading as each new Django release is available makes future upgrades less
painful by keeping your code base up to date.

Here are some things to consider to help make your upgrade process as smooth as
possible.

Required Reading

If it’s your first time doing an upgrade, it is useful to read the guide
on the different release processes.

Afterwards, you should familiarize yourself with the changes that were made in
the new Django version(s):

	Read the release notes for each ‘final’ release from
the one after your current Django version, up to and including the version to
which you plan to upgrade.

	Look at the deprecation timeline for the
relevant versions.

Pay particular attention to backwards incompatible changes to get a clear idea
of what will be needed for a successful upgrade.

Dependencies

In most cases it will be necessary to upgrade to the latest version of your
Django-related dependencies as well. If the Django version was recently
released or if some of your dependencies are not well-maintained, some of your
dependencies may not yet support the new Django version. In these cases you may
have to wait until new versions of your dependencies are released.

Installation

Once you’re ready, it is time to install the new Django version. If you are using virtualenv [http://www.virtualenv.org/] and it is a major upgrade, you
might want to set up a new environment with all the dependencies first.

Exactly which steps you will need to take depends on your installation process.
The most convenient way is to use pip [http://www.pip-installer.org/] with the --upgrade or -U flag:

$ pip install -U Django

pip [http://www.pip-installer.org/] also automatically uninstalls the previous version of Django.

If you use some other installation process, you might have to manually
uninstall the old Django version and
should look at the complete installation instructions.

Testing

When the new environment is set up, run the full test suite for your application. In Python 2.7+, deprecation
warnings are silenced by default. It is useful to turn the warnings on so they
are shown in the test output (you can also use the flag if you test your app
manually using manage.py runserver):

$ python -Wall manage.py test

After you have run the tests, fix any failures. While you have the release
notes fresh in your mind, it may also be a good time to take advantage of new
features in Django by refactoring your code to eliminate any deprecation
warnings.

Deployment

When you are sufficiently confident your app works with the new version of
Django, you’re ready to go ahead and deploy
your upgraded Django project.

If you are using caching provided by Django, you should consider clearing your
cache after upgrading. Otherwise you may run into problems, for example, if you
are caching pickled objects as these objects are not guaranteed to be
pickle-compatible across Django versions. A past instance of incompatibility
was caching pickled HttpResponse objects, either
directly or indirectly via the cache_page()
decorator.

Error reporting

When you’re running a public site you should always turn off the
DEBUG setting. That will make your server run much faster, and will
also prevent malicious users from seeing details of your application that can be
revealed by the error pages.

However, running with DEBUG set to False means you’ll never see
errors generated by your site – everyone will just see your public error pages.
You need to keep track of errors that occur in deployed sites, so Django can be
configured to create reports with details about those errors.

Email reports

Server errors

When DEBUG is False, Django will email the users listed in the
ADMINS setting whenever your code raises an unhandled exception and
results in an internal server error (HTTP status code 500). This gives the
administrators immediate notification of any errors. The ADMINS will
get a description of the error, a complete Python traceback, and details about
the HTTP request that caused the error.

Note

In order to send email, Django requires a few settings telling it
how to connect to your mail server. At the very least, you’ll need
to specify EMAIL_HOST and possibly
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD,
though other settings may be also required depending on your mail
server’s configuration. Consult the Django settings
documentation for a full list of email-related
settings.

By default, Django will send email from root@localhost. However, some mail
providers reject all email from this address. To use a different sender
address, modify the SERVER_EMAIL setting.

To activate this behavior, put the email addresses of the recipients in the
ADMINS setting.

See also

Server error emails are sent using the logging framework, so you can
customize this behavior by customizing your logging configuration.

404 errors

Django can also be configured to email errors about broken links (404 “page
not found” errors). Django sends emails about 404 errors when:

	DEBUG is False;

	Your MIDDLEWARE_CLASSES setting includes
django.middleware.common.BrokenLinkEmailsMiddleware.

If those conditions are met, Django will email the users listed in the
MANAGERS setting whenever your code raises a 404 and the request has
a referer. (It doesn’t bother to email for 404s that don’t have a referer –
those are usually just people typing in broken URLs or broken Web ‘bots).

Note

BrokenLinkEmailsMiddleware must appear
before other middleware that intercepts 404 errors, such as
LocaleMiddleware or
FlatpageFallbackMiddleware.
Put it towards the top of your MIDDLEWARE_CLASSES setting.

You can tell Django to stop reporting particular 404s by tweaking the
IGNORABLE_404_URLS setting. It should be a tuple of compiled
regular expression objects. For example:

import re
IGNORABLE_404_URLS = (
 re.compile(r'\.(php|cgi)$'),
 re.compile(r'^/phpmyadmin/'),
)

In this example, a 404 to any URL ending with .php or .cgi will not be
reported. Neither will any URL starting with /phpmyadmin/.

The following example shows how to exclude some conventional URLs that browsers and
crawlers often request:

import re
IGNORABLE_404_URLS = (
 re.compile(r'^/apple-touch-icon.*\.png$'),
 re.compile(r'^/favicon\.ico$'),
 re.compile(r'^/robots\.txt$'),
)

(Note that these are regular expressions, so we put a backslash in front of
periods to escape them.)

If you’d like to customize the behavior of
django.middleware.common.BrokenLinkEmailsMiddleware further (for
example to ignore requests coming from web crawlers), you should subclass it
and override its methods.

See also

404 errors are logged using the logging framework. By default, these log
records are ignored, but you can use them for error reporting by writing a
handler and configuring logging appropriately.

Filtering error reports

Filtering sensitive information

Error reports are really helpful for debugging errors, so it is generally
useful to record as much relevant information about those errors as possible.
For example, by default Django records the full traceback [http://en.wikipedia.org/wiki/Stack_trace] for the
exception raised, each traceback frame [http://en.wikipedia.org/wiki/Stack_frame]’s local variables, and the
HttpRequest’s attributes.

However, sometimes certain types of information may be too sensitive and thus
may not be appropriate to be kept track of, for example a user’s password or
credit card number. So Django offers a set of function decorators to help you
control which information should be filtered out of error reports in a
production environment (that is, where DEBUG is set to False):
sensitive_variables() and sensitive_post_parameters().

	
sensitive_variables(*variables)[source]

	If a function (either a view or any regular callback) in your code uses
local variables susceptible to contain sensitive information, you may
prevent the values of those variables from being included in error reports
using the sensitive_variables decorator:

from django.views.decorators.debug import sensitive_variables

@sensitive_variables('user', 'pw', 'cc')
def process_info(user):
 pw = user.pass_word
 cc = user.credit_card_number
 name = user.name
 ...

In the above example, the values for the user, pw and cc
variables will be hidden and replaced with stars (**********) in the
error reports, whereas the value of the name variable will be
disclosed.

To systematically hide all local variables of a function from error logs,
do not provide any argument to the sensitive_variables decorator:

@sensitive_variables()
def my_function():
 ...

When using multiple decorators

If the variable you want to hide is also a function argument (e.g.
‘user’ in the following example), and if the decorated function has
multiple decorators, then make sure to place @sensitive_variables
at the top of the decorator chain. This way it will also hide the
function argument as it gets passed through the other decorators:

@sensitive_variables('user', 'pw', 'cc')
@some_decorator
@another_decorator
def process_info(user):
 ...

	
sensitive_post_parameters(*parameters)[source]

	If one of your views receives an HttpRequest object
with POST parameters susceptible to
contain sensitive information, you may prevent the values of those
parameters from being included in the error reports using the
sensitive_post_parameters decorator:

from django.views.decorators.debug import sensitive_post_parameters

@sensitive_post_parameters('pass_word', 'credit_card_number')
def record_user_profile(request):
 UserProfile.create(user=request.user,
 password=request.POST['pass_word'],
 credit_card=request.POST['credit_card_number'],
 name=request.POST['name'])
 ...

In the above example, the values for the pass_word and
credit_card_number POST parameters will be hidden and replaced with
stars (**********) in the request’s representation inside the error
reports, whereas the value of the name parameter will be disclosed.

To systematically hide all POST parameters of a request in error reports,
do not provide any argument to the sensitive_post_parameters decorator:

@sensitive_post_parameters()
def my_view(request):
 ...

All POST parameters are systematically filtered out of error reports for
certain django.contrib.auth.views views (login,
password_reset_confirm, password_change, and add_view and
user_change_password in the auth admin) to prevent the leaking of
sensitive information such as user passwords.

Custom error reports

All sensitive_variables() and sensitive_post_parameters() do is,
respectively, annotate the decorated function with the names of sensitive
variables and annotate the HttpRequest object with the names of sensitive
POST parameters, so that this sensitive information can later be filtered out
of reports when an error occurs. The actual filtering is done by Django’s
default error reporter filter:
django.views.debug.SafeExceptionReporterFilter. This filter uses the
decorators’ annotations to replace the corresponding values with stars
(**********) when the error reports are produced. If you wish to override or
customize this default behavior for your entire site, you need to define your
own filter class and tell Django to use it via the
DEFAULT_EXCEPTION_REPORTER_FILTER setting:

DEFAULT_EXCEPTION_REPORTER_FILTER = 'path.to.your.CustomExceptionReporterFilter'

You may also control in a more granular way which filter to use within any
given view by setting the HttpRequest’s exception_reporter_filter
attribute:

def my_view(request):
 if request.user.is_authenticated():
 request.exception_reporter_filter = CustomExceptionReporterFilter()
 ...

Your custom filter class needs to inherit from
django.views.debug.SafeExceptionReporterFilter and may override the
following methods:

	
class SafeExceptionReporterFilter[source]

	

	
SafeExceptionReporterFilter.is_active(request)[source]

	Returns True to activate the filtering operated in the other methods.
By default the filter is active if DEBUG is False.

	
SafeExceptionReporterFilter.get_request_repr(request)

	Returns the representation string of the request object, that is, the
value that would be returned by repr(request), except it uses the
filtered dictionary of POST parameters as determined by
SafeExceptionReporterFilter.get_post_parameters().

	
SafeExceptionReporterFilter.get_post_parameters(request)[source]

	Returns the filtered dictionary of POST parameters. By default it replaces
the values of sensitive parameters with stars (**********).

	
SafeExceptionReporterFilter.get_traceback_frame_variables(request, tb_frame)[source]

	Returns the filtered dictionary of local variables for the given traceback
frame. By default it replaces the values of sensitive variables with stars
(**********).

See also

You can also set up custom error reporting by writing a custom piece of
exception middleware. If you do write custom
error handling, it’s a good idea to emulate Django’s built-in error handling
and only report/log errors if DEBUG is False.

Providing initial data for models

It’s sometimes useful to pre-populate your database with hard-coded data when
you’re first setting up an app. There’s a couple of ways you can have Django
automatically create this data: you can provide initial data via fixtures, or
you can provide initial data as SQL.

In general, using a fixture is a cleaner method since it’s database-agnostic,
but initial SQL is also quite a bit more flexible.

Providing initial data with fixtures

A fixture is a collection of data that Django knows how to import into a
database. The most straightforward way of creating a fixture if you’ve already
got some data is to use the manage.py dumpdata command.
Or, you can write fixtures by hand; fixtures can be written as JSON, XML or YAML
(with PyYAML [http://www.pyyaml.org/] installed) documents. The serialization documentation has more details about each of these supported
serialization formats.

As an example, though, here’s what a fixture for a simple Person model might
look like in JSON:

[
 {
 "model": "myapp.person",
 "pk": 1,
 "fields": {
 "first_name": "John",
 "last_name": "Lennon"
 }
 },
 {
 "model": "myapp.person",
 "pk": 2,
 "fields": {
 "first_name": "Paul",
 "last_name": "McCartney"
 }
 }
]

And here’s that same fixture as YAML:

- model: myapp.person
 pk: 1
 fields:
 first_name: John
 last_name: Lennon
- model: myapp.person
 pk: 2
 fields:
 first_name: Paul
 last_name: McCartney

You’ll store this data in a fixtures directory inside your app.

Loading data is easy: just call manage.py loaddata
<fixturename>, where <fixturename> is the name of the fixture file
you’ve created. Each time you run loaddata, the data will be read
from the fixture and re-loaded into the database. Note this means that if you
change one of the rows created by a fixture and then run loaddata
again, you’ll wipe out any changes you’ve made.

Automatically loading initial data fixtures

Deprecated since version 1.7: If an application uses migrations, there is no automatic loading of
fixtures. Since migrations will be required for applications in Django 1.9,
this behavior is considered deprecated. If you want to load initial data
for an app, consider doing it in a data migration.

If you create a fixture named initial_data.[xml/yaml/json], that fixture will
be loaded every time you run migrate. This is extremely convenient,
but be careful: remember that the data will be refreshed every time you run
migrate. So don’t use initial_data for data you’ll want to edit.

Where Django finds fixture files

By default, Django looks in the fixtures directory inside each app for
fixtures. You can set the FIXTURE_DIRS setting to a list of
additional directories where Django should look.

When running manage.py loaddata, you can also
specify a path to a fixture file, which overrides searching the usual
directories.

See also

Fixtures are also used by the testing framework to help set up a consistent test environment.

Providing initial SQL data

Deprecated since version 1.7: If an application uses migrations, there is no loading of initial SQL data
(including backend-specific SQL data). Since migrations will be required
for applications in Django 1.9, this behavior is considered deprecated.
If you want to use initial SQL for an app, consider doing it in a
data migration.

Django provides a hook for passing the database arbitrary SQL that’s executed
just after the CREATE TABLE statements when you run migrate. You can
use this hook to populate default records, or you could also create SQL
functions, views, triggers, etc.

The hook is simple: Django just looks for a file called sql/<modelname>.sql,
in your app directory, where <modelname> is the model’s name in lowercase.

So, if you had a Person model in an app called myapp, you could add
arbitrary SQL to the file sql/person.sql inside your myapp directory.
Here’s an example of what the file might contain:

INSERT INTO myapp_person (first_name, last_name) VALUES ('John', 'Lennon');
INSERT INTO myapp_person (first_name, last_name) VALUES ('Paul', 'McCartney');

Each SQL file, if given, is expected to contain valid SQL statements
which will insert the desired data (e.g., properly-formatted
INSERT statements separated by semicolons).

The SQL files are read by the sqlcustom and sqlall
commands in manage.py. Refer to the manage.py
documentation for more information.

Note that if you have multiple SQL data files, there’s no guarantee of
the order in which they’re executed. The only thing you can assume is
that, by the time your custom data files are executed, all the
database tables already will have been created.

Initial SQL data and testing

This technique cannot be used to provide initial data for
testing purposes. Django’s test framework flushes the contents of
the test database after each test; as a result, any data added
using the custom SQL hook will be lost.

If you require data for a test case, you should add it using
either a test fixture, or
programmatically add it during the setUp() of your test case.

Database-backend-specific SQL data

There’s also a hook for backend-specific SQL data. For example, you
can have separate initial-data files for PostgreSQL and SQLite. For
each app, Django looks for a file called
<app_label>/sql/<modelname>.<backend>.sql, where <app_label> is
your app directory, <modelname> is the model’s name in lowercase
and <backend> is the last part of the module name provided for the
ENGINE in your settings file (e.g., if you have
defined a database with an ENGINE value of
django.db.backends.sqlite3, Django will look for
<app_label>/sql/<modelname>.sqlite3.sql).

Backend-specific SQL data is executed before non-backend-specific SQL
data. For example, if your app contains the files sql/person.sql
and sql/person.sqlite3.sql and you’re installing the app on
SQLite, Django will execute the contents of
sql/person.sqlite3.sql first, then sql/person.sql.

Running Django on Jython

Jython [http://www.jython.org/] is an implementation of Python that runs on the Java platform (JVM).
This document will get you up and running with Django on top of Jython.

Installing Jython

Django works with Jython versions 2.7b2 and higher. See the Jython [http://www.jython.org/] Web site for
download and installation instructions.

Creating a servlet container

If you just want to experiment with Django, skip ahead to the next section;
Django includes a lightweight Web server you can use for testing, so you won’t
need to set up anything else until you’re ready to deploy Django in production.

If you want to use Django on a production site, use a Java servlet container,
such as Apache Tomcat [http://tomcat.apache.org/]. Full JavaEE applications servers such as GlassFish [https://glassfish.java.net/]
or JBoss [http://www.jboss.org/] are also OK, if you need the extra features they include.

Installing Django

The next step is to install Django itself. This is exactly the same as
installing Django on standard Python, so see
Remove any old versions of Django and Install the Django code for
instructions.

Installing Jython platform support libraries

The django-jython [http://code.google.com/p/django-jython/] project contains database backends and management commands
for Django/Jython development. Note that the builtin Django backends won’t work
on top of Jython.

To install it, follow the installation instructions [https://pythonhosted.org/django-jython/quickstart.html#install] detailed on the project
Web site. Also, read the database backends [https://pythonhosted.org/django-jython/database-backends.html] documentation there.

Differences with Django on Jython

At this point, Django on Jython should behave nearly identically to Django
running on standard Python. However, are a few differences to keep in mind:

	Remember to use the jython command instead of python. The
documentation uses python for consistency, but if you’re using Jython
you’ll want to mentally replace python with jython every time it
occurs.

	Similarly, you’ll need to use the JYTHONPATH environment variable
instead of PYTHONPATH.

	Any part of Django that requires Pillow [http://pillow.readthedocs.org/en/latest/] will not work.

Integrating Django with a legacy database

While Django is best suited for developing new applications, it’s quite
possible to integrate it into legacy databases. Django includes a couple of
utilities to automate as much of this process as possible.

This document assumes you know the Django basics, as covered in the
tutorial.

Once you’ve got Django set up, you’ll follow this general process to integrate
with an existing database.

Give Django your database parameters

You’ll need to tell Django what your database connection parameters are, and
what the name of the database is. Do that by editing the DATABASES
setting and assigning values to the following keys for the 'default'
connection:

	NAME

	ENGINE

	USER

	PASSWORD

	HOST

	PORT

Auto-generate the models

Django comes with a utility called inspectdb that can create models
by introspecting an existing database. You can view the output by running this
command:

$ python manage.py inspectdb

Save this as a file by using standard Unix output redirection:

$ python manage.py inspectdb > models.py

This feature is meant as a shortcut, not as definitive model generation. See the
documentation of inspectdb for more information.

Once you’ve cleaned up your models, name the file models.py and put it in
the Python package that holds your app. Then add the app to your
INSTALLED_APPS setting.

By default, inspectdb creates unmanaged models. That is,
managed = False in the model’s Meta class tells Django not to manage
each table’s creation, modification, and deletion:

class Person(models.Model):
 id = models.IntegerField(primary_key=True)
 first_name = models.CharField(max_length=70)
 class Meta:
 managed = False
 db_table = 'CENSUS_PERSONS'

If you do want to allow Django to manage the table’s lifecycle, you’ll need to
change the managed option above to True
(or simply remove it because True is its default value).

Changed in Django 1.6: The behavior by which introspected models are created as unmanaged ones is new
in Django 1.6.

Install the core Django tables

Next, run the migrate command to install any extra needed database
records such as admin permissions and content types:

$ python manage.py migrate

Test and tweak

Those are the basic steps – from here you’ll want to tweak the models Django
generated until they work the way you’d like. Try accessing your data via the
Django database API, and try editing objects via Django’s admin site, and edit
the models file accordingly.

Outputting CSV with Django

This document explains how to output CSV (Comma Separated Values) dynamically
using Django views. To do this, you can either use the Python CSV library or the
Django template system.

Using the Python CSV library

Python comes with a CSV library, csv [http://docs.python.org/3/library/csv.html#module-csv]. The key to using it with Django is
that the csv [http://docs.python.org/3/library/csv.html#module-csv] module’s CSV-creation capability acts on file-like objects,
and Django’s HttpResponse objects are file-like objects.

Here’s an example:

import csv
from django.http import HttpResponse

def some_view(request):
 # Create the HttpResponse object with the appropriate CSV header.
 response = HttpResponse(content_type='text/csv')
 response['Content-Disposition'] = 'attachment; filename="somefilename.csv"'

 writer = csv.writer(response)
 writer.writerow(['First row', 'Foo', 'Bar', 'Baz'])
 writer.writerow(['Second row', 'A', 'B', 'C', '"Testing"', "Here's a quote"])

 return response

The code and comments should be self-explanatory, but a few things deserve a
mention:

	The response gets a special MIME type, text/csv. This tells
browsers that the document is a CSV file, rather than an HTML file. If
you leave this off, browsers will probably interpret the output as HTML,
which will result in ugly, scary gobbledygook in the browser window.

	The response gets an additional Content-Disposition header, which
contains the name of the CSV file. This filename is arbitrary; call it
whatever you want. It’ll be used by browsers in the “Save as...”
dialogue, etc.

	Hooking into the CSV-generation API is easy: Just pass response as the
first argument to csv.writer. The csv.writer function expects a
file-like object, and HttpResponse objects fit the
bill.

	For each row in your CSV file, call writer.writerow, passing it an
iterable object such as a list or tuple.

	The CSV module takes care of quoting for you, so you don’t have to worry
about escaping strings with quotes or commas in them. Just pass
writerow() your raw strings, and it’ll do the right thing.

Handling Unicode on Python 2

Python 2’s csv [http://docs.python.org/3/library/csv.html#module-csv] module does not support Unicode input. Since Django
uses Unicode internally this means strings read from sources such as
HttpRequest are potentially problematic. There are a
few options for handling this:

	Manually encode all Unicode objects to a compatible encoding.

	Use the UnicodeWriter class provided in the csv module’s examples
section [http://docs.python.org/2/library/csv.html#examples].

	Use the python-unicodecsv module [https://github.com/jdunck/python-unicodecsv], which aims to be a drop-in
replacement for csv [http://docs.python.org/3/library/csv.html#module-csv] that gracefully handles Unicode.

For more information, see the Python documentation of the csv [http://docs.python.org/3/library/csv.html#module-csv] module.

Streaming large CSV files

When dealing with views that generate very large responses, you might want to
consider using Django’s StreamingHttpResponse instead.
For example, by streaming a file that takes a long time to generate you can
avoid a load balancer dropping a connection that might have otherwise timed out
while the server was generating the response.

In this example, we make full use of Python generators to efficiently handle
the assembly and transmission of a large CSV file:

import csv

from django.utils.six.moves import range
from django.http import StreamingHttpResponse

class Echo(object):
 """An object that implements just the write method of the file-like
 interface.
 """
 def write(self, value):
 """Write the value by returning it, instead of storing in a buffer."""
 return value

def some_streaming_csv_view(request):
 """A view that streams a large CSV file."""
 # Generate a sequence of rows. The range is based on the maximum number of
 # rows that can be handled by a single sheet in most spreadsheet
 # applications.
 rows = (["Row {0}".format(idx), str(idx)] for idx in range(65536))
 pseudo_buffer = Echo()
 writer = csv.writer(pseudo_buffer)
 response = StreamingHttpResponse((writer.writerow(row) for row in rows),
 content_type="text/csv")
 response['Content-Disposition'] = 'attachment; filename="somefilename.csv"'
 return response

Using the template system

Alternatively, you can use the Django template system
to generate CSV. This is lower-level than using the convenient Python csv [http://docs.python.org/3/library/csv.html#module-csv]
module, but the solution is presented here for completeness.

The idea here is to pass a list of items to your template, and have the
template output the commas in a for loop.

Here’s an example, which generates the same CSV file as above:

from django.http import HttpResponse
from django.template import loader, Context

def some_view(request):
 # Create the HttpResponse object with the appropriate CSV header.
 response = HttpResponse(content_type='text/csv')
 response['Content-Disposition'] = 'attachment; filename="somefilename.csv"'

 # The data is hard-coded here, but you could load it from a database or
 # some other source.
 csv_data = (
 ('First row', 'Foo', 'Bar', 'Baz'),
 ('Second row', 'A', 'B', 'C', '"Testing"', "Here's a quote"),
)

 t = loader.get_template('my_template_name.txt')
 c = Context({
 'data': csv_data,
 })
 response.write(t.render(c))
 return response

The only difference between this example and the previous example is that this
one uses template loading instead of the CSV module. The rest of the code –
such as the content_type='text/csv' – is the same.

Then, create the template my_template_name.txt, with this template code:

{% for row in data %}"{{ row.0|addslashes }}", "{{ row.1|addslashes }}", "{{ row.2|addslashes }}", "{{ row.3|addslashes }}", "{{ row.4|addslashes }}"
{% endfor %}

This template is quite basic. It just iterates over the given data and displays
a line of CSV for each row. It uses the addslashes template filter to
ensure there aren’t any problems with quotes.

Other text-based formats

Notice that there isn’t very much specific to CSV here – just the specific
output format. You can use either of these techniques to output any text-based
format you can dream of. You can also use a similar technique to generate
arbitrary binary data; see Outputting PDFs with Django for an example.

Outputting PDFs with Django

This document explains how to output PDF files dynamically using Django views.
This is made possible by the excellent, open-source ReportLab [http://www.reportlab.com/software/opensource/rl-toolkit/] Python PDF
library.

The advantage of generating PDF files dynamically is that you can create
customized PDFs for different purposes – say, for different users or different
pieces of content.

For example, Django was used at kusports.com [http://www.kusports.com/] to generate customized,
printer-friendly NCAA tournament brackets, as PDF files, for people
participating in a March Madness contest.

Install ReportLab

Download and install the ReportLab library from
http://www.reportlab.com/software/opensource/rl-toolkit/download/.
The user guide [http://www.reportlab.com/docs/reportlab-userguide.pdf] (not coincidentally, a PDF file) explains how to install it.
Alternatively, you can also install it with pip:

$ sudo pip install reportlab

Test your installation by importing it in the Python interactive interpreter:

>>> import reportlab

If that command doesn’t raise any errors, the installation worked.

Write your view

The key to generating PDFs dynamically with Django is that the ReportLab API
acts on file-like objects, and Django’s HttpResponse
objects are file-like objects.

Here’s a “Hello World” example:

from reportlab.pdfgen import canvas
from django.http import HttpResponse

def some_view(request):
 # Create the HttpResponse object with the appropriate PDF headers.
 response = HttpResponse(content_type='application/pdf')
 response['Content-Disposition'] = 'attachment; filename="somefilename.pdf"'

 # Create the PDF object, using the response object as its "file."
 p = canvas.Canvas(response)

 # Draw things on the PDF. Here's where the PDF generation happens.
 # See the ReportLab documentation for the full list of functionality.
 p.drawString(100, 100, "Hello world.")

 # Close the PDF object cleanly, and we're done.
 p.showPage()
 p.save()
 return response

The code and comments should be self-explanatory, but a few things deserve a
mention:

	The response gets a special MIME type, application/pdf. This
tells browsers that the document is a PDF file, rather than an HTML file.
If you leave this off, browsers will probably interpret the output as
HTML, which would result in ugly, scary gobbledygook in the browser
window.

	The response gets an additional Content-Disposition header, which
contains the name of the PDF file. This filename is arbitrary: Call it
whatever you want. It’ll be used by browsers in the “Save as...”
dialogue, etc.

	The Content-Disposition header starts with 'attachment; ' in this
example. This forces Web browsers to pop-up a dialog box
prompting/confirming how to handle the document even if a default is set
on the machine. If you leave off 'attachment;', browsers will handle
the PDF using whatever program/plugin they’ve been configured to use for
PDFs. Here’s what that code would look like:

response['Content-Disposition'] = 'filename="somefilename.pdf"'

	Hooking into the ReportLab API is easy: Just pass response as the
first argument to canvas.Canvas. The Canvas class expects a
file-like object, and HttpResponse objects fit the
bill.

	Note that all subsequent PDF-generation methods are called on the PDF
object (in this case, p) – not on response.

	Finally, it’s important to call showPage() and save() on the PDF
file.

Note

ReportLab is not thread-safe. Some of our users have reported odd issues
with building PDF-generating Django views that are accessed by many people
at the same time.

Complex PDFs

If you’re creating a complex PDF document with ReportLab, consider using the
io [http://docs.python.org/3/library/io.html#module-io] library as a temporary holding place for your PDF file. This
library provides a file-like object interface that is particularly efficient.
Here’s the above “Hello World” example rewritten to use io [http://docs.python.org/3/library/io.html#module-io]:

from io import BytesIO
from reportlab.pdfgen import canvas
from django.http import HttpResponse

def some_view(request):
 # Create the HttpResponse object with the appropriate PDF headers.
 response = HttpResponse(content_type='application/pdf')
 response['Content-Disposition'] = 'attachment; filename="somefilename.pdf"'

 buffer = BytesIO()

 # Create the PDF object, using the BytesIO object as its "file."
 p = canvas.Canvas(buffer)

 # Draw things on the PDF. Here's where the PDF generation happens.
 # See the ReportLab documentation for the full list of functionality.
 p.drawString(100, 100, "Hello world.")

 # Close the PDF object cleanly.
 p.showPage()
 p.save()

 # Get the value of the BytesIO buffer and write it to the response.
 pdf = buffer.getvalue()
 buffer.close()
 response.write(pdf)
 return response

Further resources

	PDFlib [http://www.pdflib.org/] is another PDF-generation library that has Python bindings. To
use it with Django, just use the same concepts explained in this article.

	Pisa XHTML2PDF [https://github.com/xhtml2pdf/xhtml2pdf] is yet another PDF-generation library. Pisa ships with
an example of how to integrate Pisa with Django.

	HTMLdoc [https://www.msweet.org/projects.php?Z1] is a command-line script that can convert HTML to PDF. It
doesn’t have a Python interface, but you can escape out to the shell
using system or popen and retrieve the output in Python.

Other formats

Notice that there isn’t a lot in these examples that’s PDF-specific – just the
bits using reportlab. You can use a similar technique to generate any
arbitrary format that you can find a Python library for. Also see
Outputting CSV with Django for another example and some techniques you can use
when generated text-based formats.

Managing static files (CSS, images)

Websites generally need to serve additional files such as images, JavaScript,
or CSS. In Django, we refer to these files as “static files”. Django provides
django.contrib.staticfiles to help you manage them.

This page describes how you can serve these static files.

Configuring static files

	Make sure that django.contrib.staticfiles is included in your
INSTALLED_APPS.

	In your settings file, define STATIC_URL, for example:

STATIC_URL = '/static/'

	In your templates, either hardcode the url like
/static/my_app/myexample.jpg or, preferably, use the
static template tag to build the URL for the given
relative path by using the configured STATICFILES_STORAGE storage
(this makes it much easier when you want to switch to a content delivery
network (CDN) for serving static files).

{% load staticfiles %}

	Store your static files in a folder called static in your app. For
example my_app/static/my_app/myimage.jpg.

Serving the files

In addition to these configuration steps, you’ll also need to actually
serve the static files.

During development, if you use django.contrib.staticfiles, this will
be done automatically by runserver when DEBUG is set
to True (see django.contrib.staticfiles.views.serve()).

This method is grossly inefficient and probably insecure,
so it is unsuitable for production.

See Deploying static files for proper strategies to serve
static files in production environments.

Your project will probably also have static assets that aren’t tied to a
particular app. In addition to using a static/ directory inside your apps,
you can define a list of directories (STATICFILES_DIRS) in your
settings file where Django will also look for static files. For example:

STATICFILES_DIRS = (
 os.path.join(BASE_DIR, "static"),
 '/var/www/static/',
)

See the documentation for the STATICFILES_FINDERS setting for
details on how staticfiles finds your files.

Static file namespacing

Now we might be able to get away with putting our static files directly
in my_app/static/ (rather than creating another my_app
subdirectory), but it would actually be a bad idea. Django will use the
first static file it finds whose name matches, and if you had a static file
with the same name in a different application, Django would be unable to
distinguish between them. We need to be able to point Django at the right
one, and the easiest way to ensure this is by namespacing them. That is,
by putting those static files inside another directory named for the
application itself.

Serving static files during development.

If you use django.contrib.staticfiles as explained above,
runserver will do this automatically when DEBUG is set
to True. If you don’t have django.contrib.staticfiles in
INSTALLED_APPS, you can still manually serve static files using the
django.contrib.staticfiles.views.serve() view.

This is not suitable for production use! For some common deployment
strategies, see Deploying static files.

For example, if your STATIC_URL is defined as /static/, you can do
this by adding the following snippet to your urls.py:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = patterns('',
 # ... the rest of your URLconf goes here ...
) + static(settings.STATIC_URL, document_root=settings.STATIC_ROOT)

Note

This helper function works only in debug mode and only if
the given prefix is local (e.g. /static/) and not a URL (e.g.
http://static.example.com/).

Also this helper function only serves the actual STATIC_ROOT
folder; it doesn’t perform static files discovery like
django.contrib.staticfiles.

Serving files uploaded by a user during development.

During development, you can serve user-uploaded media files from
MEDIA_ROOT using the django.contrib.staticfiles.views.serve()
view.

This is not suitable for production use! For some common deployment
strategies, see Deploying static files.

For example, if your MEDIA_URL is defined as /media/, you can do
this by adding the following snippet to your urls.py:

from django.conf import settings
from django.conf.urls.static import static

urlpatterns = patterns('',
 # ... the rest of your URLconf goes here ...
) + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)

Note

This helper function works only in debug mode and only if
the given prefix is local (e.g. /media/) and not a URL (e.g.
http://media.example.com/).

Testing

When running tests that use actual HTTP requests instead of the built-in
testing client (i.e. when using the built-in LiveServerTestCase) the static assets need to be served along
the rest of the content so the test environment reproduces the real one as
faithfully as possible, but LiveServerTestCase has only very basic static
file-serving functionality: It doesn’t know about the finders feature of the
staticfiles application and assumes the static content has already been
collected under STATIC_ROOT.

Because of this, staticfiles ships its own
django.contrib.staticfiles.testing.StaticLiveServerTestCase, a subclass
of the built-in one that has the ability to transparently serve all the assets
during execution of these tests in a way very similar to what we get at
development time with DEBUG = True, i.e. without having to collect them
using collectstatic first.

New in Django 1.7: django.contrib.staticfiles.testing.StaticLiveServerTestCase is new
in Django 1.7. Previously its functionality was provided by
django.test.LiveServerTestCase.

Deployment

django.contrib.staticfiles provides a convenience management command
for gathering static files in a single directory so you can serve them easily.

	Set the STATIC_ROOT setting to the directory from which you’d
like to serve these files, for example:

STATIC_ROOT = "/var/www/example.com/static/"

	Run the collectstatic management command:

$ python manage.py collectstatic

This will copy all files from your static folders into the
STATIC_ROOT directory.

	Use a web server of your choice to serve the
files. Deploying static files covers some common deployment
strategies for static files.

Learn more

This document has covered the basics and some common usage patterns. For
complete details on all the settings, commands, template tags, and other pieces
included in django.contrib.staticfiles, see the staticfiles
reference.

Deploying static files

See also

For an introduction to the use of django.contrib.staticfiles, see
Managing static files (CSS, images).

Serving static files in production

The basic outline of putting static files into production is simple: run the
collectstatic command when static files change, then arrange for
the collected static files directory (STATIC_ROOT) to be moved to
the static file server and served. Depending on STATICFILES_STORAGE,
files may need to be moved to a new location manually or the post_process method
of the Storage class might take care of that.

Of course, as with all deployment tasks, the devil’s in the details. Every
production setup will be a bit different, so you’ll need to adapt the basic
outline to fit your needs. Below are a few common patterns that might help.

Serving the site and your static files from the same server

If you want to serve your static files from the same server that’s already
serving your site, the process may look something like:

	Push your code up to the deployment server.

	On the server, run collectstatic to copy all the static files
into STATIC_ROOT.

	Configure your web server to serve the files in STATIC_ROOT
under the URL STATIC_URL. For example, here’s
how to do this with Apache and mod_wsgi.

You’ll probably want to automate this process, especially if you’ve got
multiple web servers. There’s any number of ways to do this automation, but
one option that many Django developers enjoy is Fabric [http://fabfile.org/].

Below, and in the following sections, we’ll show off a few example fabfiles
(i.e. Fabric scripts) that automate these file deployment options. The syntax
of a fabfile is fairly straightforward but won’t be covered here; consult
Fabric’s documentation [http://docs.fabfile.org/], for a complete
explanation of the syntax.

So, a fabfile to deploy static files to a couple of web servers might look
something like:

from fabric.api import *

Hosts to deploy onto
env.hosts = ['www1.example.com', 'www2.example.com']

Where your project code lives on the server
env.project_root = '/home/www/myproject'

def deploy_static():
 with cd(env.project_root):
 run('./manage.py collectstatic -v0 --noinput')

Serving static files from a dedicated server

Most larger Django sites use a separate Web server – i.e., one that’s not also
running Django – for serving static files. This server often runs a different
type of web server – faster but less full-featured. Some common choices are:

	lighttpd [http://www.lighttpd.net/]

	Nginx [http://wiki.nginx.org/Main]

	TUX [http://en.wikipedia.org/wiki/TUX_web_server]

	Cherokee [http://www.cherokee-project.com/]

	A stripped-down version of Apache [http://httpd.apache.org/]

Configuring these servers is out of scope of this document; check each
server’s respective documentation for instructions.

Since your static file server won’t be running Django, you’ll need to modify
the deployment strategy to look something like:

	When your static files change, run collectstatic locally.

	Push your local STATIC_ROOT up to the static file server into the
directory that’s being served. rsync [https://rsync.samba.org/] is a
common choice for this step since it only needs to transfer the bits of
static files that have changed.

Here’s how this might look in a fabfile:

from fabric.api import *
from fabric.contrib import project

Where the static files get collected locally. Your STATIC_ROOT setting.
env.local_static_root = '/tmp/static'

Where the static files should go remotely
env.remote_static_root = '/home/www/static.example.com'

@roles('static')
def deploy_static():
 local('./manage.py collectstatic')
 project.rsync_project(
 remote_dir = env.remote_static_root,
 local_dir = env.local_static_root,
 delete = True
)

Serving static files from a cloud service or CDN

Another common tactic is to serve static files from a cloud storage provider
like Amazon’s S3 and/or a CDN (content delivery network). This lets you
ignore the problems of serving static files and can often make for
faster-loading webpages (especially when using a CDN).

When using these services, the basic workflow would look a bit like the above,
except that instead of using rsync to transfer your static files to the
server you’d need to transfer the static files to the storage provider or CDN.

There’s any number of ways you might do this, but if the provider has an API a
custom file storage backend will make the
process incredibly simple. If you’ve written or are using a 3rd party custom
storage backend, you can tell collectstatic to use it by setting
STATICFILES_STORAGE to the storage engine.

For example, if you’ve written an S3 storage backend in
myproject.storage.S3Storage you could use it with:

STATICFILES_STORAGE = 'myproject.storage.S3Storage'

Once that’s done, all you have to do is run collectstatic and your
static files would be pushed through your storage package up to S3. If you
later needed to switch to a different storage provider, it could be as simple
as changing your STATICFILES_STORAGE setting.

For details on how you’d write one of these backends, see
Writing a custom storage system. There are 3rd party apps available that
provide storage backends for many common file storage APIs. A good starting
point is the overview at djangopackages.com [https://www.djangopackages.com/grids/g/storage-backends/].

Learn more

For complete details on all the settings, commands, template tags, and other
pieces included in django.contrib.staticfiles, see the
staticfiles reference.

How to install Django on Windows

This document will guide you through installing Python and Django for basic
usage on Windows. This is meant as a beginner’s guide for users working on
Django projects and does not reflect how Django should be installed when
developing patches for Django itself.

The steps in this guide have been tested with Windows 7 and 8. In other
versions, the steps would be similar.

Install Python

Django is a Python web framework, thus requiring Python to be installed on your
machine.

To install Python on your machine go to http://python.org/download/, and
download a Windows MSI installer for Python. Once downloaded, run the MSI
installer and follow the on-screen instructions.

After installation, open the command prompt and check the Python version by
executing python --version. If you encounter a problem, make sure you
have set the PATH variable correctly. You might need to adjust your
PATH environment variable to include paths to the Python executable and
additional scripts. For example, if your Python is installed in
C:\Python34\, the following paths need to be added to PATH:

C:\Python34\;C:\Python34\Scripts;

Install Setuptools

To install Python packages on your computer, Setuptools is needed. Download the
latest version of Setuptools [http://pypi.python.org/pypi/setuptools] for
your Python version and follow the installation instructions given there.

Install PIP

PIP [http://www.pip-installer.org/] is a package manager for Python that
uses the Python Package Index [http://pypi.python.org] to install Python
packages. PIP will later be used to install Django from PyPI. If you’ve
installed Python 3.4, pip is included so you may skip this section.

Open a command prompt and execute easy_install pip. This will install
pip on your system. This command will work if you have successfully
installed Setuptools.

Alternatively, go to http://www.pip-installer.org/en/latest/installing.html
for installing/upgrading instructions.

Install Django

Django can be installed easily using pip.

In the command prompt, execute the following command: pip install django.
This will download and install Django.

After the installation has completed, you can verify your Django installation
by executing django-admin.py --version in the command prompt.

Changed in Django 1.7: In Django 1.7, a .exe has been introduced, so just use
django-admin in place of django-admin.py in the command prompt.

See Get your database running for information on database installation
with Django.

Common pitfalls

	If django-admin.py only displays the help text no matter what arguments
it is given, there is probably a problem with the file association in
Windows. Check if there is more than one environment variable set for
running Python scripts in PATH. This usually occurs when there is more
than one Python version installed.

	If you are connecting to the internet behind a proxy, there might be problem
in running the commands easy_install pip and pip install django.
Set the environment variables for proxy configuration in the command prompt
as follows:

set http_proxy=http://username:password@proxyserver:proxyport
set https_proxy=https://username:password@proxyserver:proxyport

	Executing django-admin.py opens up a text file. This is due to the text
editor being the default program for .py files. This must be changed
to the python.exe located in the folder where Python is installed.

Glossary

	field

	An attribute on a model; a given field usually maps directly to
a single database column.

See Models.

	generic view

	A higher-order view function that provides an abstract/generic
implementation of a common idiom or pattern found in view development.

See Class-based views.

	model

	Models store your application’s data.

See Models.

	MTV

	“Model-template-view”; a software pattern, similar in style to MVC, but
a better description of the way Django does things.

See the FAQ entry.

	MVC

	Model-view-controller [http://en.wikipedia.org/wiki/Model-view-controller]; a software pattern. Django follows MVC
to some extent.

	project

	A Python package – i.e. a directory of code – that contains all the
settings for an instance of Django. This would include database
configuration, Django-specific options and application-specific
settings.

	property

	Also known as “managed attributes”, and a feature of Python since
version 2.2. This is a neat way to implement attributes whose usage
resembles attribute access, but whose implementation uses method calls.

See property [http://docs.python.org/3/library/functions.html#property].

	queryset

	An object representing some set of rows to be fetched from the database.

See Making queries.

	slug

	A short label for something, containing only letters, numbers,
underscores or hyphens. They’re generally used in URLs. For
example, in a typical blog entry URL:

https://www.djangoproject.com/weblog/2008/apr/12/spring/

the last bit (spring) is the slug.

	template

	A chunk of text that acts as formatting for representing data. A
template helps to abstract the presentation of data from the data
itself.

See The Django template language.

	view

	A function responsible for rendering a page.

Django internals

Documentation for people hacking on Django itself. This is the place to go if
you’d like to help improve Django, learn or learn about how Django works “under
the hood”.

Warning

Elsewhere in the Django documentation, coverage of a feature is a sort of a
contract: once an API is in the official documentation, we consider it
“stable” and don’t change it without a good reason. APIs covered here,
however, are considered “internal-only”: we reserve the right to change
these internals if we must.

	Contributing to Django
	Advice for new contributors

	Reporting bugs and requesting features

	Triaging tickets

	Writing code

	Writing documentation

	Localizing Django

	Committing code

	Mailing lists
	django-users

	django-core-mentorship

	django-developers

	django-i18n

	django-announce

	django-updates

	Django committers
	The original team

	Current developers

	Developers Emeritus

	Django’s security policies
	Reporting security issues

	Supported versions

	How Django discloses security issues

	Who receives advance notification

	Requesting notifications

	Django’s release process
	Official releases

	Supported versions

	Long-term support (LTS) releases

	Release process

	Django Deprecation Timeline
	1.9

	1.8

	1.7

	1.6

	1.5

	1.4

	1.3

	The Django source code repository
	High-level overview

	The master branch

	Other branches

	Tags

	How is Django Formed?
	Overview

	Prerequisites

	Pre-release tasks

	Preparing for release

	Actually rolling the release

	Making the release(s) available to the public

	Post-release

	Notes on setting the VERSION tuple

Contributing to Django

Django is a community that lives on its volunteers. As it keeps growing, we
always need more people to help others. As soon as you learn Django, you can
contribute in many ways:

	Join the django-users mailing list and answer questions. This
mailing list has a huge audience, and we really want to maintain a
friendly and helpful atmosphere. If you’re new to the Django community,
you should read the posting guidelines [https://code.djangoproject.com/wiki/UsingTheMailingList].

	Join the #django IRC channel on Freenode and answer questions. By
explaining Django to other users, you’re going to learn a lot about the
framework yourself.

	Blog about Django. We syndicate all the Django blogs we know about on
the community page [https://www.djangoproject.com/community/]; if you’d like to see your blog on that page you
can register it here [https://www.djangoproject.com/community/add/blogs/].

	Contribute to open-source Django projects, write some documentation, or
release your own code as an open-source pluggable application. The
ecosystem of pluggable applications is a big strength of Django, help us
build it!

If you think working with Django is fun, wait until you start working on
it. We’re passionate about helping Django users make the jump to contributing
members of the community, so there are several ways you can help Django’s
development:

	Report bugs in our ticket tracker [https://code.djangoproject.com/newticket].

	Join the django-developers mailing list and share your ideas for how
to improve Django. We’re always open to suggestions.

	Submit patches for new and/or
fixed behavior. If you’re looking for an easy way to start contributing
to Django have a look at the easy pickings [https://code.djangoproject.com/query?status=!closed&easy=1] tickets.

	Improve the documentation or
write unit tests.

	Triage tickets and review patches created by
other users.

Really, ANYONE can do something to help make Django better and greater!

Browse the following sections to find out how:

	Advice for new contributors
	First steps

	Guidelines

	FAQ

	Reporting bugs and requesting features
	Reporting bugs

	Reporting user interface bugs and features

	Requesting features

	How we make decisions

	Triaging tickets
	Triage workflow

	Triage stages

	Other triage attributes

	Closing Tickets

	How can I help with triaging?

	Writing code
	Coding style

	Unit tests

	Submitting patches

	Working with Git and GitHub

	Writing documentation
	Getting the raw documentation

	Getting started with Sphinx

	Writing style

	Commonly used terms

	Django-specific terminology

	Guidelines for reStructuredText files

	Django-specific markup

	Documenting new features

	An example

	Improving the documentation

	Spelling check

	Translating documentation

	Localizing Django
	Translations

	Formats

	Documentation

	Committing code
	Commit access

	Handling pull requests

	Committing guidelines

	Reverting commits

Advice for new contributors

New contributor and not sure what to do? Want to help but just don’t know how
to get started? This is the section for you.

First steps

Start with these easy tasks to discover Django’s development process.

	Sign the Contributor License Agreement

The code that you write belongs to you or your employer. If your
contribution is more than one or two lines of code, you need to sign the
CLA [https://www.djangoproject.com/foundation/cla/]. See the Contributor License Agreement FAQ [https://www.djangoproject.com/foundation/cla/faq/] for a more thorough
explanation.

	Triage tickets

If an unreviewed ticket [https://code.djangoproject.com/query?status=!closed&stage=Unreviewed] reports a bug, try and reproduce it. If you
can reproduce it and it seems valid, make a note that you confirmed the bug
and accept the ticket. Make sure the ticket is filed under the correct
component area. Consider writing a patch that adds a test for the bug’s
behavior, even if you don’t fix the bug itself. See more at
How can I help with triaging?

	Look for tickets that are accepted and review patches to build familiarity
with the codebase and the process

Mark the appropriate flags if a patch needs docs or tests. Look through the
changes a patch makes, and keep an eye out for syntax that is incompatible
with older but still supported versions of Python. Run the tests and make
sure they pass on your system. Where possible and relevant, try them out on
a database other than SQLite. Leave comments and feedback!

	Keep old patches up to date

Oftentimes the codebase will change between a patch being submitted and the
time it gets reviewed. Make sure it still applies cleanly and functions as
expected. Simply updating a patch is both useful and important! See more on
Submitting patches.

	Write some documentation

Django’s documentation is great but it can always be improved. Did you find
a typo? Do you think that something should be clarified? Go ahead and
suggest a documentation patch! See also the guide on
Writing documentation, in particular the tips for
Improving the documentation.

Note

The reports page [https://code.djangoproject.com/wiki/Reports] contains links to many useful Trac queries, including
several that are useful for triaging tickets and reviewing patches as
suggested above.

Guidelines

As a newcomer on a large project, it’s easy to experience frustration. Here’s
some advice to make your work on Django more useful and rewarding.

	Pick a subject area that you care about, that you are familiar with, or
that you want to learn about

You don’t already have to be an expert on the area you want to work on; you
become an expert through your ongoing contributions to the code.

	Analyze tickets’ context and history

Trac isn’t an absolute; the context is just as important as the words.
When reading Trac, you need to take into account who says things, and when
they were said. Support for an idea two years ago doesn’t necessarily mean
that the idea will still have support. You also need to pay attention to who
hasn’t spoken – for example, if a core team member hasn’t been recently
involved in a discussion, then a ticket may not have the support required to
get into trunk.

	Start small

It’s easier to get feedback on a little issue than on a big one. See the
easy pickings [https://code.djangoproject.com/query?status=!closed&easy=1].

	If you’re going to engage in a big task, make sure that your idea has
support first

This means getting someone else to confirm that a bug is real before you fix
the issue, and ensuring that the core team supports a proposed feature
before you go implementing it.

	Be bold! Leave feedback!

Sometimes it can be scary to put your opinion out to the world and say “this
ticket is correct” or “this patch needs work”, but it’s the only way the
project moves forward. The contributions of the broad Django community
ultimately have a much greater impact than that of the core developers. We
can’t do it without YOU!

	Err on the side of caution when marking things Ready For Check-in

If you’re really not certain if a ticket is ready, don’t mark it as
such. Leave a comment instead, letting others know your thoughts. If you’re
mostly certain, but not completely certain, you might also try asking on IRC
to see if someone else can confirm your suspicions.

	Wait for feedback, and respond to feedback that you receive

Focus on one or two tickets, see them through from start to finish, and
repeat. The shotgun approach of taking on lots of tickets and letting some
fall by the wayside ends up doing more harm than good.

	Be rigorous

When we say “PEP 8 [https://www.python.org/dev/peps/pep-0008], and must have docs and tests”, we mean it. If a patch
doesn’t have docs and tests, there had better be a good reason. Arguments
like “I couldn’t find any existing tests of this feature” don’t carry much
weight–while it may be true, that means you have the extra-important job of
writing the very first tests for that feature, not that you get a pass from
writing tests altogether.

FAQ

	This ticket I care about has been ignored for days/weeks/months! What can
I do to get it committed?

First off, it’s not personal. Django is entirely developed by volunteers
(even the core developers), and sometimes folks just don’t have time. The
best thing to do is to send a gentle reminder to the django-developers
mailing list asking for review on the ticket, or to bring it up in the
#django-dev IRC channel.

	I’m sure my ticket is absolutely 100% perfect, can I mark it as RFC
myself?

Short answer: No. It’s always better to get another set of eyes on a
ticket. If you’re having trouble getting that second set of eyes, see
question 1, above.

Reporting bugs and requesting features

Important

Please report security issues only to
security@djangoproject.com. This is a private list only open to
long-time, highly trusted Django developers, and its archives are
not public. For further details, please see our security
policies.

Otherwise, before reporting a bug or requesting a new feature, please consider these
general points:

	Check that someone hasn’t already filed the bug or feature request by
searching [https://code.djangoproject.com/search] or running custom queries [https://code.djangoproject.com/query] in the ticket tracker.

	Don’t use the ticket system to ask support questions. Use the
django-users list or the #django IRC channel for that.

	Don’t reopen issues that have been marked “wontfix” by a core developer.
This mark means that the decision has been made that we can’t or won’t fix
this particular issue. If you’re not sure why, please ask
on django-developers.

	Don’t use the ticket tracker for lengthy discussions, because they’re
likely to get lost. If a particular ticket is controversial, please move the
discussion to django-developers.

Reporting bugs

Well-written bug reports are incredibly helpful. However, there’s a certain
amount of overhead involved in working with any bug tracking system so your
help in keeping our ticket tracker as useful as possible is appreciated. In
particular:

	Do read the FAQ to see if your issue might
be a well-known question.

	Do ask on django-users or #django first if you’re not sure if
what you’re seeing is a bug.

	Do write complete, reproducible, specific bug reports. You must
include a clear, concise description of the problem, and a set of
instructions for replicating it. Add as much debug information as you can:
code snippets, test cases, exception backtraces, screenshots, etc. A nice
small test case is the best way to report a bug, as it gives us an easy
way to confirm the bug quickly.

	Don’t post to django-developers just to announce that you have
filed a bug report. All the tickets are mailed to another list,
django-updates, which is tracked by developers and interested
community members; we see them as they are filed.

To understand the lifecycle of your ticket once you have created it, refer to
Triaging tickets.

Reporting user interface bugs and features

If your bug or feature request touches on anything visual in nature, there
are a few additional guidelines to follow:

	Include screenshots in your ticket which are the visual equivalent of a
minimal testcase. Show off the issue, not the crazy customizations
you’ve made to your browser.

	If the issue is difficult to show off using a still image, consider
capturing a brief screencast. If your software permits it, capture only
the relevant area of the screen.

	If you’re offering a patch which changes the look or behavior of Django’s
UI, you must attach before and after screenshots/screencasts.
Tickets lacking these are difficult for triagers and core developers to
assess quickly.

	Screenshots don’t absolve you of other good reporting practices. Make sure
to include URLs, code snippets, and step-by-step instructions on how to
reproduce the behavior visible in the screenshots.

	Make sure to set the UI/UX flag on the ticket so interested parties can
find your ticket.

Requesting features

We’re always trying to make Django better, and your feature requests are a key
part of that. Here are some tips on how to make a request most effectively:

	Make sure the feature actually requires changes in Django’s core. If your
idea can be developed as an independent application or module — for
instance, you want to support another database engine — we’ll probably
suggest that you to develop it independently. Then, if your project
gathers sufficient community support, we may consider it for inclusion in
Django.

	First request the feature on the django-developers list, not in the
ticket tracker. It’ll get read more closely if it’s on the mailing list.
This is even more important for large-scale feature requests. We like to
discuss any big changes to Django’s core on the mailing list before
actually working on them.

	Describe clearly and concisely what the missing feature is and how you’d
like to see it implemented. Include example code (non-functional is OK)
if possible.

	Explain why you’d like the feature. In some cases this is obvious, but
since Django is designed to help real developers get real work done,
you’ll need to explain it, if it isn’t obvious why the feature would be
useful.

If core developers agree on the feature, then it’s appropriate to create a
ticket. Include a link the discussion on django-developers in the ticket
description.

As with most open-source projects, code talks. If you are willing to write the
code for the feature yourself or, even better, if you’ve already written it,
it’s much more likely to be accepted. Just fork Django on GitHub, create a
feature branch, and show us your work!

See also: Documenting new features.

How we make decisions

Whenever possible, we strive for a rough consensus. To that end, we’ll often
have informal votes on django-developers about a feature. In these votes we
follow the voting style invented by Apache and used on Python itself, where
votes are given as +1, +0, -0, or -1. Roughly translated, these votes mean:

	+1: “I love the idea and I’m strongly committed to it.”

	+0: “Sounds OK to me.”

	-0: “I’m not thrilled, but I won’t stand in the way.”

	-1: “I strongly disagree and would be very unhappy to see the idea turn
into reality.”

Although these votes on django-developers are informal, they’ll be taken very
seriously. After a suitable voting period, if an obvious consensus arises we’ll
follow the votes.

However, consensus is not always possible. If consensus cannot be reached, or
if the discussion towards a consensus fizzles out without a concrete decision,
we use a more formal process.

Any core committer may call for a formal vote
using the same voting mechanism above. A proposition will be considered carried
by the core team if:

	There are three “+1” votes from members of the core team.

	There is no “-1” vote from any member of the core team.

When calling for a vote, the caller should specify a deadline by which
votes must be received. One week is generally suggested as the minimum
amount of time.

Since this process allows any core committer to veto a proposal, any “-1”
votes should be accompanied by an explanation that explains what it would
take to convert that “-1” into at least a “+0”.

Whenever possible, these formal votes should be announced and held in
public on the django-developers mailing list. However, overly sensitive
or contentious issues – including, most notably, votes on new core
committers – may be held in private.

Triaging tickets

Django uses Trac [https://code.djangoproject.com/] for managing the work on the code base. Trac is a
community-tended garden of the bugs people have found and the features people
would like to see added. As in any garden, sometimes there are weeds to be
pulled and sometimes there are flowers and vegetables that need picking. We need
your help to sort out one from the other, and in the end we all benefit
together.

Like all gardens, we can aspire to perfection but in reality there’s no such
thing. Even in the most pristine garden there are still snails and insects.
In a community garden there are also helpful people who – with the best of
intentions – fertilize the weeds and poison the roses. It’s the job of the
community as a whole to self-manage, keep the problems to a minimum, and
educate those coming into the community so that they can become valuable
contributing members.

Similarly, while we aim for Trac to be a perfect representation of the state
of Django’s progress, we acknowledge that this simply will not happen. By
distributing the load of Trac maintenance to the community, we accept that
there will be mistakes. Trac is “mostly accurate”, and we give allowances for
the fact that sometimes it will be wrong. That’s okay. We’re perfectionists
with deadlines.

We rely on the community to keep participating, keep tickets as accurate as
possible, and raise issues for discussion on our mailing lists when there is
confusion or disagreement.

Django is a community project, and every contribution helps. We can’t do this
without YOU!

Triage workflow

Unfortunately, not all bug reports and feature requests in the ticket tracker
provide all the required details. A number of
tickets have patches, but those patches don’t meet all the requirements of a
good patch.

One way to help out is to triage tickets that have been created by other
users. The core team and several community members work on this regularly, but
more help is always appreciated.

Most of the workflow is based around the concept of a ticket’s
triage stages. Each stage describes where in its
lifetime a given ticket is at any time. Along with a handful of flags, this
attribute easily tells us what and who each ticket is waiting on.

Since a picture is worth a thousand words, let’s start there:

[image: Django's ticket triage workflow]
We’ve got two roles in this diagram:

	Committers (also called core developers):
people with commit access who are responsible for making the big
decisions, writing large portions of the code and integrating the
contributions of the community.

	Ticket triagers: anyone in the Django community who chooses to
become involved in Django’s development process. Our Trac installation
is intentionally left open to the public, and anyone can triage tickets.
Django is a community project, and we encourage triage by the
community.

By way of example, here we see the lifecycle of an average ticket:

	Alice creates a ticket, and uploads an incomplete patch (no tests, incorrect
implementation).

	Bob reviews the patch, marks it “Accepted”, “needs tests”, and “patch needs
improvement”, and leaves a comment telling Alice how the patch could be
improved.

	Alice updates the patch, adding tests (but not changing the
implementation). She removes the two flags.

	Charlie reviews the patch and resets the “patch needs improvement” flag with
another comment about improving the implementation.

	Alice updates the patch, fixing the implementation. She removes the “patch
needs improvement” flag.

	Daisy reviews the patch, and marks it RFC.

	Jacob, a core developer, reviews the RFC patch, applies it to his checkout,
and commits it.

Some tickets require much less feedback than this, but then again some tickets
require much much more.

Triage stages

Below we describe in more detail the various stages that a ticket may flow
through during its lifetime.

Unreviewed

The ticket has not been reviewed by anyone who felt qualified to make a
judgment about whether the ticket contained a valid issue, a viable feature,
or ought to be closed for any of the various reasons.

Accepted

The big gray area! The absolute meaning of “accepted” is that the issue
described in the ticket is valid and is in some stage of being worked on.
Beyond that there are several considerations:

	Accepted + No Flags

The ticket is valid, but no one has submitted a patch for it yet. Often this
means you could safely start writing a patch for it. This is generally more
true for the case of accepted bugs than accepted features. A ticket for a bug
that has been accepted means that the issue has been verified by at least one
triager as a legitimate bug - and should probably be fixed if possible. An
accepted new feature may only mean that one triager thought the feature would
be good to have, but this alone does not represent a consensus view or imply
with any certainty that a patch will be accepted for that feature. Seek more
feedback before writing an extensive patch if you are in doubt.

	Accepted + Has Patch

The ticket is waiting for people to review the supplied patch. This means
downloading the patch and trying it out, verifying that it contains tests
and docs, running the test suite with the included patch, and leaving
feedback on the ticket.

	Accepted + Has Patch + Needs ...

This means the ticket has been reviewed, and has been found to need further
work. “Needs tests” and “Needs documentation” are self-explanatory. “Patch
needs improvement” will generally be accompanied by a comment on the ticket
explaining what is needed to improve the code.

Ready For Checkin

The ticket was reviewed by any member of the community other than the person
who supplied the patch and found to meet all the requirements for a
commit-ready patch. A core committer now needs to give the patch a final
review prior to being committed. See the
New contributors’ FAQ for “My ticket has been in
RFC forever! What should I do?”

Someday/Maybe

This stage isn’t shown on the diagram. It’s only used by core developers to
keep track of high-level ideas or long term feature requests.

These tickets are uncommon and overall less useful since they don’t describe
concrete actionable issues. They are enhancement requests that we might
consider adding someday to the framework if an excellent patch is submitted.
They are not a high priority.

Other triage attributes

A number of flags, appearing as checkboxes in Trac, can be set on a ticket:

Has patch

This means the ticket has an associated
patch. These will be reviewed
to see if the patch is “good”.

The following three fields (Needs documentation, Needs tests,
Patch needs improvement) apply only if a patch has been supplied.

Needs documentation

This flag is used for tickets with patches that need associated
documentation. Complete documentation of features is a prerequisite
before we can check them into the codebase.

Needs tests

This flags the patch as needing associated unit tests. Again, this
is a required part of a valid patch.

Patch needs improvement

This flag means that although the ticket has a patch, it’s not quite
ready for checkin. This could mean the patch no longer applies
cleanly, there is a flaw in the implementation, or that the code
doesn’t meet our standards.

Easy pickings

Tickets that would require small, easy, patches.

Type

Tickets should be categorized by type between:

	
	New Feature

	For adding something new.

	
	Bug

	For when an existing thing is broken or not behaving as expected.

	
	Cleanup/optimization

	For when nothing is broken but something could be made cleaner,
better, faster, stronger.

Component

Tickets should be classified into components indicating which area of
the Django codebase they belong to. This makes tickets better organized and
easier to find.

Severity

The severity attribute is used to identify blockers, that is, issues which
should get fixed before releasing the next version of Django. Typically those
issues are bugs causing regressions from earlier versions or potentially
causing severe data losses. This attribute is quite rarely used and the vast
majority of tickets have a severity of “Normal”.

Version

It is possible to use the version attribute to indicate in which
version the reported bug was identified.

UI/UX

This flag is used for tickets that relate to User Interface and User
Experiences questions. For example, this flag would be appropriate for
user-facing features in forms or the admin interface.

Cc

You may add your username or email address to this field to be notified when
new contributions are made to the ticket.

Keywords

With this field you may label a ticket with multiple keywords. This can be
useful, for example, to group several tickets of a same theme. Keywords can
either be comma or space separated. Keyword search finds the keyword string
anywhere in the keywords. For example, clicking on a ticket with the keyword
“form” will yield similar tickets tagged with keywords containing strings such
as “formset”, “modelformset”, and “ManagementForm”.

Closing Tickets

When a ticket has completed its useful lifecycle, it’s time for it to be
closed. Closing a ticket is a big responsibility, though. You have to be sure
that the issue is really resolved, and you need to keep in mind that the
reporter of the ticket may not be happy to have their ticket closed (unless
it’s fixed, of course). If you’re not certain about closing a ticket, just
leave a comment with your thoughts instead.

If you do close a ticket, you should always make sure of the following:

	Be certain that the issue is resolved.

	Leave a comment explaining the decision to close the ticket.

	If there is a way they can improve the ticket to reopen it, let them know.

	If the ticket is a duplicate, reference the original ticket. Also
cross-reference the closed ticket by leaving a comment in the original one
– this allows to access more related information about the reported bug
or requested feature.

	Be polite. No one likes having their ticket closed. It can be
frustrating or even discouraging. The best way to avoid turning people
off from contributing to Django is to be polite and friendly and to offer
suggestions for how they could improve this ticket and other tickets in
the future.

A ticket can be resolved in a number of ways:

	
	fixed

	Used by the core developers once a patch has been rolled into
Django and the issue is fixed.

	
	invalid

	Used if the ticket is found to be incorrect. This means that the
issue in the ticket is actually the result of a user error, or
describes a problem with something other than Django, or isn’t
a bug report or feature request at all (for example, some new users
submit support queries as tickets).

	
	wontfix

	Used when a core developer decides that this request is not
appropriate for consideration in Django. This is usually chosen after
discussion in the django-developers mailing list. Feel free to
start or join in discussions of “wontfix” tickets on the
django-developers mailing list, but please do not reopen tickets
closed as “wontfix” by a core developer.

	
	duplicate

	Used when another ticket covers the same issue. By closing duplicate
tickets, we keep all the discussion in one place, which helps
everyone.

	
	worksforme

	Used when the ticket doesn’t contain enough detail to replicate
the original bug.

	
	needsinfo

	Used when the ticket does not contain enough information to replicate
the reported issue but is potentially still valid. The ticket
should be reopened when more information is supplied.

If you believe that the ticket was closed in error – because you’re
still having the issue, or it’s popped up somewhere else, or the triagers have
made a mistake – please reopen the ticket and provide further information.
Again, please do not reopen tickets that have been marked as “wontfix” by core
developers and bring the issue to django-developers instead.

How can I help with triaging?

The triage process is primarily driven by community members. Really,
ANYONE can help.

Core developers may provide feedback on issues they’re familiar with, or make
decisions on controversial ones, but they aren’t responsible for triaging
tickets in general.

To get involved, start by creating an account on Trac [https://www.djangoproject.com/accounts/register/]. If you have an
account but have forgotten your password, you can reset it using the password
reset page [https://www.djangoproject.com/accounts/password/reset/].

Then, you can help out by:

	Closing “Unreviewed” tickets as “invalid”, “worksforme” or “duplicate.”

	Closing “Unreviewed” tickets as “needsinfo” when the description is too
sparse to be actionable, or when they’re feature requests requiring a
discussion on django-developers.

	Correcting the “Needs tests”, “Needs documentation”, or “Has patch”
flags for tickets where they are incorrectly set.

	Setting the “Easy pickings [https://code.djangoproject.com/query?status=!closed&easy=1]” flag for tickets that are small and
relatively straightforward.

	Set the type of tickets that are still uncategorized.

	Checking that old tickets are still valid. If a ticket hasn’t seen
any activity in a long time, it’s possible that the problem has been
fixed but the ticket hasn’t yet been closed.

	Identifying trends and themes in the tickets. If there are a lot of bug
reports about a particular part of Django, it may indicate we should
consider refactoring that part of the code. If a trend is emerging,
you should raise it for discussion (referencing the relevant tickets)
on django-developers.

	Verify if patches submitted by other users are correct. If they are correct
and also contain appropriate documentation and tests then move them to the
“Ready for Checkin” stage. If they are not correct then leave a comment to
explain why and set the corresponding flags (“Patch needs improvement”,
“Needs tests” etc.).

Note

The Reports page [https://code.djangoproject.com/wiki/Reports] contains links to many useful Trac queries, including
several that are useful for triaging tickets and reviewing patches as
suggested above.

You can also find more Advice for new contributors.

However, we do ask the following of all general community members working in
the ticket database:

	Please don’t close tickets as “wontfix.” The core developers will
make the final determination of the fate of a ticket, usually after
consultation with the community.

	Please don’t promote your own tickets to “Ready for checkin”. You
may mark other people’s tickets which you’ve reviewed as “Ready for
checkin”, but you should get at minimum one other community member to
review a patch that you submit.

	Please don’t reverse a decision that has been made by a core
developer. If you disagree with a decision that
has been made, please post a message to django-developers.

	If you’re unsure if you should be making a change, don’t make the
change but instead leave a comment with your concerns on the ticket,
or post a message to django-developers. It’s okay to be unsure,
but your input is still valuable.

Writing code

So you’d like to write some code to improve Django. Awesome! Browse the
following sections to find out how to give your code patches the best
chances to be included in Django core:

	Coding style

	Unit tests

	Submitting patches

	Working with Git and GitHub

Coding style

Please follow these coding standards when writing code for inclusion in Django.

Python style

	Unless otherwise specified, follow PEP 8 [https://www.python.org/dev/peps/pep-0008].

Use flake8 [https://pypi.python.org/pypi/flake8] to check for problems in this area. Note that our setup.cfg
file contains some excluded files (deprecated modules we don’t care about
cleaning up and some third-party code that Django vendors) as well as some
excluded errors that we don’t consider as gross violations. Remember that
PEP 8 [https://www.python.org/dev/peps/pep-0008] is only a guide, so respect the style of the surrounding code as a
primary goal.

One big exception to PEP 8 [https://www.python.org/dev/peps/pep-0008] is our preference of longer line lengths.
We’re well into the 21st Century, and we have high-resolution computer
screens that can fit way more than 79 characters on a screen. Don’t limit
lines of code to 79 characters if it means the code looks significantly
uglier or is harder to read.

	Use four spaces for indentation.

	Use underscores, not camelCase, for variable, function and method names
(i.e. poll.get_unique_voters(), not poll.getUniqueVoters).

	Use InitialCaps for class names (or for factory functions that
return classes).

	Use convenience imports whenever available. For example, do this:

from django.views.generic import View

Don’t do this:

from django.views.generic.base import View

	In docstrings, use “action words” such as:

def foo():
 """
 Calculates something and returns the result.
 """
 pass

Here’s an example of what not to do:

def foo():
 """
 Calculate something and return the result.
 """
 pass

Template style

	In Django template code, put one (and only one) space between the curly
brackets and the tag contents.

Do this:

{{ foo }}

Don’t do this:

{{foo}}

View style

	In Django views, the first parameter in a view function should be called
request.

Do this:

def my_view(request, foo):
 # ...

Don’t do this:

def my_view(req, foo):
 # ...

Model style

	Field names should be all lowercase, using underscores instead of
camelCase.

Do this:

class Person(models.Model):
 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)

Don’t do this:

class Person(models.Model):
 FirstName = models.CharField(max_length=20)
 Last_Name = models.CharField(max_length=40)

	The class Meta should appear after the fields are defined, with
a single blank line separating the fields and the class definition.

Do this:

class Person(models.Model):
 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)

 class Meta:
 verbose_name_plural = 'people'

Don’t do this:

class Person(models.Model):
 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)
 class Meta:
 verbose_name_plural = 'people'

Don’t do this, either:

class Person(models.Model):
 class Meta:
 verbose_name_plural = 'people'

 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)

	If you define a __str__ method (previously __unicode__ before Python 3
was supported), decorate the model class with
python_2_unicode_compatible().

	The order of model inner classes and standard methods should be as
follows (noting that these are not all required):

	All database fields

	Custom manager attributes

	class Meta

	def __str__()

	def save()

	def get_absolute_url()

	Any custom methods

	If choices is defined for a given model field, define each choice as
a tuple of tuples, with an all-uppercase name as a class attribute on the
model. Example:

class MyModel(models.Model):
 DIRECTION_UP = 'U'
 DIRECTION_DOWN = 'D'
 DIRECTION_CHOICES = (
 (DIRECTION_UP, 'Up'),
 (DIRECTION_DOWN, 'Down'),
)

Use of django.conf.settings

Modules should not in general use settings stored in django.conf.settings
at the top level (i.e. evaluated when the module is imported). The explanation
for this is as follows:

Manual configuration of settings (i.e. not relying on the
DJANGO_SETTINGS_MODULE environment variable) is allowed and possible as
follows:

from django.conf import settings

settings.configure({}, SOME_SETTING='foo')

However, if any setting is accessed before the settings.configure line,
this will not work. (Internally, settings is a LazyObject which
configures itself automatically when the settings are accessed if it has not
already been configured).

So, if there is a module containing some code as follows:

from django.conf import settings
from django.core.urlresolvers import get_callable

default_foo_view = get_callable(settings.FOO_VIEW)

...then importing this module will cause the settings object to be configured.
That means that the ability for third parties to import the module at the top
level is incompatible with the ability to configure the settings object
manually, or makes it very difficult in some circumstances.

Instead of the above code, a level of laziness or indirection must be used,
such as django.utils.functional.LazyObject,
django.utils.functional.lazy() or lambda.

Miscellaneous

	Mark all strings for internationalization; see the i18n
documentation for details.

	Remove import statements that are no longer used when you change code.
flake8 [https://pypi.python.org/pypi/flake8] will identify these imports for you. If an unused import needs to
remain for backwards-compatibility, mark the end of with # NOQA to
silence the flake8 warning.

	Systematically remove all trailing whitespaces from your code as those
add unnecessary bytes, add visual clutter to the patches and can also
occasionally cause unnecessary merge conflicts. Some IDE’s can be
configured to automatically remove them and most VCS tools can be set to
highlight them in diff outputs.

	Please don’t put your name in the code you contribute. Our policy is to
keep contributors’ names in the AUTHORS file distributed with Django
– not scattered throughout the codebase itself. Feel free to include a
change to the AUTHORS file in your patch if you make more than a
single trivial change.

Unit tests

Django comes with a test suite of its own, in the tests directory of the
code base. It’s our policy to make sure all tests pass at all times.

The tests cover:

	Models, the database API and everything else in core Django core (tests/),

	Contrib apps (django/contrib/<app>/tests or tests/<app>_...).

We appreciate any and all contributions to the test suite!

The Django tests all use the testing infrastructure that ships with Django for
testing applications. See Writing and running tests for an explanation of
how to write new tests.

Running the unit tests

Quickstart

Running the tests requires a Django settings module that defines the
databases to use. To make it easy to get started, Django provides and uses a
sample settings module that uses the SQLite database. To run the tests:

$ git clone https://github.com/django/django.git django-repo
$ cd django-repo/tests
$ PYTHONPATH=..:$PYTHONPATH ./runtests.py

Changed in Django 1.7: Older versions of Django required specifying a settings file:

$ PYTHONPATH=..:$PYTHONPATH python ./runtests.py --settings=test_sqlite

runtests.py now uses test_sqlite by default if settings aren’t
provided through either --settings or DJANGO_SETTINGS_MODULE.

You can avoid typing the PYTHONPATH bit each time by adding your Django
checkout to your PYTHONPATH or by installing the source checkout using pip.
See Installing the development version.

Having problems? See Troubleshooting for some common issues.

Using another settings module

The included settings module allows you to run the test suite using
SQLite. If you want to test behavior using a different database (and
if you’re proposing patches for Django, it’s a good idea to test
across databases), you may need to define your own settings file.

To run the tests with different settings, ensure that the module is on your
PYTHONPATH and pass the module with --settings.

The DATABASES setting in any test settings module needs to define
two databases:

	A default database. This database should use the backend that
you want to use for primary testing

	A database with the alias other. The other database is used to
establish that queries can be directed to different databases. As a result,
this database can use any backend you want. It doesn’t need to use the same
backend as the default database (although it can use the same backend if
you want to). It cannot be the same database as the default.

If you’re using a backend that isn’t SQLite, you will need to provide other
details for each database:

	The USER option needs to specify an existing user account
for the database. That user needs permission to execute CREATE DATABASE
so that the test database can be created.

	The PASSWORD option needs to provide the password for
the USER that has been specified.

Test databases get their names by prepending test_ to the value of the
NAME settings for the databases defined in DATABASES.
These test databases are deleted when the tests are finished.

Changed in Django 1.7: Before Django 1.7, the NAME setting was mandatory and had to
be the name of an existing database to which the given user had permission
to connect.

You will also need to ensure that your database uses UTF-8 as the default
character set. If your database server doesn’t use UTF-8 as a default charset,
you will need to include a value for TEST_CHARSET in the settings
dictionary for the applicable database.

Running only some of the tests

Django’s entire test suite takes a while to run, and running every single test
could be redundant if, say, you just added a test to Django that you want to
run quickly without running everything else. You can run a subset of the unit
tests by appending the names of the test modules to runtests.py on the
command line.

For example, if you’d like to run tests only for generic relations and
internationalization, type:

$./runtests.py --settings=path.to.settings generic_relations i18n

How do you find out the names of individual tests? Look in tests/ — each
directory name there is the name of a test. Contrib app names are also valid
test names.

If you just want to run a particular class of tests, you can specify a list of
paths to individual test classes. For example, to run the TranslationTests
of the i18n module, type:

$./runtests.py --settings=path.to.settings i18n.tests.TranslationTests

Going beyond that, you can specify an individual test method like this:

$./runtests.py --settings=path.to.settings i18n.tests.TranslationTests.test_lazy_objects

Running the Selenium tests

Some admin tests require Selenium 2, Firefox and Python >= 2.6 to work via a
real Web browser. To allow those tests to run and not be skipped, you must
install the selenium [https://pypi.python.org/pypi/selenium] package (version > 2.13) into your Python path and run
the tests with the --selenium option:

$./runtests.py --settings=test_sqlite --selenium admin_inlines

Running all the tests

If you want to run the full suite of tests, you’ll need to install a number of
dependencies:

	bcrypt [https://pypi.python.org/pypi/bcrypt]

	docutils [https://pypi.python.org/pypi/docutils]

	numpy [https://pypi.python.org/pypi/numpy]

	Pillow [https://pypi.python.org/pypi/Pillow/]

	PyYAML [http://pyyaml.org/wiki/PyYAML]

	pytz [https://pypi.python.org/pypi/pytz/]

	setuptools [https://pypi.python.org/pypi/setuptools/]

	memcached [http://memcached.org/], plus a supported Python binding

	gettext [http://www.gnu.org/software/gettext/manual/gettext.html] (gettext on Windows)

	selenium [https://pypi.python.org/pypi/selenium]

	sqlparse [https://pypi.python.org/pypi/sqlparse]

You can find these dependencies in pip requirements files [http://www.pip-installer.org/en/latest/user_guide.html#requirements-files] inside the
tests/requirements directory of the Django source tree and install them
like so:

$ pip install -r tests/requirements/py2.txt # Python 3: py3.txt

You can also install the database adapter(s) of your choice using
oracle.txt, mysql.txt, or postgres.txt.

If you want to test the memcached cache backend, you’ll also need to define
a CACHES setting that points at your memcached instance.

To run the GeoDjango tests, you will need to setup a spatial database
and install the Geospatial libraries.

Each of these dependencies is optional. If you’re missing any of them, the
associated tests will be skipped.

Code coverage

Contributors are encouraged to run coverage on the test suite to identify areas
that need additional tests. The coverage tool installation and use is described
in testing code coverage.

To run coverage on the Django test suite using the standard test settings:

$ coverage run ./runtests.py --settings=test_sqlite

After running coverage, generate the html report by running:

$ coverage html

When running coverage for the Django tests, the included .coveragerc
settings file defines coverage_html as the output directory for the report
and also excludes several directories not relevant to the results
(test code or external code included in Django).

Contrib apps

Tests for contrib apps go in their respective directories under
django/contrib, in a tests.py file. You can split the tests over
multiple modules by using a tests directory in the normal Python way.

If you have URLs that need to be mapped, put them in tests/urls.py.

To run tests for just one contrib app (e.g. auth), use the same
method as above:

$./runtests.py --settings=settings django.contrib.auth

Troubleshooting

Many test failures with UnicodeEncodeError.

If the locales package is not installed, some tests will fail with a
UnicodeEncodeError.

You can resolve this on Debian-based systems, for example, by running:

$ apt-get install locales
$ dpkg-reconfigure locales

Submitting patches

We’re always grateful for patches to Django’s code. Indeed, bug reports
with associated patches will get fixed far more quickly than those
without patches.

Typo fixes and trivial documentation changes

If you are fixing a really trivial issue, for example changing a word in the
documentation, the preferred way to provide the patch is using GitHub pull
requests without a Trac ticket. Trac tickets are still acceptable.

See the Working with Git and GitHub for more details on how to use pull requests.

“Claiming” tickets

In an open-source project with hundreds of contributors around the world, it’s
important to manage communication efficiently so that work doesn’t get
duplicated and contributors can be as effective as possible.

Hence, our policy is for contributors to “claim” tickets in order to let other
developers know that a particular bug or feature is being worked on.

If you have identified a contribution you want to make and you’re capable of
fixing it (as measured by your coding ability, knowledge of Django internals
and time availability), claim it by following these steps:

	Create an account [https://www.djangoproject.com/accounts/register/] to use in our ticket system. If you have an account
but have forgotten your password, you can reset it using the
password reset page [https://www.djangoproject.com/accounts/password/reset/].

	If a ticket for this issue doesn’t exist yet, create one in our
ticket tracker [https://code.djangoproject.com/newticket].

	If a ticket for this issue already exists, make sure nobody else has
claimed it. To do this, look at the “Owned by” section of the ticket.
If it’s assigned to “nobody,” then it’s available to be claimed.
Otherwise, somebody else is working on this ticket, and you either find
another bug/feature to work on, or contact the developer working on the
ticket to offer your help.

	Log into your account, if you haven’t already, by clicking “Login” in
the upper right of the ticket page.

	Claim the ticket:
	click the “assign to myself” radio button under “Action” near the bottom of the
page,

	then click “Submit changes.”

Note

The Django software foundation requests that anyone contributing more than
a trivial patch to Django sign and submit a Contributor License
Agreement [https://www.djangoproject.com/foundation/cla/], this ensures that the Django Software Foundation has clear
license to all contributions allowing for a clear license for all users.

Ticket claimers’ responsibility

Once you’ve claimed a ticket, you have a responsibility to work on that ticket
in a reasonably timely fashion. If you don’t have time to work on it, either
unclaim it or don’t claim it in the first place!

If there’s no sign of progress on a particular claimed ticket for a week or
two, another developer may ask you to relinquish the ticket claim so that it’s
no longer monopolized and somebody else can claim it.

If you’ve claimed a ticket and it’s taking a long time (days or weeks) to code,
keep everybody updated by posting comments on the ticket. If you don’t provide
regular updates, and you don’t respond to a request for a progress report,
your claim on the ticket may be revoked.

As always, more communication is better than less communication!

Which tickets should be claimed?

Of course, going through the steps of claiming tickets is overkill in some
cases.

In the case of small changes, such as typos in the documentation or
small bugs that will only take a few minutes to fix, you don’t need to jump
through the hoops of claiming tickets. Just submit your patch and be done with
it.

Of course, it is always acceptable, regardless whether someone has claimed it
or not, to submit patches to a ticket if you happen to have a patch ready.

Patch style

Make sure that any contribution you do fulfills at least the following
requirements:

	The code required to fix a problem or add a feature is an essential part
of a patch, but it is not the only part. A good patch should also include a
regression test to validate the behavior that has been
fixed and to prevent the problem from arising again. Also, if some tickets
are relevant to the code that you’ve written, mention the ticket numbers in
some comments in the test so that one can easily trace back the relevant
discussions after your patch gets committed, and the tickets get closed.

	If the code associated with a patch adds a new feature, or modifies
behavior of an existing feature, the patch should also contain
documentation.

You can use either GitHub branches and pull requests or direct patches
to publish your work. If you use the Git workflow, then you should
announce your branch in the ticket by including a link to your branch.
When you think your work is ready to be merged in create a pull request.

See the Working with Git and GitHub documentation for mode details.

You can also use patches in Trac. When using this style, follow these
guidelines.

	Submit patches in the format returned by the git diff command.
An exception is for code changes that are described more clearly in
plain English than in code. Indentation is the most common example; it’s
hard to read patches when the only difference in code is that it’s
indented.

	Attach patches to a ticket in the ticket tracker [https://code.djangoproject.com/newticket], using the “attach
file” button. Please don’t put the patch in the ticket description
or comment unless it’s a single line patch.

	Name the patch file with a .diff extension; this will let the ticket
tracker apply correct syntax highlighting, which is quite helpful.

Regardless of the way you submit your work, follow these steps.

	Make sure your code matches our Coding style.

	Check the “Has patch” box on the ticket details. This will make it
obvious that the ticket includes a patch, and it will add the ticket to
the list of tickets with patches [https://code.djangoproject.com/query?status=new&status=assigned&status=reopened&has_patch=1&order=priority].

Non-trivial patches

A “non-trivial” patch is one that is more than a simple bug fix. It’s a patch
that introduces Django functionality and makes some sort of design decision.

If you provide a non-trivial patch, include evidence that alternatives have
been discussed on django-developers.

If you’re not sure whether your patch should be considered non-trivial, just
ask.

Deprecating a feature

There are a couple reasons that code in Django might be deprecated:

	If a feature has been improved or modified in a backwards-incompatible way,
the old feature or behavior will be deprecated.

	Sometimes Django will include a backport of a Python library that’s not
included in a version of Python that Django currently supports. When Django
no longer needs to support the older version of Python that doesn’t include
the library, the library will be deprecated in Django.

As the deprecation policy describes,
the first release of Django that deprecates a feature (A.B) should raise a
RemovedInDjangoXXWarning (where XX is the Django version where the feature
will be removed) when the deprecated feature is invoked. Assuming
we have a good test coverage, these warnings will be shown by the test suite
when running it with warnings enabled:
python -Wall runtests.py. This is annoying and the output of the test suite
should remain clean. Thus, when adding a RemovedInDjangoXXWarning you need
to eliminate or silence any warnings generated when running the tests.

The first step is to remove any use of the deprecated behavior by Django itself.
Next you can silence warnings in tests that actually test the deprecated
behavior in one of two ways:

	In a particular test:

import warnings

def test_foo(self):
 with warnings.catch_warnings(record=True) as w:
 warnings.simplefilter("always")
 # invoke deprecated behavior
 # go ahead with the rest of the test

	For an entire test case, django.test.utils contains three helpful
mixins to silence warnings: IgnorePendingDeprecationWarningsMixin,
IgnoreDeprecationWarningsMixin, and
IgnoreAllDeprecationWarningsMixin. For example:

from django.test.utils import IgnorePendingDeprecationWarningsMixin

class MyDeprecatedTests(IgnorePendingDeprecationWarningsMixin, unittest.TestCase):
 ...

Finally, there are a couple of updates to Django’s documentation to make:

	If the existing feature is documented, mark it deprecated in documentation
using the .. deprecated:: A.B annotation. Include a short description
and a note about the upgrade path if applicable.

	Add a description of the deprecated behavior, and the upgrade path if
applicable, to the current release notes (docs/releases/A.B.txt) under
the “Features deprecated in A.B” heading.

	Add an entry in the deprecation timeline (docs/internals/deprecation.txt)
under the A.B+2 version describing what code will be removed.

Once you have completed these steps, you are finished with the deprecation.
In each major release, all RemovedInDjangoXXWarnings matching the new
version are removed.

Javascript patches

Django’s admin system leverages the jQuery framework to increase the
capabilities of the admin interface. In conjunction, there is an emphasis on
admin javascript performance and minimizing overall admin media file size.
Serving compressed or “minified” versions of javascript files is considered
best practice in this regard.

To that end, patches for javascript files should include both the original
code for future development (e.g. foo.js), and a compressed version for
production use (e.g. foo.min.js). Any links to the file in the codebase
should point to the compressed version.

Compressing JavaScript

To simplify the process of providing optimized javascript code, Django
includes a handy python script which should be used to create a “minified”
version. To run it:

python django/contrib/admin/bin/compress.py

Behind the scenes, compress.py is a front-end for Google’s
Closure Compiler [https://developers.google.com/closure/compiler/] which is written in Java. However, the Closure Compiler
library is not bundled with Django directly, so those wishing to contribute
complete javascript patches will need to download and install the library
independently.

The Closure Compiler library requires Java version 6 or higher (Java 1.6 or
higher on Mac OS X. Note that Mac OS X 10.5 and earlier did not ship with
Java 1.6 by default, so it may be necessary to upgrade your Java installation
before the tool will be functional. Also note that even after upgrading Java,
the default /usr/bin/java command may remain linked to the previous Java
binary, so relinking that command may be necessary as well.)

Please don’t forget to run compress.py and include the diff of the
minified scripts when submitting patches for Django’s javascript.

Working with Git and GitHub

This section explains how the community can contribute code to Django via pull
requests. If you’re interested in how core developers handle them, see
Committing code.

Below, we are going to show how to create a GitHub pull request containing the
changes for Trac ticket #xxxxx. By creating a fully-ready pull request you
will make the committers’ job easier, meaning that your work is more likely to
be merged into Django.

You could also upload a traditional patch to Trac, but it’s less practical for
reviews.

Installing Git

Django uses Git [http://git-scm.com/] for its source control. You can download [http://git-scm.com/download] Git, but it’s often easier to install with
your operating system’s package manager.

Django’s Git repository [https://github.com/django/django/] is hosted on GitHub [https://github.com/], and it is recommended
that you also work using GitHub.

After installing Git the first thing you should do is setup your name and
email:

$ git config --global user.name "Your Real Name"
$ git config --global user.email "you@email.com"

Note that user.name should be your real name, not your GitHub nick. GitHub
should know the email you use in the user.email field, as this will be
used to associate your commits with your GitHub account.

Setting up local repository

When you have created your GitHub account, with the nick “github_nick”, and
forked Django’s repository, create a local copy of your fork:

git clone git@github.com:github_nick/django.git

This will create a new directory “django”, containing a clone of your GitHub
repository. The rest of the git commands on this page need to be run within the
cloned directory so switch to it now:

cd django

Your GitHub repository will be called “origin” in Git.

You should also setup django/django as an “upstream” remote (that is, tell git
that the reference Django repository was the source of your fork of it):

git remote add upstream git@github.com:django/django.git
git fetch upstream

You can add other remotes similarly, for example:

git remote add akaariai git@github.com:akaariai/django.git

Working on a ticket

When working on a ticket create a new branch for the work, and base that work
on upstream/master:

git checkout -b ticket_xxxxx upstream/master

The -b flag creates a new branch for you locally. Don’t hesitate to create new
branches even for the smallest things - that’s what they are there for.

If instead you were working for a fix on the 1.4 branch, you would do:

git checkout -b ticket_xxxxx_1_4 upstream/stable/1.4.x

Assume the work is carried on ticket_xxxxx branch. Make some changes and
commit them:

git commit

When writing the commit message, follow the commit message
guidelines to ease the work of the committer. If
you’re uncomfortable with English, try at least to describe precisely what the
commit does.

If you need to do additional work on your branch, commit as often as
necessary:

git commit -m 'Added two more tests for edge cases'

Publishing work

You can publish your work on GitHub just by doing:

git push origin ticket_xxxxx

When you go to your GitHub page you will notice a new branch has been created.

If you are working on a Trac ticket, you should mention in the ticket that
your work is available from branch ticket_xxxxx of your github repo. Include a
link to your branch.

Note that the above branch is called a “topic branch” in Git parlance. You are
free to rewrite the history of this branch, by using git rebase for
example. Other people shouldn’t base their work on such a branch, because
their clone would become corrupt when you edit commits.

There are also “public branches”. These are branches other people are supposed
to fork, so the history of these branches should never change. Good examples
of public branches are the master and stable/A.B.x branches in the
django/django repository.

When you think your work is ready to be pulled into Django, you should create
a pull request at GitHub. A good pull request means:

	commits with one logical change in each, following the
coding style,

	well-formed messages for each commit: a summary line and then paragraphs
wrapped at 72 characters thereafter – see the committing guidelines for more details,

	documentation and tests, if needed – actually tests are always needed,
except for documentation changes.

The test suite must pass and the documentation must build without warnings.

Once you have created your pull request, you should add a comment in the
related Trac ticket explaining what you’ve done. In particular you should note
the environment in which you ran the tests, for instance: “all tests pass
under SQLite and MySQL”.

Pull requests at GitHub have only two states: open and closed. The committer
who will deal with your pull request has only two options: merge it or close
it. For this reason, it isn’t useful to make a pull request until the code is
ready for merging – or sufficiently close that a committer will finish it
himself.

Rebasing branches

In the example above you created two commits, the “Fixed ticket_xxxxx” commit
and “Added two more tests” commit.

We do not want to have the entire history of your working process in your
repository. Your commit “Added two more tests” would be unhelpful noise.
Instead, we would rather only have one commit containing all your work.

To rework the history of your branch you can squash the commits into one by
using interactive rebase:

git rebase -i HEAD~2

The HEAD~2 above is shorthand for two latest commits. The above command
will open an editor showing the two commits, prefixed with the word “pick”.

Change “pick” on the second line to “squash” instead. This will keep the
first commit, and squash the second commit into the first one. Save and quit
the editor. A second editor window should open, so you can reword the
commit message for the commit now that it includes both your steps.

You can also use the “edit” option in rebase. This way you can change a single
commit, for example to fix a typo in a docstring:

git rebase -i HEAD~3
Choose edit, pick, pick for the commits
Now you are able to rework the commit (use git add normally to add changes)
When finished, commit work with "--amend" and continue
git commit --amend
reword the commit message if needed
git rebase --continue
The second and third commits should be applied.

If your topic branch is already published at GitHub, for example if you’re
making minor changes to take into account a review, you will need to force-
push the changes:

git push -f origin ticket_xxxxx

Note that this will rewrite history of ticket_xxxxx - if you check the commit
hashes before and after the operation at GitHub you will notice that the
commit hashes do not match any more. This is acceptable, as the branch is merely
a topic branch, and nobody should be basing their work on it.

After upstream has changed

When upstream (django/django) has changed, you should rebase your work. To
do this, use:

git fetch upstream
git rebase

The work is automatically rebased using the branch you forked on, in the
example case using upstream/master.

The rebase command removes all your local commits temporarily, applies the
upstream commits, and then applies your local commits again on the work.

If there are merge conflicts you will need to resolve them and then use git
rebase --continue. At any point you can use git rebase --abort to return
to the original state.

Note that you want to rebase on upstream, not merge the upstream.

The reason for this is that by rebasing, your commits will always be on
top of the upstream’s work, not mixed in with the changes in the upstream.
This way your branch will contain only commits related to its topic, which
makes squashing easier.

After review

It is unusual to get any non-trivial amount of code into core without changes
requested by reviewers. In this case, it is often a good idea to add the
changes as one incremental commit to your work. This allows the reviewer to
easily check what changes you have done.

In this case, do the changes required by the reviewer. Commit as often as
necessary. Before publishing the changes, rebase your work. If you added two
commits, you would run:

git rebase -i HEAD~2

Squash the second commit into the first. Write a commit message along the lines
of:

Made changes asked in review by <reviewer>

- Fixed whitespace errors in foobar
- Reworded the docstring of bar()

Finally push your work back to your GitHub repository. Since you didn’t touch
the public commits during the rebase, you should not need to force-push:

git push origin ticket_xxxxx

Your pull request should now contain the new commit too.

Note that the committer is likely to squash the review commit into the previous
commit when committing the code.

Working on a patch

One of the ways that developers can contribute to Django is by reviewing
patches. Those patches will typically exist as pull requests on GitHub and
can be easily integrated into your local repository:

git checkout -b pull_xxxxx upstream/master
curl https://github.com/django/django/pull/xxxxx.patch | git am

This will create a new branch and then apply the changes from the pull request
to it. At this point you can run the tests or do anything else you need to
do to investigate the quality of the patch.

For more detail on working with pull requests see the
guidelines for committers.

Summary

	Work on GitHub if you can.

	Announce your work on the Trac ticket by linking to your GitHub branch.

	When you have something ready, make a pull request.

	Make your pull requests as good as you can.

	When doing fixes to your work, use git rebase -i to squash the commits.

	When upstream has changed, do git fetch upstream; git rebase.

Writing documentation

We place a high importance on consistency and readability of documentation.
After all, Django was created in a journalism environment! So we treat our
documentation like we treat our code: we aim to improve it as often as
possible.

Documentation changes generally come in two forms:

	General improvements: typo corrections, error fixes and better
explanations through clearer writing and more examples.

	New features: documentation of features that have been added to the
framework since the last release.

This section explains how writers can craft their documentation changes
in the most useful and least error-prone ways.

Getting the raw documentation

Though Django’s documentation is intended to be read as HTML at
https://docs.djangoproject.com/, we edit it as a collection of text files for
maximum flexibility. These files live in the top-level docs/ directory of a
Django release.

If you’d like to start contributing to our docs, get the development version of
Django from the source code repository
(see Installing the development version). The development version has the
latest-and-greatest documentation, just as it has latest-and-greatest code.
We also backport documentation fixes and improvements, at the discretion of the
committer, to the last release branch. That’s because it’s highly advantageous
to have the docs for the last release be up-to-date and correct (see
Differences between versions).

Getting started with Sphinx

Django’s documentation uses the Sphinx [http://sphinx-doc.org/] documentation system, which in turn
is based on docutils [http://docutils.sourceforge.net/]. The basic idea is that lightly-formatted plain-text
documentation is transformed into HTML, PDF, and any other output format.

To actually build the documentation locally, you’ll currently need to install
Sphinx – sudo pip install Sphinx should do the trick.

Note

Building the Django documentation requires Sphinx 1.0.2 or newer. Sphinx
also requires the Pygments [http://pygments.org] library for syntax highlighting; building the
Django documentation requires Pygments 1.1 or newer (a new-enough version
should automatically be installed along with Sphinx).

Then, building the HTML is easy; just make html (or make.bat html on
Windows) from the docs directory.

To get started contributing, you’ll want to read the reStructuredText
Primer [http://sphinx-doc.org/rest.html#rst-primer]. After that, you’ll want to read about the
Sphinx-specific markup [http://sphinx-doc.org/markup/index.html#sphinxmarkup] that’s used to manage
metadata, indexing, and cross-references.

Writing style

When using pronouns in reference to a hypothetical person, such as “a user with
a session cookie”, gender neutral pronouns (they/their/them) should be used.
Instead of:

	he or she... use they.

	him or her... use them.

	his or her... use their.

	his or hers... use theirs.

	himself or herself... use themselves.

Commonly used terms

Here are some style guidelines on commonly used terms throughout the
documentation:

	Django – when referring to the framework, capitalize Django. It is
lowercase only in Python code and in the djangoproject.com logo.

	email – no hyphen.

	MySQL, PostgreSQL, SQLite

	SQL – when referring to SQL, the expected pronunciation should be
“Ess Queue Ell” and not “sequel”. Thus in a phrase like “Returns an
SQL expression”, “SQL” should be preceded by “an” and not “a”.

	Python – when referring to the language, capitalize Python.

	realize, customize, initialize, etc. – use the American
“ize” suffix, not “ise.”

	subclass – it’s a single word without a hyphen, both as a verb
(“subclass that model”) and as a noun (“create a subclass”).

	Web, World Wide Web, the Web – note Web is always
capitalized when referring to the World Wide Web.

	Web site – use two words, with Web capitalized.

Django-specific terminology

	model – it’s not capitalized.

	template – it’s not capitalized.

	URLconf – use three capitalized letters, with no space before
“conf.”

	view – it’s not capitalized.

Guidelines for reStructuredText files

These guidelines regulate the format of our reST (reStructuredText)
documentation:

	In section titles, capitalize only initial words and proper nouns.

	Wrap the documentation at 80 characters wide, unless a code example
is significantly less readable when split over two lines, or for another
good reason.

	The main thing to keep in mind as you write and edit docs is that the
more semantic markup you can add the better. So:

Add ``django.contrib.auth`` to your ``INSTALLED_APPS``...

Isn’t nearly as helpful as:

Add :mod:`django.contrib.auth` to your :setting:`INSTALLED_APPS`...

This is because Sphinx will generate proper links for the latter, which
greatly helps readers. There’s basically no limit to the amount of
useful markup you can add.

	Use intersphinx [http://sphinx-doc.org/ext/intersphinx.html#module-sphinx.ext.intersphinx] to reference Python’s and Sphinx’
documentation.

Django-specific markup

Besides the Sphinx built-in markup [http://sphinx-doc.org/markup/], Django’s docs defines some extra
description units:

	Settings:

.. setting:: INSTALLED_APPS

To link to a setting, use :setting:`INSTALLED_APPS`.

	Template tags:

.. templatetag:: regroup

To link, use :ttag:`regroup`.

	Template filters:

.. templatefilter:: linebreaksbr

To link, use :tfilter:`linebreaksbr`.

	Field lookups (i.e. Foo.objects.filter(bar__exact=whatever)):

.. fieldlookup:: exact

To link, use :lookup:`exact`.

	django-admin commands:

.. django-admin:: migrate

To link, use :djadmin:`migrate`.

	django-admin command-line options:

.. django-admin-option:: --traceback

To link, use :djadminopt:`--traceback`.

	Links to Trac tickets (typically reserved for minor release notes):

:ticket:`12345`

Documenting new features

Our policy for new features is:

All documentation of new features should be written in a way that
clearly designates the features are only available in the Django
development version. Assume documentation readers are using the latest
release, not the development version.

Our preferred way for marking new features is by prefacing the features’
documentation with: “.. versionadded:: X.Y”, followed by a mandatory
blank line and an optional content (indented).

General improvements, or other changes to the APIs that should be emphasized
should use the “.. versionchanged:: X.Y” directive (with the same format
as the versionadded mentioned above.

An example

For a quick example of how it all fits together, consider this hypothetical
example:

	First, the ref/settings.txt document could have an overall layout
like this:

========
Settings
========

...

.. _available-settings:

Available settings
==================

...

.. _deprecated-settings:

Deprecated settings
===================

...

	Next, the topics/settings.txt document could contain something like
this:

You can access a :ref:`listing of all available settings
<available-settings>`. For a list of deprecated settings see
:ref:`deprecated-settings`.

You can find both in the :doc:`settings reference document
</ref/settings>`.

We use the Sphinx doc [http://sphinx-doc.org/markup/inline.html#role-doc] cross reference element when we want to
link to another document as a whole and the ref [http://sphinx-doc.org/markup/inline.html#role-ref] element when
we want to link to an arbitrary location in a document.

	Next, notice how the settings are annotated:

.. setting:: ADMINS

ADMINS

Default: ``()`` (Empty tuple)

A tuple that lists people who get code error notifications. When
``DEBUG=False`` and a view raises an exception, Django will email these people
with the full exception information. Each member of the tuple should be a tuple
of (Full name, email address). Example::

 (('John', 'john@example.com'), ('Mary', 'mary@example.com'))

Note that Django will email *all* of these people whenever an error happens.
See :doc:`/howto/error-reporting` for more information.

This marks up the following header as the “canonical” target for the
setting ADMINS. This means any time I talk about ADMINS,
I can reference it using :setting:`ADMINS`.

That’s basically how everything fits together.

Improving the documentation

A few small improvements can be made to make the documentation read and
look better:

	Most of the various index.txt documents have very short or even
non-existent intro text. Each of those documents needs a good short
intro the content below that point.

	The glossary is very perfunctory. It needs to be filled out.

	Add more metadata targets. Lots of places look like:

``File.close()``
~~~~~~~~~~~~~~~~





... these should be:

.. method:: File.close()





That is, use metadata instead of titles.



	Add more links – nearly everything that’s an inline code literal
right now can probably be turned into a xref.

See the literals_to_xrefs.py file in _ext – it’s a shell script
to help do this work.

This will probably be a continuing, never-ending project.



	Whenever possible, use links. So, use :setting:`ADMINS` instead
of ``ADMINS``.



	Use directives where appropriate. Some directives
(e.g. .. setting::) are prefix-style directives; they go before
the unit they’re describing. These are known as “crossref” directives.
Others (e.g. .. class::) generate their own markup; these should go
inside the section they’re describing. These are called
“description units”.

You can tell which are which by looking at in
_ext/djangodocs.py; it registers roles as one of the other.



	Add .. code-block:: <lang> to literal blocks so that they get
highlighted.



	When referring to classes/functions/modules, etc., you’ll want to use
the fully-qualified name of the target
(:class:`django.contrib.contenttypes.models.ContentType`).

Since this doesn’t look all that awesome in the output – it shows the
entire path to the object – you can prefix the target with a ~
(that’s a tilde) to get just the “last bit” of that path. So
:class:`~django.contrib.contenttypes.models.ContentType` will just
display a link with the title “ContentType”.








Spelling check

Before you commit your docs, it’s a good idea to run the spelling checker.
You’ll need to install a couple packages first:


	pyenchant [https://pypi.python.org/pypi/pyenchant/] (which requires
enchant [http://www.abisource.com/projects/enchant/])

	sphinxcontrib-spelling [https://pypi.python.org/pypi/sphinxcontrib-spelling/]



Then from the docs directory, run make spelling. Wrong words (if any)
along with the file and line number where they occur will be saved to
_build/spelling/output.txt.

If you encounter false-positives (error output that actually is correct), do
one of the following:


	Surround inline code or brand/technology names with grave accents (`).

	Find synonyms that the spell checker recognizes.

	If, and only if, you are sure the word you are using is correct - add it
to docs/spelling_wordlist (please keep the list in alphabetical order).






Translating documentation

See Localizing the Django documentation if
you’d like to help translate the documentation into another language.







          

      

      

    


  


    
      
          
            
  
Localizing Django

Various parts of Django, such as the admin site and validation error messages,
are internationalized. This means they display differently depending on each
user’s language or country. For this, Django uses the same internationalization
and localization infrastructure available to Django applications, described in
the i18n documentation.


Translations

Translations are contributed by Django users worldwide. The translation work is
coordinated at Transifex [https://www.transifex.com/].

If you find an incorrect translation or want to discuss specific translations,
go to the Django project page [https://www.transifex.com/projects/p/django/]. If you would like to help out with
translating or add a language that isn’t yet translated, here’s what to do:


	Join the Django i18n mailing list and
introduce yourself.



	Make sure you read the notes about Specialties of Django translation.



	Sign up at Transifex [https://www.transifex.com/] and visit the Django project page [https://www.transifex.com/projects/p/django/].



	On the Django project page [https://www.transifex.com/projects/p/django/], choose the language you want to work on,
or – in case the language doesn’t exist yet –
request a new language team by clicking on the “Request language” link
and selecting the appropriate language.



	Then, click the “Join this Team” button to become a member of this team.
Every team has at least one coordinator who is responsible to review
your membership request. You can of course also contact the team
coordinator to clarify procedural problems and handle the actual
translation process.



	Once you are a member of a team choose the translation resource you
want to update on the team page. For example the “core” resource refers
to the translation catalog that contains all non-contrib translations.
Each of the contrib apps also have a resource (prefixed with “contrib”).


Note

For more information about how to use Transifex, read the
Transifex User Guide [http://support.transifex.com/].










Formats

You can also review conf/locale/<locale>/formats.py. This file describes
the date, time and numbers formatting particularities of your locale. See
Format localization for details.

The format files aren’t managed by the use of Transifex. To change them, you
must create a patch against the
Django source tree, as for any code change:


	Create a diff against the current Git master branch.

	Open a ticket in Django’s ticket system, set its Component field to
Translations, and attach the patch to it.






Documentation

There is also an opportunity to translate the documentation, though this is a
huge undertaking to complete entirely (you have been warned!). We use the same
Transifex tool [https://www.transifex.com/projects/p/django-docs/]. The
translations will appear at https://docs.djangoproject.com/<language_code>/
when at least the docs/intro/* files are fully translated in your language.







          

      

      

    


  


    
      
          
            
  
Committing code

This section is addressed to the Django committers and to anyone
interested in knowing how code gets committed into Django core. If you’re a
community member who wants to contribute code to Django, have a look at
Working with Git and GitHub instead.


Commit access

Django has two types of committers:


	Core committers

	These are people who have a long history of contributions to Django’s
codebase, a solid track record of being polite and helpful on the
mailing lists, and a proven desire to dedicate serious time to Django’s
development. The bar is high for full commit access.

	Partial committers

	These are people who are “domain experts.” They have direct check-in
access to the subsystems that fall under their jurisdiction, and they’re
given a formal vote in questions that involve their subsystems. This type
of access is likely to be given to someone who contributes a large
sub-framework to Django and wants to continue to maintain it.

Partial commit access is granted by the same process as full
committers. However, the bar is set lower; proven expertise in the area
in question is likely to be sufficient.





Decisions on new committers will follow the process explained in
How we make decisions. To request commit access, please contact an
existing committer privately. Public requests for commit access are potential
flame-war starters, and will simply be ignored.




Handling pull requests

Since Django is now hosted at GitHub, many patches are provided in the form of
pull requests.

When committing a pull request, make sure each individual commit matches the
commit guidelines described below. Contributors are expected to provide the
best pull requests possible. In practice however, committers - who will likely
be more familiar with the commit guidelines - may decide to bring a commit up
to standard themselves.

Here is one way to commit a pull request:

# Create a new branch tracking upstream/master -- upstream is assumed
# to be django/django.
git checkout -b pull_xxxxx upstream/master

# Download the patches from github and apply them.
curl https://github.com/django/django/pull/xxxxx.patch | git am





At this point, you can work on the code. Use git rebase -i and git
commit --amend to make sure the commits have the expected level of quality.
Once you’re ready:

# Make sure master is ready to receive changes.
git checkout master
git pull upstream master
# Merge the work as "fast-forward" to master, to avoid a merge commit.
git merge --ff-only pull_xxxxx
# Check that only the changes you expect will be pushed to upstream.
git push --dry-run upstream master
# Push!
git push upstream master

# Get rid of the pull_xxxxx branch.
git branch -d pull_xxxxx





An alternative is to add the contributor’s repository as a new remote,
checkout the branch and work from there:

git remote add <contributor> https://github.com/<contributor>/django.git
git checkout pull_xxxxx <contributor> <contributor's pull request branch>





Yet another alternative is to fetch the branch without adding the
contributor’s repository as a remote:

git fetch https://github.com/<contributor>/django.git <contributor's pull request branch>
git checkout -b pull_xxxxx FETCH_HEAD





At this point, you can work on the code and continue as above.

GitHub provides a one-click merge functionality for pull requests. This should
only be used if the pull request is 100% ready, and you have checked it for
errors (or trust the request maker enough to skip checks). Currently, it isn’t
possible to check that the tests pass and that the docs build without
downloading the changes to your development environment.

When rewriting the commit history of a pull request, the goal is to make
Django’s commit history as usable as possible:


	If a patch contains back-and-forth commits, then rewrite those into one.
Typically, a commit can add some code, and a second commit can fix
stylistic issues introduced in the first commit.

	Separate changes to different commits by logical grouping: if you do a
stylistic cleanup at the same time as you do other changes to a file,
separating the changes into two different commits will make reviewing
history easier.

	Beware of merges of upstream branches in the pull requests.

	Tests should pass and docs should build after each commit. Neither the
tests nor the docs should emit warnings.

	Trivial and small patches usually are best done in one commit. Medium to
large work should be split into multiple commits if possible.



Practicality beats purity, so it is up to each committer to decide how much
history mangling to do for a pull request. The main points are engaging the
community, getting work done, and having a usable commit history.




Committing guidelines

In addition, please follow the following guidelines when committing code to
Django’s Git repository:


	Never change the published history of django/django branches! Never force-
push your changes to django/django. If you absolutely must (for security
reasons for example) first discuss the situation with the core team.



	For any medium-to-big changes, where “medium-to-big” is according to
your judgment, please bring things up on the django-developers
mailing list before making the change.

If you bring something up on django-developers and nobody responds,
please don’t take that to mean your idea is great and should be
implemented immediately because nobody contested it. Django’s lead
developers don’t have a lot of time to read mailing-list discussions
immediately, so you may have to wait a couple of days before getting a
response.



	Write detailed commit messages in the past tense, not present tense.


	Good: “Fixed Unicode bug in RSS API.”

	Bad: “Fixes Unicode bug in RSS API.”

	Bad: “Fixing Unicode bug in RSS API.”



The commit message should be in lines of 72 chars maximum. There should be
a subject line, separated by a blank line and then paragraphs of 72 char
lines. The limits are soft. For the subject line, shorter is better. In the
body of the commit message more detail is better than less:

Fixed #18307 -- Added git workflow guidelines

Refactored the Django's documentation to remove mentions of SVN
specific tasks. Added guidelines of how to use Git, GitHub, and
how to use pull request together with Trac instead.





If the patch wasn’t a pull request, you should credit the contributors in
the commit message: “Thanks A for report, B for the patch and C for the
review.”



	For commits to a branch, prefix the commit message with the branch name.
For example: “[1.4.x] Fixed #xxxxx – Added support for mind reading.”



	Limit commits to the most granular change that makes sense. This means,
use frequent small commits rather than infrequent large commits. For
example, if implementing feature X requires a small change to library Y,
first commit the change to library Y, then commit feature X in a
separate commit. This goes a long way in helping all core Django
developers follow your changes.



	Separate bug fixes from feature changes. Bugfixes may need to be backported
to the stable branch, according to the backwards-compatibility policy.



	If your commit closes a ticket in the Django ticket tracker [https://code.djangoproject.com/newticket], begin
your commit message with the text “Fixed #xxxxx”, where “xxxxx” is the
number of the ticket your commit fixes. Example: “Fixed #123 – Added
whizbang feature.”. We’ve rigged Trac so that any commit message in that
format will automatically close the referenced ticket and post a comment
to it with the full commit message.

If your commit closes a ticket and is in a branch, use the branch name
first, then the “Fixed #xxxxx.” For example:
“[1.4.x] Fixed #123 – Added whizbang feature.”

For the curious, we’re using a Trac plugin [https://github.com/aaugustin/trac-github] for this.






Note

Note that the Trac integration doesn’t know anything about pull requests.
So if you try to close a pull request with the phrase “closes #400” in your
commit message, GitHub will close the pull request, but the Trac plugin
will also close the same numbered ticket in Trac.




	If your commit references a ticket in the Django ticket tracker [https://code.djangoproject.com/newticket] but
does not close the ticket, include the phrase “Refs #xxxxx”, where “xxxxx”
is the number of the ticket your commit references. This will automatically
post a comment to the appropriate ticket.



	Write commit messages for backports using this pattern:

[<Django version>] Fixed <ticket> -- <description>

Backport of <revision> from <branch>.





For example:

[1.3.x] Fixed #17028 - Changed diveintopython.org -> diveintopython.net.

Backport of 80c0cbf1c97047daed2c5b41b296bbc56fe1d7e3 from master.












Reverting commits

Nobody’s perfect; mistakes will be committed.

But try very hard to ensure that mistakes don’t happen. Just because we have a
reversion policy doesn’t relax your responsibility to aim for the highest
quality possible. Really: double-check your work, or have it checked by
another committer, before you commit it in the first place!

When a mistaken commit is discovered, please follow these guidelines:


	If possible, have the original author revert their own commit.

	Don’t revert another author’s changes without permission from the
original author.

	Use git revert – this will make a reverse commit, but the original
commit will still be part of the commit history.

	If the original author can’t be reached (within a reasonable amount
of time – a day or so) and the problem is severe – crashing bug,
major test failures, etc – then ask for objections on the
django-developers mailing list then revert if there are none.

	If the problem is small (a feature commit after feature freeze,
say), wait it out.

	If there’s a disagreement between the committer and the
reverter-to-be then try to work it out on the django-developers
mailing list. If an agreement can’t be reached then it should
be put to a vote.

	If the commit introduced a confirmed, disclosed security
vulnerability then the commit may be reverted immediately without
permission from anyone.

	The release branch maintainer may back out commits to the release
branch without permission if the commit breaks the release branch.

	If you mistakenly push a topic branch to django/django, just delete it.
For instance, if you did: git push upstream feature_antigravity,
just do a reverse push: git push upstream :feature_antigravity.









          

      

      

    


  


    
      
          
            
  
Mailing lists


Important

Please report security issues only to
security@djangoproject.com.  This is a private list only open to
long-time, highly trusted Django developers, and its archives are
not public. For further details, please see our security
policies.



Django has several official mailing lists on Google Groups that are open to
anyone.


django-users

This is the right place if you are looking to ask any question regarding the
installation, usage, or debugging of Django.


Note

If it’s the first time you send an email to this list, your email must be
accepted first so don’t worry if your message does not appear instantly.




	django-users mailing archive [https://groups.google.com/d/forum/django-users]

	django-users subscription email address

	django-users posting email






django-core-mentorship

The Django Core Development Mentorship list is intended to provide a welcoming
introductory environment for developers interested in contributing to core
Django development.


	django-core-mentorship mailing archive [https://groups.google.com/d/forum/django-core-mentorship]

	django-core-mentorship subscription email address

	django-core-mentorship posting email






django-developers

The discussion about the development of Django itself takes place here.


Note

Please make use of
django-users mailing list if you want
to ask for tech support, doing so in this list is inappropriate.




	django-developers mailing archive [https://groups.google.com/d/forum/django-developers]

	django-developers subscription email address

	django-developers posting email






django-i18n

This is the place to discuss the internationalization and localization of
Django’s components.


	django-i18n mailing archive [https://groups.google.com/d/forum/django-i18n]

	django-i18n subscription email address

	django-i18n posting email






django-announce

A (very) low-traffic list for announcing new releases of Django and important
bugfixes.


	django-announce mailing archive [https://groups.google.com/d/forum/django-announce]

	django-announce subscription email address

	django-announce posting email






django-updates

All the ticket updates are mailed automatically to this list, which is tracked
by developers and interested community members.


	django-updates mailing archive [https://groups.google.com/d/forum/django-updates]

	django-updates subscription email address

	django-updates posting email









          

      

      

    


  


    
      
          
            
  
Django committers


The original team

Django originally started at World Online, the Web department of the Lawrence
Journal-World [http://ljworld.com/] of Lawrence, Kansas, USA.


	Adrian Holovaty [http://holovaty.com/]

	Adrian is a Web developer with a background in journalism. He’s known in
journalism circles as one of the pioneers of “journalism via computer
programming”, and in technical circles as “the guy who invented Django.”

He was lead developer at World Online for 2.5 years, during which time
Django was developed and implemented on World Online’s sites. He was the
leader and founder of EveryBlock [http://everyblock.com/], a “news feed for your block.” He now
develops Soundslice [http://www.soundslice.com/].

Adrian lives in Chicago, USA.



	Simon Willison [http://simonwillison.net/]

	Simon is a well-respected Web developer from England. He had a one-year
internship at World Online, during which time he and Adrian developed Django
from scratch. The most enthusiastic Brit you’ll ever meet, he’s passionate
about best practices in Web development and maintains a well-read
web-development blog [http://simonwillison.net/].

Simon lives in Brighton, England.



	Jacob Kaplan-Moss [http://jacobian.org/]

	Jacob is Director of Platform Security at Heroku [http://heroku.com/]. He worked at World
Online for four years, where he helped open source Django and found
the Django Software Foundation. Jacob lives on a hobby farm outside of
Lawrence where he spends his weekends playing with dirt and power tools.

	Wilson Miner [http://wilsonminer.com/]

	Wilson’s design-fu is what makes Django look so nice. He designed the
Web site you’re looking at right now, as well as Django’s acclaimed admin
interface. Wilson was the designer for EveryBlock and Rdio [http://rdio.com]. He now
designs for Facebook.

Wilson lives in San Francisco, USA.








Current developers

Currently, Django is led by a team of volunteers from around the globe.


Core developers

These are the folks who have a long history of contributions, a solid track
record of being helpful on the mailing lists, and a proven desire to dedicate
serious time to Django. In return, they’ve been granted the coveted commit bit,
and have free rein to hack on all parts of Django.


	Malcolm Tredinnick

	Malcolm originally wanted to be a mathematician, somehow ended up a software
developer. He’s contributed to many Open Source projects, has served on the
board of the GNOME foundation, and will kick your ass at chess.

When he’s not busy being an International Man of Mystery, Malcolm lives in
Sydney, Australia.

Malcolm passed away on March 17, 2013.



	Luke Plant [http://lukeplant.me.uk/]

	At University Luke studied physics and Materials Science and also
met Michael Meeks [http://en.wikipedia.org/wiki/Michael_Meeks_(software)] who introduced him to Linux and Open Source,
re-igniting an interest in programming.  Since then he has
contributed to a number of Open Source projects and worked
professionally as a developer.

Luke has contributed many excellent improvements to Django,
including database-level improvements, the CSRF middleware and
many unit tests.

Luke currently works for a church in Bradford, UK, and part-time
as a freelance developer.



	Russell Keith-Magee [http://cecinestpasun.com/]

	Russell studied physics as an undergraduate, and studied neural networks for
his PhD. His first job was with a startup in the defense industry developing
simulation frameworks. Over time, mostly through work with Django, he’s
become more involved in Web development.

Russell has helped with several major aspects of Django, including a
couple major internal refactorings, creation of the test system, and more.

Russell lives in the most isolated capital city in the world — Perth,
Australia.



	James Bennett [http://b-list.org/]

	James is Django’s release manager, and also contributes to the
documentation and provide the occasional bugfix.

James came to Web development from philosophy when he discovered
that programmers get to argue just as much while collecting much
better pay. He lives in Lawrence, Kansas and previously worked at
World Online; currently, he’s part of the Web development team at
Mozilla.

He keeps a blog [http://b-list.org/], and enjoys fine port and talking to his car.



	Gary Wilson [http://thegarywilson.com/]

	Gary starting contributing patches to Django in 2006 while developing Web
applications for The University of Texas [http://www.utexas.edu/] (UT).  Since, he has made
contributions to the email and forms systems, as well as many other
improvements and code cleanups throughout the code base.

Gary is currently a developer and software engineering graduate student at
UT, where his dedication to spreading the ways of Python and Django never
ceases.

Gary lives in Austin, Texas, USA.



	Matt Boersma

	Matt is responsible for Django’s Oracle support.

	Ian Kelly

	Ian is also responsible for Django’s support for Oracle.

	Joseph Kocherhans

	Joseph was the director of lead development at EveryBlock and previously
developed at the Lawrence Journal-World. He is treasurer of the Django
Software Foundation [https://www.djangoproject.com/foundation/]. He often disappears for several days into the woods,
attempts to teach himself computational linguistics, and annoys his
neighbors with his Charango [http://en.wikipedia.org/wiki/Charango] playing.

Joseph’s first contribution to Django was a series of improvements to the
authorization system leading up to support for pluggable authorization.
Since then, he’s worked on the new forms system, its use in the admin, and
many other smaller improvements.

Joseph lives in Chicago, USA.



	Brian Rosner [http://brosner.com/]

	Brian is the Chief Architect at Eldarion [http://eldarion.com/] managing and developing
Django / Pinax [http://pinaxproject.com/] based Web sites. He enjoys learning more about programming
languages and system architectures and contributing to open source
projects.

Brian helped immensely in getting Django’s “newforms-admin” branch finished
in time for Django 1.0; he’s now a full committer, continuing to improve on
the admin and forms system.

Brian lives in Denver, Colorado, USA.



	Justin Bronn

	Justin Bronn is a computer scientist and attorney specializing
in legal topics related to intellectual property and spatial law.

In 2007, Justin began developing django.contrib.gis in a branch,
a.k.a. GeoDjango [http://geodjango.org/], which was merged in time for Django 1.0.  While
implementing GeoDjango, Justin obtained a deep knowledge of Django’s
internals including the ORM, the admin, and Oracle support.

Justin lives in San Francisco, CA.



	Karen Tracey

	Karen has a background in distributed operating systems (graduate school),
communications software (industry) and crossword puzzle construction
(freelance).  The last of these brought her to Django, in late 2006, when
she set out to put a Web front-end on her crossword puzzle database.
That done, she stuck around in the community answering questions, debugging
problems, etc. – because coding puzzles are as much fun as word puzzles.

Karen lives in Apex, NC, USA.



	Jannis Leidel [https://jezdez.com/]

	Jannis graduated in media design from Bauhaus-University Weimar [http://www.uni-weimar.de/],
is the author of a number of pluggable Django apps and likes to
contribute to Open Source projects like virtualenv [http://www.virtualenv.org/] and pip [http://www.pip-installer.org/].

He has worked on Django’s auth, admin and staticfiles apps as well as
the form, core, internationalization and test systems. He currently works
at Mozilla [http://www.mozilla.org/].

Jannis lives in Berlin, Germany.



	James Tauber [http://jtauber.com/]

	James is the lead developer of Pinax [http://pinaxproject.com/] and the CEO and founder of
Eldarion [http://eldarion.com/]. He has been doing open source software since 1993, Python
since 1998 and Django since 2006. He serves on the board of the Python
Software Foundation and is currently on a leave of absence from a PhD in
linguistics.

James currently lives in Boston, MA, USA but originally hails from
Perth, Western Australia where he attended the same high school as
Russell Keith-Magee.



	Alex Gaynor [http://alexgaynor.net]

	Alex is a software engineer working at Rackspace [http://www.rackspace.com]. He found Django in 2007 and
has been addicted ever since he found out you don’t need to write out your
forms by hand. He has a small obsession with compilers.  He’s contributed
to the ORM, forms, admin, and other components of Django.

Alex lives in San Francisco, CA, USA.



	Simon Meers [http://simonmeers.com/]

	Simon discovered Django 0.96 during his Computer Science PhD research and
has been developing with it full-time ever since. His core code
contributions are mostly in Django’s admin application.

Simon works as a freelance developer based in Wollongong, Australia.



	Andrew Godwin [http://www.aeracode.org/]

	Andrew is a freelance Python developer and tinkerer, and has been
developing against Django since 2007. He graduated from Oxford University
with a degree in Computer Science, and has become most well known
in the Django community for his work on South, the schema migrations
library.

Andrew lives in London, UK.



	Carl Meyer [http://www.oddbird.net/]

	Carl has been working with Django since 2007 (long enough to remember
queryset-refactor, but not magic-removal), and works as a freelance
developer with OddBird [http://www.oddbird.net/].  He became a Django contributor by accident,
because fixing bugs is more interesting than working around them.

Carl lives in Rapid City, SD, USA.



	Ramiro Morales

	Ramiro has been reading Django source code and submitting patches since
mid-2006 after researching for a Python Web tool with matching awesomeness
and being pointed to it by an old ninja.

A software developer in the electronic transactions industry, he is a
living proof of the fact that anyone with enough enthusiasm can contribute
to Django, learning a lot and having fun in the process.

Ramiro lives in Córdoba, Argentina.



	Gabriel Hurley [http://strikeawe.com/]

	Gabriel has been working with Django since 2008, shortly after the 1.0
release. Convinced by his business partner that Python and Django were the
right direction for the company, he couldn’t have been more happy with the
decision. His contributions range across many areas in Django, but years of
copy-editing and an eye for detail lead him to be particularly at home
while working on Django’s documentation.

Gabriel works as a web developer in Berkeley, CA, USA.



	Chris Beaven [http://smileychris.com/]

	Chris has been submitting patches and suggesting crazy ideas for Django
since early 2006. An advocate for community involvement and a long-term
triager, he is still often found answering questions in the #django IRC
channel.

Chris lives in Napier, New Zealand (adding to the pool of Oceanic core
developers). He works remotely as a developer for Lincoln Loop [http://lincolnloop.com/].



	Honza Král

	Honza first discovered Django in 2006 and started using it right away,
first for school and personal projects and later in his full-time job. He
contributed various patches and fixes mostly to the newforms library,
newforms admin and, through participation in the Google Summer of Code
project, assisted in creating the model validation functionality.

He is currently working for Whiskey Media [http://www.whiskeymedia.com/] in San Francisco developing
awesome sites running on pure Django.



	Tim Graham

	When exploring Web frameworks for an independent study project in the fall
of 2008, Tim discovered Django and was lured to it by the documentation.
He enjoys contributing to the docs because they’re awesome.

Tim works as a software engineer and lives in Philadelphia, PA, USA.



	Idan Gazit [http://idan.gazit.me]

	As a self-professed design geek, Idan was initially attracted to Django
sometime between magic-removal and queryset-refactor. Formally trained
as a software engineer, Idan straddles the worlds of design and code,
jack of two trades and master of none. He is passionate about usability
and finding novel ways to extract meaning from data, and is a longtime
photographer [http://flickr.com/photos/idangazit].

Idan previously accepted freelance work under the Pixane [http://pixane.com] imprint, but
now splits his days between his startup, Skills [http://skillsapp.com], and beautifying all
things Django and Python.



	Paul McMillan [http://subversivecode.com]

	Paul found Django in 2008 while looking for a more
structured approach to web programming. He stuck around after
figuring out that the developers of Django had already invented
many of the wheels he needed. His passion for breaking (and then
fixing) things led to his current role working to maintain and
improve the security of Django.

Paul works in Berkeley, California as a web developer [http://zerocoordinate.com] and security
consultant [http://subversivecode.com/about].



	Julien Phalip [http://julienphalip.com]

	Julien has a background in software engineering and human-computer
interaction. As a Web developer, he enjoys tinkering with the backend as
much as designing and coding user interfaces. Julien discovered Django in
2007 while doing his PhD in Computing Sciences. Since then he has
contributed patches to various components of the framework, in particular
the admin. Julien was a co-founder of the Interaction Consortium [http://interaction.net.au]. He
now works at Odopod [http://odopod.com], a digital agency based in San Francisco, CA, USA.

	Aymeric Augustin [https://myks.org/]

	Aymeric is an engineer with a background in mathematics and computer
science. He chose Django because he believes that software should be simple,
explicit and tested. His perfectionist tendencies quickly led him to triage
tickets and contribute patches.

Aymeric has a pragmatic approach to software engineering, can’t live without
a continuous integration server, and likes proving that Django is a good
choice for enterprise software.

He’s the CTO of Oscaro [http://www.oscaro.com/], an e-commerce company based in Paris, France.



	Claude Paroz [http://www.2xlibre.net]

	Claude is a former teacher who fell in love with free software at the
beginning of the 21st century. He’s now working as freelancer in Web
development in his native Switzerland. He has found in Django a perfect
match for his needs of a stable, clean, documented and well-maintained Web
framework.

He’s also helping the GNOME Translation Project as maintainer of the
Django-based l10n.gnome.org [https://l10n.gnome.org].



	Anssi Kääriäinen

	Anssi works as a developer at Finnish National Institute for Health and
Welfare. He is also a computer science student at Aalto University. In his
work he uses Django for developing internal business applications and sees
Django as a great match for that use case.

Anssi is interested in developing the object relational mapper (ORM) and
all related features. He’s also a fan of benchmarking and he tries keep
Django as fast as possible.



	Florian Apolloner

	Florian is currently studying Physics at the Graz University of Technology [http://tugraz.at/].
Soon after he started using Django he joined the Ubuntuusers webteam [http://wiki.ubuntuusers.de/ubuntuusers/Webteam] to
work on Inyoka, the software powering the whole Ubuntuusers site.

For the time being he lives in Graz, Austria (not Australia ;)).



	Jeremy Dunck

	Jeremy was rescued from corporate IT drudgery by Free Software and, in part,
Django.  Many of Jeremy’s interests center around access to information.

Jeremy was the lead developer of Pegasus News, one of the first uses of
Django outside World Online, and has since joined Votizen, a startup intent
on reducing the influence of money in politics.

He serves as DSF Secretary, organizes and helps organize sprints, cares
about the health and equity of the Django community.  He has gone an
embarrassingly long time without a working blog.

Jeremy lives in Mountain View, CA, USA.



	Bryan Veloso [http://avalonstar.com/]

	Bryan found Django 0.96 through a fellow designer who was evangelizing
its use. It was his first foray outside of the land that was PHP-based
templating. Although he has only ever used Django for personal projects,
it is the very reason he considers himself a designer/developer
hybrid and is working to further design within the Django community.

Bryan works as a designer at GitHub by day, and masquerades as a vlogger [http://youtube.com/bryanveloso/]
and shoutcaster [http://twitch.tv/vlogalonstar/] in the after-hours. Bryan lives in Los Angeles, CA, USA.



	Preston Holmes [http://www.ptone.com/]

	Preston is a recovering neuroscientist who originally discovered Django as
part of a sweeping move to Python from a grab bag of half a dozen
languages. He was drawn to Django’s balance of practical batteries included
philosophy, care and thought in code design, and strong open source
community. Currently working for Amazon Web Services, he is always looking
for opportunities to volunteer for community oriented education projects,
such as for kids and scientists (e.g. Software Carpentry).

Preston lives with his family and animal menagerie in Santa Barbara, CA, USA.



	Simon Charette [https://github.com/charettes]

	Simon is a mathematics student who discovered Django while searching for a
replacement framework to an in-house PHP entity. Since that faithful day
Django has been a big part of his life. So far, he’s been involved in some
ORM and forms API fixes.

Apart from contributing to multiple open source projects he spends most of
his spare-time playing Ultimate Frisbee [http://www.montrealultimate.ca] and working part-time
at this awesome place called Reptiletech [http://www.reptiletech.com].

Simon lives in Montréal, Québec, Canada.



	Donald Stufft

	Donald found Python and Django in 2007 while trying to find a language,
and web framework that he really enjoyed using after many years of PHP. He
fell in love with the beauty of Python and the way Django made tasks simple
and easy. His contributions to Django focus primarily on ensuring that it
is and remains a secure web framework.

Donald currently works at Nebula Inc [https://www.nebula.com/] as a Software Engineer for their
security team and lives in the Greater Philadelphia Area.



	Daniel Lindsley [http://toastdriven.com/]

	Pythonista since 2003, Djangonaut since 2006. Daniel started with Django
just after the v0.90 release (back when Manipulators looked good) & fell
in love. Since then, he wrote third-party apps like Haystack & Tastypie
& has run the annual Django Dash since 2007. One of the testing faithful,
Daniel’s contributions include rewriting the Forms test suite & the
addition of request.is_ajax. Daniel currently works as a Python
developer at Amazon Web Services [https://aws.amazon.com/] on the boto library.

Daniel lives in Seattle, WA, USA.



	Marc Tamlyn

	Marc started life on the web using Django 1.2 back in 2010, and has never
looked back. He was involved with rewriting the class based view
documentation at DjangoCon EU 2012, and also helped to develop CCBV [http://ccbv.co.uk/], an
additional class based view reference tool.

Marc is currently a full-time parent, part-time developer, and lives in
Oxford, UK.



	Shai Berger

	Shai started working with Python back in 1998, and with Django just
before 1.0. He is a Free Software enthusiast, but life happens, and
he was driven by consulting gigs to contribute to the Oracle and
SQL Server backends of South, and then the Oracle backend of Django
itself. Finally, he joined core to help maintain the Oracle backend.

Shai works for Platonix [http://tech.platonix.com], a small consulting company he started
with a few friends in 1996, and lives near Tel Aviv, Israel.



	Baptiste Mispelon

	Baptiste discovered Django around the 1.2 version and promptly switched away
from his homegrown PHP framework. He started getting more involved in the
project after attending DjangoCon EU 2012, mostly by triaging tickets and
submitting small patches.

Baptiste currently lives in Budapest, Hungary and works for M2BPO [http://www.m2bpo.fr],
a small French company providing services to architects.



	Daniele Procida [http://medicine.cf.ac.uk/person/mr-daniele-marco-procida/]

	Daniele works at Cardiff University School of Medicine [http://medicine.cf.ac.uk/]. He unexpectedly
became a Django developer on 29th April 2009. Since then he has relied
daily on Django’s documentation, which has been a constant companion to
him. More recently he has been able to contribute back to the project by
helping improve the documentation itself.

He is the author of Arkestra [http://arkestra-project.org/] and Don’t be afraid to commit [https://dont-be-afraid-to-commit.readthedocs.org].



	Erik Romijn [http://erik.io/]

	Erik started using Django in the days of 1.2. His largest contribution to Django was
GenericIPAddressField, and he has worked on all sorts of patches since.
While developing with Django, he always keeps a little list of even the slightest
Django frustrations, to tackle them at a later time and prevent other developers
from having to deal with the same issues.

Erik is an independent app maker, mostly developing web and mobile apps, as
Solid Links [http://solidlinks.nl/]. He also enjoys helping ordinary developers to build safer web apps,
for which Django is already a great start, and developed Erik’s Pony Checkup [http://ponycheckup.com/] with
that goal in mind. Erik lives in Amsterdam, The Netherlands.










Developers Emeritus


	Georg “Hugo” Bauer

	Georg created Django’s internationalization system, managed i18n
contributions and made a ton of excellent tweaks, feature additions and bug
fixes.

	Robert Wittams

	Robert was responsible for the first refactoring of Django’s admin
application to allow for easier reuse and has made a ton of
excellent tweaks, feature additions and bug fixes.









          

      

      

    


  


    
      
          
            
  
Django’s security policies

Django’s development team is strongly committed to responsible
reporting and disclosure of security-related issues. As such, we’ve
adopted and follow a set of policies which conform to that ideal and
are geared toward allowing us to deliver timely security updates to
the official distribution of Django, as well as to third-party
distributions.


Reporting security issues

Short version: please report security issues by emailing
security@djangoproject.com.

Most normal bugs in Django are reported to our public Trac
instance [https://code.djangoproject.com/query], but due to the sensitive nature of security issues, we ask
that they not be publicly reported in this fashion.

Instead, if you believe you’ve found something in Django which has
security implications, please send a description of the issue via
email to security@djangoproject.com. Mail sent to that address
reaches a subset of the core development team, who can forward
security issues into the private committers’ mailing list for broader
discussion if needed.

Once you’ve submitted an issue via email, you should receive an
acknowledgment from a member of the Django development team within 48
hours, and depending on the action to be taken, you may receive
further followup emails.


Note

If you want to send an encrypted email (optional), the public key ID for
security@djangoproject.com is 0xfcb84b8d1d17f80b, and this public
key is available from most commonly-used keyservers.






Supported versions

At any given time, the Django team provides official security support
for several versions of Django:


	The master development branch [https://github.com/django/django/], hosted on GitHub, which will
become the next release of Django, receives security support.

	The two most recent Django release series receive security
support. For example, during the development cycle leading to the
release of Django 1.5, support will be provided for Django 1.4 and
Django 1.3. Upon the release of Django 1.5, Django 1.3’s security
support will end.

	Long-term support (LTS) releases will receive
security updates for a specified period.



When new releases are issued for security reasons, the accompanying
notice will include a list of affected versions. This list is
comprised solely of supported versions of Django: older versions may
also be affected, but we do not investigate to determine that, and
will not issue patches or new releases for those versions.




How Django discloses security issues

Our process for taking a security issue from private discussion to
public disclosure involves multiple steps.

Approximately one week before full public disclosure, we will send
advance notification of the issue to a list of people and
organizations, primarily composed of operating-system vendors and
other distributors of Django. This notification will consist of an
email message, signed with the Django release key, containing:


	A full description of the issue and the affected versions of Django.

	The steps we will be taking to remedy the issue.

	The patch(es), if any, that will be applied to Django.

	The date on which the Django team will apply these patches, issue
new releases and publicly disclose the issue.



Simultaneously, the reporter of the issue will receive notification of
the date on which we plan to take the issue public.

On the day of disclosure, we will take the following steps:


	Apply the relevant patch(es) to Django’s codebase. The commit
messages for these patches will indicate that they are for security
issues, but will not describe the issue in any detail; instead,
they will warn of upcoming disclosure.

	Issue the relevant release(s), by placing new packages on the
Python Package Index [https://pypi.python.org/pypi] and on the Django website, and tagging the
new release(s) in Django’s git repository.

	Post a public entry on the official Django development blog [https://www.djangoproject.com/weblog/],
describing the issue and its resolution in detail, pointing to the
relevant patches and new releases, and crediting the reporter of
the issue (if the reporter wishes to be publicly identified).

	Post a notice to the django-announce mailing list that links to the blog
post.



If a reported issue is believed to be particularly time-sensitive –
due to a known exploit in the wild, for example – the time between
advance notification and public disclosure may be shortened
considerably.

Additionally, if we have reason to believe that an issue reported to
us affects other frameworks or tools in the Python/web ecosystem, we
may privately contact and discuss those issues with the appropriate
maintainers, and coordinate our own disclosure and resolution with
theirs.

The Django team also maintains an archive of security issues
disclosed in Django.




Who receives advance notification

The full list of people and organizations who receive advance
notification of security issues is not and will not be made public.

We also aim to keep this list as small as effectively possible, in
order to better manage the flow of confidential information prior to
disclosure. As such, our notification list is not simply a list of
users of Django, and merely being a user of Django is not sufficient
reason to be placed on the notification list.

In broad terms, recipients of security notifications fall into three
groups:


	Operating-system vendors and other distributors of Django who
provide a suitably-generic (i.e., not an individual’s personal
email address) contact address for reporting issues with their
Django package, or for general security reporting. In either case,
such addresses must not forward to public mailing lists or bug
trackers. Addresses which forward to the private email of an
individual maintainer or security-response contact are acceptable,
although private security trackers or security-response groups are
strongly preferred.

	On a case-by-case basis, individual package maintainers who have
demonstrated a commitment to responding to and responsibly acting
on these notifications.

	On a case-by-case basis, other entities who, in the judgment of the
Django development team, need to be made aware of a pending
security issue. Typically, membership in this group will consist of
some of the largest and/or most likely to be severely impacted
known users or distributors of Django, and will require a
demonstrated ability to responsibly receive, keep confidential and
act on these notifications.



Additionally, a maximum of six days prior to disclosure, notification
will be sent to the distros@vs.openwall.org mailing list, whose
membership includes representatives of most major open-source
operating system vendors.




Requesting notifications

If you believe that you, or an organization you are authorized to
represent, fall into one of the groups listed above, you can ask to be
added to Django’s notification list by emailing
security@djangoproject.com. Please use the subject line “Security
notification request”.

Your request must include the following information:


	Your full, real name and the name of the organization you represent,
if applicable, as well as your role within that organization.

	A detailed explanation of how you or your organization fit at least
one set of criteria listed above.

	A detailed explanation of why you are requesting security
notifications. Again, please keep in mind that this is not simply
a list for users of Django, and the overwhelming majority of users
of Django should not request notifications and will not be added to
our notification list if they do.

	The email address you would like to have added to our notification
list.

	An explanation of who will be receiving/reviewing mail sent to that
address, as well as information regarding any automated actions that
will be taken (i.e., filing of a confidential issue in a bug
tracker).

	For individuals, the ID of a public key associated with your address
which can be used to verify email received from you and encrypt
email sent to you, as needed.



Once submitted, your request will be considered by the Django
development team; you will receive a reply notifying you of the result
of your request within 30 days.

Please also bear in mind that for any individual or organization,
receiving security notifications is a privilege granted at the sole
discretion of the Django development team, and that this privilege can
be revoked at any time, with or without explanation.

If you are added to the notification list, security-related emails
will be sent to you by Django’s release team, and all notification
emails will be signed with a key authorized to issue Django
releases. The list of authorized keys is in the Django releasers
file [https://www.djangoproject.com/m/pgp/django-releasers.txt].







          

      

      

    


  


    
      
          
            
  
Django’s release process


Official releases

Since version 1.0, Django’s release numbering works as follows:


	Versions are numbered in the form A.B or A.B.C.

	A.B is the major version number. Each version will be mostly backwards
compatible with the previous release. Exceptions to this rule will be listed
in the release notes. When B == 9, the next major release will be
A+1.0. For example, Django 2.0 will follow Django 1.9. There won’t be
anything special about “dot zero” releases.

	C is the minor version number, which is incremented for bug and
security fixes. A new minor release will be 100% backwards-compatible with
the previous minor release. The only exception is when a security or data loss
issue can’t be fixed without breaking backwards-compatibility. If this
happens, the release notes will provide detailed upgrade instructions.

	Before a new major release, we’ll make alpha, beta, and release candidate
releases. These are of the form A.B alpha/beta/rc N, which means the
Nth alpha/beta/release candidate of version A.B.



In git, each Django release will have a tag indicating its version number,
signed with the Django release key. Additionally, each release series has its
own branch, called stable/A.B.x, and bugfix/security releases will be
issued from those branches.

For more information about how the Django project issues new releases for
security purposes, please see our security policies.


	Major release

	Major releases (A.B, A.B+1, etc.) will happen roughly every nine months –
see release process, below for details. These releases will contain new
features, improvements to existing features, and such.

A major release may deprecate certain features from previous releases. If a
feature is deprecated in version A.B, it will continue to work in versions
A.B and  A.B+1 but raise warnings. It will be removed in version
A.B+2.

So, for example, if we decided to start the deprecation of a function in
Django 1.7:


	Django 1.7 will contain a backwards-compatible replica of the function which
will raise a RemovedInDjango19Warning. This warning is silent by
default; you can turn on display of these warnings with the -Wd option
of Python.

	Django 1.8 will still contain the backwards-compatible replica. This
warning becomes loud by default, and will likely be quite annoying.

	Django 1.9 will remove the feature outright.





	Minor release

	Minor releases (A.B.C, etc.) will be issued as needed, often to fix security
issues.

These releases will be 100% compatible with the associated major release,
unless this is impossible for security reasons or to prevent data loss.
So the answer to “should I upgrade to the latest minor release?” will always
be “yes.”








Supported versions

At any moment in time, Django’s developer team will support a set of releases to
varying levels. See the download page [https://www.djangoproject.com/download/] for the current state of support for
each version.


	The current development master will get new features and bug fixes
requiring major refactoring.



	Patches applied to the master branch must also be applied to the last major
release, to be released as the next minor release, when they fix critical
problems:


	Security issues.

	Data loss bugs.

	Crashing bugs.

	Major functionality bugs in newly-introduced features.



The rule of thumb is that fixes will be backported to the last major release
for bugs that would have prevented a release in the first place (release
blockers).



	Security fixes and data loss bugs will be applied to the current master, the
last two major releases, and the current LTS release.



	Documentation fixes generally will be more freely backported to the last
release branch. That’s because it’s highly advantageous to have the docs for
the last release be up-to-date and correct, and the risk of introducing
regressions is much less of a concern.





As a concrete example, consider a moment in time halfway between the release of
Django 1.7 and 1.8. At this point in time:


	Features will be added to development master, to be released as Django 1.8.

	Critical bug fixes will be applied to the stable/1.7.x branch, and
released as 1.7.1, 1.7.2, etc.

	Security fixes and bug fixes for data loss issues will be applied to
master and to the stable/1.7.x, stable/1.6.x, and
stable/1.4.x (LTS) branches. They will trigger the release of 1.7.1,
1.6.1, 1.4.1, etc.

	Documentation fixes will be applied to master, and, if easily backported, to
the 1.7.x and 1.6.x branches.






Long-term support (LTS) releases

Additionally, the Django team will occasionally designate certain releases
to be “Long-term support” (LTS) releases. LTS releases will get security and
data loss fixes applied for a guaranteed period of time, typically 3+ years,
regardless of the pace of releases afterwards.

See the download page [https://www.djangoproject.com/download/] for the releases that have been designated for
long-term support.




Release process

Django uses a time-based release schedule, with major (i.e. 1.8, 1.9, 2.0,
etc.) releases every nine months, or more, depending on features.

After each release, and after a suitable cooling-off period of a few weeks,
core developers will examine the landscape and announce a timeline for the
next release. Most releases will be scheduled in the 6-9 month range, but if
we have bigger features to develop we might schedule a longer period to
allow for more ambitious work.


Release cycle

Each release cycle will be split into three periods, each lasting roughly
one-third of the cycle:


Phase one: feature proposal

The first phase of the release process will be devoted to figuring out what
features to include in the next version. This should include a good deal of
preliminary work on those features – working code trumps grand design.

At the end of part one, the core developers will propose a feature list for the
upcoming release. This will be broken into:


	“Must-have”: critical features that will delay the release if not finished

	“Maybe” features: that will be pushed to the next release if not finished

	“Not going to happen”: features explicitly deferred to a later release.



Anything that hasn’t got at least some work done by the end of the first third
isn’t eligible for the next release; a design alone isn’t sufficient.




Phase two: development

The second third of the release schedule is the “heads-down” working period.
Using the roadmap produced at the end of phase one, we’ll all work very hard to
get everything on it done.

Longer release schedules will likely spend more than a third of the time in this
phase.

At the end of phase two, any unfinished “maybe” features will be postponed until
the next release. Though it shouldn’t happen, any “must-have” features will
extend phase two, and thus postpone the final release.

Phase two will culminate with an alpha release. At this point, the
stable/A.B.x branch will be forked from master.




Phase three: bugfixes

The last third of a release cycle is spent fixing bugs – no new features will
be accepted during this time. We’ll try to release a beta release after one
month and a release candidate after two months.

The release candidate marks the string freeze, and it happens at least two
weeks before the final release. After this point, new translatable strings
must not be added.

During this phase, committers will be more and more conservative with
backports, to avoid introducing regressions. After the release candidate, only
release blockers and documentation fixes should be backported.

In parallel to this phase, master can receive new features, to be released
in the A.B+1 cycle.






Bug-fix releases

After a major release (e.g. A.B), the previous release will go into bugfix
mode.

The branch for the previous major release (e.g. stable/A.B-1.x) will include
bugfixes. Critical bugs fixed on master must also be fixed on the bugfix
branch; this means that commits need to cleanly separate bug fixes from feature
additions. The developer who commits a fix to master will be responsible for
also applying the fix to the current bugfix branch.









          

      

      

    


  


    
      
          
            
  
Django Deprecation Timeline

This document outlines when various pieces of Django will be removed or altered
in a backward incompatible way, following their deprecation, as per the
deprecation policy. More details
about each item can often be found in the release notes of two versions prior.


1.9

See the Django 1.7 release notes for more
details on these changes.


	django.utils.dictconfig will be removed.

	django.utils.importlib will be removed.

	django.utils.tzinfo will be removed.

	django.utils.unittest will be removed.

	The syncdb command will be removed.

	django.db.models.signals.pre_syncdb and
django.db.models.signals.post_syncdb will be removed.

	allow_syncdb on database routers will no longer automatically become
allow_migrate.

	Automatic syncing of apps without migrations will be removed. Migrations will
become compulsory for all apps unless you pass the --run-syncdb option to
migrate.

	Support for automatic loading of initial_data fixtures and initial SQL
data will be removed.

	All models will need to be defined inside an installed application or
declare an explicit app_label.
Furthermore, it won’t be possible to import them before their application
is loaded. In particular, it won’t be possible to import models inside
the root package of their application.

	The model and form IPAddressField will be removed.

	AppCommand.handle_app() will no longer be supported.

	RequestSite and get_current_site() will no longer be importable from
django.contrib.sites.models.

	FastCGI support via the runfcgi management command will be
removed. Please deploy your project using WSGI.

	django.utils.datastructures.SortedDict will be removed. Use
collections.OrderedDict [http://docs.python.org/3/library/collections.html#collections.OrderedDict] from the Python standard library instead.

	ModelAdmin.declared_fieldsets will be removed.

	Instances of util.py in the Django codebase have been renamed to
utils.py in an effort to unify all util and utils references.
The modules that provided backwards compatibility will be removed:
	django.contrib.admin.util

	django.contrib.gis.db.backends.util

	django.db.backends.util

	django.forms.util





	ModelAdmin.get_formsets will be removed.

	The backward compatibility shim introduced to rename the
BaseMemcachedCache._get_memcache_timeout() method to
get_backend_timeout() will be removed.

	The --natural and -n options for dumpdata will be removed.
Use --natural-foreign instead.

	The use_natural_keys argument for serializers.serialize() will be
removed. Use use_natural_foreign_keys instead.

	Private API django.forms.forms.get_declared_fields() will be removed.

	The ability to use a SplitDateTimeWidget with DateTimeField will be
removed.

	The WSGIRequest.REQUEST property will be removed.

	The class django.utils.datastructures.MergeDict will be removed.

	The zh-cn and zh-tw language codes will be removed and have been
replaced by the zh-hans and zh-hant language code respectively.

	The internal django.utils.functional.memoize will be removed.

	django.core.cache.get_cache will be removed. Add suitable entries
to CACHES and use django.core.cache.caches instead.

	django.db.models.loading will be removed.

	Passing callable arguments to querysets will no longer be possible.

	BaseCommand.requires_model_validation will be removed in favor of
requires_system_checks. Admin validators will be replaced by admin
checks.

	The ModelAdmin.validator_class and default_validator_class attributes
will be removed.

	ModelAdmin.validate() will be removed.

	django.db.backends.DatabaseValidation.validate_field will be removed in
favor of the check_field method.

	The validate management command will be removed.

	django.utils.module_loading.import_by_path will be removed in favor of
django.utils.module_loading.import_string.

	ssi and url template tags will be removed from the future template
tag library (used during the 1.3/1.4 deprecation period).

	django.utils.text.javascript_quote will be removed.

	Database test settings as independent entries in the database settings,
prefixed by TEST_, will no longer be supported.

	The cache_choices option to ModelChoiceField and
ModelMultipleChoiceField will be removed.

	The default value of the
RedirectView.permanent
attribute will change from True to False.

	django.contrib.sitemaps.FlatPageSitemap will be removed in favor of
django.contrib.flatpages.sitemaps.FlatPageSitemap.

	Private API django.test.utils.TestTemplateLoader will be removed.

	The django.contrib.contenttypes.generic module will be removed.

	Private APIs django.db.models.sql.where.WhereNode.make_atom() and
django.db.models.sql.where.Constraint will be removed.






1.8

See the Django 1.6 release notes for more
details on these changes.


	django.contrib.comments will be removed.



	The following transaction management APIs will be removed:


	TransactionMiddleware,

	the decorators and context managers autocommit, commit_on_success,
and commit_manually, defined in django.db.transaction,

	the functions commit_unless_managed and rollback_unless_managed,
also defined in django.db.transaction,

	the TRANSACTIONS_MANAGED setting.



Upgrade paths are described in the transaction management docs.



	The cycle and firstof template tags will auto-escape their
arguments. In 1.6 and 1.7, this behavior is provided by the version of these
tags in the future template tag library.



	The SEND_BROKEN_LINK_EMAILS setting will be removed. Add the
django.middleware.common.BrokenLinkEmailsMiddleware middleware to
your MIDDLEWARE_CLASSES setting instead.



	django.middleware.doc.XViewMiddleware will be removed. Use
django.contrib.admindocs.middleware.XViewMiddleware instead.



	Model._meta.module_name was renamed to model_name.



	Remove the backward compatible shims introduced to rename get_query_set
and similar queryset methods. This affects the following classes:
BaseModelAdmin, ChangeList, BaseCommentNode,
GenericForeignKey, Manager, SingleRelatedObjectDescriptor and
ReverseSingleRelatedObjectDescriptor.



	Remove the backward compatible shims introduced to rename the attributes
ChangeList.root_query_set and ChangeList.query_set.



	django.views.defaults.shortcut will be removed, as part of the
goal of removing all django.contrib references from the core
Django codebase. Instead use
django.contrib.contenttypes.views.shortcut. django.conf.urls.shortcut
will also be removed.



	Support for the Python Imaging Library (PIL) module will be removed, as it
no longer appears to be actively maintained & does not work on Python 3.
You are advised to install Pillow [https://pypi.python.org/pypi/Pillow], which should be used instead.



	The following private APIs will be removed:


	django.db.backend

	django.db.close_connection()

	django.db.backends.creation.BaseDatabaseCreation.set_autocommit()

	django.db.transaction.is_managed()

	django.db.transaction.managed()





	django.forms.widgets.RadioInput will be removed in favor of
django.forms.widgets.RadioChoiceInput.



	The module django.test.simple and the class
django.test.simple.DjangoTestSuiteRunner will be removed. Instead use
django.test.runner.DiscoverRunner.



	The module django.test._doctest will be removed. Instead use the doctest
module from the Python standard library.



	The CACHE_MIDDLEWARE_ANONYMOUS_ONLY setting will be removed.



	Usage of the hard-coded Hold down “Control”, or “Command” on a Mac, to select
more than one. string to override or append to user-provided help_text in
forms for ManyToMany model fields will not be performed by Django anymore
either at the model or forms layer.



	The Model._meta.get_(add|change|delete)_permission methods will
be removed.



	The session key django_language will no longer be read for backwards
compatibility.



	Geographic Sitemaps will be removed
(django.contrib.gis.sitemaps.views.index and
django.contrib.gis.sitemaps.views.sitemap).



	django.utils.html.fix_ampersands, the fix_ampersands template filter and
django.utils.html.clean_html will be removed following an accelerated deprecation.








1.7

See the Django 1.5 release notes for more
details on these changes.


	The module django.utils.simplejson will be removed. The standard library
provides json [http://docs.python.org/3/library/json.html#module-json] which should be used instead.

	The function django.utils.itercompat.product will be removed. The Python
builtin version should be used instead.

	Auto-correction of INSTALLED_APPS and TEMPLATE_DIRS settings when they are
specified as a plain string instead of a tuple will be removed and raise an
exception.

	The mimetype argument to the __init__ methods of
HttpResponse,
SimpleTemplateResponse, and
TemplateResponse, will be removed.
content_type should be used instead. This also applies to the
render_to_response() shortcut and
the sitemap views, index() and
sitemap().

	When HttpResponse is instantiated with an iterator,
or when content is set to an iterator,
that iterator will be immediately consumed.

	The AUTH_PROFILE_MODULE setting, and the get_profile() method on
the User model, will be removed.

	The cleanup management command will be removed. It’s replaced by
clearsessions.

	The daily_cleanup.py script will be removed.

	The depth keyword argument will be removed from
select_related().

	The undocumented get_warnings_state()/restore_warnings_state()
functions from django.test.utils and the save_warnings_state()/
restore_warnings_state()
django.test.*TestCase methods are
deprecated. Use the warnings.catch_warnings [http://docs.python.org/3/library/warnings.html#warnings.catch_warnings] context manager
available starting with Python 2.6 instead.

	The undocumented check_for_test_cookie method in
AuthenticationForm will be removed
following an accelerated deprecation. Users subclassing this form should
remove calls to this method, and instead ensure that their auth related views
are CSRF protected, which ensures that cookies are enabled.

	The version of django.contrib.auth.views.password_reset_confirm() that
supports base36 encoded user IDs
(django.contrib.auth.views.password_reset_confirm_uidb36) will be
removed. If your site has been running Django 1.6 for more than
PASSWORD_RESET_TIMEOUT_DAYS, this change will have no effect. If
not, then any password reset links generated before you upgrade to Django 1.7
won’t work after the upgrade.

	The django.utils.encoding.StrAndUnicode mix-in will be removed.
Define a __str__ method and apply the
python_2_unicode_compatible() decorator instead.






1.6

See the Django 1.4 release notes for more
details on these changes.


	django.contrib.databrowse will be removed.

	django.contrib.localflavor will be removed following an accelerated
deprecation.

	django.contrib.markup will be removed following an accelerated
deprecation.

	The compatibility modules django.utils.copycompat and
django.utils.hashcompat as well as the functions
django.utils.itercompat.all and django.utils.itercompat.any will
be removed. The Python builtin versions should be used instead.

	The csrf_response_exempt and csrf_view_exempt decorators will
be removed. Since 1.4 csrf_response_exempt has been a no-op (it
returns the same function), and csrf_view_exempt has been a
synonym for django.views.decorators.csrf.csrf_exempt, which should
be used to replace it.

	The django.core.cache.backends.memcached.CacheClass backend
was split into two in Django 1.3 in order to introduce support for
PyLibMC. The historical CacheClass will be removed in favor of
django.core.cache.backends.memcached.MemcachedCache.

	The UK-prefixed objects of django.contrib.localflavor.uk will only
be accessible through their GB-prefixed names (GB is the correct
ISO 3166 code for United Kingdom).

	The IGNORABLE_404_STARTS and IGNORABLE_404_ENDS settings have been
superseded by IGNORABLE_404_URLS in the 1.4 release. They will be
removed.

	The form wizard has been
refactored to use class-based views with pluggable backends in 1.4.
The previous implementation will be removed.

	Legacy ways of calling
cache_page() will be removed.

	The backward-compatibility shim to automatically add a debug-false
filter to the 'mail_admins' logging handler will be removed. The
LOGGING setting should include this filter explicitly if
it is desired.

	The builtin truncation functions django.utils.text.truncate_words()
and django.utils.text.truncate_html_words() will be removed in
favor of the django.utils.text.Truncator class.

	The GeoIP class was moved to
django.contrib.gis.geoip in 1.4 – the shortcut in
django.contrib.gis.utils will be removed.

	django.conf.urls.defaults will be removed. The functions
include(), patterns() and
url() plus handler404,
handler500, are now available through
django.conf.urls .

	The functions setup_environ() and execute_manager() will be removed
from django.core.management. This also means that the old (pre-1.4)
style of manage.py file will no longer work.

	Setting the is_safe and needs_autoescape flags as attributes of
template filter functions will no longer be supported.

	The attribute HttpRequest.raw_post_data was renamed to HttpRequest.body
in 1.4. The backward compatibility will be removed –
HttpRequest.raw_post_data will no longer work.

	The value for the post_url_continue parameter in
ModelAdmin.response_add() will have to be either None (to redirect
to the newly created object’s edit page) or a pre-formatted url. String
formats, such as the previous default '../%s/', will not be accepted any
more.






1.5

See the Django 1.3 release notes for more
details on these changes.


	Starting Django without a SECRET_KEY will result in an exception
rather than a DeprecationWarning. (This is accelerated from the usual
deprecation path; see the Django 1.4 release notes.)

	The mod_python request handler will be removed. The mod_wsgi
handler should be used instead.

	The template attribute on django.test.client.Response
objects returned by the test client will be removed.
The templates attribute should be
used instead.

	The django.test.simple.DjangoTestRunner will be removed.
Instead use a unittest-native class.  The features of the
django.test.simple.DjangoTestRunner (including fail-fast and
Ctrl-C test termination) can currently be provided by the unittest-native
TextTestRunner [http://docs.python.org/3/library/unittest.html#unittest.TextTestRunner].

	The undocumented function
django.contrib.formtools.utils.security_hash will be removed,
instead use django.contrib.formtools.utils.form_hmac

	The function-based generic view modules will be removed in favor of their
class-based equivalents, outlined here.

	The django.core.servers.basehttp.AdminMediaHandler will be
removed.  In its place use
django.contrib.staticfiles.handlers.StaticFilesHandler.

	The template tags library adminmedia and the template tag {%
admin_media_prefix %} will be removed in favor of the generic static files
handling. (This is faster than the usual deprecation path; see the
Django 1.4 release notes.)

	The url and ssi template tags will be
modified so that the first argument to each tag is a template variable, not
an implied string. In 1.4, this behavior is provided by a version of the tag
in the future template tag library.

	The reset and sqlreset management commands will be removed.

	Authentication backends will need to support an inactive user
being passed to all methods dealing with permissions.
The supports_inactive_user attribute will no longer be checked
and can be removed from custom backends.

	transform() will raise
a GEOSException when called
on a geometry with no SRID value.

	django.http.CompatCookie will be removed in favor of
django.http.SimpleCookie.

	django.core.context_processors.PermWrapper and
django.core.context_processors.PermLookupDict will be removed in
favor of the corresponding
django.contrib.auth.context_processors.PermWrapper and
django.contrib.auth.context_processors.PermLookupDict, respectively.

	The MEDIA_URL or STATIC_URL settings will be
required to end with a trailing slash to ensure there is a consistent
way to combine paths in templates.

	django.db.models.fields.URLField.verify_exists will be removed. The
feature was deprecated in 1.3.1 due to intractable security and
performance issues and will follow a slightly accelerated deprecation
timeframe.

	Translations located under the so-called project path will be ignored during
the translation building process performed at runtime. The
LOCALE_PATHS setting can be used for the same task by including the
filesystem path to a locale directory containing non-app-specific
translations in its value.

	The Markup contrib app will no longer support versions of Python-Markdown
library earlier than 2.1. An accelerated timeline was used as this was
a security related deprecation.

	The CACHE_BACKEND setting will be removed. The cache backend(s) should be
specified in the CACHES setting.






1.4

See the Django 1.2 release notes for more
details on these changes.


	CsrfResponseMiddleware and CsrfMiddleware will be removed.  Use
the {% csrf_token %} template tag inside forms to enable CSRF
protection. CsrfViewMiddleware remains and is enabled by default.

	The old imports for CSRF functionality (django.contrib.csrf.*),
which moved to core in 1.2, will be removed.

	The django.contrib.gis.db.backend module will be removed in favor
of the specific backends.

	SMTPConnection will be removed in favor of a generic Email backend API.

	The many to many SQL generation functions on the database backends
will be removed.

	The ability to use the DATABASE_* family of top-level settings to
define database connections will be removed.

	The ability to use shorthand notation to specify a database backend
(i.e., sqlite3 instead of django.db.backends.sqlite3) will be
removed.

	The get_db_prep_save, get_db_prep_value and
get_db_prep_lookup methods will have to support multiple databases.

	The Message model (in django.contrib.auth), its related
manager in the User model (user.message_set), and the
associated methods (user.message_set.create() and
user.get_and_delete_messages()), will be removed.  The
messages framework should be used
instead. The related messages variable returned by the
auth context processor will also be removed. Note that this
means that the admin application will depend on the messages
context processor.

	Authentication backends will need to support the obj parameter for
permission checking. The supports_object_permissions attribute
will no longer be checked and can be removed from custom backends.

	Authentication backends will need to support the AnonymousUser class
being passed to all methods dealing with permissions.  The
supports_anonymous_user variable will no longer be checked and can be
removed from custom backends.

	The ability to specify a callable template loader rather than a
Loader class will be removed, as will the load_template_source
functions that are included with the built in template loaders for
backwards compatibility.

	django.utils.translation.get_date_formats() and
django.utils.translation.get_partial_date_formats(). These functions
will be removed; use the locale-aware
django.utils.formats.get_format() to get the appropriate formats.

	In django.forms.fields, the constants: DEFAULT_DATE_INPUT_FORMATS,
DEFAULT_TIME_INPUT_FORMATS and
DEFAULT_DATETIME_INPUT_FORMATS will be removed. Use
django.utils.formats.get_format() to get the appropriate
formats.

	The ability to use a function-based test runner will be removed,
along with the django.test.simple.run_tests() test runner.

	The views.feed() view and feeds.Feed class in
django.contrib.syndication will be removed. The class-based view
views.Feed should be used instead.

	django.core.context_processors.auth.  This release will
remove the old method in favor of the new method in
django.contrib.auth.context_processors.auth.

	The postgresql database backend will be removed, use the
postgresql_psycopg2 backend instead.

	The no language code will be removed and has been replaced by the
nb language code.

	Authentication backends will need to define the boolean attribute
supports_inactive_user until version 1.5 when it will be assumed that
all backends will handle inactive users.

	django.db.models.fields.XMLField will be removed. This was
deprecated as part of the 1.3 release. An accelerated deprecation
schedule has been used because the field hasn’t performed any role
beyond that of a simple TextField since the removal of oldforms.
All uses of XMLField can be replaced with TextField.

	The undocumented mixin parameter to the open() method of
django.core.files.storage.Storage (and subclasses) will be removed.






1.3

See the Django 1.1 release notes for more
details on these changes.


	AdminSite.root().  This method of hooking up the admin URLs will be
removed in favor of including admin.site.urls.

	Authentication backends need to define the boolean attributes
supports_object_permissions and supports_anonymous_user until
version 1.4, at which point it will be assumed that all backends will
support these options.









          

      

      

    


  


    
      
          
            
  
The Django source code repository

When deploying a Django application into a real production environment, you
will almost always want to use an official packaged release of Django [https://www.djangoproject.com/download/].

However, if you’d like to try out in-development code from an upcoming release
or contribute to the development of Django, you’ll need to obtain a clone of
Django’s source code repository.

This document covers the way the code repository is laid out and how to work
with and find things in it.


High-level overview

The Django source code repository uses Git [http://git-scm.com/] to track changes to the code
over time, so you’ll need a copy of the Git client (a program called git)
on your computer, and you’ll want to familiarize yourself with the basics of
how Git works.

Git’s web site offers downloads for various operating systems. The site also
contains vast amounts of documentation [http://git-scm.com/documentation].

The Django Git repository is located online at github.com/django/django [https://github.com/django/django]. It contains the full source code for all
Django releases, which you can browse online.

The Git repository includes several branches [https://github.com/django/django/branches]:


	master contains the main in-development code which will become
the next packaged release of Django. This is where most development
activity is focused.

	stable/A.B.x are the branches where release preparation work happens.
They are also used for support and bugfix releases which occur as necessary
after the initial release of a major or minor version.

	soc20XX/<project> branches were used by students who worked on Django
during the 2009 and 2010 Google Summer of Code programs.

	attic/<project> branches were used to develop major or experimental new
features without affecting the rest of Django’s code.



The Git repository also contains tags [https://github.com/django/django/tags]. These are the exact revisions from
which packaged Django releases were produced, since version 1.0.

The source code for the Djangoproject.com [https://www.djangoproject.com/] web
site can be found at github.com/django/djangoproject.com [https://github.com/django/djangoproject.com].




The master branch

If you’d like to try out the in-development code for the next release of
Django, or if you’d like to contribute to Django by fixing bugs or developing
new features, you’ll want to get the code from the master branch.

Note that this will get all of Django: in addition to the top-level
django module containing Python code, you’ll also get a copy of Django’s
documentation, test suite, packaging scripts and other miscellaneous bits.
Django’s code will be present in your clone as a directory named
django.

To try out the in-development code with your own applications, simply place
the directory containing your clone on your Python import path. Then
import statements which look for Django will find the django module
within your clone.

If you’re going to be working on Django’s code (say, to fix a bug or
develop a new feature), you can probably stop reading here and move
over to the documentation for contributing to Django, which covers things like the preferred
coding style and how to generate and submit a patch.




Other branches

Django uses branches to prepare for releases of Django (whether they be
major or minor).

In the past when Django was hosted on Subversion, branches were also used for
feature development. Now Django is hosted on Git and feature development is
done on contributor’s forks, but the Subversion feature branches remain in Git
for historical reference.


Stable branches

These branches can be found in the repository as stable/A.B.x
branches and will be created right after the first alpha is tagged.

For example, immediately after Django 1.5 alpha 1 was tagged, the branch
stable/1.5.x was created and all further work on preparing the code for the
final 1.5 release was done there.

These branches also provide limited bugfix support for the most recent released
version of Django and security support for the two most recently-released
versions of Django.

For example, after the release of Django 1.5, the branch stable/1.5.x
receives only fixes for security and critical stability bugs, which are
eventually released as Django 1.5.1 and so on, stable/1.4.x receives only
security fixes, and stable/1.3.x no longer receives any updates.


Historical information

This policy for handling stable/A.B.x branches was adopted starting
with the Django 1.5 release cycle.

Previously, these branches weren’t created until right after the releases
and the stabilization work occurred on the main repository branch. Thus,
no new features development work for the next release of Django could be
committed until the final release happened.

For example, shortly after the release of Django 1.3 the branch
stable/1.3.x was created. Official support for that release has expired,
and so it no longer receives direct maintenance from the Django project.
However, that and all other similarly named branches continue to exist and
interested community members have occasionally used them to provide
unofficial support for old Django releases.






Feature-development branches


Historical information

Since Django moved to Git in 2012, anyone can clone the repository and
create their own branches, alleviating the need for official branches in
the source code repository.

The following section is mostly useful if you’re exploring the repository’s
history, for example if you’re trying to understand how some features were
designed.



Feature-development branches tend by their nature to be temporary. Some
produce successful features which are merged back into Django’s master to
become part of an official release, but others do not; in either case there
comes a time when the branch is no longer being actively worked on by any
developer. At this point the branch is considered closed.

Unfortunately, Django used to be maintained with the Subversion revision
control system, that has no standard way of indicating this. As a workaround,
branches of Django which are closed and no longer maintained were moved into
attic.

For reference, the following are branches whose code eventually became
part of Django itself, and so are no longer separately maintained:


	boulder-oracle-sprint: Added support for Oracle databases to
Django’s object-relational mapper. This has been part of Django
since the 1.0 release.

	gis: Added support for geographic/spatial queries to Django’s
object-relational mapper. This has been part of Django since the 1.0
release, as the bundled application django.contrib.gis.

	i18n: Added internationalization support to
Django. This has been part of Django since the 0.90 release.

	magic-removal: A major refactoring of both the internals and
public APIs of Django’s object-relational mapper. This has been part
of Django since the 0.95 release.

	multi-auth: A refactoring of Django’s bundled
authentication framework which added support for
authentication backends. This has
been part of Django since the 0.95 release.

	new-admin: A refactoring of Django’s bundled
administrative application. This became part of
Django as of the 0.91 release, but was superseded by another
refactoring (see next listing) prior to the Django 1.0 release.

	newforms-admin: The second refactoring of Django’s bundled
administrative application. This became part of Django as of the 1.0
release, and is the basis of the current incarnation of
django.contrib.admin.

	queryset-refactor: A refactoring of the internals of Django’s
object-relational mapper. This became part of Django as of the 1.0
release.

	unicode: A refactoring of Django’s internals to consistently use
Unicode-based strings in most places within Django and Django
applications. This became part of Django as of the 1.0 release.



When Django moved from SVN to Git, the information about branch merges wasn’t
preserved in the source code repository. This means that the master branch
of Django doesn’t contain merge commits for the above branches.

However, this information is available as a grafts file [https://github.com/ramiro/django-git-grafts]. You can restore it
by putting the following lines in .git/info/grafts in your local clone:

ac64e91a0cadc57f4bc5cd5d66955832320ca7a1 553a20075e6991e7a60baee51ea68c8adc520d9a 0cb8e31823b2e9f05c4ae868c19f5f38e78a5f2e
79e68c225b926302ebb29c808dda8afa49856f5c d0f57e7c7385a112cb9e19d314352fc5ed5b0747 aa239e3e5405933af6a29dac3cf587b59a099927
5cf8f684237ab5addaf3549b2347c3adf107c0a7 cb45fd0ae20597306cd1f877efc99d9bd7cbee98 e27211a0deae2f1d402537f0ebb64ad4ccf6a4da
f69cf70ed813a8cd7e1f963a14ae39103e8d5265 d5dbeaa9be359a4c794885c2e9f1b5a7e5e51fb8 d2fcbcf9d76d5bb8a661ee73dae976c74183098b
aab3a418ac9293bb4abd7670f65d930cb0426d58 4ea7a11659b8a0ab07b0d2e847975f7324664f10 adf4b9311d5d64a2bdd58da50271c121ea22e397
ff60c5f9de3e8690d1e86f3e9e3f7248a15397c8 7ef212af149540aa2da577a960d0d87029fd1514 45b4288bb66a3cda401b45901e85b645674c3988
9dda4abee1225db7a7b195b84c915fdd141a7260 4fe5c9b7ee09dc25921918a6dbb7605edb374bc9 3a7c14b583621272d4ef53061287b619ce3c290d
a19ed8aea395e8e07164ff7d85bd7dff2f24edca dc375fb0f3b7fbae740e8cfcd791b8bccb8a4e66 42ea7a5ce8aece67d16c6610a49560c1493d4653
9c52d56f6f8a9cdafb231adf9f4110473099c9b5 c91a30f00fd182faf8ca5c03cd7dbcf8b735b458 4a5c5c78f2ecd4ed8859cd5ac773ff3a01bccf96
953badbea5a04159adbfa970f5805c0232b6a401 4c958b15b250866b70ded7d82aa532f1e57f96ae 5664a678b29ab04cad425c15b2792f4519f43928
471596fc1afcb9c6258d317c619eaf5fd394e797 4e89105d64bb9e04c409139a41e9c7aac263df4c 3e9035a9625c8a8a5e88361133e87ce455c4fc13
9233d0426537615e06b78d28010d17d5a66adf44 6632739e94c6c38b4c5a86cf5c80c48ae50ac49f 18e151bc3f8a85f2766d64262902a9fcad44d937





Additionally, the following branches are closed, but their code was
never merged into Django and the features they aimed to implement
were never finished:


	full-history

	generic-auth

	multiple-db-support

	per-object-permissions

	schema-evolution

	schema-evolution-ng

	search-api

	sqlalchemy



All of the above-mentioned branches now reside in attic.

Finally, the repository contains soc2009/xxx and soc2010/xxx feature
branches, used for Google Summer of Code projects.






Tags

Each Django release is tagged and signed by Django’s release manager.

The tags can be found on GitHub’s tags [https://github.com/django/django/tags] page.







          

      

      

    


  


    
      
          
            
  
How is Django Formed?

This document explains how to release Django. If you’re unlucky enough to
be driving a release, you should follow these instructions to get the
package out.

Please, keep these instructions up-to-date if you make changes! The point
here is to be descriptive, not prescriptive, so feel free to streamline or
otherwise make changes, but update this document accordingly!


Overview

There are three types of releases that you might need to make


	Security releases, disclosing and fixing a vulnerability. This’ll
generally involve two or three simultaneous releases – e.g.
1.5.x, 1.6.x, and, depending on timing, perhaps a 1.7 alpha/beta/rc.

	Regular version releases, either a final release (e.g. 1.5) or a
bugfix update (e.g. 1.5.1).

	Pre-releases, e.g. 1.6 beta or something.



In general the steps are about the same regardless, but there are a few
differences noted. The short version is:


	If this is a security release, pre-notify the security distribution list
at least one week before the actual release.

	Proofread (and create if needed) the release notes, looking for
organization, writing errors, deprecation timelines, etc. Draft a blog post
and email announcement.

	Update version numbers and create the release package(s)!

	Upload the package(s) to the djangoproject.com server.

	Unless this is a pre-release, add the new version(s) to PyPI.

	Declare the new version in the admin on djangoproject.com.

	Post the blog entry and send out the email announcements.

	Update version numbers post-release.



There are a lot of details, so please read on.




Prerequisites

You’ll need a few things hooked up to make this work:


	A GPG key recorded as an acceptable releaser in the Django releasers [https://www.djangoproject.com/m/pgp/django-releasers.txt]
document. (If this key is not your default signing key, you’ll need to add
-u you@example.com to every GPG signing command below, where
you@example.com is the email address associated with the key you want to
use.)

	Access to Django’s record on PyPI.

	Access to the djangoproject.com server to upload files and trigger a
deploy.

	Access to the admin on djangoproject.com as a “Site maintainer”.

	Access to post to django-announce.

	If this is a security release, access to the pre-notification distribution
list.



If this is your first release, you’ll need to coordinate with James and/or
Jacob to get all these things lined up.




Pre-release tasks

A few items need to be taken care of before even beginning the release process.
This stuff starts about a week before the release; most of it can be done
any time leading up to the actual release:


	If this is a security release, send out pre-notification one week before
the release. We maintain a list of who gets these pre-notification emails in
the private django-core repository. This email should be signed by the
key you’ll use for the release, and should include patches for each issue
being fixed. Also make sure to update the security issues archive; this will
be in docs/releases/security.txt.

	If this is a major release, make sure the tests pass, then increase
the default PBKDF2 iterations in
django.contrib.auth.hashers.PBKDF2PasswordHasher by about 10%
(pick a round number). Run the tests, and update the 3 failing
hasher tests with the new values. Make sure this gets noted in the
release notes (see release notes on 1.6 for an example).

	As the release approaches, watch Trac to make sure no release blockers
are left for the upcoming release.

	Check with the other committers to make sure they don’t have any
uncommitted changes for the release.

	Proofread the release notes, including looking at the online
version to catch any broken links or reST errors, and make sure the
release notes contain the correct date.

	Double-check that the release notes mention deprecation timelines
for any APIs noted as deprecated, and that they mention any changes
in Python version support.

	Double-check that the release notes index has a link to the notes
for the new release; this will be in docs/releases/index.txt.






Preparing for release

Write the announcement blog post for the release. You can enter it into the
admin at any time and mark it as inactive. Here are a few examples: example
security release announcement [https://www.djangoproject.com/weblog/2013/feb/19/security/], example regular release announcement [https://www.djangoproject.com/weblog/2012/mar/23/14/],
example pre-release announcement [https://www.djangoproject.com/weblog/2012/nov/27/15-beta-1/].




Actually rolling the release

OK, this is the fun part, where we actually push out a release!


	Check Jenkins [http://djangoci.com] is green for the version(s) you’re putting out. You
probably shouldn’t issue a release until it’s green.



	A release always begins from a release branch, so you should make sure
you’re on a stable branch and up-to-date. For example:

git checkout stable/1.5.x
git pull







	If this is a security release, merge the appropriate patches from
django-private. Rebase these patches as necessary to make each one a
simple commit on the release branch rather than a merge commit. To ensure
this, merge them with the --ff-only flag; for example:

git checkout stable/1.5.x
git merge --ff-only security/1.5.x





(This assumes security/1.5.x is a branch in the django-private repo
containing the necessary security patches for the next release in the 1.5
series.)

If git refuses to merge with --ff-only, switch to the security-patch
branch and rebase it on the branch you are about to merge it into (git
checkout security/1.5.x; git rebase stable/1.5.x) and then switch back and
do the merge. Make sure the commit message for each security fix explains
that the commit is a security fix and that an announcement will follow
(example security commit [https://github.com/django/django/commit/3ef4bbf495cc6c061789132e3d50a8231a89406b])



	Update version numbers for the release. This has to happen in three
places: django/__init__.py, docs/conf.py, and setup.py.
Please see notes on setting the VERSION tuple below for details
on VERSION. Here’s an example commit updating version numbers [https://github.com/django/django/commit/18d920ea4839fb54f9d2a5dcb555b6a5666ee469]



	For a version release, remove the UNDER DEVELOPMENT header at the top of
the release notes.



	If this is a pre-release package, update the “Development Status” trove
classifier in setup.py to reflect this. Otherwise, make sure the
classifier is set to Development Status :: 5 - Production/Stable.



	Tag the release using git tag. For example:

git tag --sign --message="Django 1.5.1" 1.5.1





You can check your work by running git tag --verify <tag>.



	Push your work, including the tag: git push --tags.



	Make sure you have an absolutely clean tree by running git clean -dfx.



	Run make -f extras/Makefile to generate the release packages. This will
create the release packages in a dist/ directory.



	Generate the hashes of the release packages:

$ md5sum dist/Django-*
$ sha1sum dist/Django-*







	Create a “checksums” file containing the hashes and release information.
Start with this template and insert the correct version, date, release URL
and checksums:

This file contains MD5 and SHA1 checksums for the source-code tarball
of Django <<VERSION>>, released <<DATE>>.

To use this file, you will need a working install of PGP or other
compatible public-key encryption software. You will also need to have
the Django release manager's public key in your keyring; this key has
the ID ``0x3684C0C08C8B2AE1`` and can be imported from the MIT
keyserver. For example, if using the open-source GNU Privacy Guard
implementation of PGP::

    gpg --keyserver pgp.mit.edu --recv-key 0x3684C0C08C8B2AE1

Once the key is imported, verify this file::

    gpg --verify <<THIS FILENAME>>

Once you have verified this file, you can use normal MD5 and SHA1
checksumming applications to generate the checksums of the Django
package and compare them to the checksums listed below.


Release package:
================

Django <<VERSION>>: https://www.djangoproject.com/m/releases/<<URL>>


MD5 checksum:
=============

MD5(<<RELEASE TAR.GZ FILENAME>>)= <<MD5SUM>>

SHA1 checksum:
==============

SHA1(<<RELEASE TAR.GZ FILENAME>>)= <<SHA1SUM>>







	Sign the checksum file (gpg --clearsign
Django-<version>.checksum.txt). This generates a signed document,
Django-<version>.checksum.txt.asc which you can then verify using gpg
--verify Django-<version>.checksum.txt.asc.





If you’re issuing multiple releases, repeat these steps for each release.




Making the release(s) available to the public

Now you’re ready to actually put the release out there. To do this:


	Upload the release package(s) to the djangoproject server; releases go
in /home/www/djangoproject.com/src/media/releases, under a
directory for the appropriate version number (e.g.
/home/www/djangoproject.com/src/media/releases/1.5 for a 1.5.x
release.).



	Upload the checksum file(s); these go in
/home/www/djangoproject.com/src/media/pgp.



	Test that the release packages install correctly using easy_install
and pip. Here’s one method (which requires virtualenvwrapper [https://pypi.python.org/pypi/virtualenvwrapper]):

$ mktmpenv
$ easy_install https://www.djangoproject.com/m/releases/1.5/Django-1.5.1.tar.gz
$ deactivate
$ mktmpenv
$ pip install https://www.djangoproject.com/m/releases/1.5/Django-1.5.1.tar.gz
$ deactivate
$ mktmpenv
$ pip install https://www.djangoproject.com/m/releases/1.5/Django-1.5.1-py2.py3-none-any.whl
$ deactivate





This just tests that the tarballs are available (i.e. redirects are up) and
that they install correctly, but it’ll catch silly mistakes.



	Ask a few people on IRC to verify the checksums by visiting the checksums
file (e.g. https://www.djangoproject.com/m/pgp/Django-1.5b1.checksum.txt)
and following the instructions in it. For bonus points, they can also unpack
the downloaded release tarball and verify that its contents appear to be
correct (proper version numbers, no stray .pyc or other undesirable
files).



	If this is a release that should land on PyPI (i.e. anything except for
a pre-release), register the new package with PyPI by running
python setup.py register.



	Upload the sdist you generated a few steps back through the PyPI web
interface. You’ll log into PyPI, click “Django” in the right sidebar,
find the release you just registered, and click “files” to upload the
sdist.


Note

Why can’t we just use setup.py sdist upload? Well, if we do it above
that pushes the sdist to PyPI before we’ve had a chance to sign, review
and test it. And we can’t just setup.py upload without sdist
because setup.py prevents that. Nor can we sdist upload because
that would generate a new sdist that might not match the file we just
signed. Finally, uploading through the web interface is somewhat more
secure: it sends the file over HTTPS.





	Go to the Add release page in the admin [https://www.djangoproject.com/admin/releases/release/add/], enter the new release number
exactly as it appears in the name of the tarball (Django-<version>.tar.gz).
So for example enter “1.5.1” or “1.4-rc-2”, etc. If the release is part of
an LTS branch, mark it so.



	Make the blog post announcing the release live.



	For a new version release (e.g. 1.5, 1.6), update the default stable version
of the docs by flipping the is_default flag to True on the
appropriate DocumentRelease object in the docs.djangoproject.com
database (this will automatically flip it to False for all
others); you can do this using the site’s admin.



	Post the release announcement to the django-announce,
django-developers and django-users mailing lists. This should
include links to the announcement blog post and the release notes.








Post-release

You’re almost done! All that’s left to do now is:


	Update the VERSION tuple in django/__init__.py again,
incrementing to whatever the next expected release will be. For
example, after releasing 1.5.1, update VERSION to
VERSION = (1, 5, 2, 'alpha', 0).

	For the first beta release of a new version (when we create the
stable/1.?.x git branch), you’ll want to create a new
DocumentRelease object in the docs.djangoproject.com database for
the new version’s docs, and update the docs/fixtures/doc_releases.json
JSON fixture, so people without access to the production DB can still
run an up-to-date copy of the docs site.

	Add the release in Trac’s versions list [https://code.djangoproject.com/admin/ticket/versions] if necessary (and make it the
default if it’s a final release). Not all versions are declared;
take example on previous releases.

	On the master branch, remove the UNDER DEVELOPMENT header in the notes
of the release that’s just been pushed out.






Notes on setting the VERSION tuple

Django’s version reporting is controlled by the VERSION tuple in
django/__init__.py. This is a five-element tuple, whose elements
are:


	Major version.

	Minor version.

	Micro version.

	Status – can be one of “alpha”, “beta”, “rc” or “final”.

	Series number, for alpha/beta/RC packages which run in sequence
(allowing, for example, “beta 1”, “beta 2”, etc.).



For a final release, the status is always “final” and the series
number is always 0. A series number of 0 with an “alpha” status will
be reported as “pre-alpha”.

Some examples:


	(1, 2, 1, 'final', 0) –> “1.2.1”

	(1, 3, 0, 'alpha', 0) –> “1.3 pre-alpha”

	(1, 3, 0, 'beta', 2) –> “1.3 beta 2”









          

      

      

    


  


    
      
          
            

   Python Module Index


   
   a | 
   c | 
   d | 
   f | 
   h | 
   m | 
   s | 
   t | 
   u | 
   v
   


   
     			

     		
       a	

     
       	
       	
       django.apps	
       

     			

     		
       c	

     
       	[image: -]
       	
       django.conf	
       

     
       	
       	
       django.conf.urls	
       

     
       	
       	
       django.conf.urls.i18n	
       

     
       	[image: -]
       	
       django.contrib	
       

     
       	
       	
       django.contrib.admin	
       Django's admin site.

     
       	
       	
       django.contrib.admindocs	
       Django's admin documentation generator.

     
       	
       	
       django.contrib.auth	
       Django's authentication framework.

     
       	
       	
       django.contrib.auth.backends	
       Django's built-in authentication backend classes.

     
       	
       	
       django.contrib.auth.forms	
       

     
       	
       	
       django.contrib.auth.hashers	
       

     
       	
       	
       django.contrib.auth.middleware	
       Authentication middleware.

     
       	
       	
       django.contrib.auth.signals	
       

     
       	
       	
       django.contrib.auth.views	
       

     
       	
       	
       django.contrib.comments	
       Django's comment framework

     
       	
       	
       django.contrib.comments.forms	
       Forms for dealing with the built-in comment model.

     
       	
       	
       django.contrib.comments.models	
       The built-in comment models

     
       	
       	
       django.contrib.comments.moderation	
       Support for automatic comment moderation.

     
       	
       	
       django.contrib.comments.signals	
       Signals sent by the comment module.

     
       	
       	
       django.contrib.contenttypes	
       Provides generic interface to installed models.

     
       	
       	
       django.contrib.contenttypes.admin	
       

     
       	
       	
       django.contrib.contenttypes.fields	
       

     
       	
       	
       django.contrib.contenttypes.forms	
       

     
       	
       	
       django.contrib.flatpages	
       A framework for managing simple ?flat? HTML content in a database.

     
       	
       	
       django.contrib.formtools	
       

     
       	
       	
       django.contrib.formtools.preview	
       Displays an HTML form, forces a preview, then does something
with the submission.

     
       	
       	
       django.contrib.formtools.wizard.views	
       Splits forms across multiple Web pages.

     
       	
       	
       django.contrib.gis	
       Geographic Information System (GIS) extensions for Django

     
       	
       	
       django.contrib.gis.admin	
       GeoDjango's extensions to the admin site.

     
       	
       	
       django.contrib.gis.db.backends	
       GeoDjango's spatial database backends.

     
       	
       	
       django.contrib.gis.db.models	
       GeoDjango model and field API.

     
       	
       	
       django.contrib.gis.feeds	
       GeoDjango's framework for generating spatial feeds.

     
       	
       	
       django.contrib.gis.forms	
       GeoDjango forms API.

     
       	
       	
       django.contrib.gis.gdal	
       GeoDjango's high-level interface to the GDAL library.

     
       	
       	
       django.contrib.gis.geoip	
       High-level Python interface for MaxMind's GeoIP C library.

     
       	
       	
       django.contrib.gis.geos	
       GeoDjango's high-level interface to the GEOS library.

     
       	
       	
       django.contrib.gis.measure	
       GeoDjango's distance and area measurement objects.

     
       	
       	
       django.contrib.gis.utils	
       GeoDjango's collection of utilities.

     
       	
       	
       django.contrib.gis.utils.layermapping	
       Spatial data import utility for GeoDjango models.

     
       	
       	
       django.contrib.gis.utils.ogrinspect	
       Utilities for inspecting OGR data sources.

     
       	
       	
       django.contrib.gis.widgets	
       GeoDjango widgets API.

     
       	
       	
       django.contrib.humanize	
       A set of Django template filters useful for adding a "human
touch" to data.

     
       	
       	
       django.contrib.messages	
       Provides cookie- and session-based temporary message storage.

     
       	
       	
       django.contrib.messages.middleware	
       Message middleware.

     
       	
       	
       django.contrib.redirects	
       A framework for managing redirects.

     
       	
       	
       django.contrib.sessions	
       Provides session management for Django projects.

     
       	
       	
       django.contrib.sessions.middleware	
       Session middleware.

     
       	
       	
       django.contrib.sitemaps	
       A framework for generating Google sitemap XML files.

     
       	
       	
       django.contrib.sites	
       Lets you operate multiple Web sites from the same database and
Django project

     
       	
       	
       django.contrib.sites.middleware	
       Site middleware.

     
       	
       	
       django.contrib.staticfiles	
       An app for handling static files.

     
       	
       	
       django.contrib.syndication	
       A framework for generating syndication feeds, in RSS and Atom,
quite easily.

     
       	
       	
       django.contrib.webdesign	
       Helpers and utilities targeted primarily at Web *designers*
rather than Web *developers*.

     
       	[image: -]
       	
       django.core	
       

     
       	
       	
       django.core.checks	
       

     
       	
       	
       django.core.exceptions	
       Django core exceptions

     
       	
       	
       django.core.files	
       File handling and storage

     
       	
       	
       django.core.files.storage	
       

     
       	
       	
       django.core.files.uploadedfile	
       Classes representing uploaded files.

     
       	
       	
       django.core.files.uploadhandler	
       Django's handlers for file uploads.

     
       	
       	
       django.core.mail	
       Helpers to easily send email.

     
       	
       	
       django.core.management	
       

     
       	
       	
       django.core.paginator	
       Classes to help you easily manage paginated data.

     
       	
       	
       django.core.signals	
       Core signals sent by the request/response system.

     
       	
       	
       django.core.signing	
       Django's signing framework.

     
       	
       	
       django.core.urlresolvers	
       

     
       	
       	
       django.core.validators	
       Validation utilities and base classes

     			

     		
       d	

     
       	[image: -]
       	
       django.db	
       

     
       	
       	
       django.db.backends	
       Core signals sent by the database wrapper.

     
       	
       	
       django.db.backends.schema	
       

     
       	
       	
       django.db.migrations	
       Schema migration support for Django models

     
       	
       	
       django.db.migrations.operations	
       

     
       	
       	
       django.db.models	
       

     
       	
       	
       django.db.models.fields	
       Built-in field types.

     
       	
       	
       django.db.models.fields.related	
       Related field types

     
       	
       	
       django.db.models.lookups	
       Lookups API

     
       	
       	
       django.db.models.signals	
       Signals sent by the model system.

     
       	
       	
       django.db.transaction	
       

     
       	
       	
       django.dispatch	
       Signal dispatch

     			

     		
       f	

     
       	[image: -]
       	
       django.forms	
       

     
       	
       	
       django.forms.fields	
       Django's built-in form fields.

     
       	
       	
       django.forms.formsets	
       An abstraction for working with multiple forms on the same page.

     
       	
       	
       django.forms.models	
       ModelForm and ModelFormset.

     
       	
       	
       django.forms.widgets	
       Django's built-in form widgets.

     			

     		
       h	

     
       	
       	
       django.http	
       Classes dealing with HTTP requests and responses.

     			

     		
       m	

     
       	[image: -]
       	
       django.middleware	
       Django's built-in middleware classes.

     
       	
       	
       django.middleware.cache	
       Middleware for the site-wide cache.

     
       	
       	
       django.middleware.clickjacking	
       Clickjacking protection

     
       	
       	
       django.middleware.common	
       Middleware adding "common" conveniences for perfectionists.

     
       	
       	
       django.middleware.csrf	
       Middleware adding protection against Cross Site Request
Forgeries.

     
       	
       	
       django.middleware.gzip	
       Middleware to serve GZipped content for performance.

     
       	
       	
       django.middleware.http	
       Middleware handling advanced HTTP features.

     
       	
       	
       django.middleware.locale	
       Middleware to enable language selection based on the request.

     
       	
       	
       django.middleware.transaction	
       Middleware binding a database transaction to each Web request.

     			

     		
       s	

     
       	
       	
       django.shortcuts	
       Convenience shortcuts that span multiple levels of Django's MVC stack.

     			

     		
       t	

     
       	[image: -]
       	
       django.template	
       Django's template system

     
       	
       	
       django.template.loader	
       

     
       	
       	
       django.template.response	
       Classes dealing with lazy-rendered HTTP responses.

     
       	[image: -]
       	
       django.test	
       Testing tools for Django applications.

     
       	
       	
       django.test.signals	
       Signals sent during testing.

     
       	
       	
       django.test.utils	
       Helpers to write custom test runners.

     			

     		
       u	

     
       	[image: -]
       	
       django.utils	
       Django's built-in utilities.

     
       	
       	
       django.utils.cache	
       Helper functions for controlling caching.

     
       	
       	
       django.utils.datastructures	
       Data structures that aren't in Python's standard library.

     
       	
       	
       django.utils.dateparse	
       Functions to parse datetime objects.

     
       	
       	
       django.utils.decorators	
       Functions that help with creating decorators for views.

     
       	
       	
       django.utils.encoding	
       A series of helper functions to manage character encoding.

     
       	
       	
       django.utils.feedgenerator	
       Syndication feed generation library -- used for generating RSS, etc.

     
       	
       	
       django.utils.functional	
       Functional programming tools.

     
       	
       	
       django.utils.html	
       HTML helper functions

     
       	
       	
       django.utils.http	
       HTTP helper functions. (URL encoding, cookie handling, ...)

     
       	
       	
       django.utils.log	
       Logging tools for Django applications

     
       	
       	
       django.utils.module_loading	
       Functions for working with Python modules.

     
       	
       	
       django.utils.safestring	
       Functions and classes for working with strings that can be displayed safely without further escaping in HTML.

     
       	
       	
       django.utils.six	
       

     
       	
       	
       django.utils.text	
       Text manipulation.

     
       	
       	
       django.utils.timezone	
       Timezone support.

     
       	
       	
       django.utils.translation	
       

     
       	
       	
       django.utils.tzinfo	
       Implementation of ``tzinfo`` classes for use with ``datetime.datetime``.

     			

     		
       v	

     
       	[image: -]
       	
       django.views	
       Django's built-in views.

     
       	
       	
       django.views.decorators.csrf	
       

     
       	
       	
       django.views.decorators.gzip	
       

     
       	
       	
       django.views.decorators.http	
       

     
       	
       	
       django.views.decorators.vary	
       

     
       	
       	
       django.views.generic.dates	
       

     
       	
       	
       django.views.i18n	
       

   



          

      

      

    


  


    
      
          
            

Index



 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z
 


Symbols


  	
      
  	
    --addrport
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --all
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --app
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --backwards
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --blank
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --clear
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --database
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --decimal
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --domain
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --dry-run
  


      	
        
  	django-admin command-line option, [1]
  


      


      
  	
    --email
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --empty
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --exclude
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --extension
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --failfast
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --fake
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --format
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --geom-name
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --ignore
  


      	
        
  	django-admin command-line option, [1]
  


      


      
  	
    --ignorenonexistent
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --indent
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --insecure
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --ipv6
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --keep-pot
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --layer
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --link
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --list
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --list-tags
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --liveserver
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --locale
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --mapping
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --merge
  


      	
        
  	django-admin command-line option
  


      


  

  	
      
  	
    --multi-geom
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --name-field
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --natural
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --natural-foreign
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --natural-primary
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --no-color
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --no-default-ignore
  


      	
        
  	django-admin command-line option, [1]
  


      


      
  	
    --no-imports
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --no-location
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --no-optimize
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --no-post-process
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --no-wrap
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --noinput
  


      	
        
  	django-admin command-line option, [1]
  


      


      
  	
    --noreload
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --nostatic
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --nothreading
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --null
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --pks
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --pythonpath
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --settings
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --srid
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --symlinks
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --tag
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --template
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --testrunner
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --traceback
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --username
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --verbosity
  


      	
        
  	django-admin command-line option
  


      


      
  	
    -c
  


      	
        
  	django-admin command-line option
  


      


      
  	
    -i
  


      	
        
  	django-admin command-line option
  


      


      
  	
    -l
  


      	
        
  	django-admin command-line option
  


      


      
  	
    -n
  


      	
        
  	django-admin command-line option
  


      


  





_


  	
      
  	__contains__() (backends.base.SessionBase method)
  


      	
        
  	(QueryDict method)
  


      


      
  	__delitem__() (backends.base.SessionBase method)
  


      	
        
  	(HttpResponse method)
  


      


      
  	__eq__() (Model method)
  


      
  	__getattr__() (Area method)
  


      	
        
  	(Distance method)
  


      


      
  	__getitem__() (backends.base.SessionBase method)
  


      	
        
  	(HttpResponse method)
  


        
  	(OGRGeometry method)
  


        
  	(QueryDict method)
  


        
  	(SpatialReference method)
  


      


      
  	__hash__() (Model method)
  


      
  	__init__() (HttpResponse method)
  


      	
        
  	(JsonResponse method)
  


        
  	(QueryDict method)
  


        
  	(SimpleTemplateResponse method)
  


        
  	(SyndicationFeed method)
  


        
  	(TemplateResponse method)
  


        
  	(requests.RequestSite method)
  


      


  

  	
      
  	__iter__() (File method)
  


      	
        
  	(HttpRequest method)
  


        
  	(OGRGeometry method)
  


      


      
  	__len__() (OGRGeometry method)
  


      
  	__setitem__() (backends.base.SessionBase method)
  


      	
        
  	(HttpResponse method)
  


        
  	(QueryDict method)
  


      


      
  	__str__() (Model method)
  


      
  	__unicode__() (Model method)
  


      
  	_open() (in module django.core.files.storage)
  


      
  	_save() (in module django.core.files.storage)
  


  





A


  	
      
  	A (class in django.contrib.gis.measure)
  


      
  	
    ABSOLUTE_URL_OVERRIDES
  


      	
        
  	setting
  


      


      
  	abstract (Options attribute)
  


      
  	accessed_time() (Storage method)
  


      
  	actions (ModelAdmin attribute)
  


      
  	actions_on_bottom (ModelAdmin attribute)
  


      
  	actions_on_top (ModelAdmin attribute)
  


      
  	actions_selection_counter (ModelAdmin attribute)
  


      
  	activate() (in module django.utils.timezone)
  


      	
        
  	(in module django.utils.translation)
  


      


      
  	
    add
  


      	
        
  	template filter
  


      


      
  	add() (GeometryCollection method)
  


      	
        
  	(RelatedManager method)
  


      


      
  	add_action() (AdminSite method)
  


      
  	add_error() (Form method)
  


      
  	add_field() (BaseDatabaseSchemaEditor method)
  


      
  	add_form_template (ModelAdmin attribute)
  


      
  	add_item() (SyndicationFeed method)
  


      
  	add_item_elements() (SyndicationFeed method)
  


      
  	add_message() (in module django.contrib.messages)
  


      
  	add_never_cache_headers() (in module django.utils.cache)
  


      
  	add_post_render_callback() (SimpleTemplateResponse method)
  


      
  	add_root_elements() (SyndicationFeed method)
  


      
  	add_view() (ModelAdmin method)
  


      
  	AddField (class in django.db.migrations.operations)
  


      
  	
    addslashes
  


      	
        
  	template filter
  


      


      
  	AdminEmailHandler (class in django.utils.log)
  


      
  	AdminPasswordChangeForm (class in django.contrib.auth.forms)
  


      
  	
    ADMINS
  


      	
        
  	setting
  


      


      
  	AdminSite (class in django.contrib.admin)
  


      
  	aggregate() (in module django.db.models.query.QuerySet)
  


      
  	all() (in module django.db.models.query.QuerySet)
  


      
  	allow() (CommentModerator method)
  


      
  	allow_empty (BaseDateListView attribute)
  


      	
        
  	(django.views.generic.list.MultipleObjectMixin attribute)
  


      


      
  	allow_files (FilePathField attribute), [1]
  


      
  	allow_folders (FilePathField attribute), [1]
  


      
  	allow_future (DateMixin attribute)
  


      
  	allow_lazy() (in module django.utils.functional)
  


      
  	allow_migrate()
  


      
  	allow_relation()
  


      
  	
    ALLOWED_HOSTS
  


      	
        
  	setting
  


      


      
  	
    ALLOWED_INCLUDE_ROOTS
  


      	
        
  	setting
  


      


      
  	alter_db_table() (BaseDatabaseSchemaEditor method)
  


      
  	alter_db_tablespace() (BaseDatabaseSchemaEditor method)
  


      
  	alter_field() (BaseDatabaseSchemaEditor method)
  


      
  	alter_index_together() (BaseDatabaseSchemaEditor method)
  


      
  	alter_unique_together() (BaseDatabaseSchemaEditor method)
  


      
  	AlterField (class in django.db.migrations.operations)
  


      
  	AlterIndexTogether (class in django.db.migrations.operations)
  


      
  	AlterModelOptions (class in django.db.migrations.operations)
  


      
  	AlterModelTable (class in django.db.migrations.operations)
  


      
  	AlterOrderWithRespectTo (class in django.db.migrations.operations)
  


      
  	AlterUniqueTogether (class in django.db.migrations.operations)
  


      
  	angular_name (SpatialReference attribute)
  


      
  	angular_units (SpatialReference attribute)
  


      
  	annotate() (in module django.db.models.query.QuerySet)
  


      
  	
    apnumber
  


      	
        
  	template filter
  


      


      
  	app_directories.Loader (class in django.template.loaders)
  


      
  	app_index_template (AdminSite attribute)
  


      
  	app_label (ContentType attribute)
  


      	
        
  	(Options attribute)
  


      


      
  	app_name (ResolverMatch attribute)
  


      
  	AppCommand (class in django.core.management)
  


      
  	AppConfig (class in django.apps)
  


      
  	
    APPEND_SLASH
  


      	
        
  	setting
  


      


  

  	
      
  	appendlist() (QueryDict method)
  


      
  	application namespace
  


      
  	apps (in module django.apps)
  


      
  	apps.AdminConfig (class in django.contrib.admin)
  


      
  	apps.SimpleAdminConfig (class in django.contrib.admin)
  


      
  	ArchiveIndexView (built-in class)
  


      	
        
  	(class in django.views.generic.dates)
  


      


      
  	Area (class in django.contrib.gis.measure)
  


      
  	area (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	area() (GeoQuerySet method)
  


      
  	args (BaseCommand attribute)
  


      	
        
  	(ResolverMatch attribute)
  


      


      
  	as_data() (Form.errors method)
  


      
  	as_datetime() (Field method)
  


      
  	as_double() (Field method)
  


      
  	as_int() (Field method)
  


      
  	as_json() (Form.errors method)
  


      
  	as_manager() (in module django.db.models.query.QuerySet)
  


      
  	as_p() (Form method)
  


      
  	as_sql() (in module django.db.models)
  


      	
        
  	(Transform method)
  


      


      
  	as_string() (Field method)
  


      
  	as_table() (Form method)
  


      
  	as_ul() (Form method)
  


      
  	as_vendorname() (in module django.db.models)
  


      
  	as_view() (django.views.generic.base.View class method)
  


      	
        
  	(WizardView method)
  


      


      
  	assertContains() (SimpleTestCase method)
  


      
  	assertFieldOutput() (SimpleTestCase method)
  


      
  	assertFormError() (SimpleTestCase method)
  


      
  	assertFormsetError() (SimpleTestCase method)
  


      
  	assertHTMLEqual() (SimpleTestCase method)
  


      
  	assertHTMLNotEqual() (SimpleTestCase method)
  


      
  	assertInHTML() (SimpleTestCase method)
  


      
  	assertJSONEqual() (SimpleTestCase method)
  


      
  	assertNotContains() (SimpleTestCase method)
  


      
  	assertNumQueries() (TransactionTestCase method)
  


      
  	assertQuerysetEqual() (TransactionTestCase method)
  


      
  	assertRaisesMessage() (SimpleTestCase method)
  


      
  	assertRedirects() (SimpleTestCase method)
  


      
  	assertTemplateNotUsed() (SimpleTestCase method)
  


      
  	assertTemplateUsed() (SimpleTestCase method)
  


      
  	assertXMLEqual() (SimpleTestCase method)
  


      
  	assertXMLNotEqual() (SimpleTestCase method)
  


      
  	Atom1Feed (class in django.utils.feedgenerator)
  


      
  	atomic() (in module django.db.transaction)
  


      
  	attr_value() (SpatialReference method)
  


      
  	attrs (Widget attribute)
  


      
  	auth_code() (SpatialReference method)
  


      
  	auth_name() (SpatialReference method)
  


      
  	
    AUTH_USER_MODEL
  


      	
        
  	setting
  


      


      
  	authenticate() (in module django.contrib.auth)
  


      	
        
  	(RemoteUserBackend method)
  


      


      
  	
    AUTHENTICATION_BACKENDS
  


      	
        
  	setting
  


      


      
  	AuthenticationForm (class in django.contrib.auth.forms)
  


      
  	AuthenticationMiddleware (class in django.contrib.auth.middleware)
  


      
  	auto_close_field (CommentModerator attribute)
  


      
  	auto_id (Form attribute)
  


      
  	auto_moderate_field (CommentModerator attribute)
  


      
  	auto_now (DateField attribute)
  


      
  	auto_now_add (DateField attribute)
  


      
  	autocommit() (in module django.db.transaction)
  


      
  	autodiscover() (in module django.contrib.admin)
  


      
  	
    autoescape
  


      	
        
  	template tag
  


      


      
  	AutoField (class in django.db.models)
  


      
  	available_apps (TransactionTestCase attribute)
  


      
  	Avg (class in django.db.models)
  


  





B


  	
      
  	backends.base.SessionBase (class in django.contrib.sessions)
  


      
  	backends.smtp.EmailBackend (class in django.core.mail)
  


      
  	base36_to_int() (in module django.utils.http)
  


      
  	base_url (FileSystemStorage attribute)
  


      
  	BaseArchiveIndexView (class in django.views.generic.dates)
  


      
  	BaseCommand (class in django.core.management)
  


      
  	BaseDatabaseSchemaEditor (class in django.db.backends.schema)
  


      
  	BaseDateDetailView (class in django.views.generic.dates)
  


      
  	BaseDateListView (class in django.views.generic.dates)
  


      
  	BaseDayArchiveView (class in django.views.generic.dates)
  


      
  	BaseFormSet (class in django.forms.formsets)
  


      
  	BaseGenericInlineFormSet (class in django.contrib.contenttypes.forms)
  


      
  	BaseGeometryWidget (class in django.contrib.gis.widgets)
  


      
  	BaseMonthArchiveView (class in django.views.generic.dates)
  


      
  	BaseTodayArchiveView (class in django.views.generic.dates)
  


      
  	BaseWeekArchiveView (class in django.views.generic.dates)
  


      
  	BaseYearArchiveView (class in django.views.generic.dates)
  


      
  	
    bbcontains
  


      	
        
  	field lookup type
  


      


  

  	
      
  	
    bboverlaps
  


      	
        
  	field lookup type
  


      


      
  	BigIntegerField (class in django.db.models)
  


      
  	BinaryField (class in django.db.models)
  


      
  	blank (Field attribute)
  


      
  	
    block
  


      	
        
  	template tag
  


      


      
  	
    blocktrans
  


      	
        
  	template tag
  


      


      
  	body (HttpRequest attribute)
  


      
  	BooleanField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	boundary (GEOSGeometry attribute)
  


      
  	boundary() (OGRGeometry method)
  


      
  	BoundField (class in django.forms)
  


      
  	BrokenLinkEmailsMiddleware (class in django.middleware.common)
  


      
  	buffer() (GEOSGeometry method)
  


      
  	build_absolute_uri() (HttpRequest method)
  


      
  	build_suite() (DiscoverRunner method)
  


      
  	bulk_create() (in module django.db.models.query.QuerySet)
  


      
  	byteorder (WKBWriter attribute)
  


  





C


  	
      
  	
    cache
  


      	
        
  	template tag
  


      


      
  	
    CACHE_MIDDLEWARE_ALIAS
  


      	
        
  	setting
  


      


      
  	
    CACHE_MIDDLEWARE_ANONYMOUS_ONLY
  


      	
        
  	setting
  


      


      
  	
    CACHE_MIDDLEWARE_KEY_PREFIX
  


      	
        
  	setting
  


      


      
  	
    CACHE_MIDDLEWARE_SECONDS
  


      	
        
  	setting
  


      


      
  	cached.Loader (class in django.template.loaders)
  


      
  	cached_property (class in django.utils.functional)
  


      
  	
    CACHES
  


      	
        
  	setting
  


      


      
  	
    CACHES-BACKEND
  


      	
        
  	setting
  


      


      
  	
    CACHES-KEY_FUNCTION
  


      	
        
  	setting
  


      


      
  	
    CACHES-KEY_PREFIX
  


      	
        
  	setting
  


      


      
  	
    CACHES-LOCATION
  


      	
        
  	setting
  


      


      
  	
    CACHES-OPTIONS
  


      	
        
  	setting
  


      


      
  	
    CACHES-TIMEOUT
  


      	
        
  	setting
  


      


      
  	
    CACHES-VERSION
  


      	
        
  	setting
  


      


      
  	CallbackFilter (class in django.utils.log)
  


      
  	can_delete (BaseFormSet attribute)
  


      	
        
  	(InlineModelAdmin attribute)
  


      


      
  	can_import_settings (BaseCommand attribute)
  


      
  	can_order (BaseFormSet attribute)
  


      
  	
    capfirst
  


      	
        
  	template filter
  


      


      
  	CASCADE (in module django.db.models)
  


      
  	cascaded_union (MultiPolygon attribute)
  


      
  	
    center
  


      	
        
  	template filter
  


      


      
  	centroid (GEOSGeometry attribute)
  


      	
        
  	(Polygon attribute)
  


      


      
  	centroid() (GeoQuerySet method)
  


      
  	change_form_template (ModelAdmin attribute)
  


      
  	change_list_template (ModelAdmin attribute)
  


      
  	change_view() (ModelAdmin method)
  


      
  	changed_objects (models.BaseModelFormSet attribute)
  


      
  	changefreq (Sitemap attribute)
  


      
  	changelist_view() (ModelAdmin method)
  


      
  	
    changepassword
  


      	
        
  	django-admin command
  


      


      
  	CharField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	charset (UploadedFile attribute)
  


      
  	
    check
  


      	
        
  	django-admin command
  


      


      
  	check() (BaseCommand method)
  


      
  	check_password() (in module django.contrib.auth.hashers)
  


      	
        
  	(models.AbstractBaseUser method)
  


        
  	(models.User method)
  


      


      
  	check_test (CheckboxInput attribute)
  


      
  	CheckboxInput (class in django.forms)
  


      
  	CheckboxSelectMultiple (class in django.forms)
  


      
  	CheckMessage (class in django.core.checks)
  


      
  	ChoiceField (class in django.forms)
  


      
  	choices (ChoiceField attribute)
  


      	
        
  	(Field attribute)
  


        
  	(MultipleHiddenInput attribute)
  


        
  	(Select attribute)
  


      


      
  	chunk_size (FileUploadHandler attribute)
  


      
  	chunks() (File method)
  


      	
        
  	(UploadedFile method)
  


      


      
  	city() (GeoIP method)
  


      
  	city_info (GeoIP attribute)
  


      
  	clean() (Field method)
  


      	
        
  	(Form method)
  


        
  	(Model method)
  


      


      
  	clean_fields() (Model method)
  


      
  	clean_savepoints() (in module django.db.transaction)
  


      
  	clean_username() (RemoteUserBackend method)
  


      
  	cleaned_data (Form attribute)
  


      
  	clear() (backends.base.SessionBase method)
  


      	
        
  	(RelatedManager method)
  


      


      
  	clear_cache() (ContentTypeManager method)
  


      
  	clear_expired() (backends.base.SessionBase method)
  


      
  	ClearableFileInput (class in django.forms)
  


      
  	
    clearsessions
  


      	
        
  	django-admin command
  


      


      
  	Client (class in django.test)
  


      
  	client (Response attribute)
  


      	
        
  	(SimpleTestCase attribute)
  


      


      
  	client_class (SimpleTestCase attribute)
  


      
  	clone() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


        
  	(SpatialReference method)
  


      


      
  	close() (FieldFile method)
  


      	
        
  	(File method)
  


      


      
  	close_after (CommentModerator attribute)
  


      
  	close_rings() (OGRGeometry method)
  


      
  	code (RegexValidator attribute)
  


      
  	codename (models.Permission attribute)
  


      
  	coerce (TypedChoiceField attribute)
  


      
  	Collect (class in django.contrib.gis.db.models)
  


      
  	collect() (GeoQuerySet method)
  


      
  	
    collectstatic
  


      	
        
  	django-admin command
  


      


      
  	ComboField (class in django.forms)
  


      
  	CommandError (class in django.core.management)
  


      
  	CommaSeparatedIntegerField (class in django.db.models)
  


      
  	
    comment
  


      	
        
  	template tag
  


      


      
  	Comment (class in django.contrib.comments.models)
  


      
  	comment (Comment attribute)
  


      
  	
    comment_form_target
  


      	
        
  	template tag
  


      


      
  	
    COMMENT_MAX_LENGTH
  


      	
        
  	setting
  


      


      
  	CommentDetailsForm (class in django.contrib.comments.forms)
  


      
  	CommentForm (class in django.contrib.comments.forms)
  


      
  	CommentModerator (class in django.contrib.comments.moderation)
  


      
  	
    COMMENTS_APP
  


      	
        
  	setting
  


      


      
  	
    COMMENTS_HIDE_REMOVED
  


      	
        
  	setting
  


      


      
  	CommentSecurityForm (class in django.contrib.comments.forms)
  


      
  	commit() (in module django.db.transaction)
  


      
  	commit_manually() (in module django.db.transaction)
  


      
  	commit_on_success() (in module django.db.transaction)
  


  

  	
      
  	CommonMiddleware (class in django.middleware.common)
  


      
  	
    compilemessages
  


      	
        
  	django-admin command
  


      


      
  	compress() (MultiValueField method)
  


      
  	condition() (in module django.views.decorators.http)
  


      
  	condition_dict (WizardView attribute)
  


      
  	conditional_escape() (in module django.utils.html)
  


      
  	ConditionalGetMiddleware (class in django.middleware.http)
  


      
  	configure_user() (RemoteUserBackend method)
  


      
  	confirm_login_allowed() (AuthenticationForm method)
  


      
  	
    CONN_MAX_AGE
  


      	
        
  	setting
  


      


      
  	connect() (Moderator method)
  


      	
        
  	(Signal method)
  


      


      
  	connection (SchemaEditor attribute)
  


      
  	
    contained
  


      	
        
  	field lookup type
  


      


      
  	
    contains
  


      	
        
  	field lookup type
  


      


      
  	contains() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


        
  	(PreparedGeometry method)
  


      


      
  	
    contains_properly
  


      	
        
  	field lookup type
  


      


      
  	contains_properly() (PreparedGeometry method)
  


      
  	content (HttpResponse attribute)
  


      	
        
  	(Response attribute)
  


      


      
  	content_object (Comment attribute)
  


      
  	content_type (Comment attribute)
  


      	
        
  	(UploadedFile attribute)
  


        
  	(django.views.generic.base.TemplateResponseMixin attribute)
  


        
  	(models.Permission attribute)
  


      


      
  	content_type_extra (UploadedFile attribute)
  


      
  	ContentFile (class in django.core.files.base)
  


      
  	ContentType (class in django.contrib.contenttypes.models)
  


      
  	ContentTypeManager (class in django.contrib.contenttypes.models)
  


      
  	Context (class in django.template)
  


      
  	context (Response attribute)
  


      
  	context_data (SimpleTemplateResponse attribute)
  


      
  	context_object_name (django.views.generic.detail.SingleObjectMixin attribute)
  


      	
        
  	(django.views.generic.list.MultipleObjectMixin attribute)
  


      


      
  	ContextPopException
  


      
  	convex_hull (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	cookie_date() (in module django.utils.http)
  


      
  	cookies (Client attribute)
  


      
  	COOKIES (HttpRequest attribute)
  


      
  	CookieWizardView (class in django.contrib.formtools.wizard.views)
  


      
  	coord_dim (OGRGeometry attribute)
  


      
  	coords (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	coords() (GeoIP method)
  


      
  	CoordTransform (class in django.contrib.gis.gdal)
  


      
  	copy() (QueryDict method)
  


      
  	Count (class in django.db.models)
  


      
  	count (Paginator attribute)
  


      
  	count() (in module django.db.models.query.QuerySet)
  


      
  	country() (GeoIP method)
  


      
  	country_code() (GeoIP method)
  


      
  	country_code_by_addr() (GeoIP method)
  


      
  	country_code_by_name() (GeoIP method)
  


      
  	country_info (GeoIP attribute)
  


      
  	country_name() (GeoIP method)
  


      
  	country_name_by_addr() (GeoIP method)
  


      
  	country_name_by_name() (GeoIP method)
  


      
  	
    coupling
  


      	
        
  	loose
  


      


      
  	
    coveredby
  


      	
        
  	field lookup type
  


      


      
  	
    covers
  


      	
        
  	field lookup type
  


      


      
  	covers() (PreparedGeometry method)
  


      
  	create() (in module django.db.models.query.QuerySet)
  


      	
        
  	(RelatedManager method)
  


      


      
  	create_model() (BaseDatabaseSchemaEditor method)
  


      
  	create_superuser() (models.CustomUserManager method)
  


      	
        
  	(models.UserManager method)
  


      


      
  	create_test_db() (in module django.db.connection.creation)
  


      
  	create_unknown_user (RemoteUserBackend attribute)
  


      
  	create_user() (models.CustomUserManager method)
  


      	
        
  	(models.UserManager method)
  


      


      
  	
    createcachetable
  


      	
        
  	django-admin command
  


      


      
  	created_time() (Storage method)
  


      
  	CreateModel (class in django.db.migrations.operations)
  


      
  	
    createsuperuser
  


      	
        
  	django-admin command
  


      


      
  	CreateView (built-in class)
  


      
  	Critical (class in django.core.checks)
  


      
  	
    crosses
  


      	
        
  	field lookup type
  


      


      
  	crosses() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


        
  	(PreparedGeometry method)
  


      


      
  	
    CSRF_COOKIE_AGE
  


      	
        
  	setting
  


      


      
  	
    CSRF_COOKIE_DOMAIN
  


      	
        
  	setting
  


      


      
  	
    CSRF_COOKIE_HTTPONLY
  


      	
        
  	setting
  


      


      
  	
    CSRF_COOKIE_NAME
  


      	
        
  	setting
  


      


      
  	
    CSRF_COOKIE_PATH
  


      	
        
  	setting
  


      


      
  	
    CSRF_COOKIE_SECURE
  


      	
        
  	setting
  


      


      
  	csrf_exempt() (in module django.views.decorators.csrf)
  


      
  	
    CSRF_FAILURE_VIEW
  


      	
        
  	setting
  


      


      
  	csrf_protect() (in module django.views.decorators.csrf)
  


      
  	
    csrf_token
  


      	
        
  	template tag
  


      


      
  	CsrfViewMiddleware (class in django.middleware.csrf)
  


      
  	css_classes() (BoundField method)
  


      
  	ct_field (GenericInlineModelAdmin attribute)
  


      
  	ct_fk_field (GenericInlineModelAdmin attribute)
  


      
  	CurrentSiteMiddleware (class in django.contrib.sites.middleware)
  


      
  	
    cut
  


      	
        
  	template filter
  


      


      
  	
    cycle
  


      	
        
  	template tag
  


      


      
  	cycle_key() (backends.base.SessionBase method)
  


  





D


  	
      
  	D (class in django.contrib.gis.measure)
  


      
  	
    daemonize
  


      	
        
  	django-admin command-line option
  


      


      
  	
    DATABASE-ATOMIC_REQUESTS
  


      	
        
  	setting
  


      


      
  	
    DATABASE-AUTOCOMMIT
  


      	
        
  	setting
  


      


      
  	
    DATABASE-ENGINE
  


      	
        
  	setting
  


      


      
  	
    DATABASE-TEST
  


      	
        
  	setting
  


      


      
  	
    DATABASE_ROUTERS
  


      	
        
  	setting
  


      


      
  	DatabaseError
  


      
  	
    DATABASES
  


      	
        
  	setting
  


      


      
  	DataError
  


      
  	DataSource (class in django.contrib.gis.gdal)
  


      
  	
    date
  


      	
        
  	template filter
  


      


      
  	date_field (DateMixin attribute)
  


      
  	
    DATE_FORMAT
  


      	
        
  	setting
  


      


      
  	date_format (SplitDateTimeWidget attribute)
  


      
  	date_hierarchy (ModelAdmin attribute)
  


      
  	
    DATE_INPUT_FORMATS
  


      	
        
  	setting
  


      


      
  	date_joined (models.User attribute)
  


      
  	date_list_period (BaseDateListView attribute)
  


      
  	DateDetailView (built-in class)
  


      	
        
  	(class in django.views.generic.dates)
  


      


      
  	DateField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	DateInput (class in django.forms)
  


      
  	DateMixin (class in django.views.generic.dates)
  


      
  	dates() (in module django.db.models.query.QuerySet)
  


      
  	
    DATETIME_FORMAT
  


      	
        
  	setting
  


      


      
  	
    DATETIME_INPUT_FORMATS
  


      	
        
  	setting
  


      


      
  	DateTimeField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	DateTimeInput (class in django.forms)
  


      
  	datetimes() (in module django.db.models.query.QuerySet)
  


      
  	
    day
  


      	
        
  	field lookup type
  


      


      
  	day (DayMixin attribute)
  


      
  	day_format (DayMixin attribute)
  


      
  	DayArchiveView (built-in class)
  


      	
        
  	(class in django.views.generic.dates)
  


      


      
  	DayMixin (class in django.views.generic.dates)
  


      
  	db (QuerySet attribute)
  


      
  	db_column (Field attribute)
  


      
  	db_constraint (ForeignKey attribute)
  


      	
        
  	(ManyToManyField attribute)
  


      


      
  	db_for_read()
  


      
  	db_for_write()
  


      
  	db_index (Field attribute)
  


      
  	db_table (ManyToManyField attribute)
  


      	
        
  	(Options attribute)
  


      


      
  	db_tablespace (Field attribute)
  


      	
        
  	(Options attribute)
  


      


      
  	db_type() (Field method)
  


      
  	
    dbshell
  


      	
        
  	django-admin command
  


      


      
  	deactivate() (in module django.utils.timezone)
  


      	
        
  	(in module django.utils.translation)
  


      


      
  	deactivate_all() (in module django.utils.translation)
  


      
  	
    DEBUG
  


      	
        
  	setting
  


      


      
  	
    debug
  


      	
        
  	django-admin command-line option
  


        
  	template tag
  


      


      
  	Debug (class in django.core.checks)
  


      
  	
    DEBUG_PROPAGATE_EXCEPTIONS
  


      	
        
  	setting
  


      


      
  	decimal_places (DecimalField attribute), [1]
  


      
  	
    DECIMAL_SEPARATOR
  


      	
        
  	setting
  


      


      
  	DecimalField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	decompress() (MultiWidget method)
  


      
  	deconstruct() (Field method)
  


      
  	decorator_from_middleware() (in module django.utils.decorators)
  


      
  	decorator_from_middleware_with_args() (in module django.utils.decorators)
  


      
  	
    default
  


      	
        
  	template filter
  


      


      
  	default (Field attribute)
  


      
  	
    DEFAULT_CHARSET
  


      	
        
  	setting
  


      


      
  	
    DEFAULT_CONTENT_TYPE
  


      	
        
  	setting
  


      


      
  	
    DEFAULT_EXCEPTION_REPORTER_FILTER
  


      	
        
  	setting
  


      


      
  	
    DEFAULT_FILE_STORAGE
  


      	
        
  	setting
  


      


      
  	
    DEFAULT_FROM_EMAIL
  


      	
        
  	setting
  


      


      
  	
    default_if_none
  


      	
        
  	template filter
  


      


      
  	
    DEFAULT_INDEX_TABLESPACE
  


      	
        
  	setting
  


      


      
  	default_lat (GeoModelAdmin attribute)
  


      
  	default_lon (GeoModelAdmin attribute)
  


      
  	default_permissions (Options attribute)
  


      
  	
    DEFAULT_TABLESPACE
  


      	
        
  	setting
  


      


      
  	default_zoom (GeoModelAdmin attribute)
  


      
  	defaults.bad_request() (in module django.views)
  


      
  	defaults.page_not_found() (in module django.views)
  


      
  	defaults.permission_denied() (in module django.views)
  


      
  	defaults.server_error() (in module django.views)
  


      
  	DefaultStorage (class in django.core.files.storage)
  


      
  	defer() (in module django.db.models.query.QuerySet)
  


      
  	delete() (Client method)
  


      	
        
  	(FieldFile method)
  


        
  	(File method)
  


        
  	(Model method)
  


        
  	(Storage method)
  


        
  	(in module django.db.models.query.QuerySet)
  


      


      
  	delete_confirmation_template (ModelAdmin attribute)
  


      
  	delete_cookie() (HttpResponse method)
  


      
  	delete_model() (BaseDatabaseSchemaEditor method)
  


      	
        
  	(ModelAdmin method)
  


      


      
  	delete_selected_confirmation_template (ModelAdmin attribute)
  


      
  	delete_test_cookie() (backends.base.SessionBase method)
  


      
  	delete_view() (ModelAdmin method)
  


      
  	deleted_objects (models.BaseModelFormSet attribute)
  


      
  	DeleteModel (class in django.db.migrations.operations)
  


      
  	DeleteView (built-in class)
  


      
  	description (Field attribute)
  


      
  	destroy_test_db() (in module django.db.connection.creation)
  


      
  	DetailView (built-in class)
  


      
  	dict() (QueryDict method)
  


      
  	
    dictsort
  


      	
        
  	template filter
  


      


      
  	
    dictsortreversed
  


      	
        
  	template filter
  


      


      
  	difference() (GeoQuerySet method)
  


      	
        
  	(GEOSGeometry method)
  


        
  	(OGRGeometry method)
  


      


      
  	
    diffsettings
  


      	
        
  	django-admin command
  


      


      
  	dim (GeometryField attribute)
  


      
  	dimension (OGRGeometry attribute)
  


      
  	directory_permissions_mode (FileSystemStorage attribute)
  


      
  	disable_action() (AdminSite method)
  


      
  	
    DISALLOWED_USER_AGENTS
  


      	
        
  	setting
  


      


      
  	disconnect() (Signal method)
  


      
  	DiscoverRunner (class in django.test.runner)
  


      
  	
    disjoint
  


      	
        
  	field lookup type
  


      


      
  	disjoint() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


        
  	(PreparedGeometry method)
  


      


      
  	dispatch() (django.views.generic.base.View method)
  


      
  	display_raw (BaseGeometryWidget attribute)
  


      
  	Distance (class in django.contrib.gis.measure)
  


      
  	distance() (GeoQuerySet method)
  


      	
        
  	(GEOSGeometry method)
  


      


      
  	
    distance_gt
  


      	
        
  	field lookup type
  


      


      
  	
    distance_gte
  


      	
        
  	field lookup type
  


      


      
  	
    distance_lt
  


      	
        
  	field lookup type
  


      


      
  	
    distance_lte
  


      	
        
  	field lookup type
  


      


      
  	distinct (Count attribute)
  


      
  	distinct() (in module django.db.models.query.QuerySet)
  


      
  	
    divisibleby
  


      	
        
  	template filter
  


      


      
  	django (OGRGeomType attribute)
  


      
  	
    django-admin command
  


      	
        
  	changepassword
  


        
  	check
  


        
  	clearsessions
  


        
  	collectstatic
  


        
  	compilemessages
  


        
  	createcachetable
  


        
  	createsuperuser
  


        
  	dbshell
  


        
  	diffsettings
  


        
  	dumpdata
  


        
  	findstatic
  


        
  	flush
  


        
  	help
  


        
  	inspectdb
  


        
  	loaddata
  


        
  	makemessages
  


        
  	makemigrations
  


        
  	migrate
  


        
  	ogrinspect
  


        
  	ping_google
  


        
  	runfcgi
  


        
  	runserver, [1]
  


        
  	shell
  


        
  	sql
  


        
  	sqlall
  


        
  	sqlclear
  


        
  	sqlcustom
  


        
  	sqldropindexes
  


        
  	sqlflush
  


        
  	sqlindexes
  


        
  	sqlmigrate
  


        
  	sqlsequencereset
  


        
  	squashmigrations
  


        
  	startapp
  


        
  	startproject
  


        
  	syncdb
  


        
  	test
  


        
  	testserver
  


        
  	validate
  


        
  	version
  


      


      
  	
    django-admin command-line option
  


      	
        
  	--addrport
  


        
  	--all
  


        
  	--app
  


        
  	--backwards
  


        
  	--blank
  


        
  	--clear
  


        
  	--database
  


        
  	--decimal
  


        
  	--domain
  


        
  	--dry-run, [1]
  


        
  	--email
  


        
  	--empty
  


        
  	--exclude
  


        
  	--extension
  


        
  	--failfast
  


        
  	--fake
  


        
  	--format
  


        
  	--geom-name
  


        
  	--ignore, [1]
  


        
  	--ignorenonexistent
  


        
  	--indent
  


        
  	--insecure
  


        
  	--ipv6
  


        
  	--keep-pot
  


        
  	--layer
  


        
  	--link
  


        
  	--list
  


        
  	--list-tags
  


        
  	--liveserver
  


        
  	--locale
  


        
  	--mapping
  


        
  	--merge
  


        
  	--multi-geom
  


        
  	--name-field
  


        
  	--natural
  


        
  	--natural-foreign
  


        
  	--natural-primary
  


        
  	--no-color
  


        
  	--no-default-ignore, [1]
  


        
  	--no-imports
  


        
  	--no-location
  


        
  	--no-optimize
  


        
  	--no-post-process
  


        
  	--no-wrap
  


        
  	--noinput, [1]
  


        
  	--noreload
  


        
  	--nostatic
  


        
  	--nothreading
  


        
  	--null
  


        
  	--pks
  


        
  	--pythonpath
  


        
  	--settings
  


        
  	--srid
  


        
  	--symlinks
  


        
  	--tag
  


        
  	--template
  


        
  	--testrunner
  


        
  	--traceback
  


        
  	--username
  


        
  	--verbosity
  


        
  	-c
  


        
  	-i
  


        
  	-l
  


        
  	-n
  


        
  	daemonize
  


        
  	debug
  


        
  	errlog
  


        
  	host
  


        
  	maxchildren
  


        
  	maxrequests
  


        
  	maxspare
  


        
  	method
  


        
  	minspare
  


        
  	outlog
  


        
  	pidfile
  


        
  	port
  


        
  	protocol
  


        
  	socket
  


        
  	umask
  


        
  	workdir
  


      


      
  	django.apps (module)
  


      
  	django.conf.settings.configure() (built-in function)
  


      
  	django.conf.urls (module)
  


      
  	django.conf.urls.i18n (module)
  


      
  	django.contrib.admin (module)
  


      
  	django.contrib.admindocs (module)
  


      
  	django.contrib.auth (module)
  


      
  	django.contrib.auth.backends (module)
  


      
  	django.contrib.auth.forms (module)
  


      
  	django.contrib.auth.hashers (module)
  


      
  	django.contrib.auth.middleware (module)
  


      
  	django.contrib.auth.signals (module)
  


      
  	django.contrib.auth.views (module)
  


      
  	django.contrib.comments (module)
  


      
  	django.contrib.comments.forms (module)
  


      
  	django.contrib.comments.models (module)
  


      
  	django.contrib.comments.moderation (module)
  


      
  	django.contrib.comments.signals (module)
  


      
  	django.contrib.comments.signals.comment_was_flagged (built-in variable)
  


      
  	django.contrib.comments.signals.comment_was_posted (built-in variable)
  


      
  	django.contrib.comments.signals.comment_will_be_posted (built-in variable)
  


      
  	django.contrib.contenttypes (module)
  


      
  	django.contrib.contenttypes.admin (module)
  


      
  	django.contrib.contenttypes.fields (module)
  


      
  	django.contrib.contenttypes.forms (module)
  


      
  	django.contrib.flatpages (module)
  


      
  	django.contrib.formtools (module)
  


      
  	django.contrib.formtools.preview (module)
  


      
  	django.contrib.formtools.wizard.views (module)
  


      
  	django.contrib.gis (module)
  


      
  	django.contrib.gis.admin (module)
  


      
  	django.contrib.gis.db.backends (module)
  


      
  	django.contrib.gis.db.models (module), [1]
  


      
  	django.contrib.gis.feeds (module)
  


  

  	
      
  	django.contrib.gis.forms (module)
  


      
  	django.contrib.gis.gdal (module)
  


      
  	django.contrib.gis.geoip (module)
  


      
  	django.contrib.gis.geos (module)
  


      
  	django.contrib.gis.measure (module)
  


      
  	django.contrib.gis.utils (module)
  


      
  	django.contrib.gis.utils.layermapping (module)
  


      
  	django.contrib.gis.utils.ogrinspect (module)
  


      
  	django.contrib.gis.widgets (module)
  


      
  	django.contrib.humanize (module)
  


      
  	django.contrib.messages (module)
  


      
  	django.contrib.messages.middleware (module)
  


      
  	django.contrib.redirects (module)
  


      
  	django.contrib.sessions (module)
  


      
  	django.contrib.sessions.middleware (module)
  


      
  	django.contrib.sitemaps (module)
  


      
  	django.contrib.sites (module)
  


      
  	django.contrib.sites.middleware (module)
  


      
  	django.contrib.staticfiles (module)
  


      
  	django.contrib.syndication (module)
  


      
  	django.contrib.webdesign (module)
  


      
  	django.core.cache.cache (built-in variable)
  


      
  	django.core.cache.caches (built-in variable)
  


      
  	django.core.cache.get_cache() (built-in function)
  


      
  	django.core.cache.utils.make_template_fragment_key() (built-in function)
  


      
  	django.core.checks (module)
  


      
  	django.core.exceptions (module)
  


      
  	django.core.files (module)
  


      
  	django.core.files.storage (module)
  


      
  	django.core.files.uploadedfile (module)
  


      
  	django.core.files.uploadhandler (module)
  


      
  	django.core.mail (module)
  


      
  	django.core.mail.outbox (in module django.core.mail)
  


      
  	django.core.management (module)
  


      
  	django.core.management.call_command() (built-in function)
  


      
  	django.core.paginator (module)
  


      
  	django.core.serializers.get_serializer() (built-in function)
  


      
  	django.core.signals (module)
  


      
  	django.core.signals.got_request_exception (built-in variable)
  


      
  	django.core.signals.request_finished (built-in variable)
  


      
  	django.core.signals.request_started (built-in variable)
  


      
  	django.core.signing (module)
  


      
  	django.core.urlresolvers (module)
  


      
  	django.core.validators (module)
  


      
  	django.db (module)
  


      
  	django.db.backends (module)
  


      
  	django.db.backends.schema (module)
  


      
  	django.db.backends.signals.connection_created (built-in variable)
  


      
  	django.db.migrations (module)
  


      
  	django.db.migrations.operations (module)
  


      
  	django.db.models (module)
  


      
  	django.db.models.fields (module)
  


      
  	django.db.models.fields.related (module)
  


      
  	django.db.models.lookups (module)
  


      
  	django.db.models.signals (module)
  


      
  	django.db.models.signals.class_prepared (built-in variable)
  


      
  	django.db.models.signals.m2m_changed (built-in variable)
  


      
  	django.db.models.signals.post_delete (built-in variable)
  


      
  	django.db.models.signals.post_init (built-in variable)
  


      
  	django.db.models.signals.post_migrate (built-in variable)
  


      
  	django.db.models.signals.post_save (built-in variable)
  


      
  	django.db.models.signals.post_syncdb (built-in variable)
  


      
  	django.db.models.signals.pre_delete (built-in variable)
  


      
  	django.db.models.signals.pre_migrate (built-in variable)
  


      
  	django.db.models.signals.pre_save (built-in variable)
  


      
  	django.db.models.signals.pre_syncdb (built-in variable)
  


      
  	django.db.models.SubfieldBase (class in django.db.models)
  


      
  	django.db.transaction (module)
  


      
  	django.dispatch (module)
  


      
  	django.forms (module)
  


      
  	django.forms.fields (module)
  


      
  	django.forms.formsets (module), [1]
  


      
  	django.forms.models (module), [1]
  


      
  	django.forms.widgets (module)
  


      
  	django.http (module)
  


      
  	django.http.Http404 (built-in class)
  


      
  	django.middleware (module)
  


      
  	django.middleware.cache (module)
  


      
  	django.middleware.clickjacking (module), [1]
  


      
  	django.middleware.common (module)
  


      
  	django.middleware.csrf (module), [1]
  


      
  	django.middleware.gzip (module)
  


      
  	django.middleware.http (module)
  


      
  	django.middleware.locale (module)
  


      
  	django.middleware.transaction (module)
  


      
  	django.shortcuts (module)
  


      
  	django.template (module)
  


      
  	django.template.loader (module)
  


      
  	django.template.response (module)
  


      
  	django.test (module)
  


      
  	django.test.signals (module)
  


      
  	django.test.signals.setting_changed (built-in variable)
  


      
  	django.test.signals.template_rendered (built-in variable)
  


      
  	django.test.utils (module)
  


      
  	django.utils (module)
  


      
  	django.utils.cache (module)
  


      
  	django.utils.datastructures (module)
  


      
  	django.utils.dateparse (module)
  


      
  	django.utils.decorators (module)
  


      
  	django.utils.encoding (module)
  


      
  	django.utils.feedgenerator (module)
  


      
  	django.utils.functional (module)
  


      
  	django.utils.html (module)
  


      
  	django.utils.http (module)
  


      
  	django.utils.log (module)
  


      
  	django.utils.module_loading (module)
  


      
  	django.utils.safestring (module)
  


      
  	django.utils.six (module)
  


      
  	django.utils.text (module)
  


      
  	django.utils.timezone (module)
  


      
  	django.utils.translation (module), [1]
  


      
  	django.utils.tzinfo (module)
  


      
  	django.views (module)
  


      
  	django.views.decorators.cache.cache_page() (built-in function)
  


      
  	django.views.decorators.csrf (module)
  


      
  	django.views.decorators.gzip (module)
  


      
  	django.views.decorators.http (module)
  


      
  	django.views.decorators.vary (module)
  


      
  	django.views.generic.base.ContextMixin (built-in class)
  


      
  	django.views.generic.base.RedirectView (built-in class)
  


      
  	django.views.generic.base.TemplateResponseMixin (built-in class)
  


      
  	django.views.generic.base.TemplateView (built-in class)
  


      
  	django.views.generic.base.View (built-in class)
  


      
  	django.views.generic.dates (module)
  


      
  	django.views.generic.detail.DetailView (built-in class)
  


      
  	django.views.generic.detail.SingleObjectMixin (built-in class)
  


      
  	django.views.generic.detail.SingleObjectTemplateResponseMixin (built-in class)
  


      
  	django.views.generic.edit.CreateView (built-in class)
  


      
  	django.views.generic.edit.DeleteView (built-in class)
  


      
  	django.views.generic.edit.DeletionMixin (built-in class)
  


      
  	django.views.generic.edit.FormMixin (built-in class)
  


      
  	django.views.generic.edit.FormView (built-in class)
  


      
  	django.views.generic.edit.ModelFormMixin (built-in class)
  


      
  	django.views.generic.edit.ProcessFormView (built-in class)
  


      
  	django.views.generic.edit.UpdateView (built-in class)
  


      
  	django.views.generic.list.BaseListView (built-in class)
  


      
  	django.views.generic.list.ListView (built-in class)
  


      
  	django.views.generic.list.MultipleObjectMixin (built-in class)
  


      
  	django.views.generic.list.MultipleObjectTemplateResponseMixin (built-in class)
  


      
  	django.views.i18n (module)
  


      
  	DJANGO_SETTINGS_MODULE, [1], [2], [3], [4], [5], [6], [7]
  


      
  	DO_NOTHING (in module django.db.models)
  


      
  	DoesNotExist
  


      
  	domain (models.Site attribute)
  


      
  	Don't repeat yourself
  


      
  	done() (WizardView method)
  


      
  	Driver (class in django.contrib.gis.gdal)
  


      
  	driver_count (Driver attribute)
  


      
  	DRY
  


      
  	
    dumpdata
  


      	
        
  	django-admin command
  


      


      
  	dumps() (in module django.core.signing)
  


      
  	
    dwithin
  


      	
        
  	field lookup type
  


      


  





E


  	
      
  	earliest() (in module django.db.models.query.QuerySet)
  


      
  	editable (Field attribute)
  


      
  	eggs.Loader (class in django.template.loaders)
  


      
  	ellipsoid (SpatialReference attribute)
  


      
  	email (models.User attribute)
  


      
  	email() (CommentModerator method)
  


      
  	
    EMAIL_BACKEND
  


      	
        
  	setting
  


      


      
  	
    EMAIL_FILE_PATH
  


      	
        
  	setting
  


      


      
  	
    EMAIL_HOST
  


      	
        
  	setting
  


      


      
  	
    EMAIL_HOST_PASSWORD
  


      	
        
  	setting
  


      


      
  	
    EMAIL_HOST_USER
  


      	
        
  	setting
  


      


      
  	email_notification (CommentModerator attribute)
  


      
  	
    EMAIL_PORT
  


      	
        
  	setting
  


      


      
  	
    EMAIL_SUBJECT_PREFIX
  


      	
        
  	setting
  


      


      
  	
    EMAIL_USE_SSL
  


      	
        
  	setting
  


      


      
  	
    EMAIL_USE_TLS
  


      	
        
  	setting
  


      


      
  	email_user() (models.User method)
  


      
  	EmailField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	EmailInput (class in django.forms)
  


      
  	EmailMessage (class in django.core.mail)
  


      
  	empty (GEOSGeometry attribute)
  


      
  	empty_label (ModelChoiceField attribute)
  


      
  	empty_value (TypedChoiceField attribute)
  


      
  	EmptyPage
  


      
  	enable_field (CommentModerator attribute)
  


      
  	Enclosure (class in django.utils.feedgenerator)
  


      
  	encoding (HttpRequest attribute)
  


      
  	end_index() (Page method)
  


      
  	
    endswith
  


      	
        
  	field lookup type
  


      


      
  	ensure_csrf_cookie() (in module django.views.decorators.csrf)
  


      
  	Envelope (class in django.contrib.gis.gdal)
  


      
  	envelope (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


  

  	
      
  	envelope() (GeoQuerySet method)
  


      
  	
    environment variable
  


      	
        
  	DJANGO_SETTINGS_MODULE, [1], [2], [3], [4], [5], [6], [7], [8]
  


        
  	PYTHONHASHSEED
  


        
  	PYTHONPATH
  


        
  	PYTHONSTARTUP
  


      


      
  	
    equals
  


      	
        
  	field lookup type
  


      


      
  	equals() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


      


      
  	equals_exact() (GEOSGeometry method)
  


      
  	
    errlog
  


      	
        
  	django-admin command-line option
  


      


      
  	Error
  


      	
        
  	(class in django.core.checks)
  


      


      
  	error_css_class (Form attribute)
  


      
  	error_messages (Field attribute), [1]
  


      
  	errors (BoundField attribute)
  


      	
        
  	(Form attribute)
  


      


      
  	
    escape
  


      	
        
  	template filter
  


      


      
  	escape() (in module django.utils.html)
  


      
  	
    escapejs
  


      	
        
  	template filter
  


      


      
  	etag() (in module django.views.decorators.http)
  


      
  	ewkb (GEOSGeometry attribute)
  


      
  	ewkt (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	
    exact
  


      	
        
  	field lookup type, [1]
  


      


      
  	exclude (ModelAdmin attribute)
  


      
  	exclude() (in module django.db.models.query.QuerySet)
  


      
  	execute() (BaseCommand method)
  


      	
        
  	(BaseDatabaseSchemaEditor method)
  


      


      
  	exists() (in module django.db.models.query.QuerySet)
  


      	
        
  	(Storage method)
  


      


      
  	expand_to_include() (Envelope method)
  


      
  	
    extends
  


      	
        
  	template tag
  


      


      
  	Extent (class in django.contrib.gis.db.models)
  


      
  	extent (GEOSGeometry attribute)
  


      	
        
  	(Layer attribute)
  


        
  	(OGRGeometry attribute)
  


      


      
  	extent() (GeoQuerySet method)
  


      
  	Extent3D (class in django.contrib.gis.db.models)
  


      
  	extent3d() (GeoQuerySet method)
  


      
  	exterior_ring (Polygon attribute)
  


      
  	extra (InlineModelAdmin attribute)
  


      
  	extra() (in module django.db.models.query.QuerySet)
  


      
  	extra_js (GeoModelAdmin attribute)
  


  





F


  	
      
  	F (class in django.db.models)
  


      
  	Feature (class in django.contrib.gis.gdal)
  


      
  	Feed (class in django.contrib.gis.feeds)
  


      
  	FetchFromCacheMiddleware (class in django.middleware.cache)
  


      
  	fid (Feature attribute)
  


      
  	field
  


      
  	Field (class in django.contrib.gis.gdal)
  


      	
        
  	(class in django.db.models)
  


        
  	(class in django.forms)
  


      


      
  	
    field lookup type
  


      	
        
  	bbcontains
  


        
  	bboverlaps
  


        
  	contained
  


        
  	contains
  


        
  	contains_properly
  


        
  	coveredby
  


        
  	covers
  


        
  	crosses
  


        
  	day
  


        
  	disjoint
  


        
  	distance_gt
  


        
  	distance_gte
  


        
  	distance_lt
  


        
  	distance_lte
  


        
  	dwithin
  


        
  	endswith
  


        
  	equals
  


        
  	exact, [1]
  


        
  	gis-contains
  


        
  	gt
  


        
  	gte
  


        
  	hour
  


        
  	icontains
  


        
  	iendswith
  


        
  	iexact
  


        
  	in
  


        
  	intersects
  


        
  	iregex
  


        
  	isnull
  


        
  	istartswith
  


        
  	left
  


        
  	lt
  


        
  	lte
  


        
  	minute
  


        
  	month
  


        
  	overlaps
  


        
  	overlaps_above
  


        
  	overlaps_below
  


        
  	overlaps_left
  


        
  	overlaps_right
  


        
  	range
  


        
  	regex
  


        
  	relate
  


        
  	right
  


        
  	same_as
  


        
  	search
  


        
  	second
  


        
  	startswith
  


        
  	strictly_above
  


        
  	strictly_below
  


        
  	touches
  


        
  	week_day
  


        
  	within
  


        
  	year
  


      


      
  	field_precisions (Layer attribute)
  


      
  	field_widths (Layer attribute)
  


      
  	FieldError
  


      
  	FieldFile (class in django.db.models.fields.files)
  


      
  	fields (ComboField attribute)
  


      	
        
  	(Feature attribute)
  


        
  	(Form attribute)
  


        
  	(Layer attribute)
  


        
  	(ModelAdmin attribute)
  


        
  	(MultiValueField attribute)
  


        
  	(django.views.generic.edit.ModelFormMixin attribute)
  


      


      
  	fieldsets (ModelAdmin attribute)
  


      
  	File (class in django.core.files)
  


      
  	file (File attribute)
  


      
  	
    FILE_CHARSET
  


      	
        
  	setting
  


      


      
  	file_complete() (FileUploadHandler method)
  


      
  	file_hash() (storage.ManifestStaticFilesStorage method)
  


      
  	file_permissions_mode (FileSystemStorage attribute)
  


      
  	file_storage (WizardView attribute)
  


      
  	
    FILE_UPLOAD_DIRECTORY_PERMISSIONS
  


      	
        
  	setting
  


      


      
  	
    FILE_UPLOAD_HANDLERS
  


      	
        
  	setting
  


      


      
  	
    FILE_UPLOAD_MAX_MEMORY_SIZE
  


      	
        
  	setting
  


      


      
  	
    FILE_UPLOAD_PERMISSIONS
  


      	
        
  	setting
  


      


      
  	
    FILE_UPLOAD_TEMP_DIR
  


      	
        
  	setting
  


      


      
  	FileField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	FileInput (class in django.forms)
  


      
  	filepath_to_uri() (in module django.utils.encoding)
  


      
  	FilePathField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	FILES (HttpRequest attribute)
  


      
  	
    filesizeformat
  


      	
        
  	template filter
  


      


      
  	filesystem.Loader (class in django.template.loaders)
  


      
  	FileSystemStorage (class in django.core.files.storage)
  


      
  	FileUploadHandler (class in django.core.files.uploadhandler)
  


      
  	
    filter
  


      	
        
  	template tag
  


      


      
  	filter() (django.template.Library method)
  


      	
        
  	(in module django.db.models.query.QuerySet)
  


      


      
  	filter_horizontal (ModelAdmin attribute)
  


      
  	filter_vertical (ModelAdmin attribute)
  


      
  	
    findstatic
  


      	
        
  	django-admin command
  


      


      
  	
    first
  


      	
        
  	template filter
  


      


      
  	first() (in module django.db.models.query.QuerySet)
  


      
  	
    FIRST_DAY_OF_WEEK
  


      	
        
  	setting
  


      


      
  	first_name (models.User attribute)
  


      
  	
    firstof
  


      	
        
  	template tag
  


      


      
  	
    fix_ampersands
  


      	
        
  	template filter
  


      


      
  	FixedOffset (class in django.utils.timezone)
  


      	
        
  	(class in django.utils.tzinfo)
  


      


      
  	
    FIXTURE_DIRS
  


      	
        
  	setting
  


      


      
  	fixtures (TransactionTestCase attribute)
  


  

  	
      
  	fk_name (InlineModelAdmin attribute)
  


      
  	flags (RegexValidator attribute)
  


      
  	FlatPage (class in django.contrib.flatpages.models)
  


      
  	FlatpageFallbackMiddleware (class in django.contrib.flatpages.middleware)
  


      
  	FlatPageSitemap (class in django.contrib.sitemaps)
  


      
  	flatten() (Context method)
  


      
  	FloatField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	
    floatformat
  


      	
        
  	template filter
  


      


      
  	
    flush
  


      	
        
  	django-admin command
  


      


      
  	flush() (backends.base.SessionBase method)
  


      	
        
  	(HttpResponse method)
  


      


      
  	
    for
  


      	
        
  	template tag
  


      


      
  	for_concrete_model (GenericForeignKey attribute)
  


      
  	force_bytes() (in module django.utils.encoding)
  


      
  	
    force_escape
  


      	
        
  	template filter
  


      


      
  	force_rhr() (GeoQuerySet method)
  


      
  	
    FORCE_SCRIPT_NAME
  


      	
        
  	setting
  


      


      
  	force_str() (in module django.utils.encoding)
  


      
  	force_text() (in module django.utils.encoding)
  


      
  	force_unicode() (in module django.utils.encoding)
  


      
  	ForeignKey (class in django.db.models)
  


      
  	Form (class in django.forms)
  


      
  	form (InlineModelAdmin attribute)
  


      	
        
  	(ModelAdmin attribute)
  


      


      
  	form_class (django.views.generic.edit.FormMixin attribute)
  


      
  	form_invalid() (django.views.generic.edit.FormMixin method)
  


      	
        
  	(django.views.generic.edit.ModelFormMixin method)
  


      


      
  	form_template (FormPreview attribute)
  


      
  	form_valid() (django.views.generic.edit.FormMixin method)
  


      	
        
  	(django.views.generic.edit.ModelFormMixin method)
  


      


      
  	format (DateInput attribute)
  


      	
        
  	(DateTimeInput attribute)
  


        
  	(TimeInput attribute)
  


      


      
  	format file
  


      
  	format_html() (in module django.utils.html)
  


      
  	format_html_join() (in module django.utils.html)
  


      
  	
    FORMAT_MODULE_PATH
  


      	
        
  	setting
  


      


      
  	format_output() (MultiWidget method)
  


      
  	formfield() (Field method)
  


      
  	formfield_for_choice_field() (ModelAdmin method)
  


      
  	formfield_for_foreignkey() (ModelAdmin method)
  


      
  	formfield_for_manytomany() (ModelAdmin method)
  


      
  	formfield_overrides (ModelAdmin attribute)
  


      
  	FormPreview (class in django.contrib.formtools.preview)
  


      
  	formset (InlineModelAdmin attribute)
  


      
  	formset_factory() (in module django.forms.formsets)
  


      
  	FormView (built-in class)
  


      
  	from_bbox() (django.contrib.gis.gdal.OGRGeometry class method)
  


      	
        
  	(django.contrib.gis.geos.Polygon class method)
  


      


      
  	from_esri() (SpatialReference method)
  


      
  	from_queryset() (in module django.db.models)
  


      
  	fromfile() (in module django.contrib.gis.geos)
  


      
  	fromstr() (in module django.contrib.gis.geos)
  


      
  	full_clean() (Model method)
  


      
  	func (ResolverMatch attribute)
  


  





G


  	
      
  	
    GDAL_LIBRARY_PATH
  


      	
        
  	setting
  


      


      
  	generic view
  


      
  	generic_inlineformset_factory() (in module django.contrib.contenttypes.forms)
  


      
  	GenericForeignKey (class in django.contrib.contenttypes.fields)
  


      
  	GenericInlineModelAdmin (class in django.contrib.contenttypes.admin)
  


      
  	GenericIPAddressField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	GenericRelation (class in django.contrib.contenttypes.fields)
  


      
  	GenericSitemap (class in django.contrib.sitemaps)
  


      
  	GenericStackedInline (class in django.contrib.contenttypes.admin)
  


      
  	GenericTabularInline (class in django.contrib.contenttypes.admin)
  


      
  	GeoAtom1Feed (class in django.contrib.gis.feeds)
  


      
  	geographic (SpatialReference attribute)
  


      
  	geography (GeometryField attribute)
  


      
  	geohash() (GeoQuerySet method)
  


      
  	GeoIP (class in django.contrib.gis.geoip)
  


      
  	
    GEOIP_CITY
  


      	
        
  	setting
  


      


      
  	
    GEOIP_COUNTRY
  


      	
        
  	setting
  


      


      
  	
    GEOIP_LIBRARY_PATH
  


      	
        
  	setting
  


      


      
  	
    GEOIP_PATH
  


      	
        
  	setting
  


      


      
  	geojson (GEOSGeometry attribute)
  


      
  	geojson() (GeoQuerySet method)
  


      
  	geom (Feature attribute)
  


      
  	geom_count (OGRGeometry attribute)
  


      
  	geom_name (OGRGeometry attribute)
  


      
  	geom_type (BaseGeometryWidget attribute)
  


      	
        
  	(Feature attribute)
  


        
  	(Field attribute)
  


        
  	(GEOSGeometry attribute)
  


        
  	(Layer attribute)
  


        
  	(OGRGeometry attribute)
  


      


      
  	geom_typeid (GEOSGeometry attribute)
  


      
  	GeoManager (class in django.contrib.gis.db.models)
  


      
  	geometry() (Feed method)
  


      
  	GeometryCollection (class in django.contrib.gis.gdal)
  


      	
        
  	(class in django.contrib.gis.geos)
  


      


      
  	GeometryCollectionField (class in django.contrib.gis.db.models)
  


      	
        
  	(class in django.contrib.gis.forms)
  


      


      
  	GeometryField (class in django.contrib.gis.db.models)
  


      	
        
  	(class in django.contrib.gis.forms)
  


      


      
  	GeoModelAdmin (class in django.contrib.gis.admin)
  


      
  	GeoQuerySet (class in django.contrib.gis.db.models)
  


      
  	GeoRSSFeed (class in django.contrib.gis.feeds)
  


      
  	geos (OGRGeometry attribute)
  


      
  	geos() (GeoIP method)
  


      
  	
    GEOS_LIBRARY_PATH
  


      	
        
  	setting
  


      


      
  	GEOSException
  


      
  	GEOSGeometry (class in django.contrib.gis.geos)
  


      
  	get (Feature attribute)
  


      
  	GET (HttpRequest attribute)
  


      
  	get() (backends.base.SessionBase method)
  


      	
        
  	(Client method)
  


        
  	(Context method)
  


        
  	(QueryDict method)
  


        
  	(django.views.generic.edit.ProcessFormView method)
  


        
  	(django.views.generic.list.BaseListView method)
  


        
  	(in module django.db.models.query.QuerySet)
  


      


      
  	get_absolute_url() (Model method)
  


      
  	get_actions() (ModelAdmin method)
  


      
  	get_all_cleaned_data() (WizardView method)
  


      
  	get_all_permissions() (models.PermissionsMixin method)
  


      	
        
  	(models.User method)
  


      


      
  	get_allow_empty() (django.views.generic.list.MultipleObjectMixin method)
  


      
  	get_allow_future() (DateMixin method)
  


      
  	get_app_config() (apps method)
  


      
  	get_app_configs() (apps method)
  


      
  	get_approve_url() (in module django.contrib.comments)
  


      
  	get_autocommit() (in module django.db.transaction)
  


      
  	get_available_name() (in module django.core.files.storage)
  


      	
        
  	(Storage method)
  


      


      
  	get_by_natural_key() (ContentTypeManager method)
  


      	
        
  	(models.BaseUserManager method)
  


      


      
  	get_cache_key() (in module django.utils.cache)
  


      
  	get_changeform_initial_data() (ModelAdmin method)
  


      
  	get_changelist() (ModelAdmin method)
  


      
  	get_changelist_form() (ModelAdmin method)
  


      
  	get_changelist_formset() (ModelAdmin method)
  


      
  	get_cleaned_data_for_step() (WizardView method)
  


      
  	
    get_comment_count
  


      	
        
  	template tag
  


      


      
  	
    get_comment_form
  


      	
        
  	template tag
  


      


      
  	
    get_comment_list
  


      	
        
  	template tag
  


      


      
  	
    get_comment_permalink
  


      	
        
  	template tag
  


      


      
  	get_connection() (in module django.core.mail)
  


      
  	get_context_data() (django.views.generic.base.ContextMixin method)
  


      	
        
  	(Feed method)
  


        
  	(WizardView method)
  


        
  	(django.views.generic.detail.SingleObjectMixin method)
  


        
  	(django.views.generic.list.MultipleObjectMixin method)
  


      


      
  	get_context_object_name() (django.views.generic.detail.SingleObjectMixin method)
  


      	
        
  	(django.views.generic.list.MultipleObjectMixin method)
  


      


      
  	
    get_current_timezone
  


      	
        
  	template tag
  


      


      
  	get_current_timezone() (in module django.utils.timezone)
  


      
  	get_current_timezone_name() (in module django.utils.timezone)
  


      
  	get_date_field() (DateMixin method)
  


      
  	get_date_list() (BaseDateListView method)
  


      
  	get_date_list_period() (BaseDateListView method)
  


      
  	get_dated_items() (BaseDateListView method)
  


      
  	get_dated_queryset() (BaseDateListView method)
  


      
  	get_day() (DayMixin method)
  


      
  	get_day_format() (DayMixin method)
  


      
  	get_db_prep_lookup() (Field method)
  


      
  	get_db_prep_save() (Field method)
  


      
  	get_db_prep_value() (Field method)
  


      
  	get_default_timezone() (in module django.utils.timezone)
  


      
  	get_default_timezone_name() (in module django.utils.timezone)
  


      
  	get_delete_url() (in module django.contrib.comments)
  


      
  	
    get_digit
  


      	
        
  	template filter
  


      


      
  	get_expire_at_browser_close() (backends.base.SessionBase method)
  


      
  	get_expiry_age() (backends.base.SessionBase method)
  


      
  	get_expiry_date() (backends.base.SessionBase method)
  


      
  	get_extra() (InlineModelAdmin method)
  


      
  	get_fields() (Layer method)
  


      	
        
  	(ModelAdmin method)
  


      


      
  	get_fieldsets() (ModelAdmin method)
  


      
  	get_fixed_timezone() (in module django.utils.timezone)
  


      
  	get_flag_url() (in module django.contrib.comments)
  


      
  	
    get_flatpages
  


      	
        
  	template tag
  


      


      
  	get_FOO_display() (Model method)
  


      
  	get_for_id() (ContentTypeManager method)
  


      
  	get_for_model() (ContentTypeManager method)
  


      
  	get_for_models() (ContentTypeManager method)
  


      
  	get_form() (django.views.generic.edit.FormMixin method)
  


      	
        
  	(ModelAdmin method)
  


        
  	(WizardView method)
  


        
  	(in module django.contrib.comments)
  


      


      
  	get_form_class() (django.views.generic.edit.FormMixin method)
  


      	
        
  	(django.views.generic.edit.ModelFormMixin method)
  


      


      
  	get_form_initial() (WizardView method)
  


      
  	get_form_instance() (WizardView method)
  


      
  	get_form_kwargs() (django.views.generic.edit.FormMixin method)
  


      	
        
  	(WizardView method)
  


        
  	(django.views.generic.edit.ModelFormMixin method)
  


      


  

  	
      
  	get_form_prefix() (WizardView method)
  


      
  	get_form_step_data() (WizardView method)
  


      
  	get_form_step_files() (WizardView method)
  


      
  	get_form_target() (in module django.contrib.comments)
  


      
  	get_formset() (InlineModelAdmin method)
  


      
  	get_formsets() (ModelAdmin method)
  


      
  	get_formsets_with_inlines() (ModelAdmin method)
  


      
  	get_full_name() (models.CustomUser method)
  


      	
        
  	(models.User method)
  


      


      
  	get_full_path() (HttpRequest method)
  


      
  	get_geoms() (Layer method)
  


      
  	get_group_permissions() (models.PermissionsMixin method)
  


      	
        
  	(models.User method)
  


      


      
  	get_host() (HttpRequest method)
  


      
  	get_initial() (django.views.generic.edit.FormMixin method)
  


      
  	get_inline_instances() (ModelAdmin method)
  


      
  	get_internal_type() (Field method)
  


      
  	get_language() (in module django.utils.translation)
  


      
  	get_language_bidi() (in module django.utils.translation)
  


      
  	get_language_from_request() (in module django.utils.translation)
  


      
  	get_language_info() (in module django.utils.translation)
  


      
  	get_latest_by (Options attribute)
  


      
  	get_list_display() (ModelAdmin method)
  


      
  	get_list_display_links() (ModelAdmin method)
  


      
  	get_list_filter() (ModelAdmin method)
  


      
  	get_list_or_404() (in module django.shortcuts)
  


      
  	get_lookup() (in module django.db.models)
  


      	
        
  	(Transform method)
  


        
  	(lookups.RegisterLookupMixin method)
  


      


      
  	get_make_object_list() (YearArchiveView method)
  


      
  	get_max_age() (in module django.utils.cache)
  


      
  	get_max_num() (InlineModelAdmin method)
  


      
  	
    get_media_prefix
  


      	
        
  	template tag
  


      


      
  	get_messages() (in module django.contrib.messages)
  


      
  	get_min_num() (InlineModelAdmin method)
  


      
  	get_model() (AppConfig method)
  


      	
        
  	(apps method)
  


        
  	(in module django.contrib.comments)
  


      


      
  	get_models() (AppConfig method)
  


      
  	get_month() (MonthMixin method)
  


      
  	get_month_format() (MonthMixin method)
  


      
  	get_next_by_FOO() (Model method)
  


      
  	get_next_day() (DayMixin method)
  


      
  	get_next_month() (MonthMixin method)
  


      
  	get_next_week() (WeekMixin method)
  


      
  	get_next_year() (YearMixin method)
  


      
  	get_object() (django.views.generic.detail.SingleObjectMixin method)
  


      
  	get_object_for_this_type() (ContentType method)
  


      
  	get_object_or_404() (in module django.shortcuts)
  


      
  	get_or_create() (in module django.db.models.query.QuerySet)
  


      
  	get_ordering() (ModelAdmin method)
  


      
  	get_paginate_by() (django.views.generic.list.MultipleObjectMixin method)
  


      
  	get_paginate_orphans() (django.views.generic.list.MultipleObjectMixin method)
  


      
  	get_paginator() (django.views.generic.list.MultipleObjectMixin method)
  


      	
        
  	(ModelAdmin method)
  


      


      
  	get_post_parameters() (SafeExceptionReporterFilter method)
  


      
  	get_prefix() (django.views.generic.edit.FormMixin method)
  


      	
        
  	(WizardView method)
  


      


      
  	get_prep_lookup() (Field method)
  


      
  	get_prep_value() (Field method)
  


      
  	get_prepopulated_fields() (ModelAdmin method)
  


      
  	get_prev_week() (WeekMixin method)
  


      
  	get_previous_by_FOO() (Model method)
  


      
  	get_previous_day() (DayMixin method)
  


      
  	get_previous_month() (MonthMixin method)
  


      
  	get_previous_year() (YearMixin method)
  


      
  	get_queryset() (django.views.generic.detail.SingleObjectMixin method)
  


      	
        
  	(ModelAdmin method)
  


        
  	(django.views.generic.list.MultipleObjectMixin method)
  


      


      
  	get_readonly_fields() (ModelAdmin method)
  


      
  	get_redirect_url() (django.views.generic.base.RedirectView method)
  


      
  	get_request_repr() (SafeExceptionReporterFilter method)
  


      
  	get_rollback() (in module django.db.transaction)
  


      
  	get_script_prefix() (in module django.core.urlresolvers)
  


      
  	get_search_fields() (ModelAdmin method)
  


      
  	get_search_results() (ModelAdmin method)
  


      
  	get_session_auth_hash() (models.AbstractBaseUser method)
  


      
  	get_short_name() (models.CustomUser method)
  


      	
        
  	(models.User method)
  


      


      
  	get_signed_cookie() (HttpRequest method)
  


      
  	get_slug_field() (django.views.generic.detail.SingleObjectMixin method)
  


      
  	
    get_static_prefix
  


      	
        
  	template tag
  


      


      
  	get_step_url() (NamedUrlWizardView method)
  


      
  	get_storage_class() (in module django.core.files.storage)
  


      
  	get_success_message() (views.SuccessMessageMixin method)
  


      
  	get_success_url() (django.views.generic.edit.DeletionMixin method)
  


      	
        
  	(django.views.generic.edit.FormMixin method)
  


        
  	(django.views.generic.edit.ModelFormMixin method)
  


      


      
  	get_tag_uri() (in module django.utils.feedgenerator)
  


      
  	get_template() (in module django.template.loader)
  


      
  	get_template_names() (django.views.generic.base.TemplateResponseMixin method)
  


      	
        
  	(django.views.generic.detail.SingleObjectTemplateResponseMixin method)
  


        
  	(django.views.generic.list.MultipleObjectTemplateResponseMixin method)
  


      


      
  	get_traceback_frame_variables() (SafeExceptionReporterFilter method)
  


      
  	get_transform() (in module django.db.models)
  


      	
        
  	(Transform method)
  


        
  	(lookups.RegisterLookupMixin method)
  


      


      
  	get_urls() (ModelAdmin method)
  


      
  	get_user_model() (in module django.contrib.auth)
  


      
  	get_username() (models.AbstractBaseUser method)
  


      	
        
  	(models.User method)
  


      


      
  	get_valid_name() (in module django.core.files.storage)
  


      	
        
  	(Storage method)
  


      


      
  	get_version() (BaseCommand method)
  


      
  	get_week() (WeekMixin method)
  


      
  	get_week_format() (WeekMixin method)
  


      
  	get_year() (YearMixin method)
  


      
  	get_year_format() (YearMixin method)
  


      
  	getlist() (QueryDict method)
  


      
  	gettext() (in module django.utils.translation)
  


      
  	gettext_lazy() (in module django.utils.translation)
  


      
  	gettext_noop() (in module django.utils.translation)
  


      
  	
    gis-contains
  


      	
        
  	field lookup type
  


      


      
  	gml (OGRGeometry attribute)
  


      
  	gml() (GeoQuerySet method)
  


      
  	groups (models.User attribute)
  


      
  	
    gt
  


      	
        
  	field lookup type
  


      


      
  	
    gte
  


      	
        
  	field lookup type
  


      


      
  	gzip_page() (in module django.views.decorators.gzip)
  


      
  	GZipMiddleware (class in django.middleware.gzip)
  


  





H


  	
      
  	handle() (BaseCommand method)
  


      
  	handle_app_config() (AppCommand method)
  


      
  	handle_label() (LabelCommand method)
  


      
  	handle_noargs() (NoArgsCommand method)
  


      
  	handle_raw_input() (FileUploadHandler method)
  


      
  	handler400 (in module django.conf.urls)
  


      
  	handler403 (in module django.conf.urls)
  


      
  	handler404 (in module django.conf.urls)
  


      
  	handler500 (in module django.conf.urls)
  


      
  	has_add_permission() (ModelAdmin method)
  


      
  	has_change_permission() (ModelAdmin method)
  


      
  	has_changed() (Form method)
  


      
  	has_delete_permission() (ModelAdmin method)
  


      
  	has_header() (HttpResponse method)
  


      
  	has_module_perms() (models.PermissionsMixin method)
  


      	
        
  	(models.User method)
  


      


      
  	has_next() (Page method)
  


      
  	has_other_pages() (Page method)
  


      
  	has_perm() (models.PermissionsMixin method)
  


      	
        
  	(models.User method)
  


      


      
  	has_perms() (models.PermissionsMixin method)
  


      	
        
  	(models.User method)
  


      


      
  	has_previous() (Page method)
  


      
  	has_usable_password() (models.AbstractBaseUser method)
  


      	
        
  	(models.User method)
  


      


      
  	hasz (GEOSGeometry attribute)
  


      
  	head() (Client method)
  


      
  	height (ImageFile attribute)
  


      
  	height_field (ImageField attribute)
  


  

  	
      
  	
    help
  


      	
        
  	django-admin command
  


      


      
  	help (BaseCommand attribute)
  


      
  	help_text (Field attribute), [1]
  


      
  	hex (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	hexewkb (GEOSGeometry attribute)
  


      
  	HiddenInput (class in django.forms)
  


      
  	history_view() (ModelAdmin method)
  


      
  	
    HOST
  


      	
        
  	setting
  


      


      
  	
    host
  


      	
        
  	django-admin command-line option
  


      


      
  	
    hour
  


      	
        
  	field lookup type
  


      


      
  	http_date() (in module django.utils.http)
  


      
  	http_method_names (django.views.generic.base.View attribute)
  


      
  	http_method_not_allowed() (django.views.generic.base.View method)
  


      
  	HttpRequest (class in django.http)
  


      
  	HttpResponse (class in django.http)
  


      
  	HttpResponseBadRequest (class in django.http)
  


      
  	HttpResponseForbidden (class in django.http)
  


      
  	HttpResponseGone (class in django.http)
  


      
  	HttpResponseNotAllowed (class in django.http)
  


      
  	HttpResponseNotFound (class in django.http)
  


      
  	HttpResponseNotModified (class in django.http)
  


      
  	HttpResponsePermanentRedirect (class in django.http)
  


      
  	HttpResponseRedirect (class in django.http)
  


      
  	HttpResponseServerError (class in django.http)
  


  





I


  	
      
  	i18n_patterns() (in module django.conf.urls.i18n)
  


      
  	
    icontains
  


      	
        
  	field lookup type
  


      


      
  	id_for_label (BoundField attribute)
  


      
  	identify_epsg() (SpatialReference method)
  


      
  	
    iendswith
  


      	
        
  	field lookup type
  


      


      
  	
    iexact
  


      	
        
  	field lookup type
  


      


      
  	
    if
  


      	
        
  	template tag
  


      


      
  	
    ifchanged
  


      	
        
  	template tag
  


      


      
  	
    ifequal
  


      	
        
  	template tag
  


      


      
  	
    ifnotequal
  


      	
        
  	template tag
  


      


      
  	
    IGNORABLE_404_URLS
  


      	
        
  	setting
  


      


      
  	ImageField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	ImageFile (class in django.core.files.images)
  


      
  	import_by_path() (in module django.utils.module_loading)
  


      
  	import_epsg() (SpatialReference method)
  


      
  	import_proj() (SpatialReference method)
  


      
  	import_string() (in module django.utils.module_loading)
  


      
  	import_user_input() (SpatialReference method)
  


      
  	import_wkt() (SpatialReference method)
  


      
  	import_xml() (SpatialReference method)
  


      
  	ImproperlyConfigured
  


      
  	
    in
  


      	
        
  	field lookup type
  


      


      
  	in_bulk() (in module django.db.models.query.QuerySet)
  


      
  	
    include
  


      	
        
  	template tag
  


      


      
  	include() (in module django.conf.urls)
  


      
  	index (Feature attribute)
  


      
  	index_template (AdminSite attribute)
  


      
  	index_title (AdminSite attribute)
  


      
  	index_together (Options attribute)
  


      
  	Info (class in django.core.checks)
  


      
  	info (GeoIP attribute)
  


      
  	initial (django.views.generic.edit.FormMixin attribute)
  


      	
        
  	(Field attribute)
  


        
  	(Form attribute)
  


      


      
  	initial_dict (WizardView attribute)
  


      
  	inlineformset_factory() (in module django.forms.models)
  


      
  	InlineModelAdmin (class in django.contrib.admin)
  


      
  	inlines (ModelAdmin attribute)
  


      
  	InMemoryUploadedFile (class in django.core.files.uploadedfile)
  


      
  	input_date_formats (SplitDateTimeField attribute)
  


      
  	input_formats (DateField attribute)
  


      	
        
  	(DateTimeField attribute)
  


        
  	(TimeField attribute)
  


      


      
  	input_time_formats (SplitDateTimeField attribute)
  


      
  	
    inspectdb
  


      	
        
  	django-admin command
  


      


      
  	
    INSTALLED_APPS
  


      	
        
  	setting
  


      


      
  	instance namespace
  


      
  	instance_dict (WizardView attribute)
  


      
  	int_to_base36() (in module django.utils.http)
  


      
  	
    intcomma
  


      	
        
  	template filter
  


      


      
  	IntegerField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	IntegrityError
  


  

  	
      
  	InterfaceError
  


      
  	
    INTERNAL_IPS
  


      	
        
  	setting
  


      


      
  	InternalError
  


      
  	internationalization
  


      
  	interpolate() (GEOSGeometry method)
  


      
  	interpolate_normalized() (GEOSGeometry method)
  


      
  	intersection() (GeoQuerySet method)
  


      	
        
  	(OGRGeometry method)
  


      


      
  	
    intersects
  


      	
        
  	field lookup type
  


      


      
  	intersects() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


        
  	(PreparedGeometry method)
  


      


      
  	
    intword
  


      	
        
  	template filter
  


      


      
  	InvalidPage
  


      
  	inverse_flattening (SpatialReference attribute)
  


      
  	inverse_match (RegexValidator attribute)
  


      
  	ip_address (Comment attribute)
  


      
  	IPAddressField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	
    iregex
  


      	
        
  	field lookup type
  


      


      
  	iri_to_uri() (in module django.utils.encoding)
  


      
  	
    iriencode
  


      	
        
  	template filter
  


      


      
  	is_active (in module django.contrib.auth)
  


      	
        
  	(models.CustomUser attribute)
  


        
  	(models.User attribute)
  


      


      
  	is_active() (SafeExceptionReporterFilter method)
  


      
  	is_ajax() (HttpRequest method)
  


      
  	is_anonymous() (models.AbstractBaseUser method)
  


      	
        
  	(models.User method)
  


      


      
  	is_authenticated() (models.AbstractBaseUser method)
  


      	
        
  	(models.User method)
  


      


      
  	is_aware() (in module django.utils.timezone)
  


      
  	is_bound (Form attribute)
  


      
  	is_installed() (apps method)
  


      
  	is_multipart() (Form method)
  


      
  	is_naive() (in module django.utils.timezone)
  


      
  	is_password_usable() (in module django.contrib.auth.hashers)
  


      
  	is_protected_type() (in module django.utils.encoding)
  


      
  	is_public (Comment attribute)
  


      
  	is_removed (Comment attribute)
  


      
  	is_rendered (SimpleTemplateResponse attribute)
  


      
  	is_secure() (HttpRequest method)
  


      
  	is_staff (in module django.contrib.auth)
  


      	
        
  	(models.User attribute)
  


      


      
  	is_superuser (models.PermissionsMixin attribute)
  


      	
        
  	(models.User attribute)
  


      


      
  	is_valid() (Form method)
  


      
  	
    isnull
  


      	
        
  	field lookup type
  


      


      
  	
    istartswith
  


      	
        
  	field lookup type
  


      


      
  	item_attributes() (SyndicationFeed method)
  


      
  	item_geometry() (Feed method)
  


      
  	items (Sitemap attribute)
  


      
  	items() (backends.base.SessionBase method)
  


      	
        
  	(QueryDict method)
  


      


      
  	iterator() (in module django.db.models.query.QuerySet)
  


      
  	iteritems() (QueryDict method)
  


      
  	iterlists() (QueryDict method)
  


      
  	itervalues() (QueryDict method)
  


  





J


  	
      
  	Java
  


      
  	javascript_catalog() (in module django.views.i18n)
  


      
  	
    join
  


      	
        
  	template filter
  


      


      
  	json (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


  

  	
      
  	JsonResponse (class in django.http)
  


      
  	JVM
  


      
  	Jython
  


      
  	JYTHONPATH
  


  





K


  	
      
  	keys() (backends.base.SessionBase method)
  


      
  	kml (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


  

  	
      
  	kml() (GeoQuerySet method)
  


      
  	kwargs (ResolverMatch attribute)
  


  





L


  	
      
  	label (AppConfig attribute)
  


      	
        
  	(Field attribute)
  


      


      
  	label_suffix (Form attribute)
  


      
  	label_tag() (BoundField method)
  


      
  	LabelCommand (class in django.core.management)
  


      
  	
    language
  


      	
        
  	template tag
  


      


      
  	language code
  


      
  	
    LANGUAGE_CODE
  


      	
        
  	setting
  


      


      
  	
    LANGUAGE_COOKIE_AGE
  


      	
        
  	setting
  


      


      
  	
    LANGUAGE_COOKIE_DOMAIN
  


      	
        
  	setting
  


      


      
  	
    LANGUAGE_COOKIE_NAME
  


      	
        
  	setting
  


      


      
  	
    LANGUAGE_COOKIE_PATH
  


      	
        
  	setting
  


      


      
  	LANGUAGE_SESSION_KEY (in module django.utils.translation)
  


      
  	
    LANGUAGES
  


      	
        
  	setting
  


      


      
  	
    last
  


      	
        
  	template filter
  


      


      
  	last() (in module django.db.models.query.QuerySet)
  


      
  	last_login (models.User attribute)
  


      
  	last_modified() (in module django.views.decorators.http)
  


      
  	last_name (models.User attribute)
  


      
  	lastmod (Sitemap attribute)
  


      
  	lat_lon() (GeoIP method)
  


      
  	latest() (in module django.db.models.query.QuerySet)
  


      
  	latest_post_date() (SyndicationFeed method)
  


      
  	Layer (class in django.contrib.gis.gdal)
  


      
  	layer_count (DataSource attribute)
  


      
  	layer_name (Feature attribute)
  


      
  	LayerMapping (class in django.contrib.gis.utils)
  


      
  	learn_cache_key() (in module django.utils.cache)
  


      
  	leave_locale_alone (BaseCommand attribute)
  


      
  	
    left
  


      	
        
  	field lookup type
  


      


      
  	
    length
  


      	
        
  	template filter
  


      


      
  	length (GEOSGeometry attribute)
  


      
  	length() (GeoQuerySet method)
  


      
  	
    length_is
  


      	
        
  	template filter
  


      


      
  	lhs (Lookup attribute)
  


      	
        
  	(Transform attribute)
  


      


      
  	limit_choices_to (ForeignKey attribute)
  


      	
        
  	(ManyToManyField attribute)
  


      


      
  	linear_name (SpatialReference attribute)
  


      
  	linear_units (SpatialReference attribute)
  


      
  	LinearRing (class in django.contrib.gis.geos)
  


      
  	
    linebreaks
  


      	
        
  	template filter
  


      


      
  	
    linebreaksbr
  


      	
        
  	template filter
  


      


      
  	
    linenumbers
  


      	
        
  	template filter
  


      


      
  	LineString (class in django.contrib.gis.gdal)
  


      	
        
  	(class in django.contrib.gis.geos)
  


      


      
  	LineStringField (class in django.contrib.gis.db.models)
  


      	
        
  	(class in django.contrib.gis.forms)
  


      


      
  	list_display (ModelAdmin attribute)
  


      
  	list_display_links (ModelAdmin attribute)
  


      
  	list_editable (ModelAdmin attribute)
  


  

  	
      
  	list_filter (ModelAdmin attribute)
  


      
  	list_max_show_all (ModelAdmin attribute)
  


      
  	list_per_page (ModelAdmin attribute)
  


      
  	list_select_related (ModelAdmin attribute)
  


      
  	listdir() (Storage method)
  


      
  	lists() (QueryDict method)
  


      
  	ListView (built-in class)
  


      
  	LiveServerTestCase (class in django.test)
  


      
  	
    ljust
  


      	
        
  	template filter
  


      


      
  	ll (Envelope attribute)
  


      
  	
    load
  


      	
        
  	template tag
  


      


      
  	
    loaddata
  


      	
        
  	django-admin command
  


      


      
  	loader.LoaderOrigin (class in django.template)
  


      
  	loader.render_to_string() (in module django.template)
  


      
  	loadname (loader.LoaderOrigin attribute)
  


      
  	loads() (in module django.core.signing)
  


      
  	local (SpatialReference attribute)
  


      
  	locale name
  


      
  	
    LOCALE_PATHS
  


      	
        
  	setting
  


      


      
  	LocaleMiddleware (class in django.middleware.locale)
  


      
  	localization
  


      
  	
    localize
  


      	
        
  	template filter
  


        
  	template tag
  


      


      
  	localize (Field attribute)
  


      
  	
    localtime
  


      	
        
  	template filter
  


        
  	template tag
  


      


      
  	localtime() (in module django.utils.timezone)
  


      
  	LocalTimezone (class in django.utils.tzinfo)
  


      
  	location (FileSystemStorage attribute)
  


      	
        
  	(Sitemap attribute)
  


      


      
  	
    LOGGING
  


      	
        
  	setting
  


      


      
  	
    LOGGING_CONFIG
  


      	
        
  	setting
  


      


      
  	login() (Client method)
  


      	
        
  	(in module django.contrib.auth)
  


        
  	(in module django.contrib.auth.views)
  


      


      
  	login_form (AdminSite attribute)
  


      
  	
    LOGIN_REDIRECT_URL
  


      	
        
  	setting
  


      


      
  	login_required() (in module django.contrib.auth.decorators)
  


      
  	login_template (AdminSite attribute)
  


      
  	
    LOGIN_URL
  


      	
        
  	setting
  


      


      
  	logout() (Client method)
  


      	
        
  	(in module django.contrib.auth)
  


        
  	(in module django.contrib.auth.views)
  


      


      
  	logout_template (AdminSite attribute)
  


      
  	logout_then_login() (in module django.contrib.auth.views)
  


      
  	
    LOGOUT_URL
  


      	
        
  	setting
  


      


      
  	lon_lat() (GeoIP method)
  


      
  	Lookup (class in django.db.models)
  


      
  	lookup_name (Lookup attribute)
  


      	
        
  	(Transform attribute)
  


      


      
  	lookups.RegisterLookupMixin (class in django.db.models)
  


      
  	
    lower
  


      	
        
  	template filter
  


      


      
  	
    lt
  


      	
        
  	field lookup type
  


      


      
  	
    lte
  


      	
        
  	field lookup type
  


      


  





M


  	
      
  	mail_admins() (in module django.core.mail)
  


      
  	mail_managers() (in module django.core.mail)
  


      
  	Major release
  


      
  	make_aware() (in module django.utils.timezone)
  


      
  	make_line() (GeoQuerySet method)
  


      
  	
    make_list
  


      	
        
  	template filter
  


      


      
  	make_naive() (in module django.utils.timezone)
  


      
  	make_object_list (YearArchiveView attribute)
  


      
  	make_password() (in module django.contrib.auth.hashers)
  


      
  	make_random_password() (models.BaseUserManager method)
  


      
  	MakeLine (class in django.contrib.gis.db.models)
  


      
  	
    makemessages
  


      	
        
  	django-admin command
  


      


      
  	
    makemigrations
  


      	
        
  	django-admin command
  


      


      
  	managed (Options attribute)
  


      
  	Manager (class in django.db.models)
  


      
  	
    MANAGERS
  


      	
        
  	setting
  


      


      
  	managers.CurrentSiteManager (class in django.contrib.sites)
  


      
  	ManyToManyField (class in django.db.models)
  


      
  	map_height (BaseGeometryWidget attribute)
  


      	
        
  	(GeoModelAdmin attribute)
  


      


      
  	map_srid (BaseGeometryWidget attribute)
  


      
  	map_template (GeoModelAdmin attribute)
  


      
  	map_width (BaseGeometryWidget attribute)
  


      	
        
  	(GeoModelAdmin attribute)
  


      


      
  	mapping() (in module django.contrib.gis.utils)
  


      
  	mark_for_escaping() (in module django.utils.safestring)
  


      
  	mark_safe() (in module django.utils.safestring)
  


      
  	match (FilePathField attribute), [1]
  


      
  	Max (class in django.db.models)
  


      
  	max_digits (DecimalField attribute), [1]
  


      
  	max_length (CharField attribute), [1]
  


      	
        
  	(URLField attribute)
  


      


      
  	max_num (InlineModelAdmin attribute)
  


      
  	max_value (DecimalField attribute)
  


      	
        
  	(IntegerField attribute)
  


      


      
  	max_x (Envelope attribute)
  


      
  	max_y (Envelope attribute)
  


      
  	
    maxchildren
  


      	
        
  	django-admin command-line option
  


      


      
  	MaxLengthValidator (class in django.core.validators)
  


      
  	
    maxrequests
  


      	
        
  	django-admin command-line option
  


      


      
  	
    maxspare
  


      	
        
  	django-admin command-line option
  


      


      
  	MaxValueValidator (class in django.core.validators)
  


      
  	
    MEDIA_ROOT
  


      	
        
  	setting
  


      


      
  	
    MEDIA_URL
  


      	
        
  	setting
  


      


      
  	mem_size() (GeoQuerySet method)
  


      
  	MemoryFileUploadHandler (class in django.core.files.uploadhandler)
  


      
  	merged (MultiLineString attribute)
  


      
  	message (RegexValidator attribute)
  


      
  	message file
  


      
  	
    MESSAGE_LEVEL
  


      	
        
  	setting
  


      


      
  	
    MESSAGE_STORAGE
  


      	
        
  	setting
  


      


      
  	
    MESSAGE_TAGS
  


      	
        
  	setting
  


      


      
  	message_user() (ModelAdmin method)
  


      
  	MessageMiddleware (class in django.contrib.messages.middleware)
  


      
  	META (HttpRequest attribute)
  


      
  	
    method
  


      	
        
  	django-admin command-line option
  


      


      
  	method (HttpRequest attribute)
  


      
  	method_decorator() (in module django.utils.decorators)
  


      
  	middleware.RedirectFallbackMiddleware (class in django.contrib.redirects)
  


      
  	
    MIDDLEWARE_CLASSES
  


      	
        
  	setting
  


      


      
  	MiddlewareNotUsed
  


      
  	
    migrate
  


      	
        
  	django-admin command
  


      


      
  	
    MIGRATION_MODULES
  


      	
        
  	setting
  


      


      
  	Min (class in django.db.models)
  


      
  	min_length (CharField attribute)
  


      	
        
  	(URLField attribute)
  


      


      
  	min_num (InlineModelAdmin attribute)
  


      
  	min_value (DecimalField attribute)
  


      	
        
  	(IntegerField attribute)
  


      


      
  	min_x (Envelope attribute)
  


      
  	min_y (Envelope attribute)
  


  

  	
      
  	MinLengthValidator (class in django.core.validators)
  


      
  	Minor release
  


      
  	
    minspare
  


      	
        
  	django-admin command-line option
  


      


      
  	
    minute
  


      	
        
  	field lookup type
  


      


      
  	MinValueValidator (class in django.core.validators)
  


      
  	mode (File attribute)
  


      
  	model
  


      
  	Model (class in django.db.models)
  


      
  	model (ContentType attribute)
  


      	
        
  	(InlineModelAdmin attribute)
  


        
  	(django.views.generic.detail.SingleObjectMixin attribute)
  


        
  	(django.views.generic.edit.ModelFormMixin attribute)
  


        
  	(django.views.generic.list.MultipleObjectMixin attribute)
  


      


      
  	model_class() (ContentType method)
  


      
  	ModelAdmin (class in django.contrib.admin)
  


      
  	ModelBackend (class in django.contrib.auth.backends)
  


      
  	ModelChoiceField (class in django.forms)
  


      
  	ModelForm (class in django.forms)
  


      
  	modelform_factory() (in module django.forms.models)
  


      
  	modelformset_factory() (in module django.forms.models)
  


      
  	ModelMultipleChoiceField (class in django.forms)
  


      
  	models.AbstractBaseUser (class in django.contrib.auth)
  


      
  	models.AnonymousUser (class in django.contrib.auth)
  


      
  	models.BaseInlineFormSet (class in django.forms)
  


      
  	models.BaseModelFormSet (class in django.forms)
  


      
  	models.BaseUserManager (class in django.contrib.auth)
  


      
  	models.CustomUser (class in django.contrib.auth), [1]
  


      
  	models.CustomUserManager (class in django.contrib.auth)
  


      
  	models.Group (class in django.contrib.auth), [1]
  


      
  	models.Permission (class in django.contrib.auth), [1]
  


      
  	models.PermissionsMixin (class in django.contrib.auth)
  


      
  	models.ProtectedError
  


      
  	models.Redirect (class in django.contrib.redirects)
  


      
  	models.Site (class in django.contrib.sites)
  


      
  	models.User (class in django.contrib.auth), [1]
  


      
  	models.UserManager (class in django.contrib.auth)
  


      
  	models_module (AppConfig attribute)
  


      
  	moderate() (CommentModerator method)
  


      
  	moderate_after (CommentModerator attribute)
  


      
  	Moderator (class in django.contrib.comments.moderation)
  


      
  	moderator.register() (in module django.contrib.comments.moderation)
  


      
  	moderator.unregister() (in module django.contrib.comments.moderation)
  


      
  	modifiable (GeoModelAdmin attribute)
  


      
  	modified_time() (Storage method)
  


      
  	modify_settings() (in module django.test)
  


      	
        
  	(SimpleTestCase method)
  


      


      
  	module (AppConfig attribute)
  


      
  	
    month
  


      	
        
  	field lookup type
  


      


      
  	month (MonthMixin attribute)
  


      
  	
    MONTH_DAY_FORMAT
  


      	
        
  	setting
  


      


      
  	month_format (MonthMixin attribute)
  


      
  	MonthArchiveView (built-in class)
  


      	
        
  	(class in django.views.generic.dates)
  


      


      
  	MonthMixin (class in django.views.generic.dates)
  


      
  	months (SelectDateWidget attribute)
  


      
  	MTV
  


      
  	multi_db (TransactionTestCase attribute)
  


      
  	MultiLineString (class in django.contrib.gis.geos)
  


      
  	MultiLineStringField (class in django.contrib.gis.db.models)
  


      	
        
  	(class in django.contrib.gis.forms)
  


      


      
  	multiple_chunks() (File method)
  


      	
        
  	(UploadedFile method)
  


      


      
  	MultipleChoiceField (class in django.forms)
  


      
  	MultipleHiddenInput (class in django.forms)
  


      
  	MultipleObjectsReturned
  


      
  	MultiPoint (class in django.contrib.gis.geos)
  


      
  	MultiPointField (class in django.contrib.gis.db.models)
  


      	
        
  	(class in django.contrib.gis.forms)
  


      


      
  	MultiPolygon (class in django.contrib.gis.geos)
  


      
  	MultiPolygonField (class in django.contrib.gis.db.models)
  


      	
        
  	(class in django.contrib.gis.forms)
  


      


      
  	MultiValueField (class in django.forms)
  


      
  	MultiWidget (class in django.forms)
  


      
  	MVC
  


  





N


  	
      
  	
    NAME
  


      	
        
  	setting
  


      


      
  	name (AppConfig attribute)
  


      	
        
  	(ContentType attribute)
  


        
  	(DataSource attribute)
  


        
  	(Field attribute)
  


        
  	(File attribute)
  


        
  	(Layer attribute)
  


        
  	(OGRGeomType attribute)
  


        
  	(SpatialReference attribute)
  


        
  	(UploadedFile attribute)
  


        
  	(loader.LoaderOrigin attribute)
  


        
  	(models.Group attribute)
  


        
  	(models.Permission attribute)
  


        
  	(models.Site attribute)
  


      


      
  	NamedUrlCookieWizardView (class in django.contrib.formtools.wizard.views)
  


      
  	NamedUrlSessionWizardView (class in django.contrib.formtools.wizard.views)
  


      
  	NamedUrlWizardView (class in django.contrib.formtools.wizard.views)
  


      
  	namespace (ResolverMatch attribute)
  


      
  	namespaces (ResolverMatch attribute)
  


      
  	
    naturalday
  


      	
        
  	template filter
  


      


      
  	
    naturaltime
  


      	
        
  	template filter
  


      


      
  	new_file() (FileUploadHandler method)
  


      
  	new_objects (models.BaseModelFormSet attribute)
  


      
  	next_page_number() (Page method)
  


      
  	ngettext() (in module django.utils.translation)
  


      
  	ngettext_lazy() (in module django.utils.translation)
  


      
  	NoArgsCommand (class in django.core.management)
  


      
  	non_atomic_requests() (in module django.db.transaction)
  


      
  	NON_FIELD_ERRORS (in module django.core.exceptions)
  


      
  	non_field_errors() (Form method)
  


      
  	none() (in module django.db.models.query.QuerySet)
  


      
  	NoReverseMatch
  


      
  	normalize_email() (models.BaseUserManager method)
  


      
  	NotSupportedError
  


  

  	
      
  	
    now
  


      	
        
  	template tag
  


      


      
  	now() (in module django.utils.timezone)
  


      
  	npgettext() (in module django.utils.translation)
  


      
  	npgettext_lazy() (in module django.utils.translation)
  


      
  	null (Field attribute)
  


      
  	NullBooleanField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	NullBooleanSelect (class in django.forms)
  


      
  	num (OGRGeomType attribute)
  


      
  	num_coords (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	num_feat (Layer attribute)
  


      
  	num_fields (Feature attribute)
  


      	
        
  	(Layer attribute)
  


      


      
  	num_geom (GEOSGeometry attribute)
  


      
  	num_geom() (GeoQuerySet method)
  


      
  	num_interior_rings (Polygon attribute)
  


      
  	num_items() (SyndicationFeed method)
  


      
  	num_pages (Paginator attribute)
  


      
  	num_points (OGRGeometry attribute)
  


      
  	num_points() (GeoQuerySet method)
  


      
  	number (Page attribute)
  


      
  	
    NUMBER_GROUPING
  


      	
        
  	setting
  


      


      
  	NumberInput (class in django.forms)
  


  





O


  	
      
  	object (django.views.generic.edit.CreateView attribute)
  


      	
        
  	(django.views.generic.edit.UpdateView attribute)
  


      


      
  	object_history_template (ModelAdmin attribute)
  


      
  	object_list (Page attribute)
  


      
  	object_pk (Comment attribute)
  


      
  	ObjectDoesNotExist
  


      
  	ogr (GEOSGeometry attribute)
  


      
  	OGRGeometry (class in django.contrib.gis.gdal)
  


      
  	OGRGeomType (class in django.contrib.gis.gdal)
  


      
  	
    ogrinspect
  


      	
        
  	django-admin command
  


      


      
  	
    OLD_TEST_CHARSET
  


      	
        
  	setting
  


      


      
  	
    OLD_TEST_COLLATION
  


      	
        
  	setting
  


      


      
  	
    OLD_TEST_CREATE
  


      	
        
  	setting
  


      


      
  	
    OLD_TEST_DEPENDENCIES
  


      	
        
  	setting
  


      


      
  	
    OLD_TEST_MIRROR
  


      	
        
  	setting
  


      


      
  	
    OLD_TEST_NAME
  


      	
        
  	setting
  


      


      
  	
    OLD_TEST_PASSWD
  


      	
        
  	setting
  


      


      
  	
    OLD_TEST_TBLSPACE
  


      	
        
  	setting
  


      


      
  	
    OLD_TEST_TBLSPACE_TMP
  


      	
        
  	setting
  


      


      
  	
    OLD_TEST_USER
  


      	
        
  	setting
  


      


      
  	
    OLD_TEST_USER_CREATE
  


      	
        
  	setting
  


      


      
  	on_delete (ForeignKey attribute)
  


      
  	OneToOneField (class in django.db.models)
  


      
  	only() (in module django.db.models.query.QuerySet)
  


      
  	open() (django.contrib.gis.geoip.GeoIP class method)
  


      	
        
  	(FieldFile method)
  


        
  	(File method)
  


        
  	(Storage method)
  


      


      
  	openlayers_url (GeoModelAdmin attribute)
  


  

  	
      
  	OpenLayersWidget (class in django.contrib.gis.widgets)
  


      
  	OperationalError
  


      
  	option_list (BaseCommand attribute)
  


      	
        
  	(DiscoverRunner attribute)
  


      


      
  	
    OPTIONS
  


      	
        
  	setting
  


      


      
  	options() (Client method)
  


      	
        
  	(django.views.generic.base.View method)
  


      


      
  	order_by() (in module django.db.models.query.QuerySet)
  


      
  	order_with_respect_to (Options attribute)
  


      
  	ordered (QuerySet attribute)
  


      
  	ordering (ModelAdmin attribute)
  


      	
        
  	(Options attribute)
  


      


      
  	
    ordinal
  


      	
        
  	template filter
  


      


      
  	OSMGeoAdmin (class in django.contrib.gis.admin)
  


      
  	OSMWidget (class in django.contrib.gis.widgets)
  


      
  	outdim (WKBWriter attribute)
  


      
  	
    outlog
  


      	
        
  	django-admin command-line option
  


      


      
  	output_field (in module django.db.models)
  


      	
        
  	(Transform attribute)
  


      


      
  	output_transaction (BaseCommand attribute)
  


      
  	
    overlaps
  


      	
        
  	field lookup type
  


      


      
  	overlaps() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


        
  	(PreparedGeometry method)
  


      


      
  	
    overlaps_above
  


      	
        
  	field lookup type
  


      


      
  	
    overlaps_below
  


      	
        
  	field lookup type
  


      


      
  	
    overlaps_left
  


      	
        
  	field lookup type
  


      


      
  	
    overlaps_right
  


      	
        
  	field lookup type
  


      


      
  	override() (in module django.utils.timezone)
  


      	
        
  	(in module django.utils.translation)
  


      


      
  	override_settings() (in module django.test)
  


  





P


  	
      
  	Page (class in django.core.paginator)
  


      
  	page() (Paginator method)
  


      
  	page_kwarg (django.views.generic.list.MultipleObjectMixin attribute)
  


      
  	page_range (Paginator attribute)
  


      
  	PageNotAnInteger
  


      
  	paginate_by (django.views.generic.list.MultipleObjectMixin attribute)
  


      
  	paginate_orphans (django.views.generic.list.MultipleObjectMixin attribute)
  


      
  	paginate_queryset() (django.views.generic.list.MultipleObjectMixin method)
  


      
  	Paginator (class in django.core.paginator)
  


      
  	paginator (ModelAdmin attribute)
  


      	
        
  	(Page attribute)
  


      


      
  	paginator_class (django.views.generic.list.MultipleObjectMixin attribute)
  


      
  	parent_link (OneToOneField attribute)
  


      
  	parse_date() (in module django.utils.dateparse)
  


      
  	parse_datetime() (in module django.utils.dateparse)
  


      
  	parse_time() (in module django.utils.dateparse)
  


      
  	
    PASSWORD
  


      	
        
  	setting
  


      


      
  	password (models.User attribute)
  


      
  	password_change() (in module django.contrib.auth.views)
  


      
  	password_change_done() (in module django.contrib.auth.views)
  


      
  	password_change_done_template (AdminSite attribute)
  


      
  	password_change_template (AdminSite attribute)
  


      
  	
    PASSWORD_HASHERS
  


      	
        
  	setting
  


      


      
  	password_reset() (in module django.contrib.auth.views)
  


      
  	password_reset_complete() (in module django.contrib.auth.views)
  


      
  	password_reset_confirm() (in module django.contrib.auth.views)
  


      
  	password_reset_done() (in module django.contrib.auth.views)
  


      
  	
    PASSWORD_RESET_TIMEOUT_DAYS
  


      	
        
  	setting
  


      


      
  	PasswordChangeForm (class in django.contrib.auth.forms)
  


      
  	PasswordInput (class in django.forms)
  


      
  	PasswordResetForm (class in django.contrib.auth.forms)
  


      
  	patch() (Client method)
  


      
  	patch_cache_control() (in module django.utils.cache)
  


      
  	patch_response_headers() (in module django.utils.cache)
  


      
  	patch_vary_headers() (in module django.utils.cache)
  


      
  	path (AppConfig attribute)
  


      	
        
  	(FilePathField attribute), [1]
  


        
  	(HttpRequest attribute)
  


      


      
  	path() (Storage method)
  


      
  	path_info (HttpRequest attribute)
  


      
  	pattern_name (django.views.generic.base.RedirectView attribute)
  


      
  	patterns() (in module django.conf.urls)
  


      
  	perimeter() (GeoQuerySet method)
  


      
  	permalink() (in module django.db.models)
  


      
  	permanent (django.views.generic.base.RedirectView attribute)
  


      
  	permission_required() (in module django.contrib.auth.decorators)
  


      
  	PermissionDenied
  


      
  	permissions (models.Group attribute)
  


      	
        
  	(Options attribute)
  


      


      
  	pgettext() (in module django.utils.translation)
  


      
  	pgettext_lazy() (in module django.utils.translation)
  


      
  	
    phone2numeric
  


      	
        
  	template filter
  


      


      
  	
    pidfile
  


      	
        
  	django-admin command-line option
  


      


      
  	
    ping_google
  


      	
        
  	django-admin command
  


      


      
  	ping_google() (in module django.contrib.sitemaps)
  


      
  	pk (Model attribute)
  


      
  	pk_url_kwarg (django.views.generic.detail.SingleObjectMixin attribute)
  


      
  	
    pluralize
  


      	
        
  	template filter
  


      


      
  	Point (class in django.contrib.gis.gdal)
  


      	
        
  	(class in django.contrib.gis.geos)
  


      


      
  	point_count (OGRGeometry attribute)
  


      
  	point_on_surface (GEOSGeometry attribute)
  


      
  	point_on_surface() (GeoQuerySet method)
  


      
  	PointField (class in django.contrib.gis.db.models)
  


      	
        
  	(class in django.contrib.gis.forms)
  


      


      
  	Polygon (class in django.contrib.gis.gdal)
  


      	
        
  	(class in django.contrib.gis.geos)
  


      


      
  	PolygonField (class in django.contrib.gis.db.models)
  


      	
        
  	(class in django.contrib.gis.forms)
  


      


  

  	
      
  	pop() (backends.base.SessionBase method)
  


      	
        
  	(Context method)
  


        
  	(QueryDict method)
  


      


      
  	popitem() (QueryDict method)
  


      
  	
    PORT
  


      	
        
  	setting
  


      


      
  	
    port
  


      	
        
  	django-admin command-line option
  


      


      
  	PositiveIntegerField (class in django.db.models)
  


      
  	PositiveSmallIntegerField (class in django.db.models)
  


      
  	POST (HttpRequest attribute)
  


      
  	post() (Client method)
  


      	
        
  	(django.views.generic.edit.ProcessFormView method)
  


      


      
  	post_process() (storage.StaticFilesStorage method)
  


      
  	post_save_moderation() (Moderator method)
  


      
  	
    POSTGIS_TEMPLATE
  


      	
        
  	setting
  


      


      
  	
    POSTGIS_VERSION
  


      	
        
  	setting
  


      


      
  	
    pprint
  


      	
        
  	template filter
  


      


      
  	pre_init (django.db.models.signals attribute)
  


      
  	pre_save() (Field method)
  


      
  	pre_save_moderation() (Moderator method)
  


      
  	precision (Field attribute)
  


      
  	Prefetch (class in django.db.models)
  


      
  	prefetch_related() (in module django.db.models.query.QuerySet)
  


      
  	prefix (django.views.generic.edit.FormMixin attribute)
  


      	
        
  	(Form attribute)
  


      


      
  	prepared (GEOSGeometry attribute)
  


      
  	PreparedGeometry (class in django.contrib.gis.geos)
  


      
  	
    PREPEND_WWW
  


      	
        
  	setting
  


      


      
  	prepopulated_fields (ModelAdmin attribute)
  


      
  	preserve_filters (ModelAdmin attribute)
  


      
  	pretty_wkt (SpatialReference attribute)
  


      
  	preview_template (FormPreview attribute)
  


      
  	previous_page_number() (Page method)
  


      
  	primary_key (Field attribute)
  


      
  	priority (Sitemap attribute)
  


      
  	process_exception()
  


      
  	process_lhs() (Lookup method)
  


      
  	process_preview() (FormPreview method)
  


      
  	process_request()
  


      
  	process_response()
  


      
  	process_rhs() (Lookup method)
  


      
  	process_step() (WizardView method)
  


      
  	process_step_files() (WizardView method)
  


      
  	process_template_response()
  


      
  	process_view()
  


      
  	
    PROFANITIES_LIST
  


      	
        
  	setting
  


      


      
  	ProgrammingError
  


      
  	proj (SpatialReference attribute)
  


      
  	proj4 (SpatialReference attribute)
  


      
  	project
  


      
  	project() (GEOSGeometry method)
  


      
  	project_normalized() (GEOSGeometry method)
  


      
  	projected (SpatialReference attribute)
  


      
  	property
  


      
  	PROTECT (in module django.db.models)
  


      
  	
    protocol
  


      	
        
  	django-admin command-line option
  


      


      
  	protocol (GenericIPAddressField attribute), [1]
  


      	
        
  	(Sitemap attribute)
  


      


      
  	proxy (Options attribute)
  


      
  	push() (Context method)
  


      
  	put() (Client method)
  


      	
        
  	(django.views.generic.edit.ProcessFormView method)
  


      


      
  	
    Python Enhancement Proposals
  


      	
        
  	PEP 20
  


        
  	PEP 234
  


        
  	PEP 249, [1], [2], [3], [4]
  


        
  	PEP 3134, [1]
  


        
  	PEP 318
  


        
  	PEP 3333, [1], [2], [3]
  


        
  	PEP 343
  


        
  	PEP 386
  


        
  	PEP 414
  


        
  	PEP 420
  


        
  	PEP 8, [1], [2], [3]
  


      


      
  	python_2_unicode_compatible() (in module django.utils.encoding)
  


      
  	PYTHONHASHSEED
  


      
  	PYTHONPATH
  


      
  	PYTHONSTARTUP
  


  





Q


  	
      
  	Q (class in django.db.models)
  


      
  	query_string (django.views.generic.base.RedirectView attribute)
  


      
  	QueryDict (class in django.http)
  


  

  	
      
  	queryset
  


      
  	QuerySet (class in django.db.models.query)
  


      
  	queryset (django.views.generic.detail.SingleObjectMixin attribute)
  


      	
        
  	(ModelChoiceField attribute)
  


        
  	(ModelMultipleChoiceField attribute)
  


        
  	(django.views.generic.list.MultipleObjectMixin attribute)
  


      


  





R


  	
      
  	radio_fields (ModelAdmin attribute)
  


      
  	RadioSelect (class in django.forms)
  


      
  	
    random
  


      	
        
  	template filter
  


      


      
  	
    range
  


      	
        
  	field lookup type
  


      


      
  	raw() (in module django.db.models.query.QuerySet)
  


      	
        
  	(Manager method)
  


      


      
  	raw_id_fields (InlineModelAdmin attribute)
  


      	
        
  	(ModelAdmin attribute)
  


      


      
  	read() (File method)
  


      	
        
  	(HttpRequest method)
  


        
  	(UploadedFile method)
  


      


      
  	readline() (HttpRequest method)
  


      
  	readlines() (HttpRequest method)
  


      
  	readonly_fields (ModelAdmin attribute)
  


      
  	ready (apps attribute)
  


      
  	ready() (AppConfig method)
  


      
  	reason_phrase (HttpResponse attribute)
  


      	
        
  	(StreamingHttpResponse attribute)
  


      


      
  	receive_data_chunk() (FileUploadHandler method)
  


      
  	receiver() (in module django.dispatch)
  


      
  	record_by_addr() (GeoIP method)
  


      
  	record_by_name() (GeoIP method)
  


      
  	recursive (FilePathField attribute), [1]
  


      
  	redirect() (in module django.shortcuts)
  


      
  	redirect_to_login() (in module django.contrib.auth.views)
  


      
  	RedirectView (built-in class)
  


      
  	
    regex
  


      	
        
  	field lookup type
  


      


      
  	regex (RegexField attribute)
  


      	
        
  	(RegexValidator attribute)
  


      


      
  	RegexField (class in django.forms)
  


      
  	RegexValidator (class in django.core.validators)
  


      
  	region_by_addr() (GeoIP method)
  


      
  	region_by_name() (GeoIP method)
  


      
  	register() (in module django.contrib.admin)
  


      	
        
  	(in module django.core.checks)
  


      


      
  	register_lookup() (django.db.models.lookups.RegisterLookupMixin class method)
  


      
  	
    regroup
  


      	
        
  	template tag
  


      


      
  	
    relate
  


      	
        
  	field lookup type
  


      


      
  	relate() (GEOSGeometry method)
  


      
  	relate_pattern() (GEOSGeometry method)
  


      
  	related_name (ForeignKey attribute)
  


      	
        
  	(ManyToManyField attribute)
  


      


      
  	related_query_name (ForeignKey attribute)
  


      	
        
  	(GenericRelation attribute)
  


        
  	(ManyToManyField attribute)
  


      


      
  	RelatedManager (class in django.db.models.fields.related)
  


      
  	RemoteUserBackend (class in django.contrib.auth.backends)
  


      
  	RemoteUserMiddleware (class in django.contrib.auth.middleware)
  


      
  	remove() (RelatedManager method)
  


      
  	remove_field() (BaseDatabaseSchemaEditor method)
  


      
  	remove_tags() (in module django.utils.html)
  


      
  	RemoveField (class in django.db.migrations.operations)
  


      
  	
    removetags
  


      	
        
  	template filter
  


      


      
  	RenameField (class in django.db.migrations.operations)
  


      
  	RenameModel (class in django.db.migrations.operations)
  


      
  	render() (in module django.shortcuts)
  


      	
        
  	(MultiWidget method)
  


        
  	(SimpleTemplateResponse method)
  


        
  	(Widget method)
  


        
  	(WizardView method)
  


        
  	(in module django.template)
  


      


      
  	
    render_comment_form
  


      	
        
  	template tag
  


      


      
  	
    render_comment_list
  


      	
        
  	template tag
  


      


      
  	render_goto_step() (WizardView method)
  


      
  	render_revalidation_failure() (WizardView method)
  


      
  	render_to_response() (django.views.generic.base.TemplateResponseMixin method)
  


      	
        
  	(in module django.shortcuts)
  


      


      
  	render_value (PasswordInput attribute)
  


      
  	rendered_content (SimpleTemplateResponse attribute)
  


  

  	
      
  	REQUEST (HttpRequest attribute)
  


      
  	request (Response attribute)
  


      
  	RequestContext (class in django.template)
  


      
  	RequestFactory (class in django.test)
  


      
  	requests.RequestSite (class in django.contrib.sites)
  


      
  	require_all_fields (MultiValueField attribute)
  


      
  	require_GET() (in module django.views.decorators.http)
  


      
  	require_http_methods() (in module django.views.decorators.http)
  


      
  	require_POST() (in module django.views.decorators.http)
  


      
  	require_safe() (in module django.views.decorators.http)
  


      
  	required (Field attribute)
  


      
  	required_css_class (Form attribute)
  


      
  	REQUIRED_FIELDS (models.CustomUser attribute)
  


      
  	RequireDebugFalse (class in django.utils.log)
  


      
  	RequireDebugTrue (class in django.utils.log)
  


      
  	requires_csrf_token() (in module django.views.decorators.csrf)
  


      
  	requires_model_validation (BaseCommand attribute)
  


      
  	requires_system_checks (BaseCommand attribute)
  


      
  	reset_sequences (TransactionTestCase attribute)
  


      
  	resolve() (in module django.core.urlresolvers)
  


      
  	resolve_context() (SimpleTemplateResponse method)
  


      
  	resolve_template() (SimpleTemplateResponse method)
  


      
  	Resolver404
  


      
  	resolver_match (HttpRequest attribute)
  


      
  	ResolverMatch (class in django.core.urlresolvers)
  


      
  	Response (class in django.test)
  


      
  	response_add() (ModelAdmin method)
  


      
  	response_change() (ModelAdmin method)
  


      
  	response_class (django.views.generic.base.TemplateResponseMixin attribute)
  


      
  	response_delete() (ModelAdmin method)
  


      
  	response_gone_class (middleware.RedirectFallbackMiddleware attribute)
  


      
  	response_redirect_class (LocaleMiddleware attribute)
  


      	
        
  	(middleware.RedirectFallbackMiddleware attribute)
  


      


      
  	reverse() (in module django.core.urlresolvers)
  


      	
        
  	(in module django.db.models.query.QuerySet)
  


      


      
  	reverse_geom() (GeoQuerySet method)
  


      
  	reverse_lazy() (in module django.core.urlresolvers)
  


      
  	
    RFC
  


      	
        
  	RFC 1123
  


        
  	RFC 2046#section-5.2.1
  


        
  	RFC 2109, [1], [2]
  


        
  	RFC 2396
  


        
  	RFC 2616, [1], [2], [3]
  


        
  	RFC 2616#section-10
  


        
  	RFC 2616#section-14.44
  


        
  	RFC 2616#section-3.3.1
  


        
  	RFC 2616#section-9.1.1
  


        
  	RFC 2822
  


        
  	RFC 3987
  


        
  	RFC 3987#section-3.1
  


        
  	RFC 4291#section-2.2, [1]
  


        
  	RFC 6265
  


      


      
  	rhs (Lookup attribute)
  


      
  	
    right
  


      	
        
  	field lookup type
  


      


      
  	ring (GEOSGeometry attribute)
  


      
  	
    rjust
  


      	
        
  	template filter
  


      


      
  	rollback() (in module django.db.transaction)
  


      
  	root_attributes() (SyndicationFeed method)
  


      
  	
    ROOT_URLCONF
  


      	
        
  	setting
  


      


      
  	Rss201rev2Feed (class in django.utils.feedgenerator)
  


      
  	RssFeed (class in django.utils.feedgenerator)
  


      
  	RssUserland091Feed (class in django.utils.feedgenerator)
  


      
  	run_suite() (DiscoverRunner method)
  


      
  	run_tests() (DiscoverRunner method)
  


      
  	
    runfcgi
  


      	
        
  	django-admin command
  


      


      
  	RunPython (class in django.db.migrations.operations)
  


      
  	
    runserver
  


      	
        
  	django-admin command, [1]
  


      


      
  	RunSQL (class in django.db.migrations.operations)
  


  





S


  	
      
  	
    safe
  


      	
        
  	template filter
  


      


      
  	SafeBytes (class in django.utils.safestring)
  


      
  	SafeExceptionReporterFilter (class in django.views.debug)
  


      
  	
    safeseq
  


      	
        
  	template filter
  


      


      
  	SafeString (class in django.utils.safestring)
  


      
  	SafeText (class in django.utils.safestring)
  


      
  	SafeUnicode (class in django.utils.safestring)
  


      
  	
    same_as
  


      	
        
  	field lookup type
  


      


      
  	sample (StdDev attribute)
  


      	
        
  	(Variance attribute)
  


      


      
  	save() (FieldFile method)
  


      	
        
  	(File method)
  


        
  	(LayerMapping method)
  


        
  	(Model method)
  


        
  	(Storage method)
  


      


      
  	save_as (ModelAdmin attribute)
  


      
  	save_formset() (ModelAdmin method)
  


      
  	save_model() (ModelAdmin method)
  


      
  	save_on_top (ModelAdmin attribute)
  


      
  	save_related() (ModelAdmin method)
  


      
  	savepoint() (in module django.db.transaction)
  


      
  	savepoint_commit() (in module django.db.transaction)
  


      
  	savepoint_rollback() (in module django.db.transaction)
  


      
  	scale() (GeoQuerySet method)
  


      
  	scheme (HttpRequest attribute)
  


      
  	schemes (URLValidator attribute)
  


      
  	
    search
  


      	
        
  	field lookup type
  


      


      
  	search_fields (ModelAdmin attribute)
  


      
  	
    second
  


      	
        
  	field lookup type
  


      


      
  	
    SECRET_KEY
  


      	
        
  	setting
  


      


      
  	
    SECURE_PROXY_SSL_HEADER
  


      	
        
  	setting
  


      


      
  	Select (class in django.forms)
  


      
  	select_for_update() (in module django.db.models.query.QuerySet)
  


      
  	select_on_save (Options attribute)
  


      
  	select_related() (in module django.db.models.query.QuerySet)
  


      
  	select_template() (in module django.template.loader)
  


      
  	SelectDateWidget (class in django.forms.extras.widgets)
  


      
  	SelectMultiple (class in django.forms)
  


      
  	semi_major (SpatialReference attribute)
  


      
  	semi_minor (SpatialReference attribute)
  


      
  	send() (Signal method)
  


      
  	
    SEND_BROKEN_LINK_EMAILS
  


      	
        
  	setting
  


      


      
  	send_mail() (in module django.core.mail)
  


      
  	send_mass_mail() (in module django.core.mail)
  


      
  	send_robust() (Signal method)
  


      
  	sensitive_post_parameters() (in module django.views.decorators.debug)
  


      
  	sensitive_variables() (in module django.views.decorators.debug)
  


      
  	SeparateDatabaseAndState (class in django.db.migrations.operations)
  


      
  	
    SERIALIZATION_MODULES
  


      	
        
  	setting
  


      


      
  	serializers.JSONSerializer (class in django.contrib.sessions)
  


      
  	serializers.PickleSerializer (class in django.contrib.sessions)
  


      
  	
    SERVER_EMAIL
  


      	
        
  	setting
  


      


      
  	session (Client attribute)
  


      	
        
  	(HttpRequest attribute)
  


      


      
  	
    SESSION_CACHE_ALIAS
  


      	
        
  	setting
  


      


      
  	
    SESSION_COOKIE_AGE
  


      	
        
  	setting
  


      


      
  	
    SESSION_COOKIE_DOMAIN
  


      	
        
  	setting
  


      


      
  	
    SESSION_COOKIE_HTTPONLY
  


      	
        
  	setting
  


      


      
  	
    SESSION_COOKIE_NAME
  


      	
        
  	setting
  


      


      
  	
    SESSION_COOKIE_PATH
  


      	
        
  	setting
  


      


      
  	
    SESSION_COOKIE_SECURE
  


      	
        
  	setting
  


      


      
  	
    SESSION_ENGINE
  


      	
        
  	setting
  


      


      
  	
    SESSION_EXPIRE_AT_BROWSER_CLOSE
  


      	
        
  	setting
  


      


      
  	
    SESSION_FILE_PATH
  


      	
        
  	setting
  


      


      
  	
    SESSION_SAVE_EVERY_REQUEST
  


      	
        
  	setting
  


      


      
  	
    SESSION_SERIALIZER
  


      	
        
  	setting
  


      


      
  	SessionAuthenticationMiddleware (class in django.contrib.auth.middleware)
  


      
  	SessionMiddleware (class in django.contrib.sessions.middleware)
  


      
  	SessionWizardView (class in django.contrib.formtools.wizard.views)
  


      
  	SET() (in module django.db.models)
  


      
  	set_autocommit() (in module django.db.transaction)
  


      
  	set_cookie() (HttpResponse method)
  


      
  	SET_DEFAULT (in module django.db.models)
  


      
  	set_expiry() (backends.base.SessionBase method)
  


      
  	set_language() (in module django.views.i18n)
  


      
  	SET_NULL (in module django.db.models)
  


      
  	set_password() (models.AbstractBaseUser method)
  


      	
        
  	(models.User method)
  


      


      
  	set_rollback() (in module django.db.transaction)
  


      
  	set_signed_cookie() (HttpResponse method)
  


      
  	set_test_cookie() (backends.base.SessionBase method)
  


      
  	set_unusable_password() (models.AbstractBaseUser method)
  


      	
        
  	(models.User method)
  


      


      
  	setdefault() (backends.base.SessionBase method)
  


      	
        
  	(QueryDict method)
  


      


      
  	setlist() (QueryDict method)
  


      
  	setlistdefault() (QueryDict method)
  


      
  	SetPasswordForm (class in django.contrib.auth.forms)
  


      
  	
    setting
  


      	
        
  	ABSOLUTE_URL_OVERRIDES
  


        
  	ADMINS
  


        
  	ALLOWED_HOSTS
  


        
  	ALLOWED_INCLUDE_ROOTS
  


        
  	APPEND_SLASH
  


        
  	AUTHENTICATION_BACKENDS
  


        
  	AUTH_USER_MODEL
  


        
  	CACHES
  


        
  	CACHES-BACKEND
  


        
  	CACHES-KEY_FUNCTION
  


        
  	CACHES-KEY_PREFIX
  


        
  	CACHES-LOCATION
  


        
  	CACHES-OPTIONS
  


        
  	CACHES-TIMEOUT
  


        
  	CACHES-VERSION
  


        
  	CACHE_MIDDLEWARE_ALIAS
  


        
  	CACHE_MIDDLEWARE_ANONYMOUS_ONLY
  


        
  	CACHE_MIDDLEWARE_KEY_PREFIX
  


        
  	CACHE_MIDDLEWARE_SECONDS
  


        
  	COMMENTS_APP
  


        
  	COMMENTS_HIDE_REMOVED
  


        
  	COMMENT_MAX_LENGTH
  


        
  	CONN_MAX_AGE
  


        
  	CSRF_COOKIE_AGE
  


        
  	CSRF_COOKIE_DOMAIN
  


        
  	CSRF_COOKIE_HTTPONLY
  


        
  	CSRF_COOKIE_NAME
  


        
  	CSRF_COOKIE_PATH
  


        
  	CSRF_COOKIE_SECURE
  


        
  	CSRF_FAILURE_VIEW
  


        
  	DATABASE-ATOMIC_REQUESTS
  


        
  	DATABASE-AUTOCOMMIT
  


        
  	DATABASE-ENGINE
  


        
  	DATABASE-TEST
  


        
  	DATABASES
  


        
  	DATABASE_ROUTERS
  


        
  	DATETIME_FORMAT
  


        
  	DATETIME_INPUT_FORMATS
  


        
  	DATE_FORMAT
  


        
  	DATE_INPUT_FORMATS
  


        
  	DEBUG
  


        
  	DEBUG_PROPAGATE_EXCEPTIONS
  


        
  	DECIMAL_SEPARATOR
  


        
  	DEFAULT_CHARSET
  


        
  	DEFAULT_CONTENT_TYPE
  


        
  	DEFAULT_EXCEPTION_REPORTER_FILTER
  


        
  	DEFAULT_FILE_STORAGE
  


        
  	DEFAULT_FROM_EMAIL
  


        
  	DEFAULT_INDEX_TABLESPACE
  


        
  	DEFAULT_TABLESPACE
  


        
  	DISALLOWED_USER_AGENTS
  


        
  	EMAIL_BACKEND
  


        
  	EMAIL_FILE_PATH
  


        
  	EMAIL_HOST
  


        
  	EMAIL_HOST_PASSWORD
  


        
  	EMAIL_HOST_USER
  


        
  	EMAIL_PORT
  


        
  	EMAIL_SUBJECT_PREFIX
  


        
  	EMAIL_USE_SSL
  


        
  	EMAIL_USE_TLS
  


        
  	FILE_CHARSET
  


        
  	FILE_UPLOAD_DIRECTORY_PERMISSIONS
  


        
  	FILE_UPLOAD_HANDLERS
  


        
  	FILE_UPLOAD_MAX_MEMORY_SIZE
  


        
  	FILE_UPLOAD_PERMISSIONS
  


        
  	FILE_UPLOAD_TEMP_DIR
  


        
  	FIRST_DAY_OF_WEEK
  


        
  	FIXTURE_DIRS
  


        
  	FORCE_SCRIPT_NAME
  


        
  	FORMAT_MODULE_PATH
  


        
  	GDAL_LIBRARY_PATH
  


        
  	GEOIP_CITY
  


        
  	GEOIP_COUNTRY
  


        
  	GEOIP_LIBRARY_PATH
  


        
  	GEOIP_PATH
  


        
  	GEOS_LIBRARY_PATH
  


        
  	HOST
  


        
  	IGNORABLE_404_URLS
  


        
  	INSTALLED_APPS
  


        
  	INTERNAL_IPS
  


        
  	LANGUAGES
  


        
  	LANGUAGE_CODE
  


        
  	LANGUAGE_COOKIE_AGE
  


        
  	LANGUAGE_COOKIE_DOMAIN
  


        
  	LANGUAGE_COOKIE_NAME
  


        
  	LANGUAGE_COOKIE_PATH
  


        
  	LOCALE_PATHS
  


        
  	LOGGING
  


        
  	LOGGING_CONFIG
  


        
  	LOGIN_REDIRECT_URL
  


        
  	LOGIN_URL
  


        
  	LOGOUT_URL
  


        
  	MANAGERS
  


        
  	MEDIA_ROOT
  


        
  	MEDIA_URL
  


        
  	MESSAGE_LEVEL
  


        
  	MESSAGE_STORAGE
  


        
  	MESSAGE_TAGS
  


        
  	MIDDLEWARE_CLASSES
  


        
  	MIGRATION_MODULES
  


        
  	MONTH_DAY_FORMAT
  


        
  	NAME
  


        
  	NUMBER_GROUPING
  


        
  	OLD_TEST_CHARSET
  


        
  	OLD_TEST_COLLATION
  


        
  	OLD_TEST_CREATE
  


        
  	OLD_TEST_DEPENDENCIES
  


        
  	OLD_TEST_MIRROR
  


        
  	OLD_TEST_NAME
  


        
  	OLD_TEST_PASSWD
  


        
  	OLD_TEST_TBLSPACE
  


        
  	OLD_TEST_TBLSPACE_TMP
  


        
  	OLD_TEST_USER
  


        
  	OLD_TEST_USER_CREATE
  


        
  	OPTIONS
  


        
  	PASSWORD
  


        
  	PASSWORD_HASHERS
  


        
  	PASSWORD_RESET_TIMEOUT_DAYS
  


        
  	PORT
  


        
  	POSTGIS_TEMPLATE
  


        
  	POSTGIS_VERSION
  


        
  	PREPEND_WWW
  


        
  	PROFANITIES_LIST
  


        
  	ROOT_URLCONF
  


        
  	SECRET_KEY
  


        
  	SECURE_PROXY_SSL_HEADER
  


        
  	SEND_BROKEN_LINK_EMAILS
  


        
  	SERIALIZATION_MODULES
  


        
  	SERVER_EMAIL
  


        
  	SESSION_CACHE_ALIAS
  


        
  	SESSION_COOKIE_AGE
  


        
  	SESSION_COOKIE_DOMAIN
  


        
  	SESSION_COOKIE_HTTPONLY
  


        
  	SESSION_COOKIE_NAME
  


        
  	SESSION_COOKIE_PATH
  


        
  	SESSION_COOKIE_SECURE
  


        
  	SESSION_ENGINE
  


        
  	SESSION_EXPIRE_AT_BROWSER_CLOSE
  


        
  	SESSION_FILE_PATH
  


        
  	SESSION_SAVE_EVERY_REQUEST
  


        
  	SESSION_SERIALIZER
  


        
  	SHORT_DATETIME_FORMAT
  


        
  	SHORT_DATE_FORMAT
  


        
  	SIGNING_BACKEND
  


        
  	SILENCED_SYSTEM_CHECKS
  


        
  	SITE_ID
  


        
  	SPATIALITE_SQL
  


        
  	STATICFILES_DIRS
  


        
  	STATICFILES_FINDERS
  


        
  	STATICFILES_STORAGE
  


        
  	STATIC_ROOT
  


        
  	STATIC_URL
  


        
  	TEMPLATE_CONTEXT_PROCESSORS
  


        
  	TEMPLATE_DEBUG
  


        
  	TEMPLATE_DIRS
  


        
  	TEMPLATE_LOADERS
  


        
  	TEMPLATE_STRING_IF_INVALID
  


        
  	TEST_CHARSET
  


        
  	TEST_COLLATION
  


        
  	TEST_CREATE
  


        
  	TEST_DEPENDENCIES
  


        
  	TEST_MIRROR
  


        
  	TEST_NAME
  


        
  	TEST_NON_SERIALIZED_APPS
  


        
  	TEST_PASSWD
  


        
  	TEST_RUNNER
  


        
  	TEST_SERIALIZE
  


        
  	TEST_TBLSPACE
  


        
  	TEST_TBLSPACE_TMP
  


        
  	TEST_USER
  


        
  	TEST_USER_CREATE
  


        
  	THOUSAND_SEPARATOR
  


        
  	TIME_FORMAT
  


        
  	TIME_INPUT_FORMATS
  


        
  	TIME_ZONE
  


        
  	TRANSACTIONS_MANAGED
  


        
  	USER
  


        
  	USE_ETAGS
  


        
  	USE_I18N
  


        
  	USE_L10N
  


        
  	USE_THOUSAND_SEPARATOR
  


        
  	USE_TZ
  


        
  	USE_X_FORWARDED_HOST
  


        
  	WSGI_APPLICATION
  


        
  	X_FRAME_OPTIONS
  


        
  	YEAR_MONTH_FORMAT
  


      


      
  	settings() (SimpleTestCase method)
  


      
  	setup() (in module django)
  


      
  	setup_databases() (DiscoverRunner method)
  


      
  	setup_test_environment() (DiscoverRunner method)
  


      	
        
  	(in module django.test.utils)
  


      


      
  	
    shell
  


      	
        
  	django-admin command
  


      


      
  	shell (Polygon attribute)
  


      
  	
    SHORT_DATE_FORMAT
  


      	
        
  	setting
  


      


      
  	
    SHORT_DATETIME_FORMAT
  


      	
        
  	setting
  


      


      
  	shortcuts
  


      
  	shortcuts.get_current_site() (in module django.contrib.sites)
  


      
  	sign() (TimestampSigner method)
  


      
  	Signal (class in django.dispatch)
  


      
  	Signer (class in django.core.signing)
  


      
  	
    SIGNING_BACKEND
  


      	
        
  	setting
  


      


      
  	
    SILENCED_SYSTEM_CHECKS
  


      	
        
  	setting
  


      


      
  	simple (GEOSGeometry attribute)
  


      
  	simple_tag() (django.template.Library method)
  


      
  	SimpleTemplateResponse (class in django.template.response)
  


  

  	
      
  	SimpleTestCase (class in django.test)
  


      
  	simplify() (GEOSGeometry method)
  


      
  	site (Comment attribute)
  


      
  	site_header (AdminSite attribute)
  


      
  	
    SITE_ID
  


      	
        
  	setting
  


      


      
  	site_title (AdminSite attribute)
  


      
  	Sitemap (class in django.contrib.sitemaps)
  


      
  	size (File attribute)
  


      	
        
  	(UploadedFile attribute)
  


      


      
  	size() (Storage method)
  


      
  	skipIfDBFeature() (in module django.test)
  


      
  	skipUnlessDBFeature() (in module django.test)
  


      
  	
    slice
  


      	
        
  	template filter
  


      


      
  	slug
  


      
  	slug_field (django.views.generic.detail.SingleObjectMixin attribute)
  


      
  	slug_url_kwarg (django.views.generic.detail.SingleObjectMixin attribute)
  


      
  	SlugField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	
    slugify
  


      	
        
  	template filter
  


      


      
  	slugify() (in module django.utils.text)
  


      
  	SmallIntegerField (class in django.db.models)
  


      
  	smart_bytes() (in module django.utils.encoding)
  


      
  	smart_str() (in module django.utils.encoding)
  


      
  	smart_text() (in module django.utils.encoding)
  


      
  	smart_unicode() (in module django.utils.encoding)
  


      
  	snap_to_grid() (GeoQuerySet method)
  


      
  	
    socket
  


      	
        
  	django-admin command-line option
  


      


      
  	SortedDict (class in django.utils.datastructures)
  


      
  	source (StringOrigin attribute)
  


      
  	
    spaceless
  


      	
        
  	template tag
  


      


      
  	spatial_filter (Layer attribute)
  


      
  	spatial_index (GeometryField attribute)
  


      
  	
    SPATIALITE_SQL
  


      	
        
  	setting
  


      


      
  	SpatialReference (class in django.contrib.gis.gdal)
  


      
  	SplitDateTimeField (class in django.forms)
  


      
  	SplitDateTimeWidget (class in django.forms)
  


      
  	SplitHiddenDateTimeWidget (class in django.forms)
  


      
  	
    sql
  


      	
        
  	django-admin command
  


      


      
  	
    sqlall
  


      	
        
  	django-admin command
  


      


      
  	
    sqlclear
  


      	
        
  	django-admin command
  


      


      
  	
    sqlcustom
  


      	
        
  	django-admin command
  


      


      
  	
    sqldropindexes
  


      	
        
  	django-admin command
  


      


      
  	
    sqlflush
  


      	
        
  	django-admin command
  


      


      
  	
    sqlindexes
  


      	
        
  	django-admin command
  


      


      
  	
    sqlmigrate
  


      	
        
  	django-admin command
  


      


      
  	
    sqlsequencereset
  


      	
        
  	django-admin command
  


      


      
  	
    squashmigrations
  


      	
        
  	django-admin command
  


      


      
  	srid (Field attribute)
  


      	
        
  	(GEOSGeometry attribute)
  


        
  	(GeometryField attribute)
  


        
  	(OGRGeometry attribute)
  


        
  	(SpatialReference attribute)
  


        
  	(WKBWriter attribute)
  


      


      
  	srs (GEOSGeometry attribute)
  


      	
        
  	(Layer attribute)
  


        
  	(OGRGeometry attribute)
  


      


      
  	
    ssi
  


      	
        
  	template tag
  


      


      
  	StackedInline (class in django.contrib.admin)
  


      
  	start_index() (Page method)
  


      
  	
    startapp
  


      	
        
  	django-admin command
  


      


      
  	
    startproject
  


      	
        
  	django-admin command
  


      


      
  	
    startswith
  


      	
        
  	field lookup type
  


      


      
  	
    static
  


      	
        
  	template tag
  


      


      
  	static() (in module django.core.context_processors)
  


      
  	static.serve() (in module django.views)
  


      
  	static.static() (in module django.conf.urls)
  


      
  	
    STATIC_ROOT
  


      	
        
  	setting
  


      


      
  	
    STATIC_URL
  


      	
        
  	setting
  


      


      
  	
    staticfiles-static
  


      	
        
  	template tag
  


      


      
  	
    STATICFILES_DIRS
  


      	
        
  	setting
  


      


      
  	
    STATICFILES_FINDERS
  


      	
        
  	setting
  


      


      
  	
    STATICFILES_STORAGE
  


      	
        
  	setting
  


      


      
  	status_code (HttpResponse attribute)
  


      	
        
  	(Response attribute)
  


        
  	(StreamingHttpResponse attribute)
  


      


      
  	StdDev (class in django.db.models)
  


      
  	Storage (class in django.core.files.storage)
  


      
  	storage (FileField attribute)
  


      
  	storage.base.BaseStorage (class in django.contrib.messages)
  


      
  	storage.base.Message (class in django.contrib.messages)
  


      
  	storage.CachedStaticFilesStorage (class in django.contrib.staticfiles)
  


      
  	storage.cookie.CookieStorage (class in django.contrib.messages)
  


      
  	storage.fallback.FallbackStorage (class in django.contrib.messages)
  


      
  	storage.ManifestStaticFilesStorage (class in django.contrib.staticfiles)
  


      
  	storage.session.SessionStorage (class in django.contrib.messages)
  


      
  	storage.StaticFilesStorage (class in django.contrib.staticfiles)
  


      
  	streaming (HttpResponse attribute)
  


      	
        
  	(StreamingHttpResponse attribute)
  


      


      
  	streaming_content (StreamingHttpResponse attribute)
  


      
  	StreamingHttpResponse (class in django.http)
  


      
  	
    strictly_above
  


      	
        
  	field lookup type
  


      


      
  	
    strictly_below
  


      	
        
  	field lookup type
  


      


      
  	string_concat() (in module django.utils.translation)
  


      
  	stringfilter() (django.template.defaultfilters method)
  


      
  	
    stringformat
  


      	
        
  	template filter
  


      


      
  	StringOrigin (class in django.template)
  


      
  	strip_tags() (in module django.utils.html)
  


      
  	
    striptags
  


      	
        
  	template filter
  


      


      
  	submit_date (Comment attribute)
  


      
  	success_url (django.views.generic.edit.DeletionMixin attribute)
  


      	
        
  	(django.views.generic.edit.FormMixin attribute)
  


        
  	(django.views.generic.edit.ModelFormMixin attribute)
  


      


      
  	suite_result() (DiscoverRunner method)
  


      
  	Sum (class in django.db.models)
  


      
  	supports_3d (BaseGeometryWidget attribute)
  


      
  	SuspiciousOperation
  


      
  	svg() (GeoQuerySet method)
  


      
  	swappable (ForeignKey attribute)
  


      	
        
  	(ManyToManyField attribute)
  


      


      
  	sym_difference() (GeoQuerySet method)
  


      	
        
  	(GEOSGeometry method)
  


        
  	(OGRGeometry method)
  


      


      
  	symmetrical (ManyToManyField attribute)
  


      
  	
    syncdb
  


      	
        
  	django-admin command
  


      


      
  	SyndicationFeed (class in django.utils.feedgenerator)
  


  





T


  	
      
  	TabularInline (class in django.contrib.admin)
  


      
  	teardown_databases() (DiscoverRunner method)
  


      
  	teardown_test_environment() (DiscoverRunner method)
  


      	
        
  	(in module django.test.utils)
  


      


      
  	tell() (HttpResponse method)
  


      
  	template
  


      
  	Template (class in django.template)
  


      
  	template (InlineModelAdmin attribute)
  


      
  	
    template filter
  


      	
        
  	add
  


        
  	addslashes
  


        
  	apnumber
  


        
  	capfirst
  


        
  	center
  


        
  	cut
  


        
  	date
  


        
  	default
  


        
  	default_if_none
  


        
  	dictsort
  


        
  	dictsortreversed
  


        
  	divisibleby
  


        
  	escape
  


        
  	escapejs
  


        
  	filesizeformat
  


        
  	first
  


        
  	fix_ampersands
  


        
  	floatformat
  


        
  	force_escape
  


        
  	get_digit
  


        
  	intcomma
  


        
  	intword
  


        
  	iriencode
  


        
  	join
  


        
  	last
  


        
  	length
  


        
  	length_is
  


        
  	linebreaks
  


        
  	linebreaksbr
  


        
  	linenumbers
  


        
  	ljust
  


        
  	localize
  


        
  	localtime
  


        
  	lower
  


        
  	make_list
  


        
  	naturalday
  


        
  	naturaltime
  


        
  	ordinal
  


        
  	phone2numeric
  


        
  	pluralize
  


        
  	pprint
  


        
  	random
  


        
  	removetags
  


        
  	rjust
  


        
  	safe
  


        
  	safeseq
  


        
  	slice
  


        
  	slugify
  


        
  	stringformat
  


        
  	striptags
  


        
  	time
  


        
  	timesince
  


        
  	timeuntil
  


        
  	timezone
  


        
  	title
  


        
  	truncatechars
  


        
  	truncatechars_html
  


        
  	truncatewords
  


        
  	truncatewords_html
  


        
  	unlocalize
  


        
  	unordered_list
  


        
  	upper
  


        
  	urlencode
  


        
  	urlize
  


        
  	urlizetrunc
  


        
  	utc
  


        
  	wordcount
  


        
  	wordwrap
  


        
  	yesno
  


      


      
  	
    template tag
  


      	
        
  	autoescape
  


        
  	block
  


        
  	blocktrans
  


        
  	cache
  


        
  	comment
  


        
  	comment_form_target
  


        
  	csrf_token
  


        
  	cycle
  


        
  	debug
  


        
  	extends
  


        
  	filter
  


        
  	firstof
  


        
  	for
  


        
  	get_comment_count
  


        
  	get_comment_form
  


        
  	get_comment_list
  


        
  	get_comment_permalink
  


        
  	get_current_timezone
  


        
  	get_flatpages
  


        
  	get_media_prefix
  


        
  	get_static_prefix
  


        
  	if
  


        
  	ifchanged
  


        
  	ifequal
  


        
  	ifnotequal
  


        
  	include
  


        
  	language
  


        
  	load
  


        
  	localize
  


        
  	localtime
  


        
  	now
  


        
  	regroup
  


        
  	render_comment_form
  


        
  	render_comment_list
  


        
  	spaceless
  


        
  	ssi
  


        
  	static
  


        
  	staticfiles-static
  


        
  	templatetag
  


        
  	timezone
  


        
  	trans
  


        
  	url
  


        
  	verbatim
  


        
  	widthratio
  


        
  	with
  


      


      
  	
    TEMPLATE_CONTEXT_PROCESSORS
  


      	
        
  	setting
  


      


      
  	
    TEMPLATE_DEBUG
  


      	
        
  	setting
  


      


      
  	
    TEMPLATE_DIRS
  


      	
        
  	setting
  


      


      
  	
    TEMPLATE_LOADERS
  


      	
        
  	setting
  


      


      
  	template_name (BaseGeometryWidget attribute)
  


      	
        
  	(SimpleTemplateResponse attribute)
  


        
  	(django.views.generic.base.TemplateResponseMixin attribute)
  


      


      
  	template_name_field (django.views.generic.detail.SingleObjectTemplateResponseMixin attribute)
  


      
  	template_name_suffix (django.views.generic.detail.SingleObjectTemplateResponseMixin attribute)
  


      	
        
  	(django.views.generic.edit.CreateView attribute)
  


        
  	(django.views.generic.edit.DeleteView attribute)
  


        
  	(django.views.generic.edit.UpdateView attribute)
  


        
  	(django.views.generic.list.MultipleObjectTemplateResponseMixin attribute)
  


      


      
  	
    TEMPLATE_STRING_IF_INVALID
  


      	
        
  	setting
  


      


      
  	TemplateResponse (class in django.template.response)
  


      
  	templates (Response attribute)
  


      
  	
    templatetag
  


      	
        
  	template tag
  


      


      
  	TemplateView (built-in class)
  


      
  	templatize() (in module django.utils.translation)
  


      
  	temporary_file_path() (TemporaryUploadedFile method)
  


      
  	TemporaryFileUploadHandler (class in django.core.files.uploadhandler)
  


      
  	TemporaryUploadedFile (class in django.core.files.uploadedfile)
  


      
  	
    test
  


      	
        
  	django-admin command
  


      


      
  	test_capability() (Layer method)
  


      
  	
    TEST_CHARSET
  


      	
        
  	setting
  


      


      
  	
    TEST_COLLATION
  


      	
        
  	setting
  


      


      
  	test_cookie_worked() (backends.base.SessionBase method)
  


      
  	
    TEST_CREATE
  


      	
        
  	setting
  


      


      
  	
    TEST_DEPENDENCIES
  


      	
        
  	setting
  


      


      
  	test_loader (DiscoverRunner attribute)
  


      
  	
    TEST_MIRROR
  


      	
        
  	setting
  


      


      
  	
    TEST_NAME
  


      	
        
  	setting
  


      


      
  	
    TEST_NON_SERIALIZED_APPS
  


      	
        
  	setting
  


      


      
  	
    TEST_PASSWD
  


      	
        
  	setting
  


      


      
  	
    TEST_RUNNER
  


      	
        
  	setting
  


      


      
  	test_runner (DiscoverRunner attribute)
  


      
  	
    TEST_SERIALIZE
  


      	
        
  	setting
  


      


      
  	test_suite (DiscoverRunner attribute)
  


      
  	
    TEST_TBLSPACE
  


      	
        
  	setting
  


      


      
  	
    TEST_TBLSPACE_TMP
  


      	
        
  	setting
  


      


      
  	
    TEST_USER
  


      	
        
  	setting
  


      


      
  	
    TEST_USER_CREATE
  


      	
        
  	setting
  


      


      
  	TestCase (class in django.test)
  


      
  	testing.StaticLiveServerTestCase (class in django.contrib.staticfiles)
  


      
  	tests.custom_user.CustomUser (class in django.contrib.auth)
  


  

  	
      
  	tests.custom_user.ExtensionUser (class in django.contrib.auth)
  


      
  	
    testserver
  


      	
        
  	django-admin command
  


      


      
  	Textarea (class in django.forms)
  


      
  	TextField (class in django.db.models)
  


      
  	TextInput (class in django.forms)
  


      
  	
    THOUSAND_SEPARATOR
  


      	
        
  	setting
  


      


      
  	through (ManyToManyField attribute)
  


      
  	through_fields (ManyToManyField attribute)
  


      
  	
    time
  


      	
        
  	template filter
  


      


      
  	
    TIME_FORMAT
  


      	
        
  	setting
  


      


      
  	time_format (SplitDateTimeWidget attribute)
  


      
  	
    TIME_INPUT_FORMATS
  


      	
        
  	setting
  


      


      
  	
    TIME_ZONE
  


      	
        
  	setting
  


      


      
  	TimeField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	TimeInput (class in django.forms)
  


      
  	timeout (backends.smtp.EmailBackend attribute)
  


      
  	
    timesince
  


      	
        
  	template filter
  


      


      
  	TimestampSigner (class in django.core.signing)
  


      
  	
    timeuntil
  


      	
        
  	template filter
  


      


      
  	
    timezone
  


      	
        
  	template filter
  


        
  	template tag
  


      


      
  	
    title
  


      	
        
  	template filter
  


      


      
  	to_esri() (SpatialReference method)
  


      
  	to_field (ForeignKey attribute)
  


      
  	to_field_name (ModelChoiceField attribute)
  


      
  	to_locale() (in module django.utils.translation)
  


      
  	to_python() (Field method)
  


      
  	TodayArchiveView (built-in class)
  


      	
        
  	(class in django.views.generic.dates)
  


      


      
  	total_error_count() (BaseFormSet method)
  


      
  	
    touches
  


      	
        
  	field lookup type
  


      


      
  	touches() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


        
  	(PreparedGeometry method)
  


      


      
  	
    trans
  


      	
        
  	template tag
  


      


      
  	TransactionManagementError
  


      
  	TransactionMiddleware (class in django.middleware.transaction)
  


      
  	
    TRANSACTIONS_MANAGED
  


      	
        
  	setting
  


      


      
  	TransactionTestCase (class in django.test)
  


      
  	Transform (class in django.db.models)
  


      
  	transform() (GeoQuerySet method)
  


      	
        
  	(GEOSGeometry method)
  


        
  	(OGRGeometry method)
  


      


      
  	translate() (GeoQuerySet method)
  


      
  	translation string
  


      
  	
    truncatechars
  


      	
        
  	template filter
  


      


      
  	
    truncatechars_html
  


      	
        
  	template filter
  


      


      
  	
    truncatewords
  


      	
        
  	template filter
  


      


      
  	
    truncatewords_html
  


      	
        
  	template filter
  


      


      
  	tuple (Envelope attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	type (Field attribute)
  


      
  	type_name (Field attribute)
  


      
  	TypedChoiceField (class in django.forms)
  


      
  	TypedMultipleChoiceField (class in django.forms)
  


  





U


  	
      
  	ugettext() (in module django.utils.translation)
  


      
  	ugettext_lazy() (in module django.utils.translation)
  


      
  	ugettext_noop() (in module django.utils.translation)
  


      
  	
    umask
  


      	
        
  	django-admin command-line option
  


      


      
  	ungettext() (in module django.utils.translation)
  


      
  	ungettext_lazy() (in module django.utils.translation)
  


      
  	Union (class in django.contrib.gis.db.models)
  


      
  	union() (GeoQuerySet method)
  


      	
        
  	(GEOSGeometry method)
  


        
  	(OGRGeometry method)
  


      


      
  	unionagg() (GeoQuerySet method)
  


      
  	unique (Field attribute)
  


      
  	unique_for_date (Field attribute)
  


      
  	unique_for_month (Field attribute)
  


      
  	unique_for_year (Field attribute)
  


      
  	unique_together (Options attribute)
  


      
  	unit_attname() (django.contrib.gis.measure.Area class method)
  


      	
        
  	(django.contrib.gis.measure.Distance class method)
  


      


      
  	units (SpatialReference attribute)
  


      
  	
    unlocalize
  


      	
        
  	template filter
  


      


      
  	
    unordered_list
  


      	
        
  	template filter
  


      


      
  	unpack_ipv4 (GenericIPAddressField attribute), [1]
  


      
  	UnreadablePostError
  


      
  	unsign() (TimestampSigner method)
  


      
  	update() (Context method)
  


      	
        
  	(QueryDict method)
  


        
  	(in module django.db.models.query.QuerySet)
  


      


      
  	update_or_create() (in module django.db.models.query.QuerySet)
  


      
  	update_session_auth_hash() (in module django.contrib.auth.decorators)
  


      
  	UpdateCacheMiddleware (class in django.middleware.cache)
  


      
  	UpdateView (built-in class)
  


      
  	upload_complete() (FileUploadHandler method)
  


      
  	upload_to (FileField attribute)
  


      
  	UploadedFile (class in django.core.files.uploadedfile)
  


      
  	
    upper
  


      	
        
  	template filter
  


      


      
  	ur (Envelope attribute)
  


      
  	
    url
  


      	
        
  	template tag
  


      


      
  	url (django.views.generic.base.RedirectView attribute)
  


      	
        
  	(FieldFile attribute)
  


        
  	(HttpResponseRedirect attribute)
  


      


      
  	url() (in module django.conf.urls)
  


      	
        
  	(Storage method)
  


      


      
  	url_name (ResolverMatch attribute)
  


      
  	urlconf (HttpRequest attribute)
  


      
  	
    urlencode
  


      	
        
  	template filter
  


      


  

  	
      
  	urlencode() (in module django.utils.http)
  


      	
        
  	(QueryDict method)
  


      


      
  	URLField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	URLInput (class in django.forms)
  


      
  	
    urlize
  


      	
        
  	template filter
  


      


      
  	
    urlizetrunc
  


      	
        
  	template filter
  


      


      
  	urlquote() (in module django.utils.http)
  


      
  	urlquote_plus() (in module django.utils.http)
  


      
  	
    urls
  


      	
        
  	definitive
  


      


      
  	urls (SimpleTestCase attribute)
  


      
  	urls.staticfiles_urlpatterns() (in module django.contrib.staticfiles)
  


      
  	urlsafe_base64_decode() (in module django.utils.http)
  


      
  	urlsafe_base64_encode() (in module django.utils.http)
  


      
  	URLValidator (class in django.core.validators)
  


      
  	
    USE_ETAGS
  


      	
        
  	setting
  


      


      
  	
    USE_I18N
  


      	
        
  	setting
  


      


      
  	
    USE_L10N
  


      	
        
  	setting
  


      


      
  	
    USE_THOUSAND_SEPARATOR
  


      	
        
  	setting
  


      


      
  	
    USE_TZ
  


      	
        
  	setting
  


      


      
  	
    USE_X_FORWARDED_HOST
  


      	
        
  	setting
  


      


      
  	
    USER
  


      	
        
  	setting
  


      


      
  	user (Comment attribute)
  


      	
        
  	(HttpRequest attribute)
  


      


      
  	user_email (Comment attribute)
  


      
  	user_logged_in() (in module django.contrib.auth.signals)
  


      
  	user_logged_out() (in module django.contrib.auth.signals)
  


      
  	user_login_failed() (in module django.contrib.auth.signals)
  


      
  	user_name (Comment attribute)
  


      
  	user_passes_test() (in module django.contrib.auth.decorators)
  


      
  	user_permissions (models.User attribute)
  


      
  	user_url (Comment attribute)
  


      
  	UserChangeForm (class in django.contrib.auth.forms)
  


      
  	UserCreationForm (class in django.contrib.auth.forms)
  


      
  	username (models.User attribute)
  


      
  	USERNAME_FIELD (models.CustomUser attribute)
  


      
  	using() (in module django.db.models.query.QuerySet)
  


      
  	
    utc
  


      	
        
  	template filter
  


      


      
  	utc (in module django.utils.timezone)
  


  





V


  	
      
  	valid (GEOSGeometry attribute)
  


      
  	valid_reason (GEOSGeometry attribute)
  


      
  	
    validate
  


      	
        
  	django-admin command
  


      


      
  	validate() (BaseCommand method)
  


      	
        
  	(SpatialReference method)
  


      


      
  	validate_comma_separated_integer_list (in module django.core.validators)
  


      
  	validate_email (in module django.core.validators)
  


      
  	validate_ipv46_address (in module django.core.validators)
  


      
  	validate_ipv4_address (in module django.core.validators)
  


      
  	validate_ipv6_address (in module django.core.validators)
  


      
  	validate_slug (in module django.core.validators)
  


      
  	validate_unique() (Model method)
  


      
  	ValidationError
  


      
  	validators (Field attribute), [1]
  


      
  	value (Field attribute)
  


      
  	value() (BoundField method)
  


      
  	value_from_datadict() (Widget method)
  


      
  	value_to_string() (Field method)
  


      
  	values() (in module django.db.models.query.QuerySet)
  


      	
        
  	(QueryDict method)
  


      


  

  	
      
  	values_list() (in module django.db.models.query.QuerySet)
  


      
  	Variance (class in django.db.models)
  


      
  	vary_on_cookie() (in module django.views.decorators.vary)
  


      
  	vary_on_headers() (in module django.views.decorators.vary)
  


      
  	
    verbatim
  


      	
        
  	template tag
  


      


      
  	verbose_name (AppConfig attribute)
  


      	
        
  	(Field attribute)
  


        
  	(InlineModelAdmin attribute)
  


        
  	(Options attribute)
  


      


      
  	verbose_name_plural (InlineModelAdmin attribute)
  


      	
        
  	(Options attribute)
  


      


      
  	
    version
  


      	
        
  	django-admin command
  


      


      
  	view
  


      
  	View (built-in class)
  


      
  	view_name (ResolverMatch attribute)
  


      
  	view_on_site (ModelAdmin attribute)
  


      
  	ViewDoesNotExist
  


      
  	views.Feed (class in django.contrib.syndication)
  


      
  	views.index() (in module django.contrib.sitemaps)
  


      
  	views.serve() (in module django.contrib.staticfiles)
  


      
  	views.sitemap() (in module django.contrib.sitemaps)
  


      
  	views.SuccessMessageMixin (class in django.contrib.messages)
  


  





W


  	
      
  	W3CGeoFeed (class in django.contrib.gis.feeds)
  


      
  	Warning (class in django.core.checks)
  


      
  	week (WeekMixin attribute)
  


      
  	
    week_day
  


      	
        
  	field lookup type
  


      


      
  	week_format (WeekMixin attribute)
  


      
  	WeekArchiveView (built-in class)
  


      	
        
  	(class in django.views.generic.dates)
  


      


      
  	WeekMixin (class in django.views.generic.dates)
  


      
  	Widget (class in django.forms)
  


      
  	widget (Field attribute)
  


      	
        
  	(MultiValueField attribute)
  


      


      
  	widgets (MultiWidget attribute)
  


      
  	width (Field attribute)
  


      	
        
  	(ImageFile attribute)
  


      


      
  	width_field (ImageField attribute)
  


      
  	
    widthratio
  


      	
        
  	template tag
  


      


      
  	
    with
  


      	
        
  	template tag
  


      


      
  	
    within
  


      	
        
  	field lookup type
  


      


      
  	within() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


        
  	(PreparedGeometry method)
  


      


  

  	
      
  	WizardView (class in django.contrib.formtools.wizard.views)
  


      
  	wkb (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	wkb_size (OGRGeometry attribute)
  


      
  	WKBReader (class in django.contrib.gis.geos)
  


      
  	WKBWriter (class in django.contrib.gis.geos)
  


      
  	wkt (Envelope attribute)
  


      	
        
  	(GEOSGeometry attribute)
  


        
  	(OGRGeometry attribute)
  


        
  	(SpatialReference attribute)
  


      


      
  	WKTReader (class in django.contrib.gis.geos)
  


      
  	WKTWriter (class in django.contrib.gis.geos)
  


      
  	
    wordcount
  


      	
        
  	template filter
  


      


      
  	
    wordwrap
  


      	
        
  	template filter
  


      


      
  	
    workdir
  


      	
        
  	django-admin command-line option
  


      


      
  	write() (File method)
  


      	
        
  	(HttpResponse method)
  


        
  	(SyndicationFeed method)
  


        
  	(WKBWriter method)
  


        
  	(WKTWriter method)
  


      


      
  	write_hex() (WKBWriter method)
  


      
  	writeString() (SyndicationFeed method)
  


      
  	
    WSGI_APPLICATION
  


      	
        
  	setting
  


      


      
  	wsgi_request (Response attribute)
  


  





X


  	
      
  	x (LineString attribute)
  


      	
        
  	(Point attribute)
  


      


      
  	
    X_FRAME_OPTIONS
  


      	
        
  	setting
  


      


      
  	XFrameOptionsMiddleware (class in django.middleware.clickjacking)
  


  

  	
      
  	
    xml
  


      	
        
  	suckiness of
  


      


      
  	xml (SpatialReference attribute)
  


      
  	xreadlines() (HttpRequest method)
  


  





Y


  	
      
  	y (LineString attribute)
  


      	
        
  	(Point attribute)
  


      


      
  	
    year
  


      	
        
  	field lookup type
  


      


      
  	year (YearMixin attribute)
  


      
  	year_format (YearMixin attribute)
  


      
  	
    YEAR_MONTH_FORMAT
  


      	
        
  	setting
  


      


  

  	
      
  	YearArchiveView (built-in class)
  


      	
        
  	(class in django.views.generic.dates)
  


      


      
  	YearMixin (class in django.views.generic.dates)
  


      
  	years (SelectDateWidget attribute)
  


      
  	
    yesno
  


      	
        
  	template filter
  


      


  





Z


  	
      
  	z (LineString attribute)
  


      	
        
  	(Point attribute)
  


      


  







          

      

      

    


  _images/admin07.png
Home » Polls » Questions » What's up?
Change question

Date Date:2013-08-03| Today | )

published: Time: [ 16:42:32 | Now | D

Question text: | What's up?

% Delete





_images/flatfiles_admin.png
[ —
e
. —
e—
-
[
e
T
e
e
E
T
s
—






_images/admin14t.png
Home » Polls » Questions

Select question to change
%) (Go] 0of 1 selected e |

Action:
(0| Question text Date published Published recently? m‘:‘: poblished
O What's up? Sept. 3,2013, 4:42 pm. ° Today.
Past 7 days
1 question This month

This year





_images/admin10.png
Home » Polls > Choices » Add choice

Add choice
Question: [E—ry

Choice text:

Votes: o





_images/admin12t.png
Home > Polls > Questions > Add question

Add question

B S—

Date information (Show)

Choice text

4 Add another Choice

Votes Delete?

Soveand 200 sntvr | [Sve and comnu oo | Y






_images/admin06t.png
Home > Polls > Questions > What's up? » History

Change history: What's up?
Date/time User Action
Sept. 6, 2013, 4:56 p.m. rodolfo2488 Changed pub_date.





_images/admin13t.png
Home » Polls > Questions

Select question to change

Action: Go] 0.0f 1 selected
() Question text Date published Was published recently
O What's up? Sept. 3,2013, 4:42 pm. False

1 question





_images/admin09.png
Home > Polls » Questions » What's up?

Change question
Question text: | wha's up?
Date information (Show)

2 Delete

Save ant dd ancte | Save and cominue conin | [





_images/admin05t.png
Home > Polls > Questions » What's up?
Change question [ History ]

Question text: | What's up?

Date:| 2013-09-06| Today | [
Time: [16:42:32 | Now | D

wDelee Soveand 200 sntvr | [Sve and cominu oo | [






_images/article_actions.png
Select article to change [ Add articie |

Action] ¢ -
Delete selected articles

|Ga 2of 5 selected

BIRL e s as pubshed T

| An Excercise In Species Barcoaing Published
@ Dijango 1.4 released Draft

(J Example Headlines Considered Harmful Published
@ Global is the new private Draft

O Man lands on Mars Withdrawn

5 articles





_images/admin08t.png
Home > Polls » Questions » What's up?

Change question

Question text: | What's up?

Date information
Date Date: 2013-09-03 Todsy | )
ublished:

Lo Time: [16:42:32 | Now | (D)

2 Delete






_images/admin02.png
. Documentation / Chang

stration

Recent Actions

#Add #Change | | My Actions
4Add #Change | None available






_images/admin11t.png


_images/admin03t.png
Site administration

Groups #Add 2 Change
users #Add 2 Change

Recent Actions

My Actions.
None available

Questions #Add 2 Change






_images/admin15t.png
Cholce: #2

Choice text:

Votes:

Cholce: #3

Choice text:

Votes:

Cholce: #4.

Choice text:

Votes:

# Add another Choice






_images/admin04t.png
Home > Polls > Questions

Select question to change

%) (6ol 0of 1 setcted

Action:

O Question
O what's up?

1 question





search.html



    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


  

