

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Django 1.3.7 documentation

Django documentation contents

	Getting started
	Django at a glance
	Design your model

	Install it

	Enjoy the free API

	A dynamic admin interface: it’s not just scaffolding – it’s the whole house

	Design your URLs

	Write your views

	Design your templates

	This is just the surface

	Quick install guide
	Install Python

	Set up a database

	Remove any old versions of Django

	Install Django

	Verifying

	That’s it!

	Writing your first Django app, part 1
	Creating a project

	Creating models

	Activating models

	Playing with the API

	Writing your first Django app, part 2
	Activate the admin site

	Start the development server

	Enter the admin site

	Make the poll app modifiable in the admin

	Explore the free admin functionality

	Customize the admin form

	Adding related objects

	Customize the admin change list

	Customize the admin look and feel

	Customize the admin index page

	Writing your first Django app, part 3
	Philosophy

	Design your URLs

	Write your first view

	Write views that actually do something

	Raising 404

	Write a 404 (page not found) view

	Write a 500 (server error) view

	Use the template system

	Simplifying the URLconfs

	Decoupling the URLconfs

	Writing your first Django app, part 4
	Write a simple form

	Use generic views: Less code is better

	Coming soon

	What to read next
	Finding documentation

	How the documentation is organized

	How documentation is updated

	Where to get it

	Differences between versions

	Using Django
	How to install Django
	Install Python

	Install Apache and mod_wsgi

	Get your database running

	Remove any old versions of Django

	Install the Django code

	Models and databases
	Models

	Making queries

	Aggregation

	Managers

	Performing raw SQL queries

	Managing database transactions

	Multiple databases

	Database access optimization

	Handling HTTP requests
	URL dispatcher

	Writing views

	View decorators

	File Uploads

	Django shortcut functions

	Generic views

	Middleware

	How to use sessions

	Working with forms
	Overview

	Form objects

	Further topics

	The Django template language
	Templates

	Variables

	Filters

	Tags

	Comments

	Template inheritance

	Automatic HTML escaping

	Accessing method calls

	Custom tag and filter libraries

	Class-based generic views
	Simple usage

	Generic views of objects

	Extending generic views

	Decorating class-based views

	Migrating function-based generic views
	How to migrate

	Managing files
	Using files in models

	The File object

	File storage

	Testing Django applications
	Writing tests

	Running tests

	Testing tools

	Using different testing frameworks

	User authentication in Django
	Overview

	Installation

	Users

	Authentication in Web requests

	Permissions

	Authentication data in templates

	Groups

	Messages

	Other authentication sources

	Django’s cache framework
	Setting up the cache

	The per-site cache

	The per-view cache

	Template fragment caching

	The low-level cache API

	Upstream caches

	Using Vary headers

	Controlling cache: Using other headers

	Other optimizations

	Order of MIDDLEWARE_CLASSES

	Conditional View Processing
	The condition decorator

	Shortcuts for only computing one value

	Using the decorators with other HTTP methods

	Comparison with middleware conditional processing

	Sending e-mail
	Quick example

	send_mail()

	send_mass_mail()

	mail_admins()

	mail_managers()

	Examples

	Preventing header injection

	The EmailMessage class

	E-Mail Backends

	Testing e-mail sending

	SMTPConnection

	Internationalization and localization
	Overview

	Glossary

	Specialties of Django translation

	Logging
	A quick logging primer

	Using logging

	Configuring logging

	Django’s logging extensions

	Pagination
	Example

	Using Paginator in a view

	Paginator objects

	InvalidPage exceptions

	Page objects

	Serializing Django objects
	Serializing data

	Deserializing data

	Serialization formats

	Natural keys

	Django settings
	The basics

	Designating the settings

	Default settings

	Using settings in Python code

	Altering settings at runtime

	Security

	Available settings

	Creating your own settings

	Using settings without setting DJANGO_SETTINGS_MODULE

	Signals
	Listening to signals

	Defining and sending signals

	Disconnecting signals

	Deprecated features
	Generic views

	“How-to” guides
	Authenticating against Django’s user database from Apache
	Configuring Apache

	Authentication using REMOTE_USER
	Configuration

	RemoteUserBackend

	How to contribute to Django
	“The Spirit of Contributing”

	Understanding Trac

	Advice for new contributors

	FAQs

	Writing custom django-admin commands
	Command objects

	Writing custom model fields
	Introduction

	Background theory

	Writing a field subclass

	Writing a FileField subclass

	Custom template tags and filters
	Introduction

	Writing a custom storage system
	_open(name, mode='rb')

	_save(name, content)

	get_valid_name(name)

	get_available_name(name)

	Deploying Django
	How to use Django with Apache and mod_wsgi

	How to use Django with FastCGI, SCGI, or AJP

	mod_python (deprecated)

	Error reporting via e-mail
	Server errors

	404 errors

	Providing initial data for models
	Providing initial data with fixtures

	Providing initial SQL data

	Using internationalization in your own projects
	Using translations outside views and templates

	Running Django on Jython
	Installing Jython

	Creating a servlet container

	Installing Django

	Installing Jython platform support libraries

	Differences with Django on Jython

	Integrating Django with a legacy database
	Give Django your database parameters

	Auto-generate the models

	Install the core Django tables

	Test and tweak

	Outputting CSV with Django
	Using the Python CSV library

	Using the template system

	Other text-based formats

	Outputting PDFs with Django
	Install ReportLab

	Write your view

	Complex PDFs

	Further resources

	Other formats

	Managing static files
	Using django.contrib.staticfiles

	Referring to static files in templates

	Serving static files in development

	Serving static files in production

	Upgrading from django-staticfiles

	Learn more

	Django FAQ
	FAQ: General
	Why does this project exist?

	What does “Django” mean, and how do you pronounce it?

	Is Django stable?

	Does Django scale?

	Who’s behind this?

	Which sites use Django?

	Django appears to be a MVC framework, but you call the Controller the “view”, and the View the “template”. How come you don’t use the standard names?

	<Framework X> does <feature Y> – why doesn’t Django?

	Why did you write all of Django from scratch, instead of using other Python libraries?

	Is Django a content-management-system (CMS)?

	How can I download the Django documentation to read it offline?

	Where can I find Django developers for hire?

	FAQ: Installation
	How do I get started?

	What are Django’s prerequisites?

	Do I lose anything by using Python 2.4 versus newer Python versions, such as Python 2.5 or 2.6?

	Can I use Django with Python 2.3?

	Can I use Django with Python 3?

	Will Django run under shared hosting (like TextDrive or Dreamhost)?

	Should I use the stable version or development version?

	FAQ: Using Django
	Why do I get an error about importing DJANGO_SETTINGS_MODULE?

	I can’t stand your template language. Do I have to use it?

	Do I have to use your model/database layer?

	How do I use image and file fields?

	How do I make a variable available to all my templates?

	FAQ: Getting Help
	How do I do X? Why doesn’t Y work? Where can I go to get help?

	Why hasn’t my message appeared on django-users?

	Nobody on django-users answered my question! What should I do?

	I think I’ve found a bug! What should I do?

	I think I’ve found a security problem! What should I do?

	FAQ: Databases and models
	How can I see the raw SQL queries Django is running?

	Can I use Django with a pre-existing database?

	If I make changes to a model, how do I update the database?

	Do Django models support multiple-column primary keys?

	How do I add database-specific options to my CREATE TABLE statements, such as specifying MyISAM as the table type?

	Why is Django leaking memory?

	FAQ: The admin
	I can’t log in. When I enter a valid username and password, it just brings up the login page again, with no error messages.

	I can’t log in. When I enter a valid username and password, it brings up the login page again, with a “Please enter a correct username and password” error.

	How can I prevent the cache middleware from caching the admin site?

	How do I automatically set a field’s value to the user who last edited the object in the admin?

	How do I limit admin access so that objects can only be edited by the users who created them?

	My admin-site CSS and images showed up fine using the development server, but they’re not displaying when using mod_wsgi.

	My “list_filter” contains a ManyToManyField, but the filter doesn’t display.

	How can I customize the functionality of the admin interface?

	The dynamically-generated admin site is ugly! How can I change it?

	FAQ: Contributing code
	How can I get started contributing code to Django?

	I submitted a bug fix in the ticket system several weeks ago. Why are you ignoring my patch?

	When and how might I remind the core team of a patch I care about?

	But I’ve reminded you several times and you keep ignoring my patch!

	API Reference
	Authentication backends
	Available authentication backends

	contrib packages
	The Django admin site

	django.contrib.auth

	Django’s comments framework

	The contenttypes framework

	Cross Site Request Forgery protection

	Databrowse

	The flatpages app

	django.contrib.formtools

	GeoDjango

	django.contrib.humanize

	The “local flavor” add-ons

	django.contrib.markup

	The messages framework

	The redirects app

	The sitemap framework

	The “sites” framework

	The staticfiles app

	The syndication feed framework

	django.contrib.webdesign

	admin

	auth

	comments

	contenttypes

	csrf

	flatpages

	formtools

	gis

	humanize

	localflavor

	markup

	messages

	redirects

	sessions

	sites

	sitemaps

	syndication

	webdesign

	Other add-ons

	Databases
	PostgreSQL notes

	MySQL notes

	SQLite notes

	Oracle notes

	Using a 3rd-party database backend

	django-admin.py and manage.py
	Usage

	Available commands

	Commands provided by applications

	Default options

	Common options

	Extra niceties

	Running management commands from your code

	Django Exceptions
	Django-specific Exceptions

	Database Exceptions

	Transaction Exceptions

	Python Exceptions

	File handling
	The File object

	File storage API

	Forms
	The Forms API

	Form fields

	Widgets

	Form and field validation

	Class-based generic views
	Mixins

	Generic views

	Middleware
	Available middleware

	Models
	Model field reference

	Related objects reference

	Model Meta options

	Model instance reference

	QuerySet API reference

	Request and response objects
	Quick overview

	HttpRequest objects

	UploadedFile objects

	QueryDict objects

	HttpResponse objects

	TemplateResponse and SimpleTemplateResponse
	SimpleTemplateResponse objects

	TemplateResponse objects

	The rendering process

	Using TemplateResponse and SimpleTemplateResponse

	Settings
	Available settings

	Deprecated settings

	Signals
	Model signals

	Management signals

	Request/response signals

	Test signals

	Database Wrappers

	Templates
	Built-in template tags and filters

	The Django template language: For Python programmers

	Unicode data
	Creating the database

	General string handling

	Models

	The database API

	Templates

	E-mail

	Form submission

	Django Utils
	django.utils.cache

	SortedDict

	django.utils.encoding

	django.utils.feedgenerator

	django.utils.functional

	django.utils.http

	django.utils.safestring

	django.utils.translation

	django.utils.tzinfo

	Validators
	Writing validators

	How validators are run

	Built-in validators

	Deprecated features
	Generic views

	Meta-documentation and miscellany
	API stability
	What “stable” means

	Stable APIs

	Exceptions

	Design philosophies
	Overall

	Models

	Database API

	URL design

	Template system

	Views

	Third-party distributions of Django
	For distributors

	Glossary

	Release notes
	Final releases
	1.3 release

	1.2 release

	1.1 release

	1.0 release

	Pre-1.0 releases

	Development releases
	Django 1.3 beta 1 release notes

	Django 1.3 alpha 1 release notes

	Django 1.2 RC 1 release notes

	Django 1.2 beta 1 release notes

	Django 1.2 alpha 1 release notes

	Django 1.1 RC 1 release notes

	Django 1.1 beta 1 release notes

	Django 1.1 alpha 1 release notes

	Django 1.0 beta 2 release notes

	Django 1.0 beta 1 release notes

	Django 1.0 alpha 2 release notes

	Django 1.0 alpha release notes

	Django internals
	Contributing to Django
	Reporting bugs

	Reporting security issues

	Submitting patches

	Ticket triage

	Submitting and maintaining translations

	Submitting javascript patches

	Django conventions

	Coding style

	Documentation style

	Committing code

	Unit tests

	Requesting features

	Branch policy

	How we make decisions

	Commit access

	How the Django documentation works
	Django-specific markup

	An example

	TODO

	Hints

	Django committers
	The original team

	Current developers

	Developers Emeritus

	Django’s release process
	Official releases

	Supported versions

	Release process

	Django Deprecation Timeline

	The Django source code repository
	High-level overview

	Working with Django’s trunk

	Branches

	Tags

Indices, glossary and tables

	Index

	Module Index

	Glossary

Deprecated/obsolete documentation

The following documentation covers features that have been deprecated or that
have been replaced in newer versions of Django.

	Deprecated/obsolete documentation
	Customizing the Django admin interface

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

Django documentation

Everything you need to know about Django (and then some).

Getting help

Having trouble? We’d like to help!

	Try the FAQ – it’s got answers to many common questions.

	Looking for specific information? Try the Index, Module Index or
the detailed table of contents.

	Search for information in the archives of the django-users mailing list [http://groups.google.com/group/django-users/], or
post a question [http://groups.google.com/group/django-users/].

	Ask a question in the #django IRC channel, or search the IRC logs [http://django-irc-logs.com/] to see
if it’s been asked before.

	Report bugs with Django in our ticket tracker [http://code.djangoproject.com/].

First steps

	From scratch:
Overview |
Installation

	Tutorial:
Part 1 |
Part 2 |
Part 3 |
Part 4

The model layer

	Models:
Model syntax |
Field types |
Meta options

	QuerySets:
Executing queries |
QuerySet method reference

	Model instances:
Instance methods |
Accessing related objects

	Advanced:
Managers |
Raw SQL |
Transactions |
Aggregation |
Custom fields |
Multiple databases

	Other:
Supported databases |
Legacy databases |
Providing initial data |
Optimize database access

The template layer

	For designers:
Syntax overview |
Built-in tags and filters

	For programmers:
Template API |
Custom tags and filters

The view layer

	The basics:
URLconfs |
View functions |
Shortcuts |
Decorators

	Reference:
Request/response objects |
TemplateResponse objects

	File uploads:
Overview |
File objects |
Storage API |
Managing files |
Custom storage

	Generic views:
Overview |
Built-in generic views

	Advanced:
Generating CSV |
Generating PDF

	Middleware:
Overview |
Built-in middleware classes

Forms

	The basics:
Overview |
Form API |
Built-in fields |
Built-in widgets

	Advanced:
Forms for models |
Integrating media |
Formsets |
Customizing validation

	Extras:
Form preview |
Form wizard

The development process

	Settings:
Overview |
Full list of settings

	Exceptions:
Overview

	django-admin.py and manage.py:
Overview |
Adding custom commands

	Testing: Overview

	Deployment:
Overview |
Apache/mod_wsgi |
Apache/mod_python |
FastCGI/SCGI/AJP |
Apache authentication |
Handling static files |
Tracking code errors by e-mail

Other batteries included

	Admin site | Admin actions | Admin documentation generator

	Authentication

	Cache system

	Conditional content processing

	Comments | Moderation | Custom comments

	Content types

	Cross Site Request Forgery protection

	Databrowse

	E-mail (sending)

	Flatpages

	GeoDjango

	Humanize

	Internationalization

	Jython support

	“Local flavor”

	Logging

	Messages

	Pagination

	Redirects

	Serialization

	Sessions

	Signals

	Sitemaps

	Sites

	Static Files

	Syndication feeds (RSS/Atom)

	Unicode in Django

	Web design helpers

	Validators

	Function-based generic views (Deprecated) Overview | Built-in generic views | Migration guide

The Django open-source project

	Community:
How to get involved |
The release process |
Team of committers |
The Django source code repository

	Design philosophies:
Overview

	Documentation:
About this documentation

	Third-party distributions:
Overview

	Django over time:
API stability |
Release notes and upgrading instructions |
Deprecation Timeline

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

Django FAQ

	FAQ: General
	Why does this project exist?

	What does “Django” mean, and how do you pronounce it?

	Is Django stable?

	Does Django scale?

	Who’s behind this?

	Which sites use Django?

	Django appears to be a MVC framework, but you call the Controller the “view”, and the View the “template”. How come you don’t use the standard names?

	<Framework X> does <feature Y> – why doesn’t Django?

	Why did you write all of Django from scratch, instead of using other Python libraries?

	Is Django a content-management-system (CMS)?

	How can I download the Django documentation to read it offline?

	Where can I find Django developers for hire?

	FAQ: Installation
	How do I get started?

	What are Django’s prerequisites?

	Do I lose anything by using Python 2.4 versus newer Python versions, such as Python 2.5 or 2.6?

	Can I use Django with Python 2.3?

	Can I use Django with Python 3?

	Will Django run under shared hosting (like TextDrive or Dreamhost)?

	Should I use the stable version or development version?

	FAQ: Using Django
	Why do I get an error about importing DJANGO_SETTINGS_MODULE?

	I can’t stand your template language. Do I have to use it?

	Do I have to use your model/database layer?

	How do I use image and file fields?

	How do I make a variable available to all my templates?

	FAQ: Getting Help
	How do I do X? Why doesn’t Y work? Where can I go to get help?

	Why hasn’t my message appeared on django-users?

	Nobody on django-users answered my question! What should I do?

	I think I’ve found a bug! What should I do?

	I think I’ve found a security problem! What should I do?

	FAQ: Databases and models
	How can I see the raw SQL queries Django is running?

	Can I use Django with a pre-existing database?

	If I make changes to a model, how do I update the database?

	Do Django models support multiple-column primary keys?

	How do I add database-specific options to my CREATE TABLE statements, such as specifying MyISAM as the table type?

	Why is Django leaking memory?

	FAQ: The admin
	I can’t log in. When I enter a valid username and password, it just brings up the login page again, with no error messages.

	I can’t log in. When I enter a valid username and password, it brings up the login page again, with a “Please enter a correct username and password” error.

	How can I prevent the cache middleware from caching the admin site?

	How do I automatically set a field’s value to the user who last edited the object in the admin?

	How do I limit admin access so that objects can only be edited by the users who created them?

	My admin-site CSS and images showed up fine using the development server, but they’re not displaying when using mod_wsgi.

	My “list_filter” contains a ManyToManyField, but the filter doesn’t display.

	How can I customize the functionality of the admin interface?

	The dynamically-generated admin site is ugly! How can I change it?

	FAQ: Contributing code
	How can I get started contributing code to Django?

	I submitted a bug fix in the ticket system several weeks ago. Why are you ignoring my patch?

	When and how might I remind the core team of a patch I care about?

	But I’ve reminded you several times and you keep ignoring my patch!

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	Django FAQ

FAQ: General

Why does this project exist?

Django grew from a very practical need: World Online, a newspaper Web
operation, is responsible for building intensive Web applications on journalism
deadlines. In the fast-paced newsroom, World Online often has only a matter of
hours to take a complicated Web application from concept to public launch.

At the same time, the World Online Web developers have consistently been
perfectionists when it comes to following best practices of Web development.

In fall 2003, the World Online developers (Adrian Holovaty and Simon Willison)
ditched PHP and began using Python to develop its Web sites. As they built
intensive, richly interactive sites such as Lawrence.com, they began to extract
a generic Web development framework that let them build Web applications more
and more quickly. They tweaked this framework constantly, adding improvements
over two years.

In summer 2005, World Online decided to open-source the resulting software,
Django. Django would not be possible without a whole host of open-source
projects – Apache [http://httpd.apache.org/], Python [http://www.python.org/], and PostgreSQL [http://www.postgresql.org/] to name a few – and we’re
thrilled to be able to give something back to the open-source community.

What does “Django” mean, and how do you pronounce it?

Django is named after Django Reinhardt [http://en.wikipedia.org/wiki/Django_Reinhardt], a gypsy jazz guitarist from the 1930s
to early 1950s. To this day, he’s considered one of the best guitarists of all time.

Listen to his music. You’ll like it.

Django is pronounced JANG-oh. Rhymes with FANG-oh. The “D” is silent.

We’ve also recorded an audio clip of the pronunciation [http://red-bean.com/~adrian/django_pronunciation.mp3].

Is Django stable?

Yes. World Online has been using Django for more than three years. Sites built
on Django have weathered traffic spikes of over one million hits an hour and a
number of Slashdottings. Yes, it’s quite stable.

Does Django scale?

Yes. Compared to development time, hardware is cheap, and so Django is
designed to take advantage of as much hardware as you can throw at it.

Django uses a “shared-nothing” architecture, which means you can add hardware
at any level – database servers, caching servers or Web/application servers.

The framework cleanly separates components such as its database layer and
application layer. And it ships with a simple-yet-powerful
cache framework.

Who’s behind this?

Django was originally developed at World Online, the Web department of a
newspaper in Lawrence, Kansas, USA. Django’s now run by an international team of
volunteers; you can read all about them over at the list of committers

Which sites use Django?

DjangoSites.org [http://djangosites.org] features a constantly growing list of Django-powered sites.

Django appears to be a MVC framework, but you call the Controller the “view”, and the View the “template”. How come you don’t use the standard names?

Well, the standard names are debatable.

In our interpretation of MVC, the “view” describes the data that gets presented
to the user. It’s not necessarily how the data looks, but which data is
presented. The view describes which data you see, not how you see it. It’s
a subtle distinction.

So, in our case, a “view” is the Python callback function for a particular URL,
because that callback function describes which data is presented.

Furthermore, it’s sensible to separate content from presentation – which is
where templates come in. In Django, a “view” describes which data is presented,
but a view normally delegates to a template, which describes how the data is
presented.

Where does the “controller” fit in, then? In Django’s case, it’s probably the
framework itself: the machinery that sends a request to the appropriate view,
according to the Django URL configuration.

If you’re hungry for acronyms, you might say that Django is a “MTV” framework
– that is, “model”, “template”, and “view.” That breakdown makes much more
sense.

At the end of the day, of course, it comes down to getting stuff done. And,
regardless of how things are named, Django gets stuff done in a way that’s most
logical to us.

<Framework X> does <feature Y> – why doesn’t Django?

We’re well aware that there are other awesome Web frameworks out there, and
we’re not averse to borrowing ideas where appropriate. However, Django was
developed precisely because we were unhappy with the status quo, so please be
aware that “because <Framework X> does it” is not going to be sufficient reason
to add a given feature to Django.

Why did you write all of Django from scratch, instead of using other Python libraries?

When Django was originally written a couple of years ago, Adrian and Simon
spent quite a bit of time exploring the various Python Web frameworks
available.

In our opinion, none of them were completely up to snuff.

We’re picky. You might even call us perfectionists. (With deadlines.)

Over time, we stumbled across open-source libraries that did things we’d
already implemented. It was reassuring to see other people solving similar
problems in similar ways, but it was too late to integrate outside code: We’d
already written, tested and implemented our own framework bits in several
production settings – and our own code met our needs delightfully.

In most cases, however, we found that existing frameworks/tools inevitably had
some sort of fundamental, fatal flaw that made us squeamish. No tool fit our
philosophies 100%.

Like we said: We’re picky.

We’ve documented our philosophies on the
design philosophies page.

Is Django a content-management-system (CMS)?

No, Django is not a CMS, or any sort of “turnkey product” in and of itself.
It’s a Web framework; it’s a programming tool that lets you build Web sites.

For example, it doesn’t make much sense to compare Django to something like
Drupal [http://drupal.org/], because Django is something you use to create things like Drupal.

Of course, Django’s automatic admin site is fantastic and timesaving – but
the admin site is one module of Django the framework. Furthermore, although
Django has special conveniences for building “CMS-y” apps, that doesn’t mean
it’s not just as appropriate for building “non-CMS-y” apps (whatever that
means!).

How can I download the Django documentation to read it offline?

The Django docs are available in the docs directory of each Django tarball
release. These docs are in reST (reStructuredText) format, and each text file
corresponds to a Web page on the official Django site.

Because the documentation is stored in revision control [http://code.djangoproject.com/browser/django/trunk/docs], you can browse
documentation changes just like you can browse code changes.

Technically, the docs on Django’s site are generated from the latest development
versions of those reST documents, so the docs on the Django site may offer more
information than the docs that come with the latest Django release.

Where can I find Django developers for hire?

Consult our developers for hire page [http://code.djangoproject.com/wiki/DevelopersForHire] for a list of Django developers who
would be happy to help you.

You might also be interested in posting a job to http://djangogigs.com/ .
If you want to find Django-capable people in your local area, try
http://djangopeople.net/ .

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	Django FAQ

FAQ: Installation

How do I get started?

	Download the code [http://www.djangoproject.com/download/].

	Install Django (read the installation guide).

	Walk through the tutorial.

	Check out the rest of the documentation, and ask questions [http://www.djangoproject.com/community/] if you
run into trouble.

What are Django’s prerequisites?

Django requires Python [http://www.python.org/], specifically any version of Python from 2.4
through 2.7. No other Python libraries are required for basic Django
usage.

For a development environment – if you just want to experiment with Django –
you don’t need to have a separate Web server installed; Django comes with its
own lightweight development server. For a production environment, Django
follows the WSGI [http://www.python.org/dev/peps/pep-0333/] spec, which means it can run on a variety of server
platforms. See Deploying Django for some
popular alternatives. Also, the server arrangements wiki page [http://code.djangoproject.com/wiki/ServerArrangements] contains
details for several deployment strategies.

If you want to use Django with a database, which is probably the case, you’ll
also need a database engine. PostgreSQL [http://www.postgresql.org/] is recommended, because we’re
PostgreSQL fans, and MySQL [http://www.mysql.com/], SQLite 3 [http://www.sqlite.org/], and Oracle [http://www.oracle.com/] are also supported.

Do I lose anything by using Python 2.4 versus newer Python versions, such as Python 2.5 or 2.6?

Not in the core framework. Currently, Django itself officially supports any
version of Python from 2.4 through 2.7, inclusive. However, newer versions of
Python are often faster, have more features, and are better supported. If you
use a newer version of Python you will also have access to some APIs that
aren’t available under older versions of Python. For example Django provides
some context managers [http://docs.python.org/reference/datamodel.html#context-managers] for various operations. If you use Python 2.4 you
won’t be able to use them, however other APIs which provide the same
functionality are always made available.

Third-party applications for use with Django are, of course, free to set their
own version requirements.

Over the next year or two Django will begin dropping support for older Python
versions as part of a migration which will end with Django running on Python 3
(see below for details).

All else being equal, we recommend that you use the latest 2.x release
(currently Python 2.7). This will let you take advantage of the numerous
improvements and optimizations to the Python language since version 2.4, and
will help ease the process of dropping support for older Python versions on
the road to Python 3.

Can I use Django with Python 2.3?

Django 1.1 (and earlier) supported Python 2.3. Django 1.2 and newer does not.
We highly recommend you upgrade Python if at all possible, but Django 1.1 will
continue to work on Python 2.3.

Can I use Django with Python 3?

Not at the moment. Python 3.0 introduced a number of
backwards-incompatible changes to the Python language, and although
these changes are generally a good thing for Python’s future, it will
be a while before most Python software catches up and is able to run
on Python 3.0. For larger Python-based software like Django, the
transition is expected to take at least a year or two (since it
involves dropping support for older Python releases and so must be
done gradually).

In the meantime, Python 2.x releases will be supported and provided
with bug fixes and security updates by the Python development team, so
continuing to use a Python 2.x release during the transition should
not present any risk.

Will Django run under shared hosting (like TextDrive or Dreamhost)?

See our Django-friendly Web hosts [http://code.djangoproject.com/wiki/DjangoFriendlyWebHosts] page.

Should I use the stable version or development version?

Generally, if you’re using code in production, you should be using a
stable release. The Django project publishes a full stable release
every nine months or so, with bugfix updates in between. These stable
releases contain the API that is covered by our backwards
compatibility guarantees; if you write code against stable releases,
you shouldn’t have any problems upgrading when the next official
version is released.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	Django FAQ

FAQ: Using Django

Why do I get an error about importing DJANGO_SETTINGS_MODULE?

Make sure that:

	The environment variable DJANGO_SETTINGS_MODULE is set to a
fully-qualified Python module (i.e. “mysite.settings”).

	Said module is on sys.path (import mysite.settings should work).

	The module doesn’t contain syntax errors (of course).

	If you’re using mod_python but not using Django’s request handler,
you’ll need to work around a mod_python bug related to the use of
SetEnv; before you import anything from Django you’ll need to do
the following:

os.environ.update(req.subprocess_env)

(where req is the mod_python request object).

I can't stand your template language. Do I have to use it?

We happen to think our template engine is the best thing since chunky bacon,
but we recognize that choosing a template language runs close to religion.
There's nothing about Django that requires using the template language, so
if you're attached to ZPT, Cheetah, or whatever, feel free to use those.

Do I have to use your model/database layer?

Nope. Just like the template system, the model/database layer is decoupled from
the rest of the framework.

The one exception is: If you use a different database library, you won't get to
use Django's automatically-generated admin site. That app is coupled to the
Django database layer.

How do I use image and file fields?

Using a FileField or an
ImageField in a model takes a few steps:

	In your settings file, you'll need to define MEDIA_ROOT as
the full path to a directory where you'd like Django to store uploaded
files. (For performance, these files are not stored in the database.)
Define MEDIA_URL as the base public URL of that directory.
Make sure that this directory is writable by the Web server's user
account.

	Add the FileField or
ImageField to your model, making sure to
define the upload_to option to tell
Django to which subdirectory of MEDIA_ROOT it should upload
files.

	All that will be stored in your database is a path to the file
(relative to MEDIA_ROOT). You'll most likely want to use the
convenience url attribute provided by
Django. For example, if your ImageField is
called mug_shot, you can get the absolute path to your image in a
template with {{ object.mug_shot.url }}.

How do I make a variable available to all my templates?

Sometimes your templates just all need the same thing. A common example would
be dynamically-generated menus. At first glance, it seems logical to simply
add a common dictionary to the template context.

The correct solution is to use a RequestContext. Details on how to do this
are here: Subclassing Context: RequestContext.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	Django FAQ

FAQ: Getting Help

How do I do X? Why doesn’t Y work? Where can I go to get help?

If this FAQ doesn’t contain an answer to your question, you might want to
try the django-users mailing list [http://groups.google.com/group/django-users]. Feel free to ask any question related
to installing, using, or debugging Django.

If you prefer IRC, the #django IRC channel on the Freenode IRC network is an
active community of helpful individuals who may be able to solve your problem.

Why hasn’t my message appeared on django-users?

django-users [http://groups.google.com/group/django-users] has a lot of subscribers. This is good for the community, as
it means many people are available to contribute answers to questions.
Unfortunately, it also means that django-users [http://groups.google.com/group/django-users] is an attractive target for
spammers.

In order to combat the spam problem, when you join the django-users [http://groups.google.com/group/django-users] mailing
list, we manually moderate the first message you send to the list. This means
that spammers get caught, but it also means that your first question to the
list might take a little longer to get answered. We apologize for any
inconvenience that this policy may cause.

Nobody on django-users answered my question! What should I do?

Try making your question more specific, or provide a better example of your
problem.

As with most open-source mailing lists, the folks on django-users [http://groups.google.com/group/django-users] are
volunteers. If nobody has answered your question, it may be because nobody
knows the answer, it may be because nobody can understand the question, or it
may be that everybody that can help is busy. One thing you might try is to ask
the question on IRC – visit the #django IRC channel on the Freenode IRC
network.

You might notice we have a second mailing list, called django-developers [http://groups.google.com/group/django-developers] –
but please don’t e-mail support questions to this mailing list. This list is
for discussion of the development of Django itself. Asking a tech support
question there is considered quite impolite.

I think I’ve found a bug! What should I do?

Detailed instructions on how to handle a potential bug can be found in our
Guide to contributing to Django.

I think I’ve found a security problem! What should I do?

If you think you’ve found a security problem with Django, please send a message
to security@djangoproject.com. This is a private list only open to long-time,
highly trusted Django developers, and its archives are not publicly readable.

Due to the sensitive nature of security issues, we ask that if you think you
have found a security problem, please don’t send a message to one of the
public mailing lists. Django has a
policy for handling security issues;
while a defect is outstanding, we would like to minimize any damage that
could be inflicted through public knowledge of that defect.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	Django FAQ

FAQ: Databases and models

How can I see the raw SQL queries Django is running?

Make sure your Django DEBUG setting is set to True.
Then, just do this:

>>> from django.db import connection
>>> connection.queries
[{'sql': 'SELECT polls_polls.id,polls_polls.question,polls_polls.pub_date FROM polls_polls',
'time': '0.002'}]

connection.queries is only available if DEBUG is True.
It's a list of dictionaries in order of query execution. Each dictionary has
the following:

``sql`` -- The raw SQL statement
``time`` -- How long the statement took to execute, in seconds.

connection.queries includes all SQL statements -- INSERTs, UPDATES,
SELECTs, etc. Each time your app hits the database, the query will be recorded.
Note that the raw SQL logged in connection.queries may not include
parameter quoting. Parameter quoting is performed by the database-specific
backend, and not all backends provide a way to retrieve the SQL after quoting.

New in Django 1.2: Please, see the release notes

If you are using multiple databases, you can use the
same interface on each member of the connections dictionary:

>>> from django.db import connections
>>> connections['my_db_alias'].queries

Can I use Django with a pre-existing database?

Yes. See Integrating with a legacy database.

If I make changes to a model, how do I update the database?

If you don't mind clearing data, your project's manage.py utility has an
option to reset the SQL for a particular application:

manage.py reset appname

This drops any tables associated with appname and recreates them.

If you do care about deleting data, you'll have to execute the ALTER TABLE
statements manually in your database. That's the way we've always done it,
because dealing with data is a very sensitive operation that we've wanted to
avoid automating. That said, there's some work being done to add partially
automated database-upgrade functionality.

Do Django models support multiple-column primary keys?

No. Only single-column primary keys are supported.

But this isn't an issue in practice, because there's nothing stopping you from
adding other constraints (using the unique_together model option or
creating the constraint directly in your database), and enforcing the
uniqueness at that level. Single-column primary keys are needed for things such
as the admin interface to work; e.g., you need a simple way of being able to
specify an object to edit or delete.

How do I add database-specific options to my CREATE TABLE statements, such as specifying MyISAM as the table type?

We try to avoid adding special cases in the Django code to accommodate all the
database-specific options such as table type, etc. If you'd like to use any of
these options, create an SQL initial data file that
contains ALTER TABLE statements that do what you want to do. The initial
data files are executed in your database after the CREATE TABLE statements.

For example, if you're using MySQL and want your tables to use the MyISAM table
type, create an initial data file and put something like this in it:

ALTER TABLE myapp_mytable ENGINE=MyISAM;

As explained in the SQL initial data file documentation,
this SQL file can contain arbitrary SQL, so you can make any sorts of changes
you need to make.

Why is Django leaking memory?

Django isn't known to leak memory. If you find your Django processes are
allocating more and more memory, with no sign of releasing it, check to make
sure your DEBUG setting is set to False. If DEBUG
is True, then Django saves a copy of every SQL statement it has executed.

(The queries are saved in django.db.connection.queries. See
How can I see the raw SQL queries Django is running?.)

To fix the problem, set DEBUG to False.

If you need to clear the query list manually at any point in your functions,
just call reset_queries(), like this:

from django import db
db.reset_queries()

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	Django FAQ

FAQ: The admin

I can’t log in. When I enter a valid username and password, it just brings up the login page again, with no error messages.

The login cookie isn’t being set correctly, because the domain of the cookie
sent out by Django doesn’t match the domain in your browser. Try these two
things:

	Set the SESSION_COOKIE_DOMAIN setting in your admin config
file to match your domain. For example, if you’re going to
“http://www.example.com/admin/” in your browser, in
“myproject.settings” you should set SESSION_COOKIE_DOMAIN = 'www.example.com'.

	Some browsers (Firefox?) don’t like to accept cookies from domains that
don’t have dots in them. If you’re running the admin site on “localhost”
or another domain that doesn’t have a dot in it, try going to
“localhost.localdomain” or “127.0.0.1”. And set
SESSION_COOKIE_DOMAIN accordingly.

I can’t log in. When I enter a valid username and password, it brings up the login page again, with a “Please enter a correct username and password” error.

If you’re sure your username and password are correct, make sure your user
account has is_active and is_staff set to True. The admin site only
allows access to users with those two fields both set to True.

How can I prevent the cache middleware from caching the admin site?

Set the CACHE_MIDDLEWARE_ANONYMOUS_ONLY setting to True. See the
cache documentation for more information.

How do I automatically set a field’s value to the user who last edited the object in the admin?

The ModelAdmin class provides customization hooks
that allow you to transform an object as it saved, using details from the
request. By extracting the current user from the request, and customizing the
save_model() hook, you can update an
object to reflect the user that edited it. See the documentation on
ModelAdmin methods for an example.

How do I limit admin access so that objects can only be edited by the users who created them?

The ModelAdmin class also provides customization
hooks that allow you to control the visibility and editability of objects in the
admin. Using the same trick of extracting the user from the request, the
queryset() and
has_change_permission() can be used to
control the visibility and editability of objects in the admin.

My admin-site CSS and images showed up fine using the development server, but they’re not displaying when using mod_wsgi.

See serving the admin files
in the “How to use Django with mod_wsgi” documentation.

My “list_filter” contains a ManyToManyField, but the filter doesn’t display.

Django won’t bother displaying the filter for a ManyToManyField if there
are fewer than two related objects.

For example, if your list_filter includes sites, and there’s only one
site in your database, it won’t display a “Site” filter. In that case,
filtering by site would be meaningless.

How can I customize the functionality of the admin interface?

You’ve got several options. If you want to piggyback on top of an add/change
form that Django automatically generates, you can attach arbitrary JavaScript
modules to the page via the model’s class Admin js parameter. That
parameter is a list of URLs, as strings, pointing to JavaScript modules that
will be included within the admin form via a <script> tag.

If you want more flexibility than simply tweaking the auto-generated forms,
feel free to write custom views for the admin. The admin is powered by Django
itself, and you can write custom views that hook into the authentication
system, check permissions and do whatever else they need to do.

If you want to customize the look-and-feel of the admin interface, read the
next question.

The dynamically-generated admin site is ugly! How can I change it?

We like it, but if you don’t agree, you can modify the admin site’s
presentation by editing the CSS stylesheet and/or associated image files. The
site is built using semantic HTML and plenty of CSS hooks, so any changes you’d
like to make should be possible by editing the stylesheet. We’ve got a
guide to the CSS used in the admin to get you started.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	Django FAQ

FAQ: Contributing code

How can I get started contributing code to Django?

Thanks for asking! We’ve written an entire document devoted to this question.
It’s titled Contributing to Django.

I submitted a bug fix in the ticket system several weeks ago. Why are you ignoring my patch?

Don’t worry: We’re not ignoring you!

It’s important to understand there is a difference between “a ticket is being
ignored” and “a ticket has not been attended to yet.” Django’s ticket system
contains hundreds of open tickets, of various degrees of impact on end-user
functionality, and Django’s developers have to review and prioritize.

On top of that: the people who work on Django are all volunteers. As a result,
the amount of time that we have to work on the framework is limited and will
vary from week to week depending on our spare time. If we’re busy, we may not
be able to spend as much time on Django as we might want.

The best way to make sure tickets do not get hung up on the way to checkin is
to make it dead easy, even for someone who may not be intimately familiar with
that area of the code, to understand the problem and verify the fix:

	Are there clear instructions on how to reproduce the bug? If this
touches a dependency (such as PIL), a contrib module, or a specific
database, are those instructions clear enough even for someone not
familiar with it?

	If there are several patches attached to the ticket, is it clear what
each one does, which ones can be ignored and which matter?

	Does the patch include a unit test? If not, is there a very clear
explanation why not? A test expresses succinctly what the problem is,
and shows that the patch actually fixes it.

If your patch stands no chance of inclusion in Django, we won’t ignore it –
we’ll just close the ticket. So if your ticket is still open, it doesn’t mean
we’re ignoring you; it just means we haven’t had time to look at it yet.

When and how might I remind the core team of a patch I care about?

A polite, well-timed message to the mailing list is one way to get attention.
To determine the right time, you need to keep an eye on the schedule. If you
post your message when the core developers are trying to hit a feature
deadline or manage a planning phase, you’re not going to get the sort of
attention you require. However, if you draw attention to a ticket when the
core developers are paying particular attention to bugs – just before a bug
fixing sprint, or in the lead up to a beta release for example – you’re much
more likely to get a productive response.

Gentle IRC reminders can also work – again, strategically timed if possible.
During a bug sprint would be a very good time, for example.

Another way to get traction is to pull several related tickets together. When
the core developers sit down to fix a bug in an area they haven’t touched for
a while, it can take a few minutes to remember all the fine details of how
that area of code works. If you collect several minor bug fixes together into
a similarly themed group, you make an attractive target, as the cost of coming
up to speed on an area of code can be spread over multiple tickets.

Please refrain from emailing core developers personally, or repeatedly raising
the same issue over and over. This sort of behavior will not gain you any
additional attention – certainly not the attention that you need in order to
get your pet bug addressed.

But I’ve reminded you several times and you keep ignoring my patch!

Seriously - we’re not ignoring you. If your patch stands no chance of
inclusion in Django, we’ll close the ticket. For all the other tickets, we
need to prioritize our efforts, which means that some tickets will be
addressed before others.

One of the criteria that is used to prioritize bug fixes is the number of
people that will likely be affected by a given bug. Bugs that have the
potential to affect many people will generally get priority over those that
are edge cases.

Another reason that bugs might be ignored for while is if the bug is a symptom
of a larger problem. While we can spend time writing, testing and applying
lots of little patches, sometimes the right solution is to rebuild. If a
rebuild or refactor of a particular component has been proposed or is
underway, you may find that bugs affecting that component will not get as much
attention. Again, this is just a matter of prioritizing scarce resources. By
concentrating on the rebuild, we can close all the little bugs at once, and
hopefully prevent other little bugs from appearing in the future.

Whatever the reason, please keep in mind that while you may hit a particular
bug regularly, it doesn’t necessarily follow that every single Django user
will hit the same bug. Different users use Django in different ways, stressing
different parts of the code under different conditions. When we evaluate the
relative priorities, we are generally trying to consider the needs of the
entire community, not just the severity for one particular user. This doesn’t
mean that we think your problem is unimportant – just that in the limited
time we have available, we will always err on the side of making 10 people
happy rather than making 1 person happy.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

API Reference

	Authentication backends

	contrib packages

	Databases

	django-admin.py and manage.py

	Running management commands from your code

	Django Exceptions

	File handling

	Forms

	Class-based generic views

	Middleware

	Models

	Request and response objects

	TemplateResponse and SimpleTemplateResponse

	Settings

	Signals

	Templates

	Unicode data

	Django Utils

	Validators

Deprecated features

	Generic views

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Authentication backends

This document details the authentication backends that come with Django. For
information on how to use them and how to write your own authentication
backends, see the Other authentication sources section of the User authentication guide.

Available authentication backends

The following backends are available in django.contrib.auth.backends:

	
class ModelBackend

	This is the default authentication backend used by Django. It
authenticates using usernames and passwords stored in the
User model.

	
class RemoteUserBackend

	Use this backend to take advantage of external-to-Django-handled
authentication. It authenticates using usernames passed in
request.META['REMOTE_USER']. See
the Authenticating against REMOTE_USER
documentation.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

contrib packages

Django aims to follow Python’s “batteries included” philosophy [http://docs.python.org/tutorial/stdlib.html#batteries-included]. It ships
with a variety of extra, optional tools that solve common Web-development
problems.

This code lives in django/contrib in the Django distribution. This document
gives a rundown of the packages in contrib, along with any dependencies
those packages have.

Note

For most of these add-ons – specifically, the add-ons that include either
models or template tags – you’ll need to add the package name (e.g.,
'django.contrib.admin') to your INSTALLED_APPS setting and
re-run manage.py syncdb.

	The Django admin site

	django.contrib.auth

	Django’s comments framework

	The contenttypes framework

	Cross Site Request Forgery protection

	Databrowse

	The flatpages app

	django.contrib.formtools

	GeoDjango

	django.contrib.humanize

	The “local flavor” add-ons

	django.contrib.markup

	The messages framework

	The redirects app

	The sitemap framework

	The “sites” framework

	The staticfiles app

	The syndication feed framework

	django.contrib.webdesign

admin

The automatic Django administrative interface. For more information, see
Tutorial 2 and the
admin documentation.

Requires the auth and contenttypes contrib packages to be installed.

auth

Django’s authentication framework.

See User authentication in Django.

comments

A simple yet flexible comments system. See Django’s comments framework.

contenttypes

A light framework for hooking into “types” of content, where each installed
Django model is a separate content type.

See the contenttypes documentation.

csrf

A middleware for preventing Cross Site Request Forgeries

See the csrf documentation.

flatpages

A framework for managing simple “flat” HTML content in a database.

See the flatpages documentation.

Requires the sites contrib package to be installed as well.

formtools

A set of high-level abstractions for Django forms (django.forms).

django.contrib.formtools.preview

An abstraction of the following workflow:

“Display an HTML form, force a preview, then do something with the submission.”

See the form preview documentation.

django.contrib.formtools.wizard

Splits forms across multiple Web pages.

See the form wizard documentation.

gis

A world-class geospatial framework built on top of Django, that enables
storage, manipulation and display of spatial data.

See the GeoDjango documentation for more.

humanize

A set of Django template filters useful for adding a “human touch” to data.

See the humanize documentation.

localflavor

A collection of various Django snippets that are useful only for a particular
country or culture. For example, django.contrib.localflavor.us.forms
contains a USZipCodeField that you can use to validate U.S. zip codes.

See the localflavor documentation.

markup

A collection of template filters that implement common markup languages

See the markup documentation.

messages

Changed in Django 1.2: The messages framework was added.

A framework for storing and retrieving temporary cookie- or session-based
messages

See the messages documentation.

redirects

A framework for managing redirects.

See the redirects documentation.

sessions

A framework for storing data in anonymous sessions.

See the sessions documentation.

sites

A light framework that lets you operate multiple Web sites off of the same
database and Django installation. It gives you hooks for associating objects to
one or more sites.

See the sites documentation.

sitemaps

A framework for generating Google sitemap XML files.

See the sitemaps documentation.

syndication

A framework for generating syndication feeds, in RSS and Atom, quite easily.

See the syndication documentation.

webdesign

Helpers and utilities targeted primarily at Web designers rather than
Web developers.

See the Web design helpers documentation.

Other add-ons

If you have an idea for functionality to include in contrib, let us know!
Code it up, and post it to the django-users mailing list [http://groups.google.com/group/django-users].

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

 	contrib packages

The “local flavor” add-ons

Following its “batteries included” philosophy, Django comes with assorted
pieces of code that are useful for particular countries or cultures. These are
called the “local flavor” add-ons and live in the
django.contrib.localflavor package.

Inside that package, country- or culture-specific code is organized into
subpackages, named using ISO 3166 country codes [http://www.iso.org/iso/country_codes/iso_3166_code_lists/english_country_names_and_code_elements.htm].

Most of the localflavor add-ons are localized form components deriving
from the forms framework – for example, a
USStateField that knows how to
validate U.S. state abbreviations, and a
FISocialSecurityNumber that
knows how to validate Finnish social security numbers.

To use one of these localized components, just import the relevant subpackage.
For example, here’s how you can create a form with a field representing a
French telephone number:

from django import forms
from django.contrib.localflavor.fr.forms import FRPhoneNumberField

class MyForm(forms.Form):
 my_french_phone_no = FRPhoneNumberField()

Supported countries

Countries currently supported by localflavor are:

	Argentina

	Australia

	Austria

	Belgium

	Brazil

	Canada

	Chile

	Czech

	Finland

	France

	Germany

	Iceland

	India

	Indonesia

	Ireland

	Israel

	Italy

	Japan

	Kuwait

	Mexico

	The Netherlands

	Norway

	Peru

	Poland

	Portugal

	Romania

	Slovakia

	South Africa

	Spain

	Sweden

	Switzerland

	Turkey

	United Kingdom

	United States of America

	Uruguay

The django.contrib.localflavor package also includes a generic subpackage,
containing useful code that is not specific to one particular country or culture.
Currently, it defines date, datetime and split datetime input fields based on
those from forms, but with non-US default formats.
Here's an example of how to use them:

from django import forms
from django.contrib.localflavor import generic

class MyForm(forms.Form):
 my_date_field = generic.forms.DateField()

Internationalization of localflavor

Localflavor has its own catalog of translations, in the directory
django/contrib/localflavor/locale, and it's not loaded automatically like
Django's general catalog in django/conf/locale. If you want localflavor's
texts to be translated, like form fields error messages, you must include
django.contrib.localflavor in the INSTALLED_APPS setting, so
the internationalization system can find the catalog, as explained in
Using internationalization in your own projects.

Adding flavors

We'd love to add more of these to Django, so please create a ticket [http://code.djangoproject.com/simpleticket] with
any code you'd like to contribute. One thing we ask is that you please use
Unicode objects (u'mystring') for strings, rather than setting the encoding
in the file. See any of the existing flavors for examples.

Localflavor and backwards compatibility

As documented in our API stability policy, Django will always attempt
to make django.contrib.localflavor reflect the officially
gazetted policies of the appropriate local government authority. For
example, if a government body makes a change to add, alter, or remove
a province (or state, or county), that change will be reflected in
Django's localflavor in the next stable Django release.

When a backwards-incompatible change is made (for example, the removal
or renaming of a province) the localflavor in question will raise a
warning when that localflavor is imported. This provides a runtime
indication that something may require attention.

However, once you have addressed the backwards compatibility (for
example, auditing your code to see if any data migration is required),
the warning serves no purpose. The warning can then be supressed.
For example, to suppress the warnings raised by the Indonesian
localflavor you would use the following code:

import warnings
warnings.filterwarnings('ignore',
 category=RuntimeWarning,
 module='django.contrib.localflavor.id')
from django.contrib.localflavor.id import forms as id_forms

Argentina (ar)

	
class ar.forms.ARPostalCodeField

	A form field that validates input as either a classic four-digit Argentinian
postal code or a CPA [http://www.correoargentino.com.ar/consulta_cpa/home.php].

	
class ar.forms.ARDNIField

	A form field that validates input as a Documento Nacional de Identidad (DNI)
number.

	
class ar.forms.ARCUITField

	A form field that validates input as a Codigo Unico de Identificacion
Tributaria (CUIT) number.

	
class ar.forms.ARProvinceSelect

	A Select widget that uses a list of Argentina's provinces and autonomous
cities as its choices.

Australia (au)

	
class au.forms.AUPostCodeField

	A form field that validates input as an Australian postcode.

	
class au.forms.AUPhoneNumberField

	A form field that validates input as an Australian phone number. Valid numbers
have ten digits.

	
class au.forms.AUStateSelect

	A Select widget that uses a list of Australian states/territories as its
choices.

Austria (at)

	
class at.forms.ATZipCodeField

	A form field that validates its input as an Austrian zip code.

	
class at.forms.ATStateSelect

	A Select widget that uses a list of Austrian states as its choices.

	
class at.forms.ATSocialSecurityNumberField

	A form field that validates its input as an Austrian social security number.

Belgium (be)

New in Django 1.3: Please, see the release notes

	
class be.forms.BEPhoneNumberField

	A form field that validates input as a Belgium phone number, with one of
the formats 0x xxx xx xx, 0xx xx xx xx, 04xx xx xx xx, 0x/xxx.xx.xx,
0xx/xx.xx.xx, 04xx/xx.xx.xx, 0x.xxx.xx.xx, 0xx.xx.xx.xx, 04xx.xx.xx.xx,
0xxxxxxxx or 04xxxxxxxx.

	
class be.forms.BEPostalCodeField

	A form field that validates input as a Belgium postal code, in the range
and format 1XXX-9XXX.

	
class be.forms.BEProvinceSelect

	A Select widget that uses a list of Belgium provinces as its
choices.

	
class be.forms.BERegionSelect

	A Select widget that uses a list of Belgium regions as its
choices.

Brazil (br)

	
class br.forms.BRPhoneNumberField

	A form field that validates input as a Brazilian phone number, with the format
XX-XXXX-XXXX.

	
class br.forms.BRZipCodeField

	A form field that validates input as a Brazilian zip code, with the format
XXXXX-XXX.

	
class br.forms.BRStateSelect

	A Select widget that uses a list of Brazilian states/territories as its
choices.

	
class br.forms.BRCPFField

	A form field that validates input as Brazilian CPF [http://en.wikipedia.org/wiki/Cadastro_de_Pessoas_F%C3%ADsicas].

Input can either be of the format XXX.XXX.XXX-VD or be a group of 11 digits.

	
class br.forms.BRCNPJField

	A form field that validates input as Brazilian CNPJ [http://en.wikipedia.org/wiki/National_identification_number#Brazil].

Input can either be of the format XX.XXX.XXX/XXXX-XX or be a group of 14
digits.

Canada (ca)

	
class ca.forms.CAPhoneNumberField

	A form field that validates input as a Canadian phone number, with the format
XXX-XXX-XXXX.

	
class ca.forms.CAPostalCodeField

	A form field that validates input as a Canadian postal code, with the format
XXX XXX.

	
class ca.forms.CAProvinceField

	A form field that validates input as a Canadian province name or abbreviation.

	
class ca.forms.CASocialInsuranceNumberField

	A form field that validates input as a Canadian Social Insurance Number (SIN).
A valid number must have the format XXX-XXX-XXX and pass a Luhn mod-10
checksum [http://en.wikipedia.org/wiki/Luhn_algorithm].

	
class ca.forms.CAProvinceSelect

	A Select widget that uses a list of Canadian provinces and territories as
its choices.

Chile (cl)

	
class cl.forms.CLRutField

	A form field that validates input as a Chilean national identification number
('Rol Unico Tributario' or RUT). The valid format is XX.XXX.XXX-X.

	
class cl.forms.CLRegionSelect

	A Select widget that uses a list of Chilean regions (Regiones) as its
choices.

Czech (cz)

	
class cz.forms.CZPostalCodeField

	A form field that validates input as a Czech postal code. Valid formats
are XXXXX or XXX XX, where X is a digit.

	
class cz.forms.CZBirthNumberField

	A form field that validates input as a Czech Birth Number.
A valid number must be in format XXXXXX/XXXX (slash is optional).

	
class cz.forms.CZICNumberField

	A form field that validates input as a Czech IC number field.

	
class cz.forms.CZRegionSelect

	A Select widget that uses a list of Czech regions as its choices.

Finland (fi)

	
class fi.forms.FISocialSecurityNumber

	A form field that validates input as a Finnish social security number.

	
class fi.forms.FIZipCodeField

	A form field that validates input as a Finnish zip code. Valid codes
consist of five digits.

	
class fi.forms.FIMunicipalitySelect

	A Select widget that uses a list of Finnish municipalities as its
choices.

France (fr)

	
class fr.forms.FRPhoneNumberField

	A form field that validates input as a French local phone number. The
correct format is 0X XX XX XX XX. 0X.XX.XX.XX.XX and 0XXXXXXXXX validate
but are corrected to 0X XX XX XX XX.

	
class fr.forms.FRZipCodeField

	A form field that validates input as a French zip code. Valid codes
consist of five digits.

	
class fr.forms.FRDepartmentSelect

	A Select widget that uses a list of French departments as its choices.

Germany (de)

	
class de.forms.DEIdentityCardNumberField

	A form field that validates input as a German identity card number
(Personalausweis [http://de.wikipedia.org/wiki/Personalausweis]). Valid numbers have the format
XXXXXXXXXXX-XXXXXXX-XXXXXXX-X, with no group consisting entirely of zeroes.

	
class de.forms.DEZipCodeField

	A form field that validates input as a German zip code. Valid codes
consist of five digits.

	
class de.forms.DEStateSelect

	A Select widget that uses a list of German states as its choices.

The Netherlands (nl)

	
class nl.forms.NLPhoneNumberField

	A form field that validates input as a Dutch telephone number.

	
class nl.forms.NLSofiNumberField

	A form field that validates input as a Dutch social security number
(SoFI/BSN).

	
class nl.forms.NLZipCodeField

	A form field that validates input as a Dutch zip code.

	
class nl.forms.NLProvinceSelect

	A Select widget that uses a list of Dutch provinces as its list of
choices.

Iceland (is_)

	
class is_.forms.ISIdNumberField

	A form field that validates input as an Icelandic identification number
(kennitala). The format is XXXXXX-XXXX.

	
class is_.forms.ISPhoneNumberField

	A form field that validates input as an Icelandtic phone number (seven
digits with an optional hyphen or space after the first three digits).

	
class is_.forms.ISPostalCodeSelect

	A Select widget that uses a list of Icelandic postal codes as its
choices.

India (in_)

	
class in.forms.INStateField

	A form field that validates input as an Indian state/territory name or
abbreviation. Input is normalized to the standard two-letter vehicle
registration abbreviation for the given state or territory.

	
class in.forms.INZipCodeField

	A form field that validates input as an Indian zip code, with the
format XXXXXXX.

	
class in.forms.INStateSelect

	A Select widget that uses a list of Indian states/territories as its
choices.

Ireland (ie)

	
class ie.forms.IECountySelect

	A Select widget that uses a list of Irish Counties as its choices.

Indonesia (id)

	
class id.forms.IDPostCodeField

	A form field that validates input as an Indonesian post code field.

	
class id.forms.IDProvinceSelect

	A Select widget that uses a list of Indonesian provinces as its choices.

Changed in Django 1.3: The province "Nanggroe Aceh Darussalam (NAD)" has been removed
from the province list in favor of the new official designation
"Aceh (ACE)".

	
class id.forms.IDPhoneNumberField

	A form field that validates input as an Indonesian telephone number.

	
class id.forms.IDLicensePlatePrefixSelect

	A Select widget that uses a list of Indonesian license plate
prefix code as its choices.

	
class id.forms.IDLicensePlateField

	A form field that validates input as an Indonesian vehicle license plate.

	
class id.forms.IDNationalIdentityNumberField

	A form field that validates input as an Indonesian national identity
number (NIK [http://en.wikipedia.org/wiki/Indonesian_identity_card]/KTP). The output will be in the format of
'XX.XXXX.DDMMYY.XXXX'. Dots or spaces can be used in the input to break
down the numbers.

Israel (il)

	
class il.forms.ILPostalCodeField

	A form field that validates its input as an Israeli five-digit postal code.

	
class il.forms.ILIDNumberField

	A form field that validates its input as an Israeli identification number [http://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%A4%D7%A8_%D7%96%D7%94%D7%95%D7%AA_(%D7%99%D7%A9%D7%A8%D7%90%D7%9C)].
The output will be in the format of a 2-9 digit number, consisting of a
1-8 digit ID number followed by a single checksum digit, calculated using
the Luhn algorithm [http://en.wikipedia.org/wiki/Luhn_algorithm].

Input may contain an optional hyphen separating the ID number from the checksum
digit.

Italy (it)

	
class it.forms.ITSocialSecurityNumberField

	A form field that validates input as an Italian social security number
(codice fiscale [http://www.agenziaentrate.it/ilwwcm/connect/Nsi/Servizi/Codice+fiscale+-+tessera+sanitaria/NSI+Informazioni+sulla+codificazione+delle+persone+fisiche]).

	
class it.forms.ITVatNumberField

	A form field that validates Italian VAT numbers (partita IVA).

	
class it.forms.ITZipCodeField

	A form field that validates input as an Italian zip code. Valid codes
must have five digits.

	
class it.forms.ITProvinceSelect

	A Select widget that uses a list of Italian provinces as its choices.

	
class it.forms.ITRegionSelect

	A Select widget that uses a list of Italian regions as its choices.

Japan (jp)

	
class jp.forms.JPPostalCodeField

	A form field that validates input as a Japanese postcode. It accepts seven
digits, with or without a hyphen.

	
class jp.forms.JPPrefectureSelect

	A Select widget that uses a list of Japanese prefectures as its choices.

Kuwait (kw)

	
class kw.forms.KWCivilIDNumberField

	A form field that validates input as a Kuwaiti Civil ID number. A valid
Civil ID number must obey the following rules:

	The number consist of 12 digits.

	The birthdate of the person is a valid date.

	The calculated checksum equals to the last digit of the Civil ID.

Mexico (mx)

	
class mx.forms.MXStateSelect

	A Select widget that uses a list of Mexican states as its choices.

Norway (no)

	
class no.forms.NOSocialSecurityNumber

	A form field that validates input as a Norwegian social security number
(personnummer [http://no.wikipedia.org/wiki/Personnummer]).

	
class no.forms.NOZipCodeField

	A form field that validates input as a Norwegian zip code. Valid codes
have four digits.

	
class no.forms.NOMunicipalitySelect

	A Select widget that uses a list of Norwegian municipalities (fylker) as
its choices.

Peru (pe)

	
class pe.forms.PEDNIField

	A form field that validates input as a DNI (Peruvian national identity)
number.

	
class pe.forms.PERUCField

	A form field that validates input as an RUC (Registro Unico de
Contribuyentes) number. Valid RUC numbers have 11 digits.

	
class pe.forms.PEDepartmentSelect

	A Select widget that uses a list of Peruvian Departments as its choices.

Poland (pl)

	
class pl.forms.PLPESELField

	A form field that validates input as a Polish national identification number
(PESEL [http://en.wikipedia.org/wiki/PESEL]).

	
class pl.forms.PLREGONField

	A form field that validates input as a Polish National Official Business
Register Number (REGON [http://www.stat.gov.pl/bip/regon_ENG_HTML.htm]), having either seven or nine digits. The checksum
algorithm used for REGONs is documented at
http://wipos.p.lodz.pl/zylla/ut/nip-rego.html.

	
class pl.forms.PLPostalCodeField

	A form field that validates input as a Polish postal code. The valid format
is XX-XXX, where X is a digit.

	
class pl.forms.PLNIPField

	A form field that validates input as a Polish Tax Number (NIP). Valid
formats are XXX-XXX-XX-XX or XX-XX-XXX-XXX. The checksum algorithm used
for NIPs is documented at http://wipos.p.lodz.pl/zylla/ut/nip-rego.html.

	
class pl.forms.PLCountySelect

	A Select widget that uses a list of Polish administrative units as its
choices.

	
class pl.forms.PLProvinceSelect

	A Select widget that uses a list of Polish voivodeships (administrative
provinces) as its choices.

Portugal (pt)

	
class pt.forms.PTZipCodeField

	A form field that validates input as a Portuguese zip code.

	
class pt.forms.PTPhoneNumberField

	A form field that validates input as a Portuguese phone number.
Valid numbers have 9 digits (may include spaces) or start by 00
or + (international).

Romania (ro)

	
class ro.forms.ROCIFField

	A form field that validates Romanian fiscal identification codes (CIF). The
return value strips the leading RO, if given.

	
class ro.forms.ROCNPField

	A form field that validates Romanian personal numeric codes (CNP).

	
class ro.forms.ROCountyField

	A form field that validates its input as a Romanian county (judet) name or
abbreviation. It normalizes the input to the standard vehicle registration
abbreviation for the given county. This field will only accept names written
with diacritics; consider using ROCountySelect as an alternative.

	
class ro.forms.ROCountySelect

	A Select widget that uses a list of Romanian counties (judete) as its
choices.

	
class ro.forms.ROIBANField

	A form field that validates its input as a Romanian International Bank
Account Number (IBAN). The valid format is ROXX-XXXX-XXXX-XXXX-XXXX-XXXX,
with or without hyphens.

	
class ro.forms.ROPhoneNumberField

	A form field that validates Romanian phone numbers, short special numbers
excluded.

	
class ro.forms.ROPostalCodeField

	A form field that validates Romanian postal codes.

Slovakia (sk)

	
class sk.forms.SKPostalCodeField

	A form field that validates input as a Slovak postal code. Valid formats
are XXXXX or XXX XX, where X is a digit.

	
class sk.forms.SKDistrictSelect

	A Select widget that uses a list of Slovak districts as its choices.

	
class sk.forms.SKRegionSelect

	A Select widget that uses a list of Slovak regions as its choices.

South Africa (za)

	
class za.forms.ZAIDField

	A form field that validates input as a South African ID number. Validation
uses the Luhn checksum and a simplistic (i.e., not entirely accurate) check
for birth date.

	
class za.forms.ZAPostCodeField

	A form field that validates input as a South African postcode. Valid
postcodes must have four digits.

Spain (es)

	
class es.forms.ESIdentityCardNumberField

	A form field that validates input as a Spanish NIF/NIE/CIF (Fiscal
Identification Number) code.

	
class es.forms.ESCCCField

	A form field that validates input as a Spanish bank account number (Codigo
Cuenta Cliente or CCC). A valid CCC number has the format
EEEE-OOOO-CC-AAAAAAAAAA, where the E, O, C and A digits denote the entity,
office, checksum and account, respectively. The first checksum digit
validates the entity and office. The second checksum digit validates the
account. It is also valid to use a space as a delimiter, or to use no
delimiter.

	
class es.forms.ESPhoneNumberField

	A form field that validates input as a Spanish phone number. Valid numbers
have nine digits, the first of which is 6, 8 or 9.

	
class es.forms.ESPostalCodeField

	A form field that validates input as a Spanish postal code. Valid codes
have five digits, the first two being in the range 01 to 52, representing
the province.

	
class es.forms.ESProvinceSelect

	A Select widget that uses a list of Spanish provinces as its choices.

	
class es.forms.ESRegionSelect

	A Select widget that uses a list of Spanish regions as its choices.

Sweden (se)

	
class se.forms.SECountySelect

	A Select form widget that uses a list of the Swedish counties (län) as its
choices.

The cleaned value is the official county code -- see
http://en.wikipedia.org/wiki/Counties_of_Sweden for a list.

	
class se.forms.SEOrganisationNumber

	A form field that validates input as a Swedish organisation number
(organisationsnummer).

It accepts the same input as SEPersonalIdentityField (for sole
proprietorships (enskild firma). However, co-ordination numbers are not
accepted.

It also accepts ordinary Swedish organisation numbers with the format
NNNNNNNNNN.

The return value will be YYYYMMDDXXXX for sole proprietors, and NNNNNNNNNN
for other organisations.

	
class se.forms.SEPersonalIdentityNumber

	A form field that validates input as a Swedish personal identity number
(personnummer).

The correct formats are YYYYMMDD-XXXX, YYYYMMDDXXXX, YYMMDD-XXXX,
YYMMDDXXXX and YYMMDD+XXXX.

A + indicates that the person is older than 100 years, which will be taken
into consideration when the date is validated.

The checksum will be calculated and checked. The birth date is checked
to be a valid date.

By default, co-ordination numbers (samordningsnummer) will be accepted. To
only allow real personal identity numbers, pass the keyword argument
coordination_number=False to the constructor.

The cleaned value will always have the format YYYYMMDDXXXX.

	
class se.forms.SEPostalCodeField

	A form field that validates input as a Swedish postal code (postnummer).
Valid codes consist of five digits (XXXXX). The number can optionally be
formatted with a space after the third digit (XXX XX).

The cleaned value will never contain the space.

Switzerland (ch)

	
class ch.forms.CHIdentityCardNumberField

	A form field that validates input as a Swiss identity card number.
A valid number must confirm to the X1234567<0 or 1234567890 format and
have the correct checksums.

	
class ch.forms.CHPhoneNumberField

	A form field that validates input as a Swiss phone number. The correct
format is 0XX XXX XX XX. 0XX.XXX.XX.XX and 0XXXXXXXXX validate but are
corrected to 0XX XXX XX XX.

	
class ch.forms.CHZipCodeField

	A form field that validates input as a Swiss zip code. Valid codes
consist of four digits.

	
class ch.forms.CHStateSelect

	A Select widget that uses a list of Swiss states as its choices.

Turkey (tr)

	
class tr.forms.TRZipCodeField

	A form field that validates input as a Turkish zip code. Valid codes
consist of five digits.

	
class tr.forms.TRPhoneNumberField

	A form field that validates input as a Turkish phone number. The correct
format is 0xxx xxx xxxx. +90xxx xxx xxxx and inputs without spaces also
validates. The result is normalized to xxx xxx xxxx format.

	
class tr.forms.TRIdentificationNumberField

	A form field that validates input as a TR identification number. A valid
number must satisfy the following:

	The number consist of 11 digits.

	The first digit cannot be 0.

	(sum(1st, 3rd, 5th, 7th, 9th)*7 - sum(2nd,4th,6th,8th)) % 10) must be
equal to the 10th digit.

	(sum(1st to 10th) % 10) must be equal to the 11th digit.

	
class tr.forms.TRProvinceSelect

	A select widget that uses a list of Turkish provinces as its choices.

United Kingdom (uk)

	
class uk.forms.UKPostcodeField

	A form field that validates input as a UK postcode. The regular
expression used is sourced from the schema for British Standard BS7666
address types at http://www.cabinetoffice.gov.uk/media/291293/bs7666-v2-0.xml.

	
class uk.forms.UKCountySelect

	A Select widget that uses a list of UK counties/regions as its choices.

	
class uk.forms.UKNationSelect

	A Select widget that uses a list of UK nations as its choices.

United States of America (us)

	
class us.forms.USPhoneNumberField

	A form field that validates input as a U.S. phone number.

	
class us.forms.USSocialSecurityNumberField

	A form field that validates input as a U.S. Social Security Number (SSN).
A valid SSN must obey the following rules:

	Format of XXX-XX-XXXX

	No group of digits consisting entirely of zeroes

	Leading group of digits cannot be 666

	Number not in promotional block 987-65-4320 through 987-65-4329

	Number not one known to be invalid due to widespread promotional
use or distribution (e.g., the Woolworth's number or the 1962
promotional number)

	
class us.forms.USStateField

	A form field that validates input as a U.S. state name or abbreviation. It
normalizes the input to the standard two-letter postal service abbreviation
for the given state.

	
class us.forms.USZipCodeField

	A form field that validates input as a U.S. ZIP code. Valid formats are
XXXXX or XXXXX-XXXX.

	
class us.forms.USStateSelect

	A form Select widget that uses a list of U.S. states/territories as its
choices.

	
class us.forms.USPSSelect

	A form Select widget that uses a list of U.S Postal Service
state, territory and country abbreviations as its choices.

	
class us.models.PhoneNumberField

	A CharField that checks that the value is a valid U.S.A.-style phone
number (in the format XXX-XXX-XXXX).

	
class us.models.USStateField

	A model field that forms represent as a forms.USStateField field and
stores the two-letter U.S. state abbreviation in the database.

	
class us.models.USPostalCodeField

	A model field that forms represent as a forms.USPSSelect field
and stores the two-letter U.S Postal Service abbreviation in the
database.

Additionally, a variety of choice tuples are provided in
django.contrib.localflavor.us.us_states, allowing customized model
and form fields, and form presentations, for subsets of U.S states,
territories and U.S Postal Service abbreviations:

	
us.us_states.CONTIGUOUS_STATES

	A tuple of choices of the postal abbreviations for the
contiguous or "lower 48" states (i.e., all except Alaska and
Hawaii), plus the District of Columbia.

	
us.us_states.US_STATES

	A tuple of choices of the postal abbreviations for all
50 U.S. states, plus the District of Columbia.

	
us.us_states.US_TERRITORIES

	A tuple of choices of the postal abbreviations for U.S
territories: American Samoa, Guam, the Northern Mariana Islands,
Puerto Rico and the U.S. Virgin Islands.

	
us.us_states.ARMED_FORCES_STATES

	A tuple of choices of the postal abbreviations of the three U.S
military postal "states": Armed Forces Americas, Armed Forces
Europe and Armed Forces Pacific.

	
us.us_states.COFA_STATES

	A tuple of choices of the postal abbreviations of the three
independent nations which, under the Compact of Free Association,
are served by the U.S. Postal Service: the Federated States of
Micronesia, the Marshall Islands and Palau.

	
us.us_states.OBSOLETE_STATES

	A tuple of choices of obsolete U.S Postal Service state
abbreviations: the former abbreviation for the Northern Mariana
Islands, plus the Panama Canal Zone, the Philippines and the
former Pacific trust territories.

	
us.us_states.STATE_CHOICES

	A tuple of choices of all postal abbreviations corresponding to U.S states or
territories, and the District of Columbia..

	
us.us_states.USPS_CHOICES

	A tuple of choices of all postal abbreviations recognized by the
U.S Postal Service (including all states and territories, the
District of Columbia, armed forces "states" and independent
nations serviced by USPS).

Uruguay (uy)

	
class uy.forms.UYCIField

	A field that validates Uruguayan 'Cedula de identidad' (CI) numbers.

	
class uy.forms.UYDepartamentSelect

	A Select widget that uses a list of Uruguayan departaments as its
choices.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

 	contrib packages

django.contrib.markup

Django provides template filters that implement the following markup
languages:

	textile – implements Textile [http://en.wikipedia.org/wiki/Textile_%28markup_language%29] – requires PyTextile [http://loopcore.com/python-textile/]

	markdown – implements Markdown [http://en.wikipedia.org/wiki/Markdown] – requires Python-markdown [http://pypi.python.org/pypi/Markdown]

	restructuredtext – implements reST (reStructured Text) [http://en.wikipedia.org/wiki/ReStructuredText]
– requires doc-utils [http://docutils.sf.net/]

In each case, the filter expects formatted markup as a string and
returns a string representing the marked-up text. For example, the
textile filter converts text that is marked-up in Textile format
to HTML.

To activate these filters, add 'django.contrib.markup' to your
INSTALLED_APPS setting. Once you’ve done that, use
{% load markup %} in a template, and you’ll have access to these filters.
For more documentation, read the source code in
django/contrib/markup/templatetags/markup.py.

Warning

The output of markup filters is marked “safe” and will not be escaped when
rendered in a template. Always be careful to sanitize your inputs and make
sure you are not leaving yourself vulnerable to cross-site scripting or
other types of attacks.

reStructured Text

When using the restructuredtext markup filter you can define a
RESTRUCTUREDTEXT_FILTER_SETTINGS in your django settings to
override the default writer settings. See the restructuredtext writer
settings [http://docutils.sourceforge.net/docs/user/config.html#html4css1-writer] for details on what these settings are.

Markdown

The Python Markdown library supports options named “safe_mode” and
“enable_attributes”. Both relate to the security of the output. To enable both
options in tandem, the markdown filter supports the “safe” argument.

{{ markdown_content_var|markdown:”safe” }}

Warning

Versions of the Python-Markdown library prior to 2.1 do not support the
optional disabling of attributes and by default they will be included in
any output from the markdown filter - a warning is issued if this is the
case.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

 	contrib packages

The “sites” framework

Django comes with an optional “sites” framework. It’s a hook for associating
objects and functionality to particular Web sites, and it’s a holding place for
the domain names and “verbose” names of your Django-powered sites.

Use it if your single Django installation powers more than one site and you
need to differentiate between those sites in some way.

The whole sites framework is based on a simple model:

	
class Site

	A model for storing the domain and name attributes of a Web site.
The SITE_ID setting specifies the database ID of the
Site object associated with that
particular settings file.

	
domain

	The domain name associated with the Web site.

	
name

	A human-readable “verbose” name for the Web site.

How you use this is up to you, but Django uses it in a couple of ways
automatically via simple conventions.

Example usage

Why would you use sites? It’s best explained through examples.

Associating content with multiple sites

The Django-powered sites LJWorld.com [http://www.ljworld.com/] and Lawrence.com [http://www.lawrence.com/] are operated by the
same news organization – the Lawrence Journal-World newspaper in Lawrence,
Kansas. LJWorld.com focuses on news, while Lawrence.com focuses on local
entertainment. But sometimes editors want to publish an article on both
sites.

The brain-dead way of solving the problem would be to require site producers to
publish the same story twice: once for LJWorld.com and again for Lawrence.com.
But that’s inefficient for site producers, and it’s redundant to store
multiple copies of the same story in the database.

The better solution is simple: Both sites use the same article database, and an
article is associated with one or more sites. In Django model terminology,
that’s represented by a ManyToManyField in the
Article model:

from django.db import models
from django.contrib.sites.models import Site

class Article(models.Model):
 headline = models.CharField(max_length=200)
 # ...
 sites = models.ManyToManyField(Site)

This accomplishes several things quite nicely:

	It lets the site producers edit all content -- on both sites -- in a
single interface (the Django admin).

	It means the same story doesn't have to be published twice in the
database; it only has a single record in the database.

	It lets the site developers use the same Django view code for both sites.
The view code that displays a given story just checks to make sure the
requested story is on the current site. It looks something like this:

from django.conf import settings

def article_detail(request, article_id):
 try:
 a = Article.objects.get(id=article_id, sites__id__exact=settings.SITE_ID)
 except Article.DoesNotExist:
 raise Http404
 # ...

Associating content with a single site

Similarly, you can associate a model to the
Site
model in a many-to-one relationship, using
ForeignKey.

For example, if an article is only allowed on a single site, you'd use a model
like this:

from django.db import models
from django.contrib.sites.models import Site

class Article(models.Model):
 headline = models.CharField(max_length=200)
 # ...
 site = models.ForeignKey(Site)

This has the same benefits as described in the last section.

Hooking into the current site from views

You can use the sites framework in your Django views to do
particular things based on the site in which the view is being called.
For example:

from django.conf import settings

def my_view(request):
 if settings.SITE_ID == 3:
 # Do something.
 else:
 # Do something else.

Of course, it's ugly to hard-code the site IDs like that. This sort of
hard-coding is best for hackish fixes that you need done quickly. A slightly
cleaner way of accomplishing the same thing is to check the current site's
domain:

from django.conf import settings
from django.contrib.sites.models import Site

def my_view(request):
 current_site = Site.objects.get(id=settings.SITE_ID)
 if current_site.domain == 'foo.com':
 # Do something
 else:
 # Do something else.

The idiom of retrieving the Site object
for the value of settings.SITE_ID is quite common, so
the Site model's manager has a
get_current() method. This example is equivalent to the previous one:

from django.contrib.sites.models import Site

def my_view(request):
 current_site = Site.objects.get_current()
 if current_site.domain == 'foo.com':
 # Do something
 else:
 # Do something else.

Changed in Django 1.3: Please, see the release notes

For code which relies on getting the current domain but cannot be certain
that the sites framework will be installed for any given project, there is a
utility function get_current_site() that
takes a request object as an argument and returns either a Site instance (if
the sites framework is installed) or a RequestSite instance (if it is not).
This allows loose coupling with the sites framework and provides a usable
fallback for cases where it is not installed.

New in Django 1.3: Please, see the release notes

	
get_current_site(request)

	Checks if contrib.sites is installed and returns either the current
Site object or a
RequestSite object based on
the request.

Getting the current domain for display

LJWorld.com and Lawrence.com both have e-mail alert functionality, which lets
readers sign up to get notifications when news happens. It's pretty basic: A
reader signs up on a Web form, and he immediately gets an e-mail saying,
"Thanks for your subscription."

It'd be inefficient and redundant to implement this signup-processing code
twice, so the sites use the same code behind the scenes. But the "thank you for
signing up" notice needs to be different for each site. By using
Site
objects, we can abstract the "thank you" notice to use the values of the
current site's name and
domain.

Here's an example of what the form-handling view looks like:

from django.contrib.sites.models import Site
from django.core.mail import send_mail

def register_for_newsletter(request):
 # Check form values, etc., and subscribe the user.
 # ...

 current_site = Site.objects.get_current()
 send_mail('Thanks for subscribing to %s alerts' % current_site.name,
 'Thanks for your subscription. We appreciate it.\n\n-The %s team.' % current_site.name,
 'editor@%s' % current_site.domain,
 [user.email])

 # ...

On Lawrence.com, this e-mail has the subject line "Thanks for subscribing to
lawrence.com alerts." On LJWorld.com, the e-mail has the subject "Thanks for
subscribing to LJWorld.com alerts." Same goes for the e-mail's message body.

Note that an even more flexible (but more heavyweight) way of doing this would
be to use Django's template system. Assuming Lawrence.com and LJWorld.com have
different template directories (TEMPLATE_DIRS), you could simply farm out
to the template system like so:

from django.core.mail import send_mail
from django.template import loader, Context

def register_for_newsletter(request):
 # Check form values, etc., and subscribe the user.
 # ...

 subject = loader.get_template('alerts/subject.txt').render(Context({}))
 message = loader.get_template('alerts/message.txt').render(Context({}))
 send_mail(subject, message, 'editor@ljworld.com', [user.email])

 # ...

In this case, you'd have to create subject.txt and message.txt template
files for both the LJWorld.com and Lawrence.com template directories. That
gives you more flexibility, but it's also more complex.

It's a good idea to exploit the Site
objects as much as possible, to remove unneeded complexity and redundancy.

Getting the current domain for full URLs

Django's get_absolute_url() convention is nice for getting your objects'
URL without the domain name, but in some cases you might want to display the
full URL -- with http:// and the domain and everything -- for an object.
To do this, you can use the sites framework. A simple example:

>>> from django.contrib.sites.models import Site
>>> obj = MyModel.objects.get(id=3)
>>> obj.get_absolute_url()
'/mymodel/objects/3/'
>>> Site.objects.get_current().domain
'example.com'
>>> 'http://%s%s' % (Site.objects.get_current().domain, obj.get_absolute_url())
'http://example.com/mymodel/objects/3/'

Caching the current Site object

As the current site is stored in the database, each call to
Site.objects.get_current() could result in a database query. But Django is a
little cleverer than that: on the first request, the current site is cached, and
any subsequent call returns the cached data instead of hitting the database.

If for any reason you want to force a database query, you can tell Django to
clear the cache using Site.objects.clear_cache():

First call; current site fetched from database.
current_site = Site.objects.get_current()
...

Second call; current site fetched from cache.
current_site = Site.objects.get_current()
...

Force a database query for the third call.
Site.objects.clear_cache()
current_site = Site.objects.get_current()

The CurrentSiteManager

	
class CurrentSiteManager

	

If Site plays a key role in your
application, consider using the helpful
CurrentSiteManager in your
model(s). It's a model manager that
automatically filters its queries to include only objects associated
with the current Site.

Use CurrentSiteManager by adding it to
your model explicitly. For example:

from django.db import models
from django.contrib.sites.models import Site
from django.contrib.sites.managers import CurrentSiteManager

class Photo(models.Model):
 photo = models.FileField(upload_to='/home/photos')
 photographer_name = models.CharField(max_length=100)
 pub_date = models.DateField()
 site = models.ForeignKey(Site)
 objects = models.Manager()
 on_site = CurrentSiteManager()

With this model, Photo.objects.all() will return all Photo objects in
the database, but Photo.on_site.all() will return only the Photo objects
associated with the current site, according to the SITE_ID

 Databases

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Databases

Django attempts to support as many features as possible on all database
backends. However, not all database backends are alike, and we’ve had to make
design decisions on which features to support and which assumptions we can make
safely.

This file describes some of the features that might be relevant to Django
usage. Of course, it is not intended as a replacement for server-specific
documentation or reference manuals.

PostgreSQL notes

Changed in Django 1.3: Please, see the release notes

Django supports PostgreSQL 8.0 and higher. If you want to use
database-level autocommit, a
minimum version of PostgreSQL 8.2 is required.

Improvements in recent PostgreSQL versions

PostgreSQL 8.0 and 8.1 will soon reach end-of-life [http://wiki.postgresql.org/wiki/PostgreSQL_Release_Support_Policy]; there have
also been a number of significant performance improvements added
in recent PostgreSQL versions. Although PostgreSQL 8.0 is the minimum
supported version, you would be well advised to use a more recent
version if at all possible.

PostgreSQL 8.2 to 8.2.4

The implementation of the population statistics aggregates STDDEV_POP and
VAR_POP that shipped with PostgreSQL 8.2 to 8.2.4 are known to be
faulty [http://archives.postgresql.org/pgsql-bugs/2007-07/msg00046.php]. Users of these releases of PostgreSQL are advised to upgrade to
Release 8.2.5 [http://developer.postgresql.org/pgdocs/postgres/release-8-2-5.html] or later. Django will raise a NotImplementedError if you
attempt to use the StdDev(sample=False) or Variance(sample=False)
aggregate with a database backend that falls within the affected release range.

Transaction handling

By default, Django starts a transaction when a
database connection is first used and commits the result at the end of the
request/response handling. The PostgreSQL backends normally operate the same
as any other Django backend in this respect.

Autocommit mode

If your application is particularly read-heavy and doesn’t make many
database writes, the overhead of a constantly open transaction can
sometimes be noticeable. For those situations, if you’re using the
postgresql_psycopg2 backend, you can configure Django to use
“autocommit” behavior for the connection, meaning that each database
operation will normally be in its own transaction, rather than having
the transaction extend over multiple operations. In this case, you can
still manually start a transaction if you’re doing something that
requires consistency across multiple database operations. The
autocommit behavior is enabled by setting the autocommit key in
the OPTIONS part of your database configuration in
DATABASES:

'OPTIONS': {
 'autocommit': True,
}

In this configuration, Django still ensures that delete() and update()
queries run inside a single transaction, so that either all the affected
objects are changed or none of them are.

This is database-level autocommit

This functionality is not the same as the autocommit decorator. That decorator is
a Django-level implementation that commits automatically after
data changing operations. The feature enabled using the
OPTIONS option provides autocommit behavior at the
database adapter level. It commits after every operation.

If you are using this feature and performing an operation akin to delete or
updating that requires multiple operations, you are strongly recommended to
wrap you operations in manual transaction handling to ensure data consistency.
You should also audit your existing code for any instances of this behavior
before enabling this feature. It's faster, but it provides less automatic
protection for multi-call operations.

Indexes for varchar and text columns

When specifying db_index=True on your model fields, Django typically
outputs a single CREATE INDEX statement. However, if the database type
for the field is either varchar or text (e.g., used by CharField,
FileField, and TextField), then Django will create
an additional index that uses an appropriate PostgreSQL operator class [http://www.postgresql.org/docs/8.4/static/indexes-opclass.html]
for the column. The extra index is necessary to correctly perfrom
lookups that use the LIKE operator in their SQL, as is done with the
contains and startswith lookup types.

MySQL notes

Django expects the database to support transactions, referential integrity, and
Unicode (UTF-8 encoding). Fortunately, MySQL [http://www.mysql.com/] has all these features as
available as far back as 3.23. While it may be possible to use 3.23 or 4.0,
you'll probably have less trouble if you use 4.1 or 5.0.

MySQL 4.1

MySQL 4.1 [http://dev.mysql.com/doc/refman/4.1/en/index.html] has greatly improved support for character sets. It is possible to
set different default character sets on the database, table, and column.
Previous versions have only a server-wide character set setting. It's also the
first version where the character set can be changed on the fly. 4.1 also has
support for views, but Django currently doesn't use views.

MySQL 5.0

MySQL 5.0 [http://dev.mysql.com/doc/refman/5.0/en/index.html] adds the information_schema database, which contains detailed
data on all database schema. Django's inspectdb feature uses this
information_schema if it's available. 5.0 also has support for stored
procedures, but Django currently doesn't use stored procedures.

Storage engines

MySQL has several storage engines [http://dev.mysql.com/doc/refman/5.5/en/storage-engines.html] (previously called table types). You can
change the default storage engine in the server configuration.

Until MySQL 5.5.4, the default engine was MyISAM [http://dev.mysql.com/doc/refman/5.5/en/myisam-storage-engine.html] [1]. The main drawbacks of
MyISAM are that it doesn't support transactions or enforce foreign keys
constraints. On the plus side, it's currently the only engine that supports
full-text indexing and searching.

Since MySQL 5.5.5, the default storage engine is InnoDB [http://dev.mysql.com/doc/refman/5.5/en/innodb.html]. This engine is fully
transactional and supports foreign key references. It's probably the best
choice at this point in time.

	[1]	Unless this was changed by the packager of your MySQL package. We've
had reports that the Windows Community Server installer sets up InnoDB as
the default storage engine, for example.

MySQLdb

MySQLdb [http://sourceforge.net/projects/mysql-python] is the Python interface to MySQL. Version 1.2.1p2 or later is
required for full MySQL support in Django.

Note

If you see ImportError: cannot import name ImmutableSet when trying to
use Django, your MySQLdb installation may contain an outdated sets.py
file that conflicts with the built-in module of the same name from Python
2.4 and later. To fix this, verify that you have installed MySQLdb version
1.2.1p2 or newer, then delete the sets.py file in the MySQLdb
directory that was left by an earlier version.

Creating your database

You can create your database [http://dev.mysql.com/doc/refman/5.0/en/create-database.html] using the command-line tools and this SQL:

CREATE DATABASE <dbname> CHARACTER SET utf8;

This ensures all tables and columns will use UTF-8 by default.

Collation settings

The collation setting for a column controls the order in which data is sorted
as well as what strings compare as equal. It can be set on a database-wide
level and also per-table and per-column. This is documented thoroughly [http://dev.mysql.com/doc/refman/5.0/en/charset.html] in
the MySQL documentation. In all cases, you set the collation by directly
manipulating the database tables; Django doesn't provide a way to set this on
the model definition.

By default, with a UTF-8 database, MySQL will use the
utf8_general_ci_swedish collation. This results in all string equality
comparisons being done in a case-insensitive manner. That is, "Fred" and
"freD" are considered equal at the database level. If you have a unique
constraint on a field, it would be illegal to try to insert both "aa" and
"AA" into the same column, since they compare as equal (and, hence,
non-unique) with the default collation.

In many cases, this default will not be a problem. However, if you really want
case-sensitive comparisons on a particular column or table, you would change
the column or table to use the utf8_bin collation. The main thing to be
aware of in this case is that if you are using MySQLdb 1.2.2, the database
backend in Django will then return bytestrings (instead of unicode strings) for
any character fields it receive from the database. This is a strong variation
from Django's normal practice of always returning unicode strings. It is up
to you, the developer, to handle the fact that you will receive bytestrings if
you configure your table(s) to use utf8_bin collation. Django itself should
mostly work smoothly with such columns (except for the contrib.sessions
Session and contrib.admin LogEntry tables described below), but
your code must be prepared to call django.utils.encoding.smart_unicode() at
times if it really wants to work with consistent data -- Django will not do
this for you (the database backend layer and the model population layer are
separated internally so the database layer doesn't know it needs to make this
conversion in this one particular case).

If you're using MySQLdb 1.2.1p2, Django's standard
CharField class will return unicode strings even
with utf8_bin collation. However, TextField
fields will be returned as an array.array instance (from Python's standard
array module). There isn't a lot Django can do about that, since, again,
the information needed to make the necessary conversions isn't available when
the data is read in from the database. This problem was fixed in MySQLdb
1.2.2 [http://sourceforge.net/tracker/index.php?func=detail&aid=1495765&group_id=22307&atid=374932], so if you want to use TextField with
utf8_bin collation, upgrading to version 1.2.2 and then dealing with the
bytestrings (which shouldn't be too difficult) as described above is the
recommended solution.

Should you decide to use utf8_bin collation for some of your tables with
MySQLdb 1.2.1p2 or 1.2.2, you should still use utf8_collation_ci_swedish
(the default) collation for the django.contrib.sessions.models.Session
table (usually called django_session) and the
django.contrib.admin.models.LogEntry table (usually called
django_admin_log). Those are the two standard tables that use
TextField internally.

Connecting to the database

Refer to the settings documentation.

Connection settings are used in this order:

	OPTIONS.

	NAME, USER, PASSWORD,
HOST, PORT

	MySQL option files.

In other words, if you set the name of the database in OPTIONS,
this will take precedence over NAME, which would override
anything in a MySQL option file [http://dev.mysql.com/doc/refman/5.0/en/option-files.html].

Here's a sample configuration which uses a MySQL option file:

settings.py
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'OPTIONS': {
 'read_default_file': '/path/to/my.cnf',
 },
 }
}

my.cnf
[client]
database = NAME
user = USER
password = PASSWORD
default-character-set = utf8

Several other MySQLdb connection options may be useful, such as ssl,
use_unicode, init_command, and sql_mode. Consult the
MySQLdb documentation [http://mysql-python.sourceforge.net/] for more details.

Creating your tables

When Django generates the schema, it doesn't specify a storage engine, so
tables will be created with whatever default storage engine your database
server is configured for. The easiest solution is to set your database server's
default storage engine to the desired engine.

If you're using a hosting service and can't change your server's default
storage engine, you have a couple of options.

	After the tables are created, execute an ALTER TABLE statement to
convert a table to a new storage engine (such as InnoDB):

ALTER TABLE <tablename> ENGINE=INNODB;

This can be tedious if you have a lot of tables.

	Another option is to use the init_command option for MySQLdb prior to
creating your tables:

'OPTIONS': {
 'init_command': 'SET storage_engine=INNODB',
}

This sets the default storage engine upon connecting to the database.
After your tables have been created, you should remove this option.

	Another method for changing the storage engine is described in
AlterModelOnSyncDB [http://code.djangoproject.com/wiki/AlterModelOnSyncDB].

Notes on specific fields

Boolean fields

Changed in Django 1.2: Please, see the release notes

In previous versions of Django when running under MySQL BooleanFields would
return their data as ints, instead of true bools. See the release
notes for a complete description of the change.

Character fields

Any fields that are stored with VARCHAR column types have their
max_length restricted to 255 characters if you are using unique=True
for the field. This affects CharField,
SlugField and
CommaSeparatedIntegerField.

Furthermore, if you are using a version of MySQL prior to 5.0.3, all of those
column types have a maximum length restriction of 255 characters, regardless
of whether unique=True is specified or not.

DateTime fields

MySQL does not have a timezone-aware column type. If an attempt is made to
store a timezone-aware time or datetime to a
TimeField or DateTimeField
respectively, a ValueError is raised rather than truncating data.

SQLite notes

SQLite [http://www.sqlite.org/] provides an excellent development alternative for applications that
are predominantly read-only or require a smaller installation footprint. As
with all database servers, though, there are some differences that are
specific to SQLite that you should be aware of.

String matching for non-ASCII strings

SQLite doesn't support case-insensitive matching for non-ASCII strings. Some
possible workarounds for this are documented at sqlite.org [http://www.sqlite.org/faq.html#q18], but they are
not utilised by the default SQLite backend in Django. Therefore, if you are
using the iexact lookup type in your queryset filters, be aware that it
will not work as expected for non-ASCII strings.

SQLite 3.3.6 or newer strongly recommended

Versions of SQLite 3.3.5 and older contains the following bugs:

	A bug when handling [http://www.sqlite.org/cvstrac/tktview?tn=1768] ORDER BY parameters. This can cause problems when
you use the select parameter for the extra() QuerySet method. The bug
can be identified by the error message OperationalError: ORDER BY terms
must not be non-integer constants.

	A bug when handling aggregation [http://code.djangoproject.com/ticket/10031] together with DateFields and
DecimalFields.

SQLite 3.3.6 was released in April 2006, so most current binary distributions
for different platforms include newer version of SQLite usable from Python
through either the pysqlite2 or the sqlite3 modules.

However, some platform/Python version combinations include older versions of
SQLite (e.g. the official binary distribution of Python 2.5 for Windows, 2.5.4
as of this writing, includes SQLite 3.3.4). There are (as of Django 1.1) even
some tests in the Django test suite that will fail when run under this setup.

As described below, this can be solved
by downloading and installing a newer version of pysqlite2
(pysqlite-2.x.x.win32-py2.5.exe in the described case) that includes and
uses a newer version of SQLite. Python 2.6 for Windows ships with a version of
SQLite that is not affected by these issues.

Version 3.5.9

The Ubuntu "Intrepid Ibex" (8.10) SQLite 3.5.9-3 package contains a bug that
causes problems with the evaluation of query expressions. If you are using
Ubuntu "Intrepid Ibex", you will need to update the package to version
3.5.9-3ubuntu1 or newer (recommended) or find an alternate source for SQLite
packages, or install SQLite from source.

At one time, Debian Lenny shipped with the same malfunctioning SQLite 3.5.9-3
package. However the Debian project has subsequently issued updated versions
of the SQLite package that correct these bugs. If you find you are getting
unexpected results under Debian, ensure you have updated your SQLite package
to 3.5.9-5 or later.

The problem does not appear to exist with other versions of SQLite packaged
with other operating systems.

Version 3.6.2

SQLite version 3.6.2 (released August 30, 2008) introduced a bug into SELECT
DISTINCT handling that is triggered by, amongst other things, Django's
DateQuerySet (returned by the dates() method on a queryset).

You should avoid using this version of SQLite with Django. Either upgrade to
3.6.3 (released September 22, 2008) or later, or downgrade to an earlier
version of SQLite.

Using newer versions of the SQLite DB-API 2.0 driver

For versions of Python 2.5 or newer that include sqlite3 in the standard
library Django will now use a pysqlite2 interface in preference to
sqlite3 if it finds one is available.

This provides the ability to upgrade both the DB-API 2.0 interface or SQLite 3
itself to versions newer than the ones included with your particular Python
binary distribution, if needed.

"Database is locked" errors

SQLite is meant to be a lightweight database, and thus can't support a high
level of concurrency. OperationalError: database is locked errors indicate
that your application is experiencing more concurrency than sqlite can
handle in default configuration. This error means that one thread or process has
an exclusive lock on the database connection and another thread timed out
waiting for the lock the be released.

Python's SQLite wrapper has
a default timeout value that determines how long the second thread is allowed to
wait on the lock before it times out and raises the OperationalError: database
is locked error.

If you're getting this error, you can solve it by:

	Switching to another database backend. At a certain point SQLite becomes
too "lite" for real-world applications, and these sorts of concurrency
errors indicate you've reached that point.

	Rewriting your code to reduce concurrency and ensure that database
transactions are short-lived.

	Increase the default timeout value by setting the timeout database
option option:

'OPTIONS': {
 # ...
 'timeout': 20,
 # ...
}

This will simply make SQLite wait a bit longer before throwing "database
is locked" errors; it won't really do anything to solve them.

Oracle notes

Django supports Oracle Database Server [http://www.oracle.com/] versions 9i and
higher. Oracle version 10g or later is required to use Django's
regex and iregex query operators. You will also need at least
version 4.3.1 of the cx_Oracle [http://cx-oracle.sourceforge.net/] Python driver.

Note that due to a Unicode-corruption bug in cx_Oracle 5.0, that
version of the driver should not be used with Django;
cx_Oracle 5.0.1 resolved this issue, so if you'd like to use a
more recent cx_Oracle, use version 5.0.1.

cx_Oracle 5.0.1 or greater can optionally be compiled with the
WITH_UNICODE environment variable. This is recommended but not
required.

In order for the python manage.py syncdb command to work, your Oracle
database user must have privileges to run the following commands:

	CREATE TABLE

	CREATE SEQUENCE

	CREATE PROCEDURE

	CREATE TRIGGER

To run Django's test suite, the user needs these additional privileges:

	CREATE USER

	DROP USER

	CREATE TABLESPACE

	DROP TABLESPACE

	CONNECT WITH ADMIN OPTION

	RESOURCE WITH ADMIN OPTION

Connecting to the database

Your Django settings.py file should look something like this for Oracle:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.oracle',
 'NAME': 'xe',
 'USER': 'a_user',
 'PASSWORD': 'a_password',
 'HOST': '',
 'PORT': '',
 }
}

If you don't use a tnsnames.ora file or a similar naming method that
recognizes the SID ("xe" in this example), then fill in both
HOST and PORT like so:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.oracle',
 'NAME': 'xe',
 'USER': 'a_user',
 'PASSWORD': 'a_password',
 'HOST': 'dbprod01ned.mycompany.com',
 'PORT': '1540',
 }
}

You should supply both HOST and PORT, or leave both
as empty strings.

Threaded option

If you plan to run Django in a multithreaded environment (e.g. Apache in Windows
using the default MPM module), then you must set the threaded option of
your Oracle database configuration to True:

'OPTIONS': {
 'threaded': True,
},

Failure to do this may result in crashes and other odd behavior.

INSERT ... RETURNING INTO

By default, the Oracle backend uses a RETURNING INTO clause to efficiently
retrieve the value of an AutoField when inserting new rows. This behavior
may result in a DatabaseError in certain unusual setups, such as when
inserting into a remote table, or into a view with an INSTEAD OF trigger.
The RETURNING INTO clause can be disabled by setting the
use_returning_into option of the database configuration to False:

'OPTIONS': {
 'use_returning_into': False,
},

In this case, the Oracle backend will use a separate SELECT query to
retrieve AutoField values.

Tablespace options

A common paradigm for optimizing performance in Oracle-based systems is the
use of tablespaces [http://en.wikipedia.org/wiki/Tablespace] to organize disk layout. The Oracle backend supports
this use case by adding db_tablespace options to the Meta and
Field classes. (When you use a backend that lacks support for tablespaces,
Django ignores these options.)

A tablespace can be specified for the table(s) generated by a model by
supplying the db_tablespace option inside the model's class Meta.
Additionally, you can pass the db_tablespace option to a Field
constructor to specify an alternate tablespace for the Field's column
index. If no index would be created for the column, the db_tablespace
option is ignored:

class TablespaceExample(models.Model):
 name = models.CharField(max_length=30, db_index=True, db_tablespace="indexes")
 data = models.CharField(max_length=255, db_index=True)
 edges = models.ManyToManyField(to="self", db_tablespace="indexes")

 class Meta:
 db_tablespace = "tables"

In this example, the tables generated by the TablespaceExample model
(i.e., the model table and the many-to-many table) would be stored in the
tables tablespace. The index for the name field and the indexes on the
many-to-many table would be stored in the indexes tablespace. The data
field would also generate an index, but no tablespace for it is specified, so
it would be stored in the model tablespace tables by default.

Use the DEFAULT_TABLESPACE and DEFAULT_INDEX_TABLESPACE
settings to specify default values for the db_tablespace options.
These are useful for setting a tablespace for the built-in Django apps and
other applications whose code you cannot control.

Django does not create the tablespaces for you. Please refer to Oracle's
documentation [http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/statements_7003.htm#SQLRF01403] for details on creating and managing tablespaces.

Naming issues

Oracle imposes a name length limit of 30 characters. To accommodate this, the
backend truncates database identifiers to fit, replacing the final four
characters of the truncated name with a repeatable MD5 hash value.

When running syncdb, an ORA-06552 error may be encountered if
certain Oracle keywords are used as the name of a model field or the
value of a db_column option. Django quotes all identifiers used
in queries to prevent most such problems, but this error can still
occur when an Oracle datatype is used as a column name. In
particular, take care to avoid using the names date,
timestamp, number or float as a field name.

NULL and empty strings

Django generally prefers to use the empty string ('') rather than
NULL, but Oracle treats both identically. To get around this, the
Oracle backend coerces the null=True option on fields that have
the empty string as a possible value. When fetching from the database,
it is assumed that a NULL value in one of these fields really means
the empty string, and the data is silently converted to reflect this
assumption.

TextField limitations

The Oracle backend stores TextFields as NCLOB columns. Oracle imposes
some limitations on the usage of such LOB columns in general:

	LOB columns may not be used as primary keys.

	LOB columns may not be used in indexes.

	LOB columns may not be used in a SELECT DISTINCT list. This means that
attempting to use the QuerySet.distinct method on a model that
includes TextField columns will result in an error when run against
Oracle. As a workaround, use the QuerySet.defer method in conjunction
with distinct() to prevent TextField columns from being included in
the SELECT DISTINCT list.

Using a 3rd-party database backend

In addition to the officially supported databases, there are backends provided
by 3rd parties that allow you to use other databases with Django:

	Sybase SQL Anywhere [http://code.google.com/p/sqlany-django/]

	IBM DB2 [http://code.google.com/p/ibm-db/]

	Microsoft SQL Server 2005 [http://code.google.com/p/django-mssql/]

	Firebird [http://code.google.com/p/django-firebird/]

	ODBC [http://code.google.com/p/django-pyodbc/]

The Django versions and ORM features supported by these unofficial backends
vary considerably. Queries regarding the specific capabilities of these
unofficial backends, along with any support queries, should be directed to
the support channels provided by each 3rd party project.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 django-admin.py and manage.py

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

django-admin.py and manage.py

django-admin.py is Django’s command-line utility for administrative tasks.
This document outlines all it can do.

In addition, manage.py is automatically created in each Django project.
manage.py is a thin wrapper around django-admin.py that takes care of
two things for you before delegating to django-admin.py:

	It puts your project’s package on sys.path.

	It sets the DJANGO_SETTINGS_MODULE environment variable so that
it points to your project’s settings.py file.

The django-admin.py script should be on your system path if you installed
Django via its setup.py utility. If it’s not on your path, you can find it
in site-packages/django/bin within your Python installation. Consider
symlinking it from some place on your path, such as /usr/local/bin.

For Windows users, who do not have symlinking functionality available, you can
copy django-admin.py to a location on your existing path or edit the
PATH settings (under Settings - Control Panel - System - Advanced -
Environment...) to point to its installed location.

Generally, when working on a single Django project, it’s easier to use
manage.py. Use django-admin.py with DJANGO_SETTINGS_MODULE, or the
--settings command line option, if you need to switch between multiple
Django settings files.

The command-line examples throughout this document use django-admin.py to
be consistent, but any example can use manage.py just as well.

Usage

django-admin.py <command> [options]
manage.py <command> [options]

command should be one of the commands listed in this document.
options, which is optional, should be zero or more of the options available
for the given command.

Getting runtime help

	
--help

	

Run django-admin.py help to display a list of all available commands.
Run django-admin.py help <command> to display a description of the
given command and a list of its available options.

App names

Many commands take a list of "app names." An "app name" is the basename of
the package containing your models. For example, if your INSTALLED_APPS
contains the string 'mysite.blog', the app name is blog.

Determining the version

	
--version

	

Run django-admin.py --version to display the current Django version.

Examples of output:

0.95
0.96
0.97-pre-SVN-6069

Displaying debug output

Use --verbosity to specify the amount of notification and debug information
that django-admin.py should print to the console. For more details, see the
documentation for the --verbosity option.

Available commands

cleanup

	
django-admin.py cleanup

	

Can be run as a cronjob or directly to clean out old data from the database
(only expired sessions at the moment).

compilemessages

	
django-admin.py compilemessages

	

Compiles .po files created with makemessages to .mo files for use with
the builtin gettext support. See Internationalization and localization.

Use the --locale option to specify the locale to process.
If not provided, all locales are processed.

Example usage:

django-admin.py compilemessages --locale=br_PT

createcachetable

	
django-admin.py createcachetable

	

Creates a cache table named tablename for use with the database cache
backend. See Django's cache framework for more information.

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database
onto which the cachetable will be installed.

dbshell

	
django-admin.py dbshell

	

Runs the command-line client for the database engine specified in your
ENGINE setting, with the connection parameters specified in your
USER, PASSWORD, etc., settings.

	For PostgreSQL, this runs the psql command-line client.

	For MySQL, this runs the mysql command-line client.

	For SQLite, this runs the sqlite3 command-line client.

This command assumes the programs are on your PATH so that a simple call to
the program name (psql, mysql, sqlite3) will find the program in
the right place. There's no way to specify the location of the program
manually.

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database
onto which to open a shell.

diffsettings

	
django-admin.py diffsettings

	

Displays differences between the current settings file and Django's default
settings.

Settings that don't appear in the defaults are followed by "###". For
example, the default settings don't define ROOT_URLCONF, so
ROOT_URLCONF is followed by "###" in the output of
diffsettings.

Note that Django's default settings live in django/conf/global_settings.py,
if you're ever curious to see the full list of defaults.

dumpdata <appname appname appname.Model ...>

	
django-admin.py dumpdata

	

Outputs to standard output all data in the database associated with the named
application(s).

If no application name is provided, all installed applications will be dumped.

The output of dumpdata can be used as input for loaddata.

Note that dumpdata uses the default manager on the model for selecting the
records to dump. If you're using a custom manager as
the default manager and it filters some of the available records, not all of the
objects will be dumped.

New in Django 1.3: Please, see the release notes

The --all option may be provided to specify that
dumpdata should use Django's base manager, dumping records which
might otherwise be filtered or modified by a custom manager.

	
--format <fmt>

	

By default, dumpdata will format its output in JSON, but you can use the
--format option to specify another format. Currently supported formats
are listed in Serialization formats.

	
--indent <num>

	

By default, dumpdata will output all data on a single line. This isn't
easy for humans to read, so you can use the --indent option to
pretty-print the output with a number of indentation spaces.

The --exclude option may be provided to prevent specific
applications from being dumped.

New in Django 1.3: Please, see the release notes

The --exclude option may also be provided to prevent specific
models (specified as in the form of appname.ModelName) from being dumped.

In addition to specifying application names, you can provide a list of
individual models, in the form of appname.Model. If you specify a model
name to dumpdata, the dumped output will be restricted to that model,
rather than the entire application. You can also mix application names and
model names.

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database
onto which the data will be loaded.

	
--natural

	

New in Django 1.2: Please, see the release notes

Use natural keys to represent
any foreign key and many-to-many relationship with a model that provides
a natural key definition. If you are dumping contrib.auth Permission
objects or contrib.contenttypes ContentType objects, you should
probably be using this flag.

flush

	
django-admin.py flush

	

Returns the database to the state it was in immediately after syncdb was
executed. This means that all data will be removed from the database, any
post-synchronization handlers will be re-executed, and the initial_data
fixture will be re-installed.

The --noinput option may be provided to suppress all user
prompts.

New in Django 1.2: Please, see the release notes

The --database option may be used to specify the database
to flush.

inspectdb

	
django-admin.py inspectdb

	

Introspects the database tables in the database pointed-to by the
NAME setting and outputs a Django model module (a models.py
file) to standard output.

Use this if you have a legacy database with which you'd like to use Django.
The script will inspect the database and create a model for each table within
it.

As you might expect, the created models will have an attribute for every field
in the table. Note that inspectdb has a few special cases in its field-name
output:

	If inspectdb cannot map a column's type to a model field type, it'll
use TextField and will insert the Python comment
'This field type is a guess.' next to the field in the generated
model.

	If the database column name is a Python reserved word (such as
'pass', 'class' or 'for'), inspectdb will append
'_field' to the attribute name. For example, if a table has a column
'for', the generated model will have a field 'for_field', with
the db_column attribute set to 'for'. inspectdb will insert
the Python comment
'Field renamed because it was a Python reserved word.' next to the
field.

This feature is meant as a shortcut, not as definitive model generation. After
you run it, you'll want to look over the generated models yourself to make
customizations. In particular, you'll need to rearrange models' order, so that
models that refer to other models are ordered properly.

Primary keys are automatically introspected for PostgreSQL, MySQL and
SQLite, in which case Django puts in the primary_key=True where
needed.

inspectdb works with PostgreSQL, MySQL and SQLite. Foreign-key detection
only works in PostgreSQL and with certain types of MySQL tables.

New in Django 1.2: Please, see the release notes

The --database option may be used to specify the
database to introspect.

loaddata <fixture fixture ...>

	
django-admin.py loaddata

	

Searches for and loads the contents of the named fixture into the database.

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database
onto which the data will be loaded.

What's a "fixture"?

A fixture is a collection of files that contain the serialized contents of
the database. Each fixture has a unique name, and the files that comprise the
fixture can be distributed over multiple directories, in multiple applications.

Django will search in three locations for fixtures:

	In the fixtures directory of every installed application

	In any directory named in the FIXTURE_DIRS setting

	In the literal path named by the fixture

Django will load any and all fixtures it finds in these locations that match
the provided fixture names.

If the named fixture has a file extension, only fixtures of that type
will be loaded. For example:

django-admin.py loaddata mydata.json

would only load JSON fixtures called mydata. The fixture extension
must correspond to the registered name of a
serializer (e.g., json or xml).

If you omit the extensions, Django will search all available fixture types
for a matching fixture. For example:

django-admin.py loaddata mydata

would look for any fixture of any fixture type called mydata. If a fixture
directory contained mydata.json, that fixture would be loaded
as a JSON fixture.

The fixtures that are named can include directory components. These
directories will be included in the search path. For example:

django-admin.py loaddata foo/bar/mydata.json

would search <appname>/fixtures/foo/bar/mydata.json for each installed
application, <dirname>/foo/bar/mydata.json for each directory in
FIXTURE_DIRS, and the literal path foo/bar/mydata.json.

When fixture files are processed, the data is saved to the database as is.
Model defined save methods and pre_save signals are not called.

Note that the order in which fixture files are processed is undefined. However,
all fixture data is installed as a single transaction, so data in
one fixture can reference data in another fixture. If the database backend
supports row-level constraints, these constraints will be checked at the
end of the transaction.

The dumpdata command can be used to generate input for loaddata.

Compressed fixtures

Fixtures may be compressed in zip, gz, or bz2 format. For example:

django-admin.py loaddata mydata.json

would look for any of mydata.json, mydata.json.zip,
mydata.json.gz, or mydata.json.bz2. The first file contained within a
zip-compressed archive is used.

Note that if two fixtures with the same name but different
fixture type are discovered (for example, if mydata.json and
mydata.xml.gz were found in the same fixture directory), fixture
installation will be aborted, and any data installed in the call to
loaddata will be removed from the database.

MySQL with MyISAM and fixtures

The MyISAM storage engine of MySQL doesn't support transactions or
constraints, so you won't get a rollback if multiple transaction files are
found, or validation of fixture data, if you use MyISAM tables.

Database-specific fixtures

If you are in a multi-database setup, you may have fixture data that
you want to load onto one database, but not onto another. In this
situation, you can add database identifier into . If your
DATABASES setting has a 'master' database defined, you can
define the fixture mydata.master.json or
mydata.master.json.gz. This fixture will only be loaded if you
have specified that you want to load data onto the master
database.

makemessages

	
django-admin.py makemessages

	

Runs over the entire source tree of the current directory and pulls out all
strings marked for translation. It creates (or updates) a message file in the
conf/locale (in the django tree) or locale (for project and application)
directory. After making changes to the messages files you need to compile them
with compilemessages for use with the builtin gettext support. See the
i18n documentation for details.

	
--all

	

Use the --all or -a option to update the message files for all
available languages.

Example usage:

django-admin.py makemessages --all

	
--extension

	

Use the --extension or -e option to specify a list of file extensions
to examine (default: ".html").

Example usage:

django-admin.py makemessages --locale=de --extension xhtml

Separate multiple extensions with commas or use -e or --extension multiple times:

django-admin.py makemessages --locale=de --extension=html,txt --extension xml

Use the --locale option to specify the locale to process.

Example usage:

django-admin.py makemessages --locale=br_PT

	
--domain

	

Use the --domain or -d option to change the domain of the messages files.
Currently supported:

	django for all *.py and *.html files (default)

	djangojs for *.js files

	
--symlinks

	

New in Django 1.2: Please, see the release notes

Use the --symlinks or -s option to follow symlinks to directories when
looking for new translation strings.

Example usage:

django-admin.py makemessages --locale=de --symlinks

	
--ignore

	

Use the --ignore or -i option to ignore files or directories matching
the given glob-style pattern [http://docs.python.org/library/glob.html]. Use multiple times to ignore more.

These patterns are used by default: 'CVS', '.*', '*~'

Example usage:

django-admin.py makemessages --locale=en_US --ignore=apps/* --ignore=secret/*.html

	
--no-default-ignore

	

Use the --no-default-ignore option to disable the default values of
--ignore.

	
--no-wrap

	

New in Django 1.3: Please, see the release notes

Use the --no-wrap option to disable breaking long message lines into
several lines in language files.

reset <appname appname ...>

Deprecated in Django 1.3: Deprecated since version 1.3: This command has been deprecated. The flush can be used to delete
everything. You can also use ALTER TABLE or DROP TABLE statements manually.

	
django-admin.py reset

	

Executes the equivalent of sqlreset for the given app name(s).

The --noinput option may be provided to suppress all user
prompts.

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the alias
of the database to reset.

runfcgi [options]

	
django-admin.py runfcgi

	

Starts a set of FastCGI processes suitable for use with any Web server that
supports the FastCGI protocol. See the FastCGI deployment documentation for details. Requires the Python FastCGI module from
flup [http://www.saddi.com/software/flup/].

The options accepted by this command are passed to the FastCGI library and
don't use the '--' prefix as is usual for other Django management commands.

	
protocol

	

protocol=PROTOCOL

Protocol to use. PROTOCOL can be fcgi, scgi, ajp, etc.
(default is fcgi)

	
host

	

host=HOSTNAME

Hostname to listen on.

	
port

	

port=PORTNUM

Port to listen on.

	
socket

	

socket=FILE

UNIX socket to listen on.

	
method

	

method=IMPL

Possible values: prefork or threaded (default prefork)

	
maxrequests

	

maxrequests=NUMBER

Number of requests a child handles before it is killed and a new child is
forked (0 means no limit).

	
maxspare

	

maxspare=NUMBER

Max number of spare processes / threads.

	
minspare

	

minspare=NUMBER

Min number of spare processes / threads.

	
maxchildren

	

maxchildren=NUMBER

Hard limit number of processes / threads.

	
daemonize

	

daemonize=BOOL

Whether to detach from terminal.

	
pidfile

	

pidfile=FILE

Write the spawned process-id to file FILE.

	
workdir

	

workdir=DIRECTORY

Change to directory DIRECTORY when daemonizing.

	
debug

	

debug=BOOL

Set to true to enable flup tracebacks.

	
outlog

	

outlog=FILE

Write stdout to the FILE file.

	
errlog

	

errlog=FILE

Write stderr to the FILE file.

	
umask

	

umask=UMASK

Umask to use when daemonizing. The value is interpeted as an octal number
(default value is 022).

Example usage:

django-admin.py runfcgi socket=/tmp/fcgi.sock method=prefork daemonize=true \
 pidfile=/var/run/django-fcgi.pid

Run a FastCGI server as a daemon and write the spawned PID in a file.

runserver [port or address:port]

	
django-admin.py runserver

	

Starts a lightweight development Web server on the local machine. By default,
the server runs on port 8000 on the IP address 127.0.0.1. You can pass in an
IP address and port number explicitly.

If you run this script as a user with normal privileges (recommended), you
might not have access to start a port on a low port number. Low port numbers
are reserved for the superuser (root).

DO NOT USE THIS SERVER IN A PRODUCTION SETTING. It has not gone through
security audits or performance tests. (And that's how it's gonna stay. We're in
the business of making Web frameworks, not Web servers, so improving this
server to be able to handle a production environment is outside the scope of
Django.)

The development server automatically reloads Python code for each request, as
needed. You don't need to restart the server for code changes to take effect.

When you start the server, and each time you change Python code while the
server is running, the server will validate all of your installed models. (See
the validate command below.) If the validator finds errors, it will print
them to standard output, but it won't stop the server.

You can run as many servers as you want, as long as they're on separate ports.
Just execute django-admin.py runserver more than once.

Note that the default IP address, 127.0.0.1, is not accessible from other
machines on your network. To make your development server viewable to other
machines on the network, use its own IP address (e.g. 192.168.2.1) or
0.0.0.0 or :: (with IPv6 enabled).

Changed in Django 1.3: Please, see the release notes

You can provide an IPv6 address surrounded by brackets
(e.g. [200a::1]:8000). This will automatically enable IPv6 support.

A hostname containing ASCII-only characters can also be used.

	
--adminmedia

	

Use the --adminmedia option to tell Django where to find the various CSS
and JavaScript files for the Django admin interface. Normally, the development
server serves these files out of the Django source tree magically, but you'd
want to use this if you made any changes to those files for your own site.

Example usage:

django-admin.py runserver --adminmedia=/tmp/new-admin-style/

Changed in Django 1.3: Please, see the release notes

If the staticfiles contrib app is enabled
(default in new projects) the runserver command will be overriden
with an own runserver command which doesn't
have the --adminmedia option due to deprecation.

	
--noreload

	

Use the --noreload option to disable the use of the auto-reloader. This
means any Python code changes you make while the server is running will not
take effect if the particular Python modules have already been loaded into
memory.

Example usage:

django-admin.py runserver --noreload

	
--ipv6, -6

	

New in Django 1.3: Please, see the release notes

Use the --ipv6 (or shorter -6) option to tell Django to use IPv6 for
the development server. This changes the default IP address from
127.0.0.1 to ::1.

Example usage:

django-admin.py runserver --ipv6

Examples of using different ports and addresses

Port 8000 on IP address 127.0.0.1:

django-admin.py runserver

Port 8000 on IP address 1.2.3.4:

django-admin.py runserver 1.2.3.4:8000

Port 7000 on IP address 127.0.0.1:

django-admin.py runserver 7000

Port 7000 on IP address 1.2.3.4:

django-admin.py runserver 1.2.3.4:7000

Port 8000 on IPv6 address ::1:

django-admin.py runserver -6

Port 7000 on IPv6 address ::1:

django-admin.py runserver -6 7000

Port 7000 on IPv6 address 2001:0db8:1234:5678::9:

django-admin.py runserver [2001:0db8:1234:5678::9]:7000

Port 8000 on IPv4 address of host localhost:

django-admin.py runserver localhost:8000

Port 8000 on IPv6 address of host localhost:

django-admin.py runserver -6 localhost:8000

Serving static files with the development server

By default, the development server doesn't serve any static files for your site
(such as CSS files, images, things under MEDIA_URL and so forth). If
you want to configure Django to serve static media, read Managing static files.

shell

	
django-admin.py shell

	

Starts the Python interactive interpreter.

Django will use IPython [http://ipython.scipy.org/] or bpython [http://bpython-interpreter.org/] if either is installed. If you have a
rich shell installed but want to force use of the "plain" Python interpreter,
use the --plain option, like so:

django-admin.py shell --plain

sql <appname appname ...>

	
django-admin.py sql

	

Prints the CREATE TABLE SQL statements for the given app name(s).

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database for
which to print the SQL.

sqlall <appname appname ...>

	
django-admin.py sqlall

	

Prints the CREATE TABLE and initial-data SQL statements for the given app name(s).

Refer to the description of sqlcustom for an explanation of how to
specify initial data.

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database for
which to print the SQL.

sqlclear <appname appname ...>

	
django-admin.py sqlclear

	

Prints the DROP TABLE SQL statements for the given app name(s).

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database for
which to print the SQL.

sqlcustom <appname appname ...>

	
django-admin.py sqlcustom

	

Prints the custom SQL statements for the given app name(s).

For each model in each specified app, this command looks for the file
<appname>/sql/<modelname>.sql, where <appname> is the given app name and
<modelname> is the model's name in lowercase. For example, if you have an
app news that includes a Story model, sqlcustom will attempt
to read a file news/sql/story.sql and append it to the output of this
command.

Each of the SQL files, if given, is expected to contain valid SQL. The SQL
files are piped directly into the database after all of the models'
table-creation statements have been executed. Use this SQL hook to make any
table modifications, or insert any SQL functions into the database.

Note that the order in which the SQL files are processed is undefined.

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database for
which to print the SQL.

sqlflush

	
django-admin.py sqlflush

	

Prints the SQL statements that would be executed for the flush
command.

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database for
which to print the SQL.

sqlindexes <appname appname ...>

	
django-admin.py sqlindexes

	

Prints the CREATE INDEX SQL statements for the given app name(s).

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database for
which to print the SQL.

sqlreset <appname appname ...>

Deprecated in Django 1.3: Deprecated since version 1.3: This command has been deprecated. The sqlflush can be used to delete
everything. You can also use ALTER TABLE or DROP TABLE statements manually.

	
django-admin.py sqlreset

	

Prints the DROP TABLE SQL, then the CREATE TABLE SQL, for the given app name(s).

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database for
which to print the SQL.

sqlsequencereset <appname appname ...>

	
django-admin.py sqlsequencereset

	

Prints the SQL statements for resetting sequences for the given app name(s).

Sequences are indexes used by some database engines to track the next available
number for automatically incremented fields.

Use this command to generate SQL which will fix cases where a sequence is out
of sync with its automatically incremented field data.

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database for
which to print the SQL.

startapp <appname>

	
django-admin.py startapp

	

Creates a Django app directory structure for the given app name in the current
directory.

startproject <projectname>

	
django-admin.py startproject

	

Creates a Django project directory structure for the given project name in the
current directory.

This command is disabled when the --settings option to
django-admin.py is used, or when the environment variable
DJANGO_SETTINGS_MODULE has been set. To re-enable it in these
situations, either omit the --settings option or unset
DJANGO_SETTINGS_MODULE.

syncdb

	
django-admin.py syncdb

	

Creates the database tables for all apps in INSTALLED_APPS whose
tables have not already been created.

Use this command when you've added new applications to your project and want to
install them in the database. This includes any apps shipped with Django that
might be in INSTALLED_APPS by default. When you start a new project,
run this command to install the default apps.

Syncdb will not alter existing tables

syncdb will only create tables for models which have not yet been
installed. It will never issue ALTER TABLE statements to match
changes made to a model class after installation. Changes to model classes
and database schemas often involve some form of ambiguity and, in those
cases, Django would have to guess at the correct changes to make. There is
a risk that critical data would be lost in the process.

If you have made changes to a model and wish to alter the database tables
to match, use the sql command to display the new SQL structure and
compare that to your existing table schema to work out the changes.

If you're installing the django.contrib.auth application, syncdb will
give you the option of creating a superuser immediately.

syncdb will also search for and install any fixture named initial_data
with an appropriate extension (e.g. json or xml). See the
documentation for loaddata for details on the specification of fixture
data files.

The --noinput option may be provided to suppress all user
prompts.

New in Django 1.2: Please, see the release notes

The --database option can be used to specify the database to
synchronize.

test <app or test identifier>

	
django-admin.py test

	

Runs tests for all installed models. See Testing Django applications for more
information.

New in Django 1.2: Please, see the release notes

	
--failfast

	

Use the --failfast option to stop running tests and report the failure
immediately after a test fails.

testserver <fixture fixture ...>

	
django-admin.py testserver

	

Runs a Django development server (as in runserver) using data from the
given fixture(s).

For example, this command:

django-admin.py testserver mydata.json

...would perform the following steps:

	Create a test database, as described in Testing Django applications.

	Populate the test database with fixture data from the given fixtures.
(For more on fixtures, see the documentation for loaddata above.)

	Runs the Django development server (as in runserver), pointed at
this newly created test database instead of your production database.

This is useful in a number of ways:

	When you're writing unit tests of how your views
act with certain fixture data, you can use testserver to interact with
the views in a Web browser, manually.

	Let's say you're developing your Django application and have a "pristine"
copy of a database that you'd like to interact with. You can dump your
database to a fixture (using the dumpdata command, explained above),
then use testserver to run your Web application with that data. With
this arrangement, you have the flexibility of messing up your data
in any way, knowing that whatever data changes you're making are only
being made to a test database.

Note that this server does not automatically detect changes to your Python
source code (as runserver does). It does, however, detect changes to
templates.

	
--addrport [port number or ipaddr:port]

	

Use --addrport to specify a different port, or IP address and port, from
the default of 127.0.0.1:8000. This value follows exactly the same format and
serves exactly the same function as the argument to the runserver command.

Examples:

To run the test server on port 7000 with fixture1 and fixture2:

django-admin.py testserver --addrport 7000 fixture1 fixture2
django-admin.py testserver fixture1 fixture2 --addrport 7000

(The above statements are equivalent. We include both of them to demonstrate
that it doesn't matter whether the options come before or after the fixture
arguments.)

To run on 1.2.3.4:7000 with a test fixture:

django-admin.py testserver --addrport 1.2.3.4:7000 test

New in Django 1.3: Please, see the release notes

The --noinput option may be provided to suppress all user
prompts.

validate

	
django-admin.py validate

	

Validates all installed models (according to the INSTALLED_APPS
setting) and prints validation errors to standard output.

Commands provided by applications

Some commands are only available when the django.contrib application that
implements them has been
enabled. This section describes them grouped by
their application.

django.contrib.auth

changepassword

	
django-admin.py changepassword

	

New in Django 1.2: Please, see the release notes

This command is only available if Django's authentication system (django.contrib.auth) is installed.

Allows changing a user's password. It prompts you to enter twice the password of
the user given as parameter. If they both match, the new password will be
changed immediately. If you do not supply a user, the command will attempt to
change the password whose username matches the current user.

Example usage:

django-admin.py changepassword ringo

createsuperuser

	
django-admin.py createsuperuser

	

This command is only available if Django's authentication system (django.contrib.auth) is installed.

Creates a superuser account (a user who has all permissions). This is
useful if you need to create an initial superuser account but did not
do so during syncdb, or if you need to programmatically generate
superuser accounts for your site(s).

When run interactively, this command will prompt for a password for
the new superuser account. When run non-interactively, no password
will be set, and the superuser account will not be able to log in until
a password has been manually set for it.

	
--username

	

	
--email

	

The username and e-mail address for the new account can be supplied by
using the --username and --email arguments on the command
line. If either of those is not supplied, createsuperuser will prompt for
it when running interactively.

django.contrib.gis

ogrinspect

This command is only available if GeoDjango
(django.contrib.gis) is installed.

Please refer to its description in the GeoDjango
documentation.

django.contrib.sitemaps

ping_google

This command is only available if the Sitemaps framework (django.contrib.sitemaps) is installed.

Please refer to its description in the Sitemaps
documentation.

django.contrib.staticfiles

collectstatic

This command is only available if the static files application (django.contrib.staticfiles) is installed.

Please refer to its description in the
staticfiles documentation.

findstatic

This command is only available if the static files application (django.contrib.staticfiles) is installed.

Please refer to its description in the staticfiles documentation.

Default options

Although some commands may allow their own custom options, every command
allows for the following options:

	
--pythonpath

	

Example usage:

django-admin.py syncdb --pythonpath='/home/djangoprojects/myproject'

Adds the given filesystem path to the Python import search path [http://diveintopython.net/getting_to_know_python/everything_is_an_object.html]. If this
isn't provided, django-admin.py will use the PYTHONPATH environment
variable.

Note that this option is unnecessary in manage.py, because it takes care of
setting the Python path for you.

	
--settings

	

Example usage:

django-admin.py syncdb --settings=mysite.settings

Explicitly specifies the settings module to use. The settings module should be
in Python package syntax, e.g. mysite.settings. If this isn't provided,
django-admin.py will use the DJANGO_SETTINGS_MODULE environment
variable.

Note that this option is unnecessary in manage.py, because it uses
settings.py from the current project by default.

	
--traceback

	

Example usage:

django-admin.py syncdb --traceback

By default, django-admin.py will show a simple error message whenever an
error occurs. If you specify --traceback, django-admin.py will
output a full stack trace whenever an exception is raised.

	
--verbosity

	

Example usage:

django-admin.py syncdb --verbosity 2

Use --verbosity to specify the amount of notification and debug information
that django-admin.py should print to the console.

	0 means no output.

	1 means normal output (default).

	2 means verbose output.

	3 means very verbose output.

Common options

The following options are not available on every commands, but they are
common to a number of commands.

	
--database

	

New in Django 1.2: Please, see the release notes

Used to specify the database on which a command will operate. If not
specified, this option will default to an alias of default.

For example, to dump data from the database with the alias master:

django-admin.py dumpdata --database=master

	
--exclude

	

Exclude a specific application from the applications whose contents is
output. For example, to specifically exclude the auth application from
the output of dumpdata, you would call:

django-admin.py dumpdata --exclude=auth

If you want to exclude multiple applications, use multiple --exclude
directives:

django-admin.py dumpdata --exclude=auth --exclude=contenttypes

	
--locale

	

Use the --locale or -l option to specify the locale to process.
If not provided all locales are processed.

	
--noinput

	

Use the --noinput option to suppress all user prompting, such as "Are
you sure?" confirmation messages. This is useful if django-admin.py is
being executed as an unattended, automated script.

Extra niceties

Syntax coloring

The django-admin.py / manage.py commands will use pretty
color-coded output if your terminal supports ANSI-colored output. It
won't use the color codes if you're piping the command's output to
another program.

The colors used for syntax highlighting can be customized. Django
ships with three color palettes:

	dark, suited to terminals that show white text on a black
background. This is the default palette.

	light, suited to terminals that show black text on a white
background.

	nocolor, which disables syntax highlighting.

You select a palette by setting a DJANGO_COLORS environment
variable to specify the palette you want to use. For example, to
specify the light palette under a Unix or OS/X BASH shell, you
would run the following at a command prompt:

export DJANGO_COLORS="light"

You can also customize the colors that are used. Django specifies a
number of roles in which color is used:

	error - A major error.

	notice - A minor error.

	sql_field - The name of a model field in SQL.

	sql_coltype - The type of a model field in SQL.

	sql_keyword - A SQL keyword.

	sql_table - The name of a model in SQL.

	http_info - A 1XX HTTP Informational server response.

	http_success - A 2XX HTTP Success server response.

	http_not_modified - A 304 HTTP Not Modified server response.

	http_redirect - A 3XX HTTP Redirect server response other than 304.

	http_not_found - A 404 HTTP Not Found server response.

	http_bad_request - A 4XX HTTP Bad Request server response other than 404.

	http_server_error - A 5XX HTTP Server Error response.

Each of these roles can be assigned a specific foreground and
background color, from the following list:

	black

	red

	green

	yellow

	blue

	magenta

	cyan

	white

Each of these colors can then be modified by using the following
display options:

	bold

	underscore

	blink

	reverse

	conceal

A color specification follows one of the following patterns:

	role=fg

	role=fg/bg

	role=fg,option,option

	role=fg/bg,option,option

where role is the name of a valid color role, fg is the
foreground color, bg is the background color and each option
is one of the color modifying options. Multiple color specifications
are then separated by semicolon. For example:

export DJANGO_COLORS="error=yellow/blue,blink;notice=magenta"

would specify that errors be displayed using blinking yellow on blue,
and notices displayed using magenta. All other color roles would be
left uncolored.

Colors can also be specified by extending a base palette. If you put
a palette name in a color specification, all the colors implied by that
palette will be loaded. So:

export DJANGO_COLORS="light;error=yellow/blue,blink;notice=magenta"

would specify the use of all the colors in the light color palette,
except for the colors for errors and notices which would be
overridden as specified.

Bash completion

If you use the Bash shell, consider installing the Django bash completion
script, which lives in extras/django_bash_completion in the Django
distribution. It enables tab-completion of django-admin.py and
manage.py commands, so you can, for instance...

	Type django-admin.py.

	Press [TAB] to see all available options.

	Type sql, then [TAB], to see all available options whose names start
with sql.

See Writing custom django-admin commands for how to add customized actions.

Running management commands from your code

	
django.core.management.call_command(name, *args, **options)

	

To call a management command from code use call_command.

	name

	the name of the command to call.

	*args

	a list of arguments accepted by the command.

	**options

	named options accepted on the command-line.

Examples:

from django.core import management
management.call_command('flush', verbosity=0, interactive=False)
management.call_command('loaddata', 'test_data', verbosity=0)

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Django Exceptions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Django Exceptions

Django raises some Django specific exceptions as well as many standard
Python exceptions.

Django-specific Exceptions

ObjectDoesNotExist and DoesNotExist

	
exception DoesNotExist

	

	
exception ObjectDoesNotExist

	The DoesNotExist exception is raised when an object is not found
for the given parameters of a query.

ObjectDoesNotExist is defined in django.core.exceptions.
DoesNotExist is a subclass of the base ObjectDoesNotExist
exception that is provided on every model class as a way of
identifying the specific type of object that could not be found.

See get() for further information
on ObjectDoesNotExist and DoesNotExist.

MultipleObjectsReturned

	
exception MultipleObjectsReturned

	The MultipleObjectsReturned exception is raised by a query if only
one object is expected, but multiple objects are returned. A base version
of this exception is provided in django.core.exceptions; each model
class contains a subclassed version that can be used to identify the
specific object type that has returned multiple objects.

See get() for further information.

SuspiciousOperation

	
exception SuspiciousOperation

	The SuspiciousOperation exception is raised when a user has performed
an operation that should be considered suspicious from a security perspective,
such as tampering with a session cookie.

PermissionDenied

	
exception PermissionDenied

	The PermissionDenied exception is raised when a user does not have
permission to perform the action requested.

ViewDoesNotExist

	
exception ViewDoesNotExist

	The ViewDoesNotExist exception is raised by
django.core.urlresolvers when a requested view does not exist.

MiddlewareNotUsed

	
exception MiddlewareNotUsed

	The MiddlewareNotUsed exception is raised when a middleware is not
used in the server configuration.

ImproperlyConfigured

	
exception ImproperlyConfigured

	The ImproperlyConfigured exception is raised when Django is
somehow improperly configured – for example, if a value in settings.py
is incorrect or unparseable.

FieldError

	
exception FieldError

	The FieldError exception is raised when there is a problem with a
model field. This can happen for several reasons:

	A field in a model clashes with a field of the same name from an
abstract base class

	An infinite loop is caused by ordering

	A keyword cannot be parsed from the filter parameters

	A field cannot be determined from a keyword in the query
parameters

	A join is not permitted on the specified field

	A field name is invalid

	A query contains invalid order_by arguments

ValidationError

	
exception ValidationError

	The ValidationError exception is raised when data fails form or
model field validation. For more information about validation, see
Form and Field Validation,
Model Field Validation and the
Validator Reference.

NoReverseMatch

	
exception NoReverseMatch

	The NoReverseMatch exception is raised by
django.core.urlresolvers when a matching URL in your URLconf
cannot be identified based on the parameters supplied.

Database Exceptions

Django wraps the standard database exceptions DatabaseError and
IntegrityError so that your Django code has a guaranteed common
implementation of these classes. These database exceptions are
provided in django.db.

	
exception DatabaseError

	

	
exception IntegrityError

	

The Django wrappers for database exceptions behave exactly the same as
the underlying database exceptions. See PEP 249 - Python Database API
Specification v2.0 [http://www.python.org/dev/peps/pep-0249/] for further information.

Transaction Exceptions

	
exception TransactionManagementError

	The TransactionManagementError is raised for any and all problems
related to database transactions. It is available from
django.db.transaction.

Python Exceptions

Django raises built-in Python exceptions when appropriate as well. See
the Python documentation [http://docs.python.org/lib/module-exceptions.html] for further information on the built-in
exceptions.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 File handling

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

File handling

	The File object
	The File Class

	The ContentFile Class

	The ImageFile Class

	Additional methods on files attached to objects

	File storage API
	Getting the current storage class

	The FileSystemStorage Class

	The Storage Class

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 The File object

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

 	File handling

The File object

The django.core.files module and its submodules contain built-in classes
for basic file handling in Django.

The File Class

	
class File(file_object)

	The File is a thin wrapper around Python’s built-in file object
with some Django-specific additions. Internally, Django uses this class
any time it needs to represent a file.

File objects have the following attributes and methods:

	
name

	The name of file including the relative path from
MEDIA_ROOT.

	
size

	The size of the file in bytes.

	
file

	The underlying Python file object passed to
File.

	
mode

	The read/write mode for the file.

	
open([mode=None])

	Open or reopen the file (which by definition also does
File.seek(0)). The mode argument allows the same values
as Python’s standard open().

When reopening a file, mode will override whatever mode the file
was originally opened with; None means to reopen with the original
mode.

	
read([num_bytes=None])

	Read content from the file. The optional size is the number of
bytes to read; if not specified, the file will be read to the end.

	
__iter__()

	Iterate over the file yielding one line at a time.

	
chunks([chunk_size=None])

	Iterate over the file yielding “chunks” of a given size. chunk_size
defaults to 64 KB.

This is especially useful with very large files since it allows them to
be streamed off disk and avoids storing the whole file in memory.

	
multiple_chunks([chunk_size=None])

	Returns True if the file is large enough to require multiple chunks
to access all of its content give some chunk_size.

	
write([content])

	Writes the specified content string to the file. Depending on the
storage system behind the scenes, this content might not be fully
committed until close() is called on the file.

	
close()

	Close the file.

In addition to the listed methods, File exposes
the following attributes and methods of the underlying file object:
encoding, fileno, flush, isatty, newlines,
read, readinto, readlines, seek, softspace, tell,
truncate, writelines, xreadlines.

The ContentFile Class

	
class ContentFile(File)

	The ContentFile class inherits from File,
but unlike File it operates on string content,
rather than an actual file. For example:

from django.core.files.base import ContentFile

f1 = ContentFile("my string content")
f2 = ContentFile(u"my unicode content encoded as UTF-8".encode('UTF-8'))

The ImageFile Class

	
class ImageFile(file_object)

	Django provides a built-in class specifically for images.
django.core.files.images.ImageFile inherits all the attributes
and methods of File, and additionally
provides the following:

	
width

	Width of the image in pixels.

	
height

	Height of the image in pixels.

Additional methods on files attached to objects

Any File that's associated with an object (as with Car.photo,
below) will also have a couple of extra methods:

	
File.save(name, content[, save=True])

	Saves a new file with the file name and contents provided. This will not
replace the existing file, but will create a new file and update the object
to point to it. If save is True, the model's save() method will
be called once the file is saved. That is, these two lines:

>>> car.photo.save('myphoto.jpg', contents, save=False)
>>> car.save()

are the same as this one line:

>>> car.photo.save('myphoto.jpg', contents, save=True)

Note that the content argument must be an instance of either
File or of a subclass of File, such as
ContentFile.

	
File.delete([save=True])

	Removes the file from the model instance and deletes the underlying file.
If save is True, the model's save() method will be called once
the file is deleted.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 File storage API

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

 	File handling

File storage API

Getting the current storage class

Django provides two convenient ways to access the current storage class:

	
class DefaultStorage

	DefaultStorage provides
lazy access to the current default storage system as defined by
DEFAULT_FILE_STORAGE. DefaultStorage uses
get_storage_class() internally.

	
get_storage_class([import_path=None])

	Returns a class or module which implements the storage API.

When called without the import_path parameter get_storage_class
will return the current default storage system as defined by
DEFAULT_FILE_STORAGE. If import_path is provided,
get_storage_class will attempt to import the class or module from the
given path and will return it if successful. An exception will be
raised if the import is unsuccessful.

The FileSystemStorage Class

	
class FileSystemStorage

	The FileSystemStorage class implements
basic file storage on a local filesystem. It inherits from
Storage and provides implementations
for all the public methods thereof.

Note

The FileSystemStorage.delete method will not raise
raise an exception if the given file name does not exist.

The Storage Class

	
class Storage

	The Storage class provides a
standardized API for storing files, along with a set of default
behaviors that all other storage systems can inherit or override
as necessary.

	
accessed_time(name)

	
New in Django 1.3: Please, see the release notes

Returns a datetime object containing the last accessed time of the
file. For storage systems that aren’t able to return the last accessed
time this will raise NotImplementedError instead.

	
created_time(name)

	
New in Django 1.3: Please, see the release notes

Returns a datetime object containing the creation time of the file.
For storage systems that aren’t able to return the creation time this
will raise NotImplementedError instead.

	
delete(name)

	Deletes the file referenced by name. If deletion is not supported
on the targest storage system this will raise NotImplementedError
instead

	
exists(name)

	Returns True if a file referenced by the given name already exists
in the storage system, or False if the name is available for a new
file.

	
get_available_name(name)

	Returns a filename based on the name parameter that’s free and
available for new content to be written to on the target storage
system.

	
get_valid_name(name)

	Returns a filename based on the name parameter that’s suitable
for use on the target storage system.

	
listdir(path)

	Lists the contents of the specified path, returning a 2-tuple of lists;
the first item being directories, the second item being files. For
storage systems that aren’t able to provide such a listing, this will
raise a NotImplementedError instead.

	
modified_time(name)

	
New in Django 1.3: Please, see the release notes

Returns a datetime object containing the last modified time. For
storage systems that aren’t able to return the last modified time, this
will raise NotImplementedError instead.

	
open(name, mode='rb')

	Opens the file given by name. Note that although the returned file
is guaranteed to be a File object, it might actually be some
subclass. In the case of remote file storage this means that
reading/writing could be quite slow, so be warned.

	
path(name)

	The local filesystem path where the file can be opened using Python’s
standard open(). For storage systems that aren’t accessible from
the local filesystem, this will raise NotImplementedError instead.

	
save(name, content)

	Saves a new file using the storage system, preferably with the name
specified. If there already exists a file with this name name, the
storage system may modify the filename as necessary to get a unique
name. The actual name of the stored file will be returned.

The content argument must be an instance of
django.core.files.File or of a subclass of
File.

	
size(name)

	Returns the total size, in bytes, of the file referenced by name.
For storage systems that aren’t able to return the file size this will
raise NotImplementedError instead.

	
url(name)

	Returns the URL where the contents of the file referenced by name
can be accessed. For storage systems that don’t support access by URL
this will raise NotImplementedError instead.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Class-based generic views

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Class-based generic views

New in Django 1.3: Please, see the release notes

Note

Prior to Django 1.3, generic views were implemented as functions. The
function-based implementation has been deprecated in favor of the
class-based approach described here.

For details on the previous generic views implementation,
see the topic guide and
detailed reference.

Writing Web applications can be monotonous, because we repeat certain patterns
again and again. Django tries to take away some of that monotony at the model
and template layers, but Web developers also experience this boredom at the view
level.

A general introduction to class-based generic views can be found in the
topic guide.

This reference contains details of Django’s built-in generic views, along with
a list of the keyword arguments that each generic view expects. Remember that
arguments may either come from the URL pattern or from the extra_context
additional-information dictionary.

Most generic views require the queryset key, which is a QuerySet
instance; see Making queries for more information about QuerySet
objects.

Mixins

A mixin class is a way of using the inheritance capabilities of
classes to compose a class out of smaller pieces of behavior. Django’s
class-based generic views are constructed by composing mixins into
usable generic views.

For example, the DetailView
is composed from:

	View, which provides the
basic class-based behavior

	SingleObjectMixin, which
provides the utilities for retrieving and displaying a single object

	SingleObjectTemplateResponseMixin,
which provides the tools for rendering a single object into a
template-based response.

When combined, these mixins provide all the pieces necessary to
provide a view over a single object that renders a template to produce
a response.

Django provides a range of mixins. If you want to write your own
generic views, you can build classes that compose these mixins in
interesting ways. Alternatively, you can just use the pre-mixed
Generic views that Django provides.

Note

When the documentation for a view gives the list of mixins, that view
inherits all the properties and methods of that mixin.

Simple mixins

TemplateResponseMixin

	
class TemplateResponseMixin

	
	
template_name

	The path to the template to use when rendering the view.

	
response_class

	The response class to be returned by render_to_response method.
Default is
TemplateResponse.
The template and context of TemplateResponse instances can be
altered later (e.g. in
template response middleware).

If you need custom template loading or custom context object
instantiation, create a TemplateResponse subclass and assign it to
response_class.

	
render_to_response(context, **response_kwargs)

	Returns a self.response_class instance.

If any keyword arguments are provided, they will be
passed to the constructor of the response class.

Calls get_template_names() to obtain the
list of template names that will be searched looking for an existent
template.

	
get_template_names()

	Returns a list of template names to search for when rendering the
template.

If TemplateResponseMixin.template_name is specified, the
default implementation will return a list containing
TemplateResponseMixin.template_name (if it is specified).

Single object mixins

SingleObjectMixin

	
class SingleObjectMixin

	
	
model

	The model that this view will display data for. Specifying model
= Foo is effectively the same as specifying queryset =
Foo.objects.all().

	
queryset

	A QuerySet that represents the objects. If provided, the value of
SingleObjectMixin.queryset supersedes the value provided for
SingleObjectMixin.model.

	
slug_field

	The name of the field on the model that contains the slug. By default,
slug_field is 'slug'.

	
context_object_name

	Designates the name of the variable to use in the context.

	
get_object(queryset=None)

	Returns the single object that this view will display. If
queryset is provided, that queryset will be used as the
source of objects; otherwise,
get_queryset() will be used.
get_object() looks for a pk
argument in the arguments to the view; if pk is found,
this method performs a primary-key based lookup using that
value. If no pk argument is found, it looks for a slug
argument, and performs a slug lookup using the
SingleObjectMixin.slug_field.

	
get_queryset()

	Returns the queryset that will be used to retrieve the object that
this view will display. By default,
get_queryset() returns the value of the
queryset attribute if it is set, otherwise
it constructs a QuerySet by calling the all() method on the
model attribute’s default manager.

	
get_context_object_name(obj)

	Return the context variable name that will be used to contain the
data that this view is manipulating. If
context_object_name is not set, the context
name will be constructed from the object_name of the model that
the queryset is composed from. For example, the model Article
would have context object named 'article'.

	
get_context_data(**kwargs)

	Returns context data for displaying the list of objects.

Context

	object: The object that this view is displaying. If
context_object_name is specified, that variable will also be
set in the context, with the same value as object.

SingleObjectTemplateResponseMixin

	
class SingleObjectTemplateResponseMixin

	A mixin class that performs template-based response rendering for views
that operate upon a single object instance. Requires that the view it is
mixed with provides self.object, the object instance that the view is
operating on. self.object will usually be, but is not required to be,
an instance of a Django model. It may be None if the view is in the
process of constructing a new instance.

Extends

	TemplateResponseMixin

	
template_name_field

	The field on the current object instance that can be used to determine
the name of a candidate template. If either template_name_field or
the value of the template_name_field on the current object instance
is None, the object will not be interrogated for a candidate
template name.

	
template_name_suffix

	The suffix to append to the auto-generated candidate template name.
Default suffix is _detail.

	
get_template_names()

	Returns a list of candidate template names. Returns the following list:

	the value of template_name on the view (if provided)

	the contents of the template_name_field field on the
object instance that the view is operating upon (if available)

	<app_label>/<object_name><template_name_suffix>.html

Multiple object mixins

MultipleObjectMixin

	
class MultipleObjectMixin

	A mixin that can be used to display a list of objects.

If paginate_by is specified, Django will paginate the results returned
by this. You can specify the page number in the URL in one of two ways:

	Use the page parameter in the URLconf. For example, this is what
your URLconf might look like:

(r'^objects/page(?P<page>[0-9]+)/$', PaginatedView.as_view())

	Pass the page number via the page query-string parameter. For
example, a URL would look like this:

/objects/?page=3

These values and lists are 1-based, not 0-based, so the first page would be
represented as page 1.

For more on pagination, read the pagination documentation.

As a special case, you are also permitted to use last as a value for
page:

/objects/?page=last

This allows you to access the final page of results without first having to
determine how many pages there are.

Note that page must be either a valid page number or the value
last; any other value for page will result in a 404 error.

	
allow_empty

	A boolean specifying whether to display the page if no objects are
available. If this is False and no objects are available, the view
will raise a 404 instead of displaying an empty page. By default, this
is True.

	
model

	The model that this view will display data for. Specifying model
= Foo is effectively the same as specifying queryset =
Foo.objects.all().

	
queryset

	A QuerySet that represents the objects. If provided, the value of
MultipleObjectMixin.queryset supersedes the value provided for
MultipleObjectMixin.model.

	
paginate_by

	An integer specifying how many objects should be displayed per page. If
this is given, the view will paginate objects with
MultipleObjectMixin.paginate_by objects per page. The view will
expect either a page query string parameter (via GET) or a
page variable specified in the URLconf.

	
paginator_class

	The paginator class to be used for pagination. By default,
django.core.paginator.Paginator is used. If the custom paginator
class doesn't have the same constructor interface as
django.core.paginator.Paginator, you will also need to
provide an implementation for MultipleObjectMixin.get_paginator().

	
context_object_name

	Designates the name of the variable to use in the context.

	
get_queryset()

	Returns the queryset that represents the data this view will display.

	
paginate_queryset(queryset, page_size)

	Returns a 4-tuple containing (paginator, page, object_list,
is_paginated).

Constructed by paginating queryset into pages of size page_size.
If the request contains a page argument, either as a captured URL
argument or as a GET argument, object_list will correspond to the
objects from that page.

	
get_paginate_by(queryset)

	Returns the number of items to paginate by, or None for no
pagination. By default this simply returns the value of
MultipleObjectMixin.paginate_by.

	
get_paginator(queryset, per_page, orphans=0, allow_empty_first_page=True)

	Returns an instance of the paginator to use for this view. By default,
instantiates an instance of paginator_class.

	
get_allow_empty()

	Return a boolean specifying whether to display the page if no objects
are available. If this method returns False and no objects are
available, the view will raise a 404 instead of displaying an empty
page. By default, this is True.

	
get_context_object_name(object_list)

	Return the context variable name that will be used to contain
the list of data that this view is manipulating. If
object_list is a queryset of Django objects and
context_object_name is not set,
the context name will be the object_name of the model that
the queryset is composed from, with postfix '_list'
appended. For example, the model Article would have a
context object named article_list.

	
get_context_data(**kwargs)

	Returns context data for displaying the list of objects.

Context

	object_list: The list of objects that this view is displaying. If
context_object_name is specified, that variable will also be set
in the context, with the same value as object_list.

	is_paginated: A boolean representing whether the results are
paginated. Specifically, this is set to False if no page size has
been specified, or if the available objects do not span multiple
pages.

	paginator: An instance of
django.core.paginator.Paginator. If the page is not
paginated, this context variable will be None.

	page_obj: An instance of
django.core.paginator.Page. If the page is not paginated,
this context variable will be None.

MultipleObjectTemplateResponseMixin

	
class MultipleObjectTemplateResponseMixin

	A mixin class that performs template-based response rendering for views
that operate upon a list of object instances. Requires that the view it is
mixed with provides self.object_list, the list of object instances that
the view is operating on. self.object_list may be, but is not required
to be, a Queryset.

Extends

	TemplateResponseMixin

	
template_name_suffix

	The suffix to append to the auto-generated candidate template name.
Default suffix is _list.

	
get_template_names()

	Returns a list of candidate template names. Returns the following list:

	the value of template_name on the view (if provided)

	<app_label>/<object_name><template_name_suffix>.html

Editing mixins

FormMixin

	
class FormMixin

	A mixin class that provides facilities for creating and displaying forms.

	
initial

	A dictionary containing initial data for the form.

	
form_class

	The form class to instantiate.

	
success_url

	The URL to redirect to when the form is successfully processed.

	
get_initial()

	Retrieve initial data for the form. By default, returns
initial.

	
get_form_class()

	Retrieve the form class to instantiate. By default
form_class.

	
get_form(form_class)

	Instantiate an instance of form_class using
get_form_kwargs().

	
get_form_kwargs()

	Build the keyword arguments required to instantiate the form.

The initial argument is set to get_initial(). If the
request is a POST or PUT, the request data (request.POST
and request.FILES) will also be provided.

	
get_success_url()

	Determine the URL to redirect to when the form is successfully
validated. Returns success_url by default.

	
form_valid(form)

	Redirects to get_success_url().

	
form_invalid(form)

	Renders a response, providing the invalid form as context.

	
get_context_data(**kwargs)

	Populates a context containing the contents of kwargs.

Context

	form: The form instance that was generated for the view.

Note

Views mixing FormMixin must
provide an implementation of form_valid() and
form_invalid().

ModelFormMixin

	
class ModelFormMixin

	A form mixin that works on ModelForms, rather than a standalone form.

Since this is a subclass of
SingleObjectMixin, instances of this
mixin have access to the model and
queryset attributes, describing the type of
object that the ModelForm is manipulating. The view also provides
self.object, the instance being manipulated. If the instance is being
created, self.object will be None

Mixins

	django.views.generic.forms.FormMixin

	django.views.generic.detail.SingleObjectMixin

	
success_url

	The URL to redirect to when the form is successfully processed.

success_url may contain dictionary string formatting, which
will be interpolated against the object's field attributes. For
example, you could use success_url="/polls/%(slug)s/" to
redirect to a URL composed out of the slug field on a model.

	
get_form_class()

	Retrieve the form class to instantiate. If
FormMixin.form_class is provided, that class will be used.
Otherwise, a ModelForm will be instantiated using the model associated
with the queryset, or with the
model, depending on which attribute is
provided.

	
get_form_kwargs()

	Add the current instance (self.object) to the standard
FormMixin.get_form_kwargs().

	
get_success_url()

	Determine the URL to redirect to when the form is successfully
validated. Returns FormMixin.success_url if it is provided;
otherwise, attempts to use the get_absolute_url() of the object.

	
form_valid()

	Saves the form instance, sets the current object for the view, and
redirects to get_success_url().

	
form_invalid()

	Renders a response, providing the invalid form as context.

ProcessFormView

	
class ProcessFormView

	A mixin that provides basic HTTP GET and POST workflow.

	
get(request, *args, **kwargs)

	Constructs a form, then renders a response using a context that
contains that form.

	
post(request, *args, **kwargs)

	Constructs a form, checks the form for validity, and handles it
accordingly.

The PUT action is also handled, as an analog of POST.

DeletionMixin

	
class DeletionMixin

	Enables handling of the DELETE http action.

	
success_url

	The url to redirect to when the nominated object has been
successfully deleted.

	
get_success_url(obj)

	Returns the url to redirect to when the nominated object has been
successfully deleted. Returns
success_url by
default.

Date-based mixins

YearMixin

	
class YearMixin

	A mixin that can be used to retrieve and provide parsing information for a
year component of a date.

	
year_format

	The strftime [http://docs.python.org/library/time.html#time.strftime] format to use when parsing the year. By default, this is
'%Y'.

	
year

	Optional The value for the year (as a string). By default, set to
None, which means the year will be determined using other means.

	
get_year_format()

	Returns the strftime [http://docs.python.org/library/time.html#time.strftime] format to use when parsing the year. Returns
YearMixin.year_format by default.

	
get_year()

	Returns the year for which this view will display data. Tries the
following sources, in order:

	The value of the YearMixin.year attribute.

	The value of the year argument captured in the URL pattern

	The value of the year GET query argument.

Raises a 404 if no valid year specification can be found.

MonthMixin

	
class MonthMixin

	A mixin that can be used to retrieve and provide parsing information for a
month component of a date.

	
month_format

	The strftime [http://docs.python.org/library/time.html#time.strftime] format to use when parsing the month. By default, this is
'%b'.

	
month

	Optional The value for the month (as a string). By default, set to
None, which means the month will be determined using other means.

	
get_month_format()

	Returns the strftime [http://docs.python.org/library/time.html#time.strftime] format to use when parsing the month. Returns
MonthMixin.month_format by default.

	
get_month()

	Returns the month for which this view will display data. Tries the
following sources, in order:

	The value of the MonthMixin.month attribute.

	The value of the month argument captured in the URL pattern

	The value of the month GET query argument.

Raises a 404 if no valid month specification can be found.

	
get_next_month(date)

	Returns a date object containing the first day of the month after the
date provided. Returns None if mixed with a view that sets
allow_future = False, and the next month is in the future. If
allow_empty = False, returns the next month that contains data.

	
get_prev_month(date)

	Returns a date object containing the first day of the month before the
date provided. If allow_empty = False, returns the previous month
that contained data.

DayMixin

	
class DayMixin

	A mixin that can be used to retrieve and provide parsing information for a
day component of a date.

	
day_format

	The strftime [http://docs.python.org/library/time.html#time.strftime] format to use when parsing the day. By default, this is
'%d'.

	
day

	Optional The value for the day (as a string). By default, set to
None, which means the day will be determined using other means.

	
get_day_format()

	Returns the strftime [http://docs.python.org/library/time.html#time.strftime] format to use when parsing the day. Returns
DayMixin.day_format by default.

	
get_day()

	Returns the day for which this view will display data. Tries the
following sources, in order:

	The value of the DayMixin.day attribute.

	The value of the day argument captured in the URL pattern

	The value of the day GET query argument.

Raises a 404 if no valid day specification can be found.

	
get_next_day(date)

	Returns a date object containing the next day after the date provided.
Returns None if mixed with a view that sets allow_future = False,
and the next day is in the future. If allow_empty = False, returns
the next day that contains data.

	
get_prev_day(date)

	Returns a date object containing the previous day. If
allow_empty = False, returns the previous day that contained data.

WeekMixin

	
class WeekMixin

	A mixin that can be used to retrieve and provide parsing information for a
week component of a date.

	
week_format

	The strftime [http://docs.python.org/library/time.html#time.strftime] format to use when parsing the week. By default, this is
'%U'.

	
week

	Optional The value for the week (as a string). By default, set to
None, which means the week will be determined using other means.

	
get_week_format()

	Returns the strftime [http://docs.python.org/library/time.html#time.strftime] format to use when parsing the week. Returns
WeekMixin.week_format by default.

	
get_week()

	Returns the week for which this view will display data. Tries the
following sources, in order:

	The value of the WeekMixin.week attribute.

	The value of the week argument captured in the URL pattern

	The value of the week GET query argument.

Raises a 404 if no valid week specification can be found.

DateMixin

	
class DateMixin

	A mixin class providing common behavior for all date-based views.

	
date_field

	The name of the DateField or DateTimeField in the
QuerySet's model that the date-based archive should use to
determine the objects on the page.

	
allow_future

	A boolean specifying whether to include "future" objects on this page,
where "future" means objects in which the field specified in
date_field is greater than the current date/time. By default, this
is False.

	
get_date_field()

	Returns the name of the field that contains the date data that this
view will operate on. Returns DateMixin.date_field by default.

	
get_allow_future()

	Determine whether to include "future" objects on this page, where
"future" means objects in which the field specified in date_field
is greater than the current date/time. Returns
DateMixin.date_field by default.

BaseDateListView

	
class BaseDateListView

	A base class that provides common behavior for all date-based views. There
won't normally be a reason to instantiate
BaseDateListView; instantiate one of
the subclasses instead.

While this view (and it's subclasses) are executing, self.object_list
will contain the list of objects that the view is operating upon, and
self.date_list will contain the list of dates for which data is
available.

Mixins

	DateMixin

	MultipleObjectMixin

	
allow_empty

	A boolean specifying whether to display the page if no objects are
available. If this is False and no objects are available, the view
will raise a 404 instead of displaying an empty page. By default, this
is True.

	
get_dated_items():

	Returns a 3-tuple containing (date_list, object_list,
extra_context).

date_list is the list of dates for which data is available.
object_list is the list of objects. extra_context is a
dictionary of context data that will be added to any context data
provided by the
MultipleObjectMixin.

	
get_dated_queryset(**lookup)

	Returns a queryset, filtered using the query arguments defined by
lookup. Enforces any restrictions on the queryset, such as
allow_empty and allow_future.

	
get_date_list(queryset, date_type)

	Returns the list of dates of type date_type for which
queryset contains entries. For example, get_date_list(qs,
'year') will return the list of years for which qs has entries.
See dates() for the
ways that the date_type argument can be used.

Generic views

Simple generic views

View

	
class View

	The master class-based base view. All other generic class-based views
inherit from this base class.

Each request served by a View has an
independent state; therefore, it is safe to store state variables on the
instance (i.e., self.foo = 3 is a thread-safe operation).

A class-based view is deployed into a URL pattern using the
as_view() classmethod:

urlpatterns = patterns('',
 (r'^view/$', MyView.as_view(size=42)),
)

Any argument passed into as_view() will be assigned onto the
instance that is used to service a request. Using the previous example,
this means that every request on MyView is able to interrogate
self.size.

Thread safety with view arguments

Arguments passed to a view are shared between every instance of a view.
This means that you shoudn't use a list, dictionary, or any other
variable object as an argument to a view. If you did, the actions of
one user visiting your view could have an effect on subsequent users
visiting the same view.

	
dispatch(request, *args, **kwargs)

	The view part of the view -- the method that accepts a request
argument plus arguments, and returns a HTTP response.

The default implementation will inspect the HTTP method and attempt to
delegate to a method that matches the HTTP method; a GET will be
delegated to get(), a POST to post(),
and so on.

The default implementation also sets request, args and
kwargs as instance variables, so any method on the view can know
the full details of the request that was made to invoke the view.

	
http_method_not_allowed(request, *args, **kwargs)

	If the view was called with HTTP method it doesn't support, this method
is called instead.

The default implementation returns HttpResponseNotAllowed with list
of allowed methods in plain text.

TemplateView

	
class TemplateView

	Renders a given template, passing it a {{ params }} template variable,
which is a dictionary of the parameters captured in the URL.

Mixins

	django.views.generic.base.TemplateResponseMixin

	
template_name

	The full name of a template to use.

	
get_context_data(**kwargs)

	Return a context data dictionary consisting of the contents of
kwargs stored in the context variable params.

Context

	params: The dictionary of keyword arguments captured from the URL
pattern that served the view.

RedirectView

	
class RedirectView

	Redirects to a given URL.

The given URL may contain dictionary-style string formatting, which will be
interpolated against the parameters captured in the URL. Because keyword
interpolation is always done (even if no arguments are passed in), any
"%" characters in the URL must be written as "%%" so that Python
will convert them to a single percent sign on output.

If the given URL is None, Django will return an HttpResponseGone
(410).

	
url

	The URL to redirect to, as a string. Or None to raise a 410 (Gone)
HTTP error.

	
permanent

	Whether the redirect should be permanent. The only difference here is
the HTTP status code returned. If True, then the redirect will use
status code 301. If False, then the redirect will use status code
302. By default, permanent is True.

	
query_string

	Whether to pass along the GET query string to the new location. If
True, then the query string is appended to the URL. If False,
then the query string is discarded. By default, query_string is
False.

	
get_redirect_url(**kwargs)

	Constructs the target URL for redirection.

The default implementation uses url as a starting
string, performs expansion of % parameters in that string, as well
as the appending of query string if requested by
query_string. Subclasses may implement any
behavior they wish, as long as the method returns a redirect-ready URL
string.

Detail views

DetailView

	
class BaseDetailView

	

	
class DetailView

	A page representing an individual object.

While this view is executing, self.object will contain the object that
the view is operating upon.

BaseDetailView implements the same
behavior as DetailView, but doesn't
include the
SingleObjectTemplateResponseMixin.

Mixins

	django.views.generic.detail.SingleObjectMixin

	django.views.generic.detail.SingleObjectTemplateResponseMixin

List views

ListView

	
class BaseListView

	

	
class ListView

	A page representing a list of objects.

While this view is executing, self.object_list will contain the list of
objects (usually, but not necessarily a queryset) that the view is
operating upon.

BaseListView implements the same
behavior as ListView, but doesn't
include the
MultipleObjectTemplateResponseMixin.

Mixins

	django.views.generic.list.MultipleObjectMixin

	django.views.generic.list.MultipleObjectTemplateResponseMixin

Editing views

FormView

	
class BaseFormView

	

	
class FormView

	A view that displays a form. On error, redisplays the form with validation
errors; on success, redirects to a new URL.

BaseFormView implements the same
behavior as FormView, but doesn't
include the TemplateResponseMixin.

Mixins

	django.views.generic.edit.FormMixin

	django.views.generic.edit.ProcessFormView

CreateView

	
class BaseCreateView

	

	
class CreateView

	A view that displays a form for creating an object, redisplaying the form
with validation errors (if there are any) and saving the object.

BaseCreateView implements the same
behavior as CreateView, but doesn't
include the TemplateResponseMixin.

Mixins

	django.views.generic.edit.ModelFormMixin

	django.views.generic.edit.ProcessFormView

UpdateView

	
class BaseUpdateView

	

	
class UpdateView

	A view that displays a form for editing an existing object, redisplaying
the form with validation errors (if there are any) and saving changes to
the object. This uses a form automatically generated from the object's
model class (unless a form class is manually specified).

BaseUpdateView implements the same
behavior as UpdateView, but doesn't
include the TemplateResponseMixin.

Mixins

	django.views.generic.edit.ModelFormMixin

	django.views.generic.edit.ProcessFormView

DeleteView

	
class BaseDeleteView

	

	
class DeleteView

	A view that displays a confirmation page and deletes an existing object.
The given object will only be deleted if the request method is POST. If
this view is fetched via GET, it will display a confirmation page that
should contain a form that POSTs to the same URL.

BaseDeleteView implements the same
behavior as DeleteView, but doesn't
include the TemplateResponseMixin.

Mixins

	django.views.generic.edit.DeletionMixin

	django.views.generic.detail.BaseDetailView

Notes

	The delete confirmation page displayed to a GET request uses a
template_name_suffix of '_confirm_delete'.

Date-based views

Date-based generic views (in the module django.views.generic.dates)
are views for displaying drilldown pages for date-based data.

ArchiveIndexView

	
class BaseArchiveIndexView

	

	
class ArchiveIndexView

	A top-level index page showing the "latest" objects, by date. Objects with
a date in the future are not included unless you set allow_future to
True.

BaseArchiveIndexView implements the
same behavior as ArchiveIndexView, but
doesn't include the
MultipleObjectTemplateResponseMixin.

Mixins

	django.views.generic.dates.BaseDateListView

	django.views.generic.list.MultipleObjectTemplateResponseMixin

Notes

	Uses a default context_object_name of latest.

	Uses a default template_name_suffix of _archive.

YearArchiveView

	
class BaseYearArchiveView

	

	
class YearArchiveView

	A yearly archive page showing all available months in a given year. Objects
with a date in the future are not displayed unless you set
allow_future to True.

BaseYearArchiveView implements the
same behavior as YearArchiveView, but
doesn't include the
MultipleObjectTemplateResponseMixin.

Mixins

	django.views.generic.list.MultipleObjectTemplateResponseMixin

	django.views.generic.dates.YearMixin

	django.views.generic.dates.BaseDateListView

	
make_object_list

	A boolean specifying whether to retrieve the full list of objects for
this year and pass those to the template. If True, the list of
objects will be made available to the context. By default, this is
False.

	
get_make_object_list()

	Determine if an object list will be returned as part of the context. If
False, the None queryset will be used as the object list.

Context

In addition to the context provided by
django.views.generic.list.MultipleObjectMixin (via
django.views.generic.dates.BaseDateListView), the template's
context will be:

	date_list: A DateQuerySet object containing all months that
have objects available according to queryset, represented as
datetime.datetime objects, in ascending order.

	year: The given year, as a four-character string.

Notes

	Uses a default template_name_suffix of _archive_year.

MonthArchiveView

	
class BaseMonthArchiveView

	

	
class MonthArchiveView

	A monthly archive page showing all objects in a given month. Objects with a
date in the future are not displayed unless you set allow_future to
True.

BaseMonthArchiveView implements
the same behavior as
MonthArchiveView, but doesn't
include the
MultipleObjectTemplateResponseMixin.

Mixins

	django.views.generic.list.MultipleObjectTemplateResponseMixin

	django.views.generic.dates.YearMixin

	django.views.generic.dates.MonthMixin

	django.views.generic.dates.BaseDateListView

Context

In addition to the context provided by
MultipleObjectMixin (via
BaseDateListView), the template's
context will be:

	date_list: A DateQuerySet object containing all days that
have objects available in the given month, according to queryset,
represented as datetime.datetime objects, in ascending order.

	month: A datetime.date object representing the given month.

	next_month: A datetime.date object representing the first day
of the next month. If the next month is in the future, this will be
None.

	previous_month: A datetime.date object representing the first
day of the previous month. Unlike next_month, this will never be
None.

Notes

	Uses a default template_name_suffix of _archive_month.

WeekArchiveView

	
class BaseWeekArchiveView

	

	
class WeekArchiveView

	A weekly archive page showing all objects in a given week. Objects with a
date in the future are not displayed unless you set allow_future to
True.

BaseWeekArchiveView implements the
same behavior as WeekArchiveView, but
doesn't include the
MultipleObjectTemplateResponseMixin.

Mixins

	django.views.generic.list.MultipleObjectTemplateResponseMixin

	django.views.generic.dates.YearMixin

	django.views.generic.dates.MonthMixin

	django.views.generic.dates.BaseDateListView

Context

In addition to the context provided by
MultipleObjectMixin (via
BaseDateListView), the template's
context will be:

	week: A datetime.date object representing the first day of
the given week.

Notes

	Uses a default template_name_suffix of _archive_week.

DayArchiveView

	
class BaseDayArchiveView

	

	
class DayArchiveView

	A day archive page showing all objects in a given day. Days in the future
throw a 404 error, regardless of whether any objects exist for future days,
unless you set allow_future to True.

BaseDayArchiveView implements the same
behavior as DayArchiveView, but
doesn't include the
MultipleObjectTemplateResponseMixin.

Mixins

	django.views.generic.list.MultipleObjectTemplateResponseMixin

	django.views.generic.dates.YearMixin

	django.views.generic.dates.MonthMixin

	django.views.generic.dates.DayMixin

	django.views.generic.dates.BaseDateListView

Context

In addition to the context provided by
MultipleObjectMixin (via
BaseDateListView), the template's
context will be:

	day: A datetime.date object representing the given day.

	next_day: A datetime.date object representing the next day.
If the next day is in the future, this will be None.

	previous_day: A datetime.date object representing the
previous day. Unlike next_day, this will never be None.

	next_month: A datetime.date object representing the first day
of the next month. If the next month is in the future, this will be
None.

	previous_month: A datetime.date object representing the first
day of the previous month. Unlike next_month, this will never be
None.

Notes

	Uses a default template_name_suffix of _archive_day.

TodayArchiveView

	
class BaseTodayArchiveView

	

	
class TodayArchiveView

	A day archive page showing all objects for today. This is exactly the
same as archive_day, except the year/month/day arguments
are not used,

BaseTodayArchiveView implements the
same behavior as TodayArchiveView, but
doesn't include the
MultipleObjectTemplateResponseMixin.

Mixins

	django.views.generic.dates.DayArchiveView

DateDetailView

	
class BaseDateDetailView

	

	
class DateDetailView

	A page representing an individual object. If the object has a date value in
the future, the view will throw a 404 error by default, unless you set
allow_future to True.

BaseDateDetailView implements the same
behavior as DateDetailView, but
doesn't include the
SingleObjectTemplateResponseMixin.

Mixins

	django.views.generic.list.MultipleObjectTemplateResponseMixin

	django.views.generic.dates.YearMixin

	django.views.generic.dates.MonthMixin

	django.views.generic.dates.DayMixin

	django.views.generic.dates.BaseDateListView

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Middleware

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Middleware

This document explains all middleware components that come with Django. For
information on how to use them and how to write your own middleware, see
the middleware usage guide.

Available middleware

Cache middleware

	
class UpdateCacheMiddleware

	

	
class FetchFromCacheMiddleware

	

Enable the site-wide cache. If these are enabled, each Django-powered page will
be cached for as long as the CACHE_MIDDLEWARE_SECONDS setting
defines. See the cache documentation.

“Common” middleware

	
class CommonMiddleware

	

Adds a few conveniences for perfectionists:

	Forbids access to user agents in the DISALLOWED_USER_AGENTS
setting, which should be a list of strings.

	Performs URL rewriting based on the APPEND_SLASH and
PREPEND_WWW settings.

If APPEND_SLASH is True and the initial URL doesn’t end
with a slash, and it is not found in the URLconf, then a new URL is
formed by appending a slash at the end. If this new URL is found in the
URLconf, then Django redirects the request to this new URL. Otherwise,
the initial URL is processed as usual.

For example, foo.com/bar will be redirected to foo.com/bar/ if
you don’t have a valid URL pattern for foo.com/bar but do have a
valid pattern for foo.com/bar/.

If PREPEND_WWW is True, URLs that lack a leading “www.”
will be redirected to the same URL with a leading “www.”

Both of these options are meant to normalize URLs. The philosophy is that
each URL should exist in one, and only one, place. Technically a URL
foo.com/bar is distinct from foo.com/bar/ – a search-engine
indexer would treat them as separate URLs – so it’s best practice to
normalize URLs.

	Sends broken link notification emails to MANAGERS if
SEND_BROKEN_LINK_EMAILS is set to True.

	Handles ETags based on the USE_ETAGS setting. If
USE_ETAGS is set to True, Django will calculate an ETag
for each request by MD5-hashing the page content, and it’ll take care of
sending Not Modified responses, if appropriate.

View metadata middleware

	
class XViewMiddleware

	

Sends custom X-View HTTP headers to HEAD requests that come from IP
addresses defined in the INTERNAL_IPS setting. This is used by
Django’s automatic documentation system.

GZIP middleware

	
class GZipMiddleware

	

Compresses content for browsers that understand gzip compression (all modern
browsers).

It is suggested to place this first in the middleware list, so that the
compression of the response content is the last thing that happens. Will not
compress content bodies less than 200 bytes long, when the response code is
something other than 200, JavaScript files (for IE compatibility), or
responses that have the Content-Encoding header already specified.

GZip compression can be applied to individual views using the
gzip_page() decorator.

Conditional GET middleware

	
class ConditionalGetMiddleware

	

Handles conditional GET operations. If the response has a ETag or
Last-Modified header, and the request has If-None-Match or
If-Modified-Since, the response is replaced by an
HttpNotModified.

Also sets the Date and Content-Length response-headers.

Reverse proxy middleware

	
class SetRemoteAddrFromForwardedFor

	

This middleware was removed in Django 1.1. See the release notes for details.

Locale middleware

	
class LocaleMiddleware

	

Enables language selection based on data from the request. It customizes
content for each user. See the internationalization documentation.

Message middleware

	
class MessageMiddleware

	

New in Django 1.2: MessageMiddleware was added.

Enables cookie- and session-based message support. See the
messages documentation.

Session middleware

	
class SessionMiddleware

	

Enables session support. See the session documentation.

Authentication middleware

	
class AuthenticationMiddleware

	

Adds the user attribute, representing the currently-logged-in user, to
every incoming HttpRequest object. See Authentication in Web requests.

CSRF protection middleware

	
class CsrfMiddleware

	

Adds protection against Cross Site Request Forgeries by adding hidden form
fields to POST forms and checking requests for the correct value. See the
Cross Site Request Forgery protection documentation.

Transaction middleware

	
class TransactionMiddleware

	

Binds commit and rollback to the request/response phase. If a view function
runs successfully, a commit is done. If it fails with an exception, a rollback
is done.

The order of this middleware in the stack is important: middleware modules
running outside of it run with commit-on-save - the default Django behavior.
Middleware modules running inside it (coming later in the stack) will be under
the same transaction control as the view functions.

See the transaction management documentation.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Models

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Models

Model API reference. For introductory material, see Models.

	Model field reference

	Related objects reference

	Model Meta options

	Model instance reference

	QuerySet API reference

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Model field reference

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

 	Models

Model field reference

This document contains all the gory details about all the field options and
field types Django’s got to offer.

See also

If the built-in fields don’t do the trick, you can try
django.contrib.localflavor, which contains assorted pieces of code
that are useful for particular countries or cultures. Also, you can easily
write your own custom model fields.

Note

Technically, these models are defined in django.db.models.fields, but
for convenience they’re imported into django.db.models; the standard
convention is to use from django.db import models and refer to fields as
models.<Foo>Field.

Field options

The following arguments are available to all field types. All are optional.

null

	
Field.null

	

If True, Django will store empty values as NULL in the database. Default
is False.

Note that empty string values will always get stored as empty strings, not as
NULL. Only use null=True for non-string fields such as integers,
booleans and dates. For both types of fields, you will also need to set
blank=True if you wish to permit empty values in forms, as the
null parameter only affects database storage (see
blank).

Avoid using null on string-based fields such as
CharField and TextField unless you have an excellent reason.
If a string-based field has null=True, that means it has two possible values
for “no data”: NULL, and the empty string. In most cases, it’s redundant to
have two possible values for “no data;” Django convention is to use the empty
string, not NULL.

Note

When using the Oracle database backend, the null=True option will be
coerced for string-based fields that have the empty string as a possible
value, and the value NULL will be stored to denote the empty string.

blank

	
Field.blank

	

If True, the field is allowed to be blank. Default is False.

Note that this is different than null. null is
purely database-related, whereas blank is validation-related. If
a field has blank=True, validation on Django’s admin site will allow entry
of an empty value. If a field has blank=False, the field will be required.

choices

	
Field.choices

	

An iterable (e.g., a list or tuple) of 2-tuples to use as choices for this
field.

If this is given, Django’s admin will use a select box instead of the standard
text field and will limit choices to the choices given.

A choices list looks like this:

YEAR_IN_SCHOOL_CHOICES = (
 ('FR', 'Freshman'),
 ('SO', 'Sophomore'),
 ('JR', 'Junior'),
 ('SR', 'Senior'),
 ('GR', 'Graduate'),
)

The first element in each tuple is the actual value to be stored. The second
element is the human-readable name for the option.

The choices list can be defined either as part of your model class:

class Foo(models.Model):
 GENDER_CHOICES = (
 ('M', 'Male'),
 ('F', 'Female'),
)
 gender = models.CharField(max_length=1, choices=GENDER_CHOICES)

or outside your model class altogether:

GENDER_CHOICES = (
 ('M', 'Male'),
 ('F', 'Female'),
)
class Foo(models.Model):
 gender = models.CharField(max_length=1, choices=GENDER_CHOICES)

You can also collect your available choices into named groups that can
be used for organizational purposes:

MEDIA_CHOICES = (
 ('Audio', (
 ('vinyl', 'Vinyl'),
 ('cd', 'CD'),
)
),
 ('Video', (
 ('vhs', 'VHS Tape'),
 ('dvd', 'DVD'),
)
),
 ('unknown', 'Unknown'),
)

The first element in each tuple is the name to apply to the group. The
second element is an iterable of 2-tuples, with each 2-tuple containing
a value and a human-readable name for an option. Grouped options may be
combined with ungrouped options within a single list (such as the
unknown option in this example).

For each model field that has choices set, Django will add a
method to retrieve the human-readable name for the field's current value. See
get_FOO_display() in the database API
documentation.

Finally, note that choices can be any iterable object -- not necessarily a list
or tuple. This lets you construct choices dynamically. But if you find yourself
hacking choices to be dynamic, you're probably better off using a
proper database table with a ForeignKey. choices is
meant for static data that doesn't change much, if ever.

db_column

	
Field.db_column

	

The name of the database column to use for this field. If this isn't given,
Django will use the field's name.

If your database column name is an SQL reserved word, or contains
characters that aren't allowed in Python variable names -- notably, the
hyphen -- that's OK. Django quotes column and table names behind the
scenes.

db_index

	
Field.db_index

	

If True, djadmin:django-admin.py sqlindexes <sqlindexes> will output a
CREATE INDEX statement for this field.

db_tablespace

	
Field.db_tablespace

	

The name of the database tablespace to use for this field's index, if this field
is indexed. The default is the project's DEFAULT_INDEX_TABLESPACE
setting, if set, or the db_tablespace of the model, if any. If
the backend doesn't support tablespaces, this option is ignored.

default

	
Field.default

	

The default value for the field. This can be a value or a callable object. If
callable it will be called every time a new object is created.

editable

	
Field.editable

	

If False, the field will not be editable in the admin or via forms
automatically generated from the model class. Default is True.

error_messages

New in Django 1.2: Please, see the release notes

	
Field.error_messages

	

The error_messages argument lets you override the default messages that the
field will raise. Pass in a dictionary with keys matching the error messages you
want to override.

help_text

	
Field.help_text

	

Extra "help" text to be displayed under the field on the object's admin form.
It's useful for documentation even if your object doesn't have an admin form.

Note that this value is not HTML-escaped when it's displayed in the admin
interface. This lets you include HTML in help_text if you so
desire. For example:

help_text="Please use the following format: YYYY-MM-DD."

Alternatively you can use plain text and
django.utils.html.escape() to escape any HTML special characters.

primary_key

	
Field.primary_key

	

If True, this field is the primary key for the model.

If you don't specify primary_key=True for any fields in your model, Django
will automatically add an IntegerField to hold the primary key, so you
don't need to set primary_key=True on any of your fields unless you want to
override the default primary-key behavior. For more, see
Automatic primary key fields.

primary_key=True implies null=False and unique=True.
Only one primary key is allowed on an object.

unique

	
Field.unique

	

If True, this field must be unique throughout the table.

This is enforced at the database level and at the Django admin-form level. If
you try to save a model with a duplicate value in a unique
field, a django.db.IntegrityError will be raised by the model's
save() method.

This option is valid on all field types except ManyToManyField and
FileField.

unique_for_date

	
Field.unique_for_date

	

Set this to the name of a DateField or DateTimeField to
require that this field be unique for the value of the date field.

For example, if you have a field title that has
unique_for_date="pub_date", then Django wouldn't allow the entry of two
records with the same title and pub_date.

This is enforced at the Django admin-form level but not at the database level.

unique_for_month

	
Field.unique_for_month

	

Like unique_for_date, but requires the field to be unique with
respect to the month.

unique_for_year

	
Field.unique_for_year

	

Like unique_for_date and unique_for_month.

verbose_name

	
Field.verbose_name

	

A human-readable name for the field. If the verbose name isn't given, Django
will automatically create it using the field's attribute name, converting
underscores to spaces. See Verbose field names.

validators

New in Django 1.2: Please, see the release notes

	
Field.validators

	

A list of validators to run for this field.See the validators
documentation for more information.

Field types

AutoField

	
class AutoField(**options)

	

An IntegerField that automatically increments
according to available IDs. You usually won't need to use this directly; a
primary key field will automatically be added to your model if you don't specify
otherwise. See Automatic primary key fields.

BigIntegerField

New in Django 1.2: Please, see the release notes

	
class BigIntegerField([**options])

	

A 64 bit integer, much like an IntegerField except that it is
guaranteed to fit numbers from -9223372036854775808 to 9223372036854775807. The
admin represents this as an <input type="text"> (a single-line input).

BooleanField

	
class BooleanField(**options)

	

A true/false field.

The admin represents this as a checkbox.

Changed in Django 1.2: Please, see the release notes

CharField

	
class CharField(max_length=None[, **options])

	

A string field, for small- to large-sized strings.

For large amounts of text, use TextField.

The admin represents this as an <input type="text"> (a single-line input).

CharField has one extra required argument:

	
CharField.max_length

	The maximum length (in characters) of the field. The max_length is enforced
at the database level and in Django's validation.

Note

If you are writing an application that must be portable to multiple
database backends, you should be aware that there are restrictions on
max_length for some backends. Refer to the database backend
notes for details.

MySQL users

If you are using this field with MySQLdb 1.2.2 and the utf8_bin
collation (which is not the default), there are some issues to be aware
of. Refer to the MySQL database notes for
details.

CommaSeparatedIntegerField

	
class CommaSeparatedIntegerField(max_length=None[, **options])

	

A field of integers separated by commas. As in CharField, the
max_length argument is required and the note about database
portability mentioned there should be heeded.

DateField

	
class DateField([auto_now=False, auto_now_add=False, **options])

	

A date, represented in Python by a datetime.date instance. Has a few extra,
optional arguments:

	
DateField.auto_now

	Automatically set the field to now every time the object is saved. Useful
for "last-modified" timestamps. Note that the current date is always
used; it's not just a default value that you can override.

	
DateField.auto_now_add

	Automatically set the field to now when the object is first created. Useful
for creation of timestamps. Note that the current date is always used;
it's not just a default value that you can override.

The admin represents this as an <input type="text"> with a JavaScript
calendar, and a shortcut for "Today". The JavaScript calendar will always
start the week on a Sunday.

Note

As currently implemented, setting auto_now or auto_now_add to
True will cause the field to have editable=False and blank=True
set.

DateTimeField

	
class DateTimeField([auto_now=False, auto_now_add=False, **options])

	

A date and time, represented in Python by a datetime.datetime instance.
Takes the same extra arguments as DateField.

The admin represents this as two <input type="text"> fields, with
JavaScript shortcuts.

DecimalField

	
class DecimalField(max_digits=None, decimal_places=None[, **options])

	

A fixed-precision decimal number, represented in Python by a
Decimal instance. Has two required arguments:

	
DecimalField.max_digits

	The maximum number of digits allowed in the number. Note that this number
must be greater than decimal_places, if it exists.

	
DecimalField.decimal_places

	The number of decimal places to store with the number.

For example, to store numbers up to 999 with a resolution of 2 decimal places,
you'd use:

models.DecimalField(..., max_digits=5, decimal_places=2)

And to store numbers up to approximately one billion with a resolution of 10
decimal places:

models.DecimalField(..., max_digits=19, decimal_places=10)

The admin represents this as an <input type="text"> (a single-line input).

Note

For more information about the differences between the
FloatField and DecimalField classes, please
see FloatField vs. DecimalField.

EmailField

	
class EmailField([max_length=75, **options])

	

A CharField that checks that the value is a valid e-mail address.

FileField

	
class FileField(upload_to=None[, max_length=100, **options])

	

A file-upload field.

Note

The primary_key and unique arguments are not supported, and will
raise a TypeError if used.

Has one required argument:

	
FileField.upload_to

	A local filesystem path that will be appended to your MEDIA_ROOT
setting to determine the value of the url
attribute.

This path may contain strftime formatting [http://docs.python.org/library/time.html#time.strftime], which will be replaced by the
date/time of the file upload (so that uploaded files don't fill up the given
directory).

This may also be a callable, such as a function, which will be called to
obtain the upload path, including the filename. This callable must be able
to accept two arguments, and return a Unix-style path (with forward slashes)
to be passed along to the storage system. The two arguments that will be
passed are:

	Argument
	Description

	instance
	An instance of the model where the
FileField is defined. More specifically,
this is the particular instance where the
current file is being attached.

In most cases, this object will not have been
saved to the database yet, so if it uses the
default AutoField, it might not yet have a
value for its primary key field.

	filename
	The filename that was originally given to the
file. This may or may not be taken into account
when determining the final destination path.

Also has one optional argument:

	
FileField.storage

	Optional. A storage object, which handles the storage and retrieval of your
files. See Managing files for details on how to provide this object.

The admin represents this field as an <input type="file"> (a file-upload
widget).

Using a FileField or an ImageField (see below) in a model
takes a few steps:

	In your settings file, you'll need to define MEDIA_ROOT as the
full path to a directory where you'd like Django to store uploaded files.
(For performance, these files are not stored in the database.) Define
MEDIA_URL as the base public URL of that directory. Make sure
that this directory is writable by the Web server's user account.

	Add the FileField or ImageField to your model, making
sure to define the upload_to option to tell Django
to which subdirectory of MEDIA_ROOT it should upload files.

	All that will be stored in your database is a path to the file
(relative to MEDIA_ROOT). You'll most likely want to use the
convenience url function provided by
Django. For example, if your ImageField is called mug_shot,
you can get the absolute path to your image in a template with
{{ object.mug_shot.url }}.

For example, say your MEDIA_ROOT is set to '/home/media', and
upload_to is set to 'photos/%Y/%m/%d'. The '%Y/%m/%d'
part of upload_to is strftime formatting [http://docs.python.org/library/time.html#time.strftime]; '%Y' is the
four-digit year, '%m' is the two-digit month and '%d' is the two-digit
day. If you upload a file on Jan. 15, 2007, it will be saved in the directory
/home/media/photos/2007/01/15.

If you wanted to retrieve the uploaded file's on-disk filename, or the file's
size, you could use the name and
size attributes respectively; for more
information on the available attributes and methods, see the
File class reference and the Managing files
topic guide.

The uploaded file's relative URL can be obtained using the
url attribute. Internally,
this calls the url() method of the
underlying Storage class.

Note that whenever you deal with uploaded files, you should pay close attention
to where you're uploading them and what type of files they are, to avoid
security holes. Validate all uploaded files so that you're sure the files are
what you think they are. For example, if you blindly let somebody upload files,
without validation, to a directory that's within your Web server's document
root, then somebody could upload a CGI or PHP script and execute that script by
visiting its URL on your site. Don't allow that.

By default, FileField instances are
created as varchar(100) columns in your database. As with other fields, you
can change the maximum length using the max_length argument.

FileField and FieldFile

When you access a FileField on a model, you are given an instance
of FieldFile as a proxy for accessing the underlying file. This
class has several methods that can be used to interact with file data:

	
FieldFile.open(mode='rb')

	

Behaves like the standard Python open() method and opens the file
associated with this instance in the mode specified by mode.

	
FieldFile.close()

	

Behaves like the standard Python file.close() method and closes the file
associated with this instance.

	
FieldFile.save(name, content, save=True)

	

This method takes a filename and file contents and passes them to the storage
class for the field, then associates the stored file with the model field.
If you want to manually associate file data with FileField
instances on your model, the save() method is used to persist that file
data.

Takes two required arguments: name which is the name of the file, and
content which is an object containing the file's contents. The
optional save argument controls whether or not the instance is
saved after the file has been altered. Defaults to True.

Note that the content argument should be an instance of
django.core.files.File, not Python's built-in file object.
You can construct a File from an existing
Python file object like this:

from django.core.files import File
Open an existing file using Python's built-in open()
f = open('/tmp/hello.world')
myfile = File(f)

Or you can construct one from a Python string like this:

from django.core.files.base import ContentFile
myfile = ContentFile("hello world")

For more information, see Managing files.

	
FieldFile.delete(save=True)

	

Deletes the file associated with this instance and clears all attributes on
the field. Note: This method will close the file if it happens to be open when
delete() is called.

The optional save argument controls whether or not the instance is saved
after the file has been deleted. Defaults to True.

FilePathField

	
class FilePathField(path=None[, match=None, recursive=False, max_length=100, **options])

	

A CharField whose choices are limited to the filenames in a certain
directory on the filesystem. Has three special arguments, of which the first is
required:

	
FilePathField.path

	Required. The absolute filesystem path to a directory from which this
FilePathField should get its choices. Example: "/home/images".

	
FilePathField.match

	Optional. A regular expression, as a string, that FilePathField
will use to filter filenames. Note that the regex will be applied to the
base filename, not the full path. Example: "foo.*\.txt$", which will
match a file called foo23.txt but not bar.txt or foo23.gif.

	
FilePathField.recursive

	Optional. Either True or False. Default is False. Specifies
whether all subdirectories of path should be included

Of course, these arguments can be used together.

The one potential gotcha is that match applies to the
base filename, not the full path. So, this example:

FilePathField(path="/home/images", match="foo.*", recursive=True)

...will match /home/images/foo.gif but not /home/images/foo/bar.gif
because the match applies to the base filename
(foo.gif and bar.gif).

By default, FilePathField instances are
created as varchar(100) columns in your database. As with other fields, you
can change the maximum length using the max_length argument.

FloatField

	
class FloatField([**options])

	

A floating-point number represented in Python by a float instance.

The admin represents this as an <input type="text"> (a single-line input).

FloatField vs. DecimalField

The FloatField class is sometimes mixed up with the
DecimalField class. Although they both represent real numbers, they
represent those numbers differently. FloatField uses Python's float
type internally, while DecimalField uses Python's Decimal type. For
information on the difference between the two, see Python's documentation on
Decimal fixed point and floating point arithmetic [http://docs.python.org/library/decimal.html].

ImageField

	
class ImageField(upload_to=None[, height_field=None, width_field=None, max_length=100, **options])

	

Inherits all attributes and methods from FileField, but also
validates that the uploaded object is a valid image.

In addition to the special attributes that are available for FileField,
an ImageField also has height and
width attributes.

To facilitate querying on those attributes, ImageField has two extra
optional arguments:

	
ImageField.height_field

	Name of a model field which will be auto-populated with the height of the
image each time the model instance is saved.

	
ImageField.width_field

	Name of a model field which will be auto-populated with the width of the
image each time the model instance is saved.

Requires the Python Imaging Library [http://www.pythonware.com/products/pil/].

By default, ImageField instances are created as varchar(100)
columns in your database. As with other fields, you can change the maximum
length using the max_length argument.

IntegerField

	
class IntegerField([**options])

	

An integer. The admin represents this as an <input type="text"> (a
single-line input).

IPAddressField

	
class IPAddressField([**options])

	

An IP address, in string format (e.g. "192.0.2.30"). The admin represents this
as an <input type="text"> (a single-line input).

NullBooleanField

	
class NullBooleanField([**options])

	

Like a BooleanField, but allows NULL as one of the options. Use
this instead of a BooleanField with null=True. The admin represents
this as a <select> box with "Unknown", "Yes" and "No" choices.

PositiveIntegerField

	
class PositiveIntegerField([**options])

	

Like an IntegerField, but must be positive.

PositiveSmallIntegerField

	
class PositiveSmallIntegerField([**options])

	

Like a PositiveIntegerField, but only allows values under a certain
(database-dependent) point.

SlugField

	
class SlugField([max_length=50, **options])

	

Slug is a newspaper term. A slug is a short label for something,
containing only letters, numbers, underscores or hyphens. They're generally used
in URLs.

Like a CharField, you can specify max_length (read the note
about database portability and max_length in that section,
too). If max_length is not specified, Django will use a
default length of 50.

Implies setting Field.db_index to True.

It is often useful to automatically prepopulate a SlugField based on the value
of some other value. You can do this automatically in the admin using
prepopulated_fields.

SmallIntegerField

	
class SmallIntegerField([**options])

	

Like an IntegerField, but only allows values under a certain
(database-dependent) point.

TextField

	
class TextField([**options])

	

A large text field. The admin represents this as a <textarea> (a multi-line
input).

MySQL users

If you are using this field with MySQLdb 1.2.1p2 and the utf8_bin
collation (which is not the default), there are some issues to be aware
of. Refer to the MySQL database notes for
details.

TimeField

	
class TimeField([auto_now=False, auto_now_add=False, **options])

	

A time, represented in Python by a datetime.time instance. Accepts the same
auto-population options as DateField.

The admin represents this as an <input type="text"> with some JavaScript
shortcuts.

URLField

	
class URLField([verify_exists=False, max_length=200, **options])

	

A CharField for a URL. Has one extra optional argument:

Deprecated in Django 1.3.1: Deprecated since version 1.3.1: verify_exists is deprecated for security reasons as of 1.3.1
and will be removed in 1.4. Prior to 1.3.1, the default value was
True.

	
URLField.verify_exists

	If True, the URL given will be checked for existence (i.e.,
the URL actually loads and doesn't give a 404 response) using a
HEAD request. Redirects are allowed, but will not be followed.

Note that when you're using the single-threaded development server,
validating a URL being served by the same server will hang. This should not
be a problem for multithreaded servers.

The admin represents this as an <input type="text"> (a single-line input).

Like all CharField subclasses, URLField takes the optional
max_length, a default of 200 is used.

XMLField

Deprecated in Django 1.3: Deprecated since version 1.3: XMLField is deprecated. Use TextField instead.

	
class XMLField(schema_path=None[, **options])

	

A TextField that stores XML data and a path to a schema. Takes one
optional argument:

	
schema_path

	The filesystem path to a schema for the field.

Relationship fields

Django also defines a set of fields that represent relations.

ForeignKey

	
class ForeignKey(othermodel[, **options])

	

A many-to-one relationship. Requires a positional argument: the class to which
the model is related.

To create a recursive relationship -- an object that has a many-to-one
relationship with itself -- use models.ForeignKey('self').

If you need to create a relationship on a model that has not yet been defined,
you can use the name of the model, rather than the model object itself:

class Car(models.Model):
 manufacturer = models.ForeignKey('Manufacturer')
 # ...

class Manufacturer(models.Model):
 # ...

To refer to models defined in another application, you can explicitly specify
a model with the full application label. For example, if the Manufacturer
model above is defined in another application called production, you'd
need to use:

class Car(models.Model):
 manufacturer = models.ForeignKey('production.Manufacturer')

This sort of reference can be useful when resolving circular import
dependencies between two applications.

Database Representation

Behind the scenes, Django appends "_id" to the field name to create its
database column name. In the above example, the database table for the Car
model will have a manufacturer_id column. (You can change this explicitly by
specifying db_column) However, your code should never have to
deal with the database column name, unless you write custom SQL. You'll always
deal with the field names of your model object.

Arguments

ForeignKey accepts an extra set of arguments -- all optional -- that
define the details of how the relation works.

	
ForeignKey.limit_choices_to

	A dictionary of lookup arguments and values (see Making queries)
that limit the available admin choices for this object. Use this with
functions from the Python datetime module to limit choices of objects by
date. For example:

limit_choices_to = {'pub_date__lte': datetime.now}

only allows the choice of related objects with a pub_date before the
current date/time to be chosen.

Instead of a dictionary this can also be a Q
object for more complex queries. However,
if limit_choices_to is a Q object then it
will only have an effect on the choices available in the admin when the
field is not listed in raw_id_fields in the ModelAdmin for the model.

	
ForeignKey.related_name

	The name to use for the relation from the related object back to this one.
See the related objects documentation for
a full explanation and example. Note that you must set this value
when defining relations on abstract models; and when you do so
some special syntax is available.

If you'd prefer Django didn't create a backwards relation, set related_name
to '+'. For example, this will ensure that the User model won't get a
backwards relation to this model:

user = models.ForeignKey(User, related_name='+')

	
ForeignKey.to_field

	The field on the related object that the relation is to. By default, Django
uses the primary key of the related object.

New in Django 1.3: Please, see the release notes

	
ForeignKey.on_delete

	When an object referenced by a ForeignKey is deleted, Django by
default emulates the behavior of the SQL constraint ON DELETE CASCADE
and also deletes the object containing the ForeignKey. This behavior
can be overridden by specifying the on_delete argument. For
example, if you have a nullable ForeignKey and you want it to be
set null when the referenced object is deleted:

user = models.ForeignKey(User, blank=True, null=True, on_delete=models.SET_NULL)

The possible values for on_delete are found in
django.db.models:

	CASCADE: Cascade deletes; the default.

	PROTECT: Prevent deletion of the referenced
object by raising django.db.models.ProtectedError, a subclass of
django.db.IntegrityError.

	SET_NULL: Set the ForeignKey null;
this is only possible if null is True.

	SET_DEFAULT: Set the ForeignKey to its
default value; a default for the ForeignKey must be set.

	SET(): Set the ForeignKey to the value
passed to SET(), or if a callable is passed in,
the result of calling it. In most cases, passing a callable will be
necessary to avoid executing queries at the time your models.py is
imported:

def get_sentinel_user():
 return User.objects.get_or_create(username='deleted')[0]

class MyModel(models.Model):
 user = models.ForeignKey(User, on_delete=models.SET(get_sentinel_user))

	DO_NOTHING: Take no action. If your database
backend enforces referential integrity, this will cause an
IntegrityError unless you manually add a SQL ON
DELETE constraint to the database field (perhaps using
initial sql).

ManyToManyField

	
class ManyToManyField(othermodel[, **options])

	

A many-to-many relationship. Requires a positional argument: the class to which
the model is related. This works exactly the same as it does for
ForeignKey, including all the options regarding recursive and lazy relationships.

Database Representation

Behind the scenes, Django creates an intermediary join table to
represent the many-to-many relationship. By default, this table name
is generated using the name of the many-to-many field and the model
that contains it. Since some databases don't support table names above
a certain length, these table names will be automatically truncated to
64 characters and a uniqueness hash will be used. This means you might
see table names like author_books_9cdf4; this is perfectly normal.
You can manually provide the name of the join table using the
db_table option.

Arguments

ManyToManyField accepts an extra set of arguments -- all optional --
that control how the relationship functions.

	
ManyToManyField.related_name

	Same as ForeignKey.related_name.

	
ManyToManyField.limit_choices_to

	Same as ForeignKey.limit_choices_to.

limit_choices_to has no effect when used on a ManyToManyField with a
custom intermediate table specified using the
through parameter.

	
ManyToManyField.symmetrical

	Only used in the definition of ManyToManyFields on self. Consider the
following model:

class Person(models.Model):
 friends = models.ManyToManyField("self")

When Django processes this model, it identifies that it has a
ManyToManyField on itself, and as a result, it doesn't add a
person_set attribute to the Person class. Instead, the
ManyToManyField is assumed to be symmetrical -- that is, if I am
your friend, then you are my friend.

If you do not want symmetry in many-to-many relationships with self, set
symmetrical to False. This will force Django to
add the descriptor for the reverse relationship, allowing
ManyToManyField relationships to be non-symmetrical.

	
ManyToManyField.through

	Django will automatically generate a table to manage many-to-many
relationships. However, if you want to manually specify the intermediary
table, you can use the through option to specify
the Django model that represents the intermediate table that you want to
use.

The most common use for this option is when you want to associate
extra data with a many-to-many relationship.

	
ManyToManyField.db_table

	The name of the table to create for storing the many-to-many data. If this
is not provided, Django will assume a default name based upon the names of
the two tables being joined.

OneToOneField

	
class OneToOneField(othermodel[, parent_link=False, **options])

	

A one-to-one relationship. Conceptually, this is similar to a
ForeignKey with unique=True, but the
"reverse" side of the relation will directly return a single object.

This is most useful as the primary key of a model which "extends"
another model in some way; Multi-table inheritance is
implemented by adding an implicit one-to-one relation from the child
model to the parent model, for example.

One positional argument is required: the class to which the model will be
related. This works exactly the same as it does for ForeignKey,
including all the options regarding recursive
and lazy relationships.

Additionally, OneToOneField accepts all of the extra arguments
accepted by ForeignKey, plus one extra argument:

	
OneToOneField.parent_link

	When True and used in a model which inherits from another
(concrete) model, indicates that this field should be used as the
link back to the parent class, rather than the extra
OneToOneField which would normally be implicitly created by
subclassing.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Related objects reference

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

 	Models

Related objects reference

	
class RelatedManager

	A “related manager” is a manager used in a one-to-many or many-to-many
related context. This happens in two cases:

	The “other side” of a ForeignKey relation.
That is:

class Reporter(models.Model):
 ...

class Article(models.Model):
 reporter = models.ForeignKey(Reporter)

In the above example, the methods below will be available on
the manager reporter.article_set.

	Both sides of a ManyToManyField relation:

class Topping(models.Model):
 ...

class Pizza(models.Model):
 toppings = models.ManyToManyField(Topping)

In this example, the methods below will be available both on
topping.pizza_set and on pizza.toppings.

These related managers have some extra methods:

	
add(obj1[, obj2, ...])

	Adds the specified model objects to the related object set.

Example:

>>> b = Blog.objects.get(id=1)
>>> e = Entry.objects.get(id=234)
>>> b.entry_set.add(e) # Associates Entry e with Blog b.

	
create(**kwargs)

	Creates a new object, saves it and puts it in the related object set.
Returns the newly created object:

>>> b = Blog.objects.get(id=1)
>>> e = b.entry_set.create(
... headline='Hello',
... body_text='Hi',
... pub_date=datetime.date(2005, 1, 1)
...)

No need to call e.save() at this point -- it's already been saved.

This is equivalent to (but much simpler than):

>>> b = Blog.objects.get(id=1)
>>> e = Entry(
... blog=b,
... headline='Hello',
... body_text='Hi',
... pub_date=datetime.date(2005, 1, 1)
...)
>>> e.save(force_insert=True)

Note that there's no need to specify the keyword argument of the model
that defines the relationship. In the above example, we don't pass the
parameter blog to create(). Django figures out that the new
Entry object's blog field should be set to b.

	
remove(obj1[, obj2, ...])

	Removes the specified model objects from the related object set:

>>> b = Blog.objects.get(id=1)
>>> e = Entry.objects.get(id=234)
>>> b.entry_set.remove(e) # Disassociates Entry e from Blog b.

In order to prevent database inconsistency, this method only exists on
ForeignKey objects where null=True. If
the related field can't be set to None (NULL), then an object
can't be removed from a relation without being added to another. In the
above example, removing e from b.entry_set() is equivalent to
doing e.blog = None, and because the blog
ForeignKey doesn't have null=True, this
is invalid.

	
clear()

	Removes all objects from the related object set:

>>> b = Blog.objects.get(id=1)
>>> b.entry_set.clear()

Note this doesn't delete the related objects -- it just disassociates
them.

Just like remove(), clear() is only available on
ForeignKeys where null=True.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Model Meta options

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

 	Models

Model Meta options

This document explains all the possible metadata options that you can give your model in its internal
class Meta.

Available Meta options

abstract

	
Options.abstract

	If abstract = True, this model will be an
abstract base class.

app_label

	
Options.app_label

	If a model exists outside of the standard models.py (for instance,
if the app’s models are in submodules of myapp.models), the model must
define which app it is part of:

app_label = 'myapp'

db_table

	
Options.db_table

	The name of the database table to use for the model:

db_table = 'music_album'

Table names

To save you time, Django automatically derives the name of the database table
from the name of your model class and the app that contains it. A model's
database table name is constructed by joining the model's "app label" -- the
name you used in manage.py startapp -- to the model's
class name, with an underscore between them.

For example, if you have an app bookstore (as created by
manage.py startapp bookstore), a model defined as class Book will have
a database table named bookstore_book.

To override the database table name, use the db_table parameter in
class Meta.

If your database table name is an SQL reserved word, or contains characters that
aren't allowed in Python variable names -- notably, the hyphen -- that's OK.
Django quotes column and table names behind the scenes.

db_tablespace

	
Options.db_tablespace

	The name of the database tablespace to use for the model. If the backend
doesn't support tablespaces, this option is ignored.

get_latest_by

	
Options.get_latest_by

	The name of a DateField or DateTimeField in the model.
This specifies the default field to use in your model Manager's
latest method.

Example:

get_latest_by = "order_date"

See the docs for latest() for more.

managed

	
Options.managed

	Defaults to True, meaning Django will create the appropriate database
tables in syncdb and remove them as part of a reset
management command. That is, Django manages the database tables' lifecycles.

If False, no database table creation or deletion operations will be
performed for this model. This is useful if the model represents an existing
table or a database view that has been created by some other means. This is
the only difference when managed=False. All other aspects of
model handling are exactly the same as normal. This includes

	Adding an automatic primary key field to the model if you don't declare
it. To avoid confusion for later code readers, it's recommended to
specify all the columns from the database table you are modeling when
using unmanaged models.

	If a model with managed=False contains a
ManyToManyField that points to another
unmanaged model, then the intermediate table for the many-to-many join
will also not be created. However, the intermediary table between one
managed and one unmanaged model will be created.

If you need to change this default behavior, create the intermediary
table as an explicit model (with managed set as needed) and use the
ManyToManyField.through attribute to make the relation use your
custom model.

For tests involving models with managed=False, it's up to you to ensure
the correct tables are created as part of the test setup.

If you're interested in changing the Python-level behavior of a model class,
you could use managed=False and create a copy of an existing model.
However, there's a better approach for that situation: Proxy models.

order_with_respect_to

	
Options.order_with_respect_to

	Marks this object as "orderable" with respect to the given field. This is almost
always used with related objects to allow them to be ordered with respect to a
parent object. For example, if an Answer relates to a Question object,
and a question has more than one answer, and the order of answers matters, you'd
do this:

class Answer(models.Model):
 question = models.ForeignKey(Question)
 # ...

 class Meta:
 order_with_respect_to = 'question'

When order_with_respect_to is set, two additional methods are provided to
retrieve and to set the order of the related objects: get_RELATED_order()
and set_RELATED_order(), where RELATED is the lowercased model name. For
example, assuming that a Question object has multiple related Answer
objects, the list returned contains the primary keys of the related Answer
objects:

>>> question = Question.objects.get(id=1)
>>> question.get_answer_order()
[1, 2, 3]

The order of a Question object's related Answer objects can be set by
passing in a list of Answer primary keys:

>>> question.set_answer_order([3, 1, 2])

The related objects also get two methods, get_next_in_order() and
get_previous_in_order(), which can be used to access those objects in their
proper order. Assuming the Answer objects are ordered by id:

>>> answer = Answer.objects.get(id=2)
>>> answer.get_next_in_order()
<Answer: 3>
>>> answer.get_previous_in_order()
<Answer: 1>

Changing order_with_respect_to

order_with_respect_to adds an additional field/database column
named _order, so be sure to handle that as you would any other
change to your models if you add or change order_with_respect_to
after your initial syncdb.

ordering

	
Options.ordering

	The default ordering for the object, for use when obtaining lists of objects:

ordering = ['-order_date']

This is a tuple or list of strings. Each string is a field name with an optional
"-" prefix, which indicates descending order. Fields without a leading "-" will
be ordered ascending. Use the string "?" to order randomly.

Note

Regardless of how many fields are in ordering, the admin
site uses only the first field.

For example, to order by a pub_date field ascending, use this:

ordering = ['pub_date']

To order by pub_date descending, use this:

ordering = ['-pub_date']

To order by pub_date descending, then by author ascending, use this:

ordering = ['-pub_date', 'author']

permissions

	
Options.permissions

	Extra permissions to enter into the permissions table when creating this object.
Add, delete and change permissions are automatically created for each object
that has admin set. This example specifies an extra permission,
can_deliver_pizzas:

permissions = (("can_deliver_pizzas", "Can deliver pizzas"),)

This is a list or tuple of 2-tuples in the format (permission_code,
human_readable_permission_name).

proxy

	
Options.proxy

	If proxy = True, a model which subclasses another model will be treated as
a proxy model.

unique_together

	
Options.unique_together

	Sets of field names that, taken together, must be unique:

unique_together = (("driver", "restaurant"),)

This is a list of lists of fields that must be unique when considered together.
It's used in the Django admin and is enforced at the database level (i.e., the
appropriate UNIQUE statements are included in the CREATE TABLE
statement).

For convenience, unique_together can be a single list when dealing with a single
set of fields:

unique_together = ("driver", "restaurant")

A ManyToManyField cannot be included in
unique_together (it's not even clear what that would mean). If you
need to validate uniqueness related to a
ManyToManyField, look at signals or
using an explicit through model.

verbose_name

	
Options.verbose_name

	A human-readable name for the object, singular:

verbose_name = "pizza"

If this isn't given, Django will use a munged version of the class name:
CamelCase becomes camel case.

verbose_name_plural

	
Options.verbose_name_plural

	The plural name for the object:

verbose_name_plural = "stories"

If this isn't given, Django will use verbose_name + "s".

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Model instance reference

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

 	Models

Model instance reference

This document describes the details of the Model API. It builds on the
material presented in the model and database
query guides, so you’ll probably want to read and
understand those documents before reading this one.

Throughout this reference we’ll use the example Weblog models presented in the database query guide.

Creating objects

To create a new instance of a model, just instantiate it like any other Python
class:

	
class Model(**kwargs)

	

The keyword arguments are simply the names of the fields you’ve defined on your
model. Note that instantiating a model in no way touches your database; for
that, you need to save().

Validating objects

New in Django 1.2: Please, see the release notes

There are three steps involved in validating a model:

	Validate the model fields

	Validate the model as a whole

	Validate the field uniqueness

All three steps are performed when you call a model’s
full_clean() method.

When you use a ModelForm, the call to is_valid() will perform
these validation steps for all the fields that are included on the
form. (See the ModelForm documentation for more information.) You should only need
to call a model’s full_clean() method if you plan to handle
validation errors yourself, or if you have excluded fields from the
ModelForm that require validation.

	
Model.full_clean(exclude=None)

	

This method calls Model.clean_fields(), Model.clean(), and
Model.validate_unique(), in that order and raises a ValidationError
that has a message_dict attribute containing errors from all three stages.

The optional exclude argument can be used to provide a list of field names
that can be excluded from validation and cleaning. ModelForm uses this
argument to exclude fields that aren’t present on your form from being
validated since any errors raised could not be corrected by the user.

Note that full_clean() will not be called automatically when you
call your model’s save() method, nor as a result of ModelForm
validation. You’ll need to call it manually when you want to run model
validation outside of a ModelForm.

Example:

try:
 article.full_clean()
except ValidationError, e:
 # Do something based on the errors contained in e.message_dict.
 # Display them to a user, or handle them programatically.

The first step full_clean() performs is to clean each individual field.

	
Model.clean_fields(exclude=None)

	

This method will validate all fields on your model. The optional exclude
argument lets you provide a list of field names to exclude from validation. It
will raise a ValidationError if any fields fail validation.

The second step full_clean() performs is to call Model.clean().
This method should be overridden to perform custom validation on your model.

	
Model.clean()

	

This method should be used to provide custom model validation, and to modify
attributes on your model if desired. For instance, you could use it to
automatically provide a value for a field, or to do validation that requires
access to more than a single field:

def clean(self):
 from django.core.exceptions import ValidationError
 # Don't allow draft entries to have a pub_date.
 if self.status == 'draft' and self.pub_date is not None:
 raise ValidationError('Draft entries may not have a publication date.')
 # Set the pub_date for published items if it hasn't been set already.
 if self.status == 'published' and self.pub_date is None:
 self.pub_date = datetime.datetime.now()

Any ValidationError raised by Model.clean() will be stored under a
special key that is used for errors that are tied to the entire model instead
of to a specific field. You can access these errors with NON_FIELD_ERRORS:

from django.core.exceptions import ValidationError, NON_FIELD_ERRORS
try:
 article.full_clean()
except ValidationError, e:
 non_field_errors = e.message_dict[NON_FIELD_ERRORS]

Finally, full_clean() will check any unique constraints on your model.

	
Model.validate_unique(exclude=None)

	

This method is similar to clean_fields, but validates all uniqueness
constraints on your model instead of individual field values. The optional
exclude argument allows you to provide a list of field names to exclude
from validation. It will raise a ValidationError if any fields fail
validation.

Note that if you provide an exclude argument to validate_unique, any
unique_together constraint that contains one of the fields you provided
will not be checked.

Saving objects

To save an object back to the database, call save():

	
Model.save([force_insert=False, force_update=False, using=DEFAULT_DB_ALIAS])

	

New in Django 1.2: The using argument was added.

If you want customized saving behavior, you can override this
save() method. See Overriding predefined model methods for more
details.

The model save process also has some subtleties; see the sections
below.

Auto-incrementing primary keys

If a model has an AutoField -- an auto-incrementing primary key -- then
that auto-incremented value will be calculated and saved as an attribute on
your object the first time you call save():

>>> b2 = Blog(name='Cheddar Talk', tagline='Thoughts on cheese.')
>>> b2.id # Returns None, because b doesn't have an ID yet.
>>> b2.save()
>>> b2.id # Returns the ID of your new object.

There's no way to tell what the value of an ID will be before you call
save(), because that value is calculated by your database, not by Django.

(For convenience, each model has an AutoField named id by default
unless you explicitly specify primary_key=True on a field. See the
documentation for AutoField for more details.

The pk property

	
Model.pk

	

Regardless of whether you define a primary key field yourself, or let Django
supply one for you, each model will have a property called pk. It behaves
like a normal attribute on the model, but is actually an alias for whichever
attribute is the primary key field for the model. You can read and set this
value, just as you would for any other attribute, and it will update the
correct field in the model.

Explicitly specifying auto-primary-key values

If a model has an AutoField but you want to define a new object's ID
explicitly when saving, just define it explicitly before saving, rather than
relying on the auto-assignment of the ID:

>>> b3 = Blog(id=3, name='Cheddar Talk', tagline='Thoughts on cheese.')
>>> b3.id # Returns 3.
>>> b3.save()
>>> b3.id # Returns 3.

If you assign auto-primary-key values manually, make sure not to use an
already-existing primary-key value! If you create a new object with an explicit
primary-key value that already exists in the database, Django will assume you're
changing the existing record rather than creating a new one.

Given the above 'Cheddar Talk' blog example, this example would override the
previous record in the database:

b4 = Blog(id=3, name='Not Cheddar', tagline='Anything but cheese.')
b4.save() # Overrides the previous blog with ID=3!

See How Django knows to UPDATE vs. INSERT, below, for the reason this
happens.

Explicitly specifying auto-primary-key values is mostly useful for bulk-saving
objects, when you're confident you won't have primary-key collision.

What happens when you save?

When you save an object, Django performs the following steps:

	Emit a pre-save signal. The signal
django.db.models.signals.pre_save is sent, allowing any
functions listening for that signal to take some customized
action.

	Pre-process the data. Each field on the object is asked to
perform any automated data modification that the field may need
to perform.

Most fields do no pre-processing -- the field data is kept as-is.
Pre-processing is only used on fields that have special behavior.
For example, if your model has a DateField with auto_now=True,
the pre-save phase will alter the data in the object to ensure that
the date field contains the current date stamp. (Our documentation
doesn't yet include a list of all the fields with this "special
behavior.")

	Prepare the data for the database. Each field is asked to provide
its current value in a data type that can be written to the database.

Most fields require no data preparation. Simple data types, such as
integers and strings, are 'ready to write' as a Python object. However,
more complex data types often require some modification.

For example, DateFields use a Python datetime object to store
data. Databases don't store datetime objects, so the field value
must be converted into an ISO-compliant date string for insertion
into the database.

	Insert the data into the database. The pre-processed, prepared
data is then composed into an SQL statement for insertion into the
database.

	Emit a post-save signal. The signal
django.db.models.signals.post_save is sent, allowing
any functions listening for that signal to take some customized
action.

How Django knows to UPDATE vs. INSERT

You may have noticed Django database objects use the same save() method
for creating and changing objects. Django abstracts the need to use INSERT
or UPDATE SQL statements. Specifically, when you call save(), Django
follows this algorithm:

	If the object's primary key attribute is set to a value that evaluates to
True (i.e., a value other than None or the empty string), Django
executes a SELECT query to determine whether a record with the given
primary key already exists.

	If the record with the given primary key does already exist, Django
executes an UPDATE query.

	If the object's primary key attribute is not set, or if it's set but a
record doesn't exist, Django executes an INSERT.

The one gotcha here is that you should be careful not to specify a primary-key
value explicitly when saving new objects, if you cannot guarantee the
primary-key value is unused. For more on this nuance, see Explicitly specifying
auto-primary-key values above and Forcing an INSERT or UPDATE below.

Forcing an INSERT or UPDATE

In some rare circumstances, it's necessary to be able to force the save()
method to perform an SQL INSERT and not fall back to doing an UPDATE.
Or vice-versa: update, if possible, but not insert a new row. In these cases
you can pass the force_insert=True or force_update=True parameters to
the save() method. Passing both parameters is an error, since you cannot
both insert and update at the same time.

It should be very rare that you'll need to use these parameters. Django will
almost always do the right thing and trying to override that will lead to
errors that are difficult to track down. This feature is for advanced use
only.

Updating attributes based on existing fields

Sometimes you'll need to perform a simple arithmetic task on a field, such
as incrementing or decrementing the current value. The obvious way to
achieve this is to do something like:

>>> product = Product.objects.get(name='Venezuelan Beaver Cheese')
>>> product.number_sold += 1
>>> product.save()

If the old number_sold value retrieved from the database was 10, then
the value of 11 will be written back to the database.

This can be optimized slightly by expressing the update relative to the
original field value, rather than as an explicit assignment of a new value.
Django provides F() expressions as a way of
performing this kind of relative update. Using F() expressions, the
previous example would be expressed as:

>>> from django.db.models import F
>>> product = Product.objects.get(name='Venezuelan Beaver Cheese')
>>> product.number_sold = F('number_sold') + 1
>>> product.save()

This approach doesn't use the initial value from the database. Instead, it
makes the database do the update based on whatever value is current at the
time that the save() is executed.

Once the object has been saved, you must reload the object in order to access
the actual value that was applied to the updated field:

>>> product = Products.objects.get(pk=product.pk)
>>> print product.number_sold
42

For more details, see the documentation on F() expressions and their use in update queries.

Deleting objects

	
Model.delete([using=DEFAULT_DB_ALIAS])

	

New in Django 1.2: The using argument was added.

Issues a SQL DELETE for the object. This only deletes the object
in the database; the Python instance will still be around, and will
still have data in its fields.

For more details, including how to delete objects in bulk, see
Deleting objects.

If you want customized deletion behavior, you can override this
delete() method. See Overriding predefined model methods for more
details.

Other model instance methods

A few object methods have special purposes.

__str__

	
Model.__str__()

	

__str__() is a Python "magic method" that defines what should be returned
if you call str() on the object. Django uses str(obj) (or the related
function, unicode(obj) -- see below) in a number of places, most notably
as the value displayed to render an object in the Django admin site and as the
value inserted into a template when it displays an object. Thus, you should
always return a nice, human-readable string for the object's __str__.
Although this isn't required, it's strongly encouraged (see the description of
__unicode__, below, before putting __str__ methods everywhere).

For example:

class Person(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)

 def __str__(self):
 # Note use of django.utils.encoding.smart_str() here because
 # first_name and last_name will be unicode strings.
 return smart_str('%s %s' % (self.first_name, self.last_name))

__unicode__

	
Model.__unicode__()

	

The __unicode__() method is called whenever you call unicode() on an
object. Since Django's database backends will return Unicode strings in your
model's attributes, you would normally want to write a __unicode__()
method for your model. The example in the previous section could be written
more simply as:

class Person(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)

 def __unicode__(self):
 return u'%s %s' % (self.first_name, self.last_name)

If you define a __unicode__() method on your model and not a __str__()
method, Django will automatically provide you with a __str__() that calls
__unicode__() and then converts the result correctly to a UTF-8 encoded
string object. This is recommended development practice: define only
__unicode__() and let Django take care of the conversion to string objects
when required.

get_absolute_url

	
Model.get_absolute_url()

	

Define a get_absolute_url() method to tell Django how to calculate the
URL for an object. For example:

def get_absolute_url(self):
 return "/people/%i/" % self.id

Django uses this in its admin interface. If an object defines
get_absolute_url(), the object-editing page will have a "View on site"
link that will jump you directly to the object's public view, according to
get_absolute_url().

Also, a couple of other bits of Django, such as the syndication feed
framework, use get_absolute_url() as a
convenience to reward people who've defined the method.

It's good practice to use get_absolute_url() in templates, instead of
hard-coding your objects' URLs. For example, this template code is bad:

{{ object.name }}

But this template code is good:

{{ object.name }}

Note

The string you return from get_absolute_url() must contain only ASCII
characters (required by the URI spec, RFC 2396 [http://www.ietf.org/rfc/rfc2396.txt]) that have been
URL-encoded, if necessary. Code and templates using get_absolute_url()
should be able to use the result directly without needing to do any
further processing. You may wish to use the
django.utils.encoding.iri_to_uri() function to help with this if you
are using unicode strings a lot.

The permalink decorator

The problem with the way we wrote get_absolute_url() above is that it
slightly violates the DRY principle: the URL for this object is defined both
in the URLconf file and in the model.

You can further decouple your models from the URLconf using the permalink
decorator:

	
permalink()

	

This decorator is passed the view function, a list of positional parameters and
(optionally) a dictionary of named parameters. Django then works out the correct
full URL path using the URLconf, substituting the parameters you have given into
the URL. For example, if your URLconf contained a line such as:

(r'^people/(\d+)/$', 'people.views.details'),

...your model could have a get_absolute_url method that looked like this:

from django.db import models

@models.permalink
def get_absolute_url(self):
 return ('people.views.details', [str(self.id)])

Similarly, if you had a URLconf entry that looked like:

(r'/archive/(?P<year>\d{4})/(?P<month>\d{2})/(?P<day>\d{2})/$', archive_view)

...you could reference this using permalink() as follows:

@models.permalink
def get_absolute_url(self):
 return ('archive_view', (), {
 'year': self.created.year,
 'month': self.created.strftime('%m'),
 'day': self.created.strftime('%d')})

Notice that we specify an empty sequence for the second parameter in this case,
because we only want to pass keyword parameters, not positional ones.

In this way, you're tying the model's absolute path to the view that is used
to display it, without repeating the URL information anywhere. You can still
use the get_absolute_url method in templates, as before.

In some cases, such as the use of generic views or the re-use of
custom views for multiple models, specifying the view function may
confuse the reverse URL matcher (because multiple patterns point to
the same view).

For that problem, Django has named URL patterns. Using a named
URL pattern, it's possible to give a name to a pattern, and then
reference the name rather than the view function. A named URL
pattern is defined by replacing the pattern tuple by a call to
the url function):

from django.conf.urls.defaults import *

url(r'^people/(\d+)/$',
 'django.views.generic.list_detail.object_detail',
 name='people_view'),

...and then using that name to perform the reverse URL resolution instead
of the view name:

from django.db import models

@models.permalink
def get_absolute_url(self):
 return ('people_view', [str(self.id)])

More details on named URL patterns are in the URL dispatch documentation.

Extra instance methods

In addition to save(), delete(), a model object might get any or all
of the following methods:

	
Model.get_FOO_display()

	

For every field that has choices set, the object will have a
get_FOO_display() method, where FOO is the name of the field. This
method returns the "human-readable" value of the field. For example, in the
following model:

GENDER_CHOICES = (
 ('M', 'Male'),
 ('F', 'Female'),
)
class Person(models.Model):
 name = models.CharField(max_length=20)
 gender = models.CharField(max_length=1, choices=GENDER_CHOICES)

...each Person instance will have a get_gender_display() method. Example:

>>> p = Person(name='John', gender='M')
>>> p.save()
>>> p.gender
'M'
>>> p.get_gender_display()
'Male'

	
Model.get_next_by_FOO(**kwargs)

	

	
Model.get_previous_by_FOO(**kwargs)

	

For every DateField and DateTimeField that does not have null=True,
the object will have get_next_by_FOO() and get_previous_by_FOO()
methods, where FOO is the name of the field. This returns the next and
previous object with respect to the date field, raising the appropriate
DoesNotExist exception when appropriate.

Both methods accept optional keyword arguments, which should be in the format
described in Field lookups.

Note that in the case of identical date values, these methods will use the ID
as a fallback check. This guarantees that no records are skipped or duplicated.

That also means you cannot use those methods on unsaved objects.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 QuerySet API reference

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

 	Models

QuerySet API reference

This document describes the details of the QuerySet API. It builds on the
material presented in the model and database
query guides, so you’ll probably want to read and
understand those documents before reading this one.

Throughout this reference we’ll use the example Weblog models presented in the database query guide.

When QuerySets are evaluated

Internally, a QuerySet can be constructed, filtered, sliced, and generally
passed around without actually hitting the database. No database activity
actually occurs until you do something to evaluate the queryset.

You can evaluate a QuerySet in the following ways:

	Iteration. A QuerySet is iterable, and it executes its database
query the first time you iterate over it. For example, this will print
the headline of all entries in the database:

for e in Entry.objects.all():
 print e.headline

	Slicing. As explained in Limiting QuerySets, a QuerySet can
be sliced, using Python's array-slicing syntax. Usually slicing a
QuerySet returns another (unevaluated) QuerySet, but Django will
execute the database query if you use the "step" parameter of slice
syntax.

	Pickling/Caching. See the following section for details of what
is involved when pickling QuerySets. The important thing for the
purposes of this section is that the results are read from the database.

	repr(). A QuerySet is evaluated when you call repr() on it.
This is for convenience in the Python interactive interpreter, so you can
immediately see your results when using the API interactively.

	len(). A QuerySet is evaluated when you call len() on it.
This, as you might expect, returns the length of the result list.

Note: Don't use len() on QuerySets if all you want to do is
determine the number of records in the set. It's much more efficient to
handle a count at the database level, using SQL's SELECT COUNT(*),
and Django provides a count() method for precisely this reason. See
count() below.

	list(). Force evaluation of a QuerySet by calling list() on
it. For example:

entry_list = list(Entry.objects.all())

Be warned, though, that this could have a large memory overhead, because
Django will load each element of the list into memory. In contrast,
iterating over a QuerySet will take advantage of your database to
load data and instantiate objects only as you need them.

	bool(). Testing a QuerySet in a boolean context, such as using
bool(), or, and or an if statement, will cause the query
to be executed. If there is at least one result, the QuerySet is
True, otherwise False. For example:

if Entry.objects.filter(headline="Test"):
 print "There is at least one Entry with the headline Test"

Note: Don't use this if all you want to do is determine if at least one
result exists, and don't need the actual objects. It's more efficient to
use exists() (see below).

Pickling QuerySets

If you pickle [http://docs.python.org/library/pickle.html] a QuerySet, this will force all the results to be loaded
into memory prior to pickling. Pickling is usually used as a precursor to
caching and when the cached queryset is reloaded, you want the results to
already be present and ready for use (reading from the database can take some
time, defeating the purpose of caching). This means that when you unpickle a
QuerySet, it contains the results at the moment it was pickled, rather
than the results that are currently in the database.

If you only want to pickle the necessary information to recreate the
QuerySet from the database at a later time, pickle the query attribute
of the QuerySet. You can then recreate the original QuerySet (without
any results loaded) using some code like this:

>>> import pickle
>>> query = pickle.loads(s) # Assuming 's' is the pickled string.
>>> qs = MyModel.objects.all()
>>> qs.query = query # Restore the original 'query'.

The query attribute is an opaque object. It represents the internals of
the query construction and is not part of the public API. However, it is safe
(and fully supported) to pickle and unpickle the attribute's contents as
described here.

You can't share pickles between versions

Pickles of QuerySets are only valid for the version of Django that
was used to generate them. If you generate a pickle using Django
version N, there is no guarantee that pickle will be readable with
Django version N+1. Pickles should not be used as part of a long-term
archival strategy.

QuerySet API

Though you usually won't create one manually -- you'll go through a
Manager -- here's the formal declaration of a
QuerySet:

	
class QuerySet([model=None, query=None, using=None])

	Usually when you'll interact with a QuerySet you'll use it by
chaining filters. To make this work, most
QuerySet methods return new querysets. These methods are covered in
detail later in this section.

The QuerySet class has two public attributes you can use for
introspection:

	
ordered

	True if the QuerySet is ordered -- i.e. has an order_by()
clause or a default ordering on the model. False otherwise.

	
db

	The database that will be used if this query is executed now.

Note

The query parameter to QuerySet exists so that specialized
query subclasses such as
GeoQuerySet can reconstruct
internal query state. The value of the parameter is an opaque
representation of that query state and is not part of a public API.
To put it simply: if you need to ask, you don't need to use it.

Methods that return new QuerySets

Django provides a range of QuerySet refinement methods that modify either
the types of results returned by the QuerySet or the way its SQL query is
executed.

filter

	
filter(**kwargs)

	

Returns a new QuerySet containing objects that match the given lookup
parameters.

The lookup parameters (**kwargs) should be in the format described in
Field lookups below. Multiple parameters are joined via AND in the
underlying SQL statement.

exclude

	
exclude(**kwargs)

	

Returns a new QuerySet containing objects that do not match the given
lookup parameters.

The lookup parameters (**kwargs) should be in the format described in
Field lookups below. Multiple parameters are joined via AND in the
underlying SQL statement, and the whole thing is enclosed in a NOT().

This example excludes all entries whose pub_date is later than 2005-1-3
AND whose headline is "Hello":

Entry.objects.exclude(pub_date__gt=datetime.date(2005, 1, 3), headline='Hello')

In SQL terms, that evaluates to:

SELECT ...
WHERE NOT (pub_date > '2005-1-3' AND headline = 'Hello')

This example excludes all entries whose pub_date is later than 2005-1-3
OR whose headline is "Hello":

Entry.objects.exclude(pub_date__gt=datetime.date(2005, 1, 3)).exclude(headline='Hello')

In SQL terms, that evaluates to:

SELECT ...
WHERE NOT pub_date > '2005-1-3'
AND NOT headline = 'Hello'

Note the second example is more restrictive.

annotate

	
annotate(*args, **kwargs)

	

Annotates each object in the QuerySet with the provided list of
aggregate values (averages, sums, etc) that have been computed over
the objects that are related to the objects in the QuerySet.
Each argument to annotate() is an annotation that will be added
to each object in the QuerySet that is returned.

The aggregation functions that are provided by Django are described
in Aggregation Functions below.

Annotations specified using keyword arguments will use the keyword as
the alias for the annotation. Anonymous arguments will have an alias
generated for them based upon the name of the aggregate function and
the model field that is being aggregated.

For example, if you were manipulating a list of blogs, you may want
to determine how many entries have been made in each blog:

>>> q = Blog.objects.annotate(Count('entry'))
The name of the first blog
>>> q[0].name
'Blogasaurus'
The number of entries on the first blog
>>> q[0].entry__count
42

The Blog model doesn't define an entry__count attribute by itself,
but by using a keyword argument to specify the aggregate function, you can
control the name of the annotation:

>>> q = Blog.objects.annotate(number_of_entries=Count('entry'))
The number of entries on the first blog, using the name provided
>>> q[0].number_of_entries
42

For an in-depth discussion of aggregation, see the topic guide on
Aggregation.

order_by

	
order_by(*fields)

	

By default, results returned by a QuerySet are ordered by the ordering
tuple given by the ordering option in the model's Meta. You can
override this on a per-QuerySet basis by using the order_by method.

Example:

Entry.objects.filter(pub_date__year=2005).order_by('-pub_date', 'headline')

The result above will be ordered by pub_date descending, then by
headline ascending. The negative sign in front of "-pub_date" indicates
descending order. Ascending order is implied. To order randomly, use "?",
like so:

Entry.objects.order_by('?')

Note: order_by('?') queries may be expensive and slow, depending on the
database backend you're using.

To order by a field in a different model, use the same syntax as when you are
querying across model relations. That is, the name of the field, followed by a
double underscore (__), followed by the name of the field in the new model,
and so on for as many models as you want to join. For example:

Entry.objects.order_by('blog__name', 'headline')

If you try to order by a field that is a relation to another model, Django will
use the default ordering on the related model (or order by the related model's
primary key if there is no Meta.ordering specified. For example:

Entry.objects.order_by('blog')

...is identical to:

Entry.objects.order_by('blog__id')

...since the Blog model has no default ordering specified.

Be cautious when ordering by fields in related models if you are also using
distinct(). See the note in distinct() for an explanation of how
related model ordering can change the expected results.

It is permissible to specify a multi-valued field to order the results by (for
example, a ManyToMany field). Normally this won't be a sensible thing to
do and it's really an advanced usage feature. However, if you know that your
queryset's filtering or available data implies that there will only be one
ordering piece of data for each of the main items you are selecting, the
ordering may well be exactly what you want to do. Use ordering on multi-valued
fields with care and make sure the results are what you expect.

There's no way to specify whether ordering should be case sensitive. With
respect to case-sensitivity, Django will order results however your database
backend normally orders them.

If you don't want any ordering to be applied to a query, not even the default
ordering, call order_by() with no parameters.

You can tell if a query is ordered or not by checking the
QuerySet.ordered attribute, which will be True if the
QuerySet has been ordered in any way.

reverse

	
reverse()

	

Use the reverse() method to reverse the order in which a queryset's
elements are returned. Calling reverse() a second time restores the
ordering back to the normal direction.

To retrieve the ''last'' five items in a queryset, you could do this:

my_queryset.reverse()[:5]

Note that this is not quite the same as slicing from the end of a sequence in
Python. The above example will return the last item first, then the
penultimate item and so on. If we had a Python sequence and looked at
seq[-5:], we would see the fifth-last item first. Django doesn't support
that mode of access (slicing from the end), because it's not possible to do it
efficiently in SQL.

Also, note that reverse() should generally only be called on a
QuerySet which has a defined ordering (e.g., when querying against
a model which defines a default ordering, or when using
order_by()). If no such ordering is defined for a given
QuerySet, calling reverse() on it has no real effect (the
ordering was undefined prior to calling reverse(), and will remain
undefined afterward).

distinct

	
distinct()

	

Returns a new QuerySet that uses SELECT DISTINCT in its SQL query. This
eliminates duplicate rows from the query results.

By default, a QuerySet will not eliminate duplicate rows. In practice, this
is rarely a problem, because simple queries such as Blog.objects.all()
don't introduce the possibility of duplicate result rows. However, if your
query spans multiple tables, it's possible to get duplicate results when a
QuerySet is evaluated. That's when you'd use distinct().

Note

Any fields used in an order_by() call are included in the SQL
SELECT columns. This can sometimes lead to unexpected results when
used in conjunction with distinct(). If you order by fields from a
related model, those fields will be added to the selected columns and they
may make otherwise duplicate rows appear to be distinct. Since the extra
columns don't appear in the returned results (they are only there to
support ordering), it sometimes looks like non-distinct results are being
returned.

Similarly, if you use a values() query to restrict the columns
selected, the columns used in any order_by() (or default model
ordering) will still be involved and may affect uniqueness of the results.

The moral here is that if you are using distinct() be careful about
ordering by related models. Similarly, when using distinct() and
values() together, be careful when ordering by fields not in the
values() call.

values

	
values(*fields)

	

Returns a ValuesQuerySet -- a QuerySet that returns dictionaries when
used as an iterable, rather than model-instance objects.

Each of those dictionaries represents an object, with the keys corresponding to
the attribute names of model objects.

This example compares the dictionaries of values() with the normal model
objects:

This list contains a Blog object.
>>> Blog.objects.filter(name__startswith='Beatles')
[<Blog: Beatles Blog>]

This list contains a dictionary.
>>> Blog.objects.filter(name__startswith='Beatles').values()
[{'id': 1, 'name': 'Beatles Blog', 'tagline': 'All the latest Beatles news.'}]

values() takes optional positional arguments, *fields, which specify
field names to which the SELECT should be limited. If you specify the
fields, each dictionary will contain only the field keys/values for the fields
you specify. If you don't specify the fields, each dictionary will contain a
key and value for every field in the database table.

Example:

>>> Blog.objects.values()
[{'id': 1, 'name': 'Beatles Blog', 'tagline': 'All the latest Beatles news.'}],
>>> Blog.objects.values('id', 'name')
[{'id': 1, 'name': 'Beatles Blog'}]

A few subtleties that are worth mentioning:

	If you have a field called foo that is a
ForeignKey, the default values() call
will return a dictionary key called foo_id, since this is the name
of the hidden model attribute that stores the actual value (the foo
attribute refers to the related model). When you are calling
values() and passing in field names, you can pass in either foo
or foo_id and you will get back the same thing (the dictionary key
will match the field name you passed in).

For example:

>>> Entry.objects.values()
[{'blog_id': 1, 'headline': u'First Entry', ...}, ...]

>>> Entry.objects.values('blog')
[{'blog': 1}, ...]

>>> Entry.objects.values('blog_id')
[{'blog_id': 1}, ...]

	When using values() together with distinct(), be aware that
ordering can affect the results. See the note in distinct() for
details.

	If you use a values() clause after an extra() clause,
any fields defined by a select argument in the extra()
must be explicitly included in the values() clause. However,
if the extra() clause is used after the values(), the
fields added by the select will be included automatically.

A ValuesQuerySet is useful when you know you're only going to need values
from a small number of the available fields and you won't need the
functionality of a model instance object. It's more efficient to select only
the fields you need to use.

Finally, note a ValuesQuerySet is a subclass of QuerySet, so it has all
methods of QuerySet. You can call filter() on it, or order_by(), or
whatever. Yes, that means these two calls are identical:

Blog.objects.values().order_by('id')
Blog.objects.order_by('id').values()

The people who made Django prefer to put all the SQL-affecting methods first,
followed (optionally) by any output-affecting methods (such as values()),
but it doesn't really matter. This is your chance to really flaunt your
individualism.

Changed in Django 1.3: Please, see the release notes

The values() method previously did not return anything for
ManyToManyField attributes and would raise an error
if you tried to pass this type of field to it.

This restriction has been lifted, and you can now also refer to fields on
related models with reverse relations through OneToOneField, ForeignKey
and ManyToManyField attributes:

Blog.objects.values('name', 'entry__headline')
[{'name': 'My blog', 'entry__headline': 'An entry'},
 {'name': 'My blog', 'entry__headline': 'Another entry'}, ...]

Warning

Because ManyToManyField attributes and reverse
relations can have multiple related rows, including these can have a
multiplier effect on the size of your result set. This will be especially
pronounced if you include multiple such fields in your values() query,
in which case all possible combinations will be returned.

values_list

	
values_list(*fields)

	

This is similar to values() except that instead of returning dictionaries,
it returns tuples when iterated over. Each tuple contains the value from the
respective field passed into the values_list() call -- so the first item is
the first field, etc. For example:

>>> Entry.objects.values_list('id', 'headline')
[(1, u'First entry'), ...]

If you only pass in a single field, you can also pass in the flat
parameter. If True, this will mean the returned results are single values,
rather than one-tuples. An example should make the difference clearer:

>>> Entry.objects.values_list('id').order_by('id')
[(1,), (2,), (3,), ...]

>>> Entry.objects.values_list('id', flat=True).order_by('id')
[1, 2, 3, ...]

It is an error to pass in flat when there is more than one field.

If you don't pass any values to values_list(), it will return all the
fields in the model, in the order they were declared.

dates

	
dates(field, kind, order='ASC')

	

Returns a DateQuerySet -- a QuerySet that evaluates to a list of
datetime.datetime objects representing all available dates of a particular
kind within the contents of the QuerySet.

field should be the name of a DateField or DateTimeField of your
model.

kind should be either "year", "month" or "day". Each
datetime.datetime object in the result list is "truncated" to the given
type.

	"year" returns a list of all distinct year values for the field.

	"month" returns a list of all distinct year/month values for the field.

	"day" returns a list of all distinct year/month/day values for the field.

order, which defaults to 'ASC', should be either 'ASC' or
'DESC'. This specifies how to order the results.

Examples:

>>> Entry.objects.dates('pub_date', 'year')
[datetime.datetime(2005, 1, 1)]
>>> Entry.objects.dates('pub_date', 'month')
[datetime.datetime(2005, 2, 1), datetime.datetime(2005, 3, 1)]
>>> Entry.objects.dates('pub_date', 'day')
[datetime.datetime(2005, 2, 20), datetime.datetime(2005, 3, 20)]
>>> Entry.objects.dates('pub_date', 'day', order='DESC')
[datetime.datetime(2005, 3, 20), datetime.datetime(2005, 2, 20)]
>>> Entry.objects.filter(headline__contains='Lennon').dates('pub_date', 'day')
[datetime.datetime(2005, 3, 20)]

none

	
none()

	

Returns an EmptyQuerySet -- a QuerySet that always evaluates to
an empty list. This can be used in cases where you know that you should
return an empty result set and your caller is expecting a QuerySet
object (instead of returning an empty list, for example.)

Examples:

>>> Entry.objects.none()
[]

all

	
all()

	

Returns a copy of the current QuerySet (or QuerySet subclass you
pass in). This can be useful in some situations where you might want to pass
in either a model manager or a QuerySet and do further filtering on the
result. You can safely call all() on either object and then you'll
definitely have a QuerySet to work with.

select_related

	
select_related()

	

Returns a QuerySet that will automatically "follow" foreign-key
relationships, selecting that additional related-object data when it executes
its query. This is a performance booster which results in (sometimes much)
larger queries but means later use of foreign-key relationships won't require
database queries.

The following examples illustrate the difference between plain lookups and
select_related() lookups. Here's standard lookup:

Hits the database.
e = Entry.objects.get(id=5)

Hits the database again to get the related Blog object.
b = e.blog

And here's select_related lookup:

Hits the database.
e = Entry.objects.select_related().get(id=5)

Doesn't hit the database, because e.blog has been prepopulated
in the previous query.
b = e.blog

select_related() follows foreign keys as far as possible. If you have the
following models:

class City(models.Model):
 # ...

class Person(models.Model):
 # ...
 hometown = models.ForeignKey(City)

class Book(models.Model):
 # ...
 author = models.ForeignKey(Person)

...then a call to Book.objects.select_related().get(id=4) will cache the
related Person and the related City:

b = Book.objects.select_related().get(id=4)
p = b.author # Doesn't hit the database.
c = p.hometown # Doesn't hit the database.

b = Book.objects.get(id=4) # No select_related() in this example.
p = b.author # Hits the database.
c = p.hometown # Hits the database.

Note that, by default, select_related() does not follow foreign keys that
have null=True.

Usually, using select_related() can vastly improve performance because your
app can avoid many database calls. However, in situations with deeply nested
sets of relationships select_related() can sometimes end up following "too
many" relations, and can generate queries so large that they end up being slow.

In these situations, you can use the depth argument to select_related()
to control how many "levels" of relations select_related() will actually
follow:

b = Book.objects.select_related(depth=1).get(id=4)
p = b.author # Doesn't hit the database.
c = p.hometown # Requires a database call.

Sometimes you only want to access specific models that are related to your root
model, not all of the related models. In these cases, you can pass the related
field names to select_related() and it will only follow those relations.
You can even do this for models that are more than one relation away by
separating the field names with double underscores, just as for filters. For
example, if you have this model:

class Room(models.Model):
 # ...
 building = models.ForeignKey(...)

class Group(models.Model):
 # ...
 teacher = models.ForeignKey(...)
 room = models.ForeignKey(Room)
 subject = models.ForeignKey(...)

...and you only needed to work with the room and subject attributes,
you could write this:

g = Group.objects.select_related('room', 'subject')

This is also valid:

g = Group.objects.select_related('room__building', 'subject')

...and would also pull in the building relation.

You can refer to any ForeignKey or OneToOneField relation in
the list of fields passed to select_related. This includes foreign
keys that have null=True (unlike the default select_related()
call). It's an error to use both a list of fields and the depth
parameter in the same select_related() call, since they are
conflicting options.

Changed in Django 1.2: Please, see the release notes

You can also refer to the reverse direction of a OneToOneFields in
the list of fields passed to select_related -- that is, you can traverse
a OneToOneField back to the object on which the field is defined. Instead
of specifying the field name, use the related_name for the field on the
related object.

OneToOneFields will not be traversed in the reverse direction if you
are performing a depth-based select_related.

extra

	
extra(select=None, where=None, params=None, tables=None, order_by=None, select_params=None)

	

Sometimes, the Django query syntax by itself can't easily express a complex
WHERE clause. For these edge cases, Django provides the extra()
QuerySet modifier -- a hook for injecting specific clauses into the SQL
generated by a QuerySet.

By definition, these extra lookups may not be portable to different database
engines (because you're explicitly writing SQL code) and violate the DRY
principle, so you should avoid them if possible.

Specify one or more of params, select, where or tables. None
of the arguments is required, but you should use at least one of them.

	
	select

	The select argument lets you put extra fields in the SELECT clause.
It should be a dictionary mapping attribute names to SQL clauses to use to
calculate that attribute.

Example:

Entry.objects.extra(select={'is_recent': "pub_date > '2006-01-01'"})

As a result, each Entry object will have an extra attribute,
is_recent, a boolean representing whether the entry's pub_date is
greater than Jan. 1, 2006.

Django inserts the given SQL snippet directly into the SELECT
statement, so the resulting SQL of the above example would be something
like:

SELECT blog_entry.*, (pub_date > '2006-01-01') AS is_recent
FROM blog_entry;

The next example is more advanced; it does a subquery to give each
resulting Blog object an entry_count attribute, an integer count
of associated Entry objects:

Blog.objects.extra(
 select={
 'entry_count': 'SELECT COUNT(*) FROM blog_entry WHERE blog_entry.blog_id = blog_blog.id'
 },
)

(In this particular case, we're exploiting the fact that the query will
already contain the blog_blog table in its FROM clause.)

The resulting SQL of the above example would be:

SELECT blog_blog.*, (SELECT COUNT(*) FROM blog_entry WHERE blog_entry.blog_id = blog_blog.id) AS entry_count
FROM blog_blog;

Note that the parenthesis required by most database engines around
subqueries are not required in Django's select clauses. Also note that
some database backends, such as some MySQL versions, don't support
subqueries.

In some rare cases, you might wish to pass parameters to the SQL fragments
in extra(select=...). For this purpose, use the select_params
parameter. Since select_params is a sequence and the select
attribute is a dictionary, some care is required so that the parameters
are matched up correctly with the extra select pieces. In this situation,
you should use a django.utils.datastructures.SortedDict for the
select value, not just a normal Python dictionary.

This will work, for example:

Blog.objects.extra(
 select=SortedDict([('a', '%s'), ('b', '%s')]),
 select_params=('one', 'two'))

The only thing to be careful about when using select parameters in
extra() is to avoid using the substring "%%s" (that's two
percent characters before the s) in the select strings. Django's
tracking of parameters looks for %s and an escaped % character
like this isn't detected. That will lead to incorrect results.

	
	where / tables

	You can define explicit SQL WHERE clauses -- perhaps to perform
non-explicit joins -- by using where. You can manually add tables to
the SQL FROM clause by using tables.

where and tables both take a list of strings. All where
parameters are "AND"ed to any other search criteria.

Example:

Entry.objects.extra(where=['id IN (3, 4, 5, 20)'])

...translates (roughly) into the following SQL:

SELECT * FROM blog_entry WHERE id IN (3, 4, 5, 20);

Be careful when using the tables parameter if you're specifying
tables that are already used in the query. When you add extra tables
via the tables parameter, Django assumes you want that table included
an extra time, if it is already included. That creates a problem,
since the table name will then be given an alias. If a table appears
multiple times in an SQL statement, the second and subsequent occurrences
must use aliases so the database can tell them apart. If you're
referring to the extra table you added in the extra where parameter
this is going to cause errors.

Normally you'll only be adding extra tables that don't already appear in
the query. However, if the case outlined above does occur, there are a few
solutions. First, see if you can get by without including the extra table
and use the one already in the query. If that isn't possible, put your
extra() call at the front of the queryset construction so that your
table is the first use of that table. Finally, if all else fails, look at
the query produced and rewrite your where addition to use the alias
given to your extra table. The alias will be the same each time you
construct the queryset in the same way, so you can rely upon the alias
name to not change.

	
	order_by

	If you need to order the resulting queryset using some of the new fields
or tables you have included via extra() use the order_by parameter
to extra() and pass in a sequence of strings. These strings should
either be model fields (as in the normal order_by() method on
querysets), of the form table_name.column_name or an alias for a column
that you specified in the select parameter to extra().

For example:

q = Entry.objects.extra(select={'is_recent': "pub_date > '2006-01-01'"})
q = q.extra(order_by = ['-is_recent'])

This would sort all the items for which is_recent is true to the front
of the result set (True sorts before False in a descending
ordering).

This shows, by the way, that you can make multiple calls to
extra() and it will behave as you expect (adding new constraints each
time).

	
	params

	The where parameter described above may use standard Python database
string placeholders -- '%s' to indicate parameters the database engine
should automatically quote. The params argument is a list of any extra
parameters to be substituted.

Example:

Entry.objects.extra(where=['headline=%s'], params=['Lennon'])

Always use params instead of embedding values directly into where
because params will ensure values are quoted correctly according to
your particular backend. (For example, quotes will be escaped correctly.)

Bad:

Entry.objects.extra(where=["headline='Lennon'"])

Good:

Entry.objects.extra(where=['headline=%s'], params=['Lennon'])

defer

	
defer(*fields)

	

In some complex data-modeling situations, your models might contain a lot of
fields, some of which could contain a lot of data (for example, text fields),
or require expensive processing to convert them to Python objects. If you are
using the results of a queryset in some situation where you know you don't
need those particular fields, you can tell Django not to retrieve them from
the database.

This is done by passing the names of the fields to not load to defer():

Entry.objects.defer("headline", "body")

A queryset that has deferred fields will still return model instances. Each
deferred field will be retrieved from the database if you access that field
(one at a time, not all the deferred fields at once).

You can make multiple calls to defer(). Each call adds new fields to the
deferred set:

Defers both the body and headline fields.
Entry.objects.defer("body").filter(rating=5).defer("headline")

The order in which fields are added to the deferred set does not matter.
Calling defer() with a field name that has already been deferred is
harmless (the field will still be deferred).

You can defer loading of fields in related models (if the related models are
loading via select_related()) by using the standard double-underscore
notation to separate related fields:

Blog.objects.select_related().defer("entry__headline", "entry__body")

If you want to clear the set of deferred fields, pass None as a parameter
to defer():

Load all fields immediately.
my_queryset.defer(None)

Some fields in a model won't be deferred, even if you ask for them. You can
never defer the loading of the primary key. If you are using
select_related() to retrieve other models at the same time you shouldn't
defer the loading of the field that connects from the primary model to the
related one (at the moment, that doesn't raise an error, but it will
eventually).

Note

The defer() method (and its cousin, only(), below) are only for
advanced use-cases. They provide an optimization for when you have
analyzed your queries closely and understand exactly what information
you need and have measured that the difference between returning the
fields you need and the full set of fields for the model will be
significant. When you are initially developing your applications, don't
bother using defer(); leave it until your query construction has
settled down and you understand where the hot-points are.

only

	
only(*fields)

	

The only() method is more or less the opposite of defer(). You
call it with the fields that should not be deferred when retrieving a model.
If you have a model where almost all the fields need to be deferred, using
only() to specify the complementary set of fields could result in simpler
code.

If you have a model with fields name, age and biography, the
following two querysets are the same, in terms of deferred fields:

Person.objects.defer("age", "biography")
Person.objects.only("name")

Whenever you call only() it replaces the set of fields to load
immediately. The method's name is mnemonic: only those fields are loaded
immediately; the remainder are deferred. Thus, successive calls to only()
result in only the final fields being considered:

This will defer all fields except the headline.
Entry.objects.only("body", "rating").only("headline")

Since defer() acts incrementally (adding fields to the deferred list), you
can combine calls to only() and defer() and things will behave
logically:

Final result is that everything except "headline" is deferred.
Entry.objects.only("headline", "body").defer("body")

Final result loads headline and body immediately (only() replaces any
existing set of fields).
Entry.objects.defer("body").only("headline", "body")

using

	
using(alias)

	

New in Django 1.2: Please, see the release notes

This method is for controlling which database the QuerySet will be
evaluated against if you are using more than one database. The only argument
this method takes is the alias of a database, as defined in
DATABASES.

For example:

queries the database with the 'default' alias.
>>> Entry.objects.all()

queries the database with the 'backup' alias
>>> Entry.objects.using('backup')

Methods that do not return QuerySets

The following QuerySet methods evaluate the QuerySet and return
something other than a QuerySet.

These methods do not use a cache (see Caching and QuerySets). Rather,
they query the database each time they're called.

get

	
get(**kwargs)

	

Returns the object matching the given lookup parameters, which should be in
the format described in Field lookups.

get() raises MultipleObjectsReturned if more than one object was
found. The MultipleObjectsReturned exception is an attribute of the model
class.

get() raises a DoesNotExist exception if an object wasn't found for
the given parameters. This exception is also an attribute of the model class.
Example:

Entry.objects.get(id='foo') # raises Entry.DoesNotExist

The DoesNotExist exception inherits from
django.core.exceptions.ObjectDoesNotExist, so you can target multiple
DoesNotExist exceptions. Example:

from django.core.exceptions import ObjectDoesNotExist
try:
 e = Entry.objects.get(id=3)
 b = Blog.objects.get(id=1)
except ObjectDoesNotExist:
 print "Either the entry or blog doesn't exist."

create

	
create(**kwargs)

	

A convenience method for creating an object and saving it all in one step. Thus:

p = Person.objects.create(first_name="Bruce", last_name="Springsteen")

and:

p = Person(first_name="Bruce", last_name="Springsteen")
p.save(force_insert=True)

are equivalent.

The force_insert parameter is documented
elsewhere, but all it means is that a new object will always be created.
Normally you won't need to worry about this. However, if your model contains a
manual primary key value that you set and if that value already exists in the
database, a call to create() will fail with an
IntegrityError since primary keys must be unique. So remember
to be prepared to handle the exception if you are using manual primary keys.

get_or_create

	
get_or_create(**kwargs)

	

A convenience method for looking up an object with the given kwargs, creating
one if necessary.

Returns a tuple of (object, created), where object is the retrieved or
created object and created is a boolean specifying whether a new object was
created.

This is meant as a shortcut to boilerplatish code and is mostly useful for
data-import scripts. For example:

try:
 obj = Person.objects.get(first_name='John', last_name='Lennon')
except Person.DoesNotExist:
 obj = Person(first_name='John', last_name='Lennon', birthday=date(1940, 10, 9))
 obj.save()

This pattern gets quite unwieldy as the number of fields in a model goes up.
The above example can be rewritten using get_or_create() like so:

obj, created = Person.objects.get_or_create(first_name='John', last_name='Lennon',
 defaults={'birthday': date(1940, 10, 9)})

Any keyword arguments passed to get_or_create() -- except an optional one
called defaults -- will be used in a get() call. If an object is found,
get_or_create() returns a tuple of that object and False. If an object
is not found, get_or_create() will instantiate and save a new object,
returning a tuple of the new object and True. The new object will be
created roughly according to this algorithm:

defaults = kwargs.pop('defaults', {})
params = dict([(k, v) for k, v in kwargs.items() if '__' not in k])
params.update(defaults)
obj = self.model(**params)
obj.save()

In English, that means start with any non-'defaults' keyword argument that
doesn't contain a double underscore (which would indicate a non-exact lookup).
Then add the contents of defaults, overriding any keys if necessary, and
use the result as the keyword arguments to the model class. As hinted at
above, this is a simplification of the algorithm that is used, but it contains
all the pertinent details. The internal implementation has some more
error-checking than this and handles some extra edge-conditions; if you're
interested, read the code.

If you have a field named defaults and want to use it as an exact lookup in
get_or_create(), just use 'defaults__exact', like so:

Foo.objects.get_or_create(defaults__exact='bar', defaults={'defaults': 'baz'})

The get_or_create() method has similar error behavior to create()
when you are using manually specified primary keys. If an object needs to be
created and the key already exists in the database, an IntegrityError will
be raised.

Finally, a word on using get_or_create() in Django views. As mentioned
earlier, get_or_create() is mostly useful in scripts that need to parse
data and create new records if existing ones aren't available. But if you need
to use get_or_create() in a view, please make sure to use it only in
POST requests unless you have a good reason not to. GET requests
shouldn't have any effect on data; use POST whenever a request to a page
has a side effect on your data. For more, see Safe methods [http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1] in the HTTP spec.

count

	
count()

	

Returns an integer representing the number of objects in the database matching
the QuerySet. count() never raises exceptions.

Example:

Returns the total number of entries in the database.
Entry.objects.count()

Returns the number of entries whose headline contains 'Lennon'
Entry.objects.filter(headline__contains='Lennon').count()

count() performs a SELECT COUNT(*) behind the scenes, so you should
always use count() rather than loading all of the record into Python
objects and calling len() on the result (unless you need to load the
objects into memory anyway, in which case len() will be faster).

Depending on which database you're using (e.g. PostgreSQL vs. MySQL),
count() may return a long integer instead of a normal Python integer. This
is an underlying implementation quirk that shouldn't pose any real-world
problems.

in_bulk

	
in_bulk(id_list)

	

Takes a list of primary-key values and returns a dictionary mapping each
primary-key value to an instance of the object with the given ID.

Example:

>>> Blog.objects.in_bulk([1])
{1: <Blog: Beatles Blog>}
>>> Blog.objects.in_bulk([1, 2])
{1: <Blog: Beatles Blog>, 2: <Blog: Cheddar Talk>}
>>> Blog.objects.in_bulk([])
{}

If you pass in_bulk() an empty list, you'll get an empty dictionary.

iterator

	
iterator()

	

Evaluates the QuerySet (by performing the query) and returns an
iterator [http://www.python.org/dev/peps/pep-0234/] over the results. A QuerySet typically caches its
results internally so that repeated evaluations do not result in
additional queries; iterator() will instead read results directly,
without doing any caching at the QuerySet level. For a
QuerySet which returns a large number of objects, this often
results in better performance and a significant reduction in memory

Note that using iterator() on a QuerySet which has already
been evaluated will force it to evaluate again, repeating the query.

latest

	
latest(field_name=None)

	

Returns the latest object in the table, by date, using the field_name
provided as the date field.

This example returns the latest Entry in the table, according to the
pub_date field:

Entry.objects.latest('pub_date')

If your model's Meta specifies get_latest_by, you can leave off the
field_name argument to latest(). Django will use the field specified in
get_latest_by by default.

Like get(), latest() raises DoesNotExist if an object doesn't
exist with the given parameters.

Note latest() exists purely for convenience and readability.

aggregate

	
aggregate(*args, **kwargs)

	

Returns a dictionary of aggregate values (averages, sums, etc) calculated
over the QuerySet. Each argument to aggregate() specifies
a value that will be included in the dictionary that is returned.

The aggregation functions that are provided by Django are described
in Aggregation Functions below.

Aggregates specified using keyword arguments will use the keyword as
the name for the annotation. Anonymous arguments will have an name
generated for them based upon the name of the aggregate function and
the model field that is being aggregated.

For example, if you were manipulating blog entries, you may want to know
the number of authors that have contributed blog entries:

>>> q = Blog.objects.aggregate(Count('entry'))
{'entry__count': 16}

By using a keyword argument to specify the aggregate function, you can
control the name of the aggregation value that is returned:

>>> q = Blog.objects.aggregate(number_of_entries=Count('entry'))
{'number_of_entries': 16}

For an in-depth discussion of aggregation, see the topic guide on
Aggregation.

exists

	
exists()

	

New in Django 1.2: Please, see the release notes

Returns True if the QuerySet contains any results, and False
if not. This tries to perform the query in the simplest and fastest way
possible, but it does execute nearly the same query. This means that calling
QuerySet.exists() is faster than bool(some_query_set), but not by
a large degree. If some_query_set has not yet been evaluated, but you know
that it will be at some point, then using some_query_set.exists() will do
more overall work (an additional query) than simply using
bool(some_query_set).

update

	
update(**kwargs)

	

Performs an SQL update query for the specified fields, and returns
the number of rows affected. The update() method is applied instantly and
the only restriction on the QuerySet that is updated is that it can
only update columns in the model's main table. Filtering based on related
fields is still possible. You cannot call update() on a
QuerySet that has had a slice taken or can otherwise no longer be
filtered.

For example, if you wanted to update all the entries in a particular blog
to use the same headline:

>>> b = Blog.objects.get(pk=1)

Update all the headlines belonging to this Blog.
>>> Entry.objects.select_related().filter(blog=b).update(headline='Everything is the same')

The update() method does a bulk update and does not call any save()
methods on your models, nor does it emit the pre_save or post_save
signals (which are a consequence of calling save()).

delete

	
delete()

	

Performs an SQL delete query on all rows in the QuerySet. The
delete() is applied instantly. You cannot call delete() on a
QuerySet that has had a slice taken or can otherwise no longer be
filtered.

For example, to delete all the entries in a particular blog:

>>> b = Blog.objects.get(pk=1)

Delete all the entries belonging to this Blog.
>>> Entry.objects.filter(blog=b).delete()

By default, Django's ForeignKey emulates the SQL
constraint ON DELETE CASCADE -- in other words, any objects with foreign
keys pointing at the objects to be deleted will be deleted along with them.
For example:

blogs = Blog.objects.all()
This will delete all Blogs and all of their Entry objects.
blogs.delete()

New in Django 1.3: This cascade behavior is customizable via the
on_delete argument to the
ForeignKey.

The delete() method does a bulk delete and does not call any delete()
methods on your models. It does, however, emit the
pre_delete and
post_delete signals for all deleted objects
(including cascaded deletions).

Field lookups

Field lookups are how you specify the meat of an SQL WHERE clause. They're
specified as keyword arguments to the QuerySet methods filter(),
exclude() and get().

For an introduction, see Field lookups.

exact

Exact match. If the value provided for comparison is None, it will
be interpreted as an SQL NULL (See isnull for more details).

Examples:

Entry.objects.get(id__exact=14)
Entry.objects.get(id__exact=None)

SQL equivalents:

SELECT ... WHERE id = 14;
SELECT ... WHERE id IS NULL;

MySQL comparisons

In MySQL, a database table's "collation" setting determines whether
exact comparisons are case-sensitive. This is a database setting, not
a Django setting. It's possible to configure your MySQL tables to use
case-sensitive comparisons, but some trade-offs are involved. For more
information about this, see the collation section
in the databases documentation.

iexact

Case-insensitive exact match.

Example:

Blog.objects.get(name__iexact='beatles blog')

SQL equivalent:

SELECT ... WHERE name ILIKE 'beatles blog';

Note this will match 'Beatles Blog', 'beatles blog', 'BeAtLes
BLoG', etc.

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in
mind the database note about string
comparisons. SQLite does not do case-insensitive matching for Unicode
strings.

contains

Case-sensitive containment test.

Example:

Entry.objects.get(headline__contains='Lennon')

SQL equivalent:

SELECT ... WHERE headline LIKE '%Lennon%';

Note this will match the headline 'Today Lennon honored' but not
'today lennon honored'.

SQLite doesn't support case-sensitive LIKE statements; contains acts
like icontains for SQLite.

icontains

Case-insensitive containment test.

Example:

Entry.objects.get(headline__icontains='Lennon')

SQL equivalent:

SELECT ... WHERE headline ILIKE '%Lennon%';

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in
mind the database note about string
comparisons.

in

In a given list.

Example:

Entry.objects.filter(id__in=[1, 3, 4])

SQL equivalent:

SELECT ... WHERE id IN (1, 3, 4);

You can also use a queryset to dynamically evaluate the list of values
instead of providing a list of literal values:

inner_qs = Blog.objects.filter(name__contains='Cheddar')
entries = Entry.objects.filter(blog__in=inner_qs)

This queryset will be evaluated as subselect statement:

SELECT ... WHERE blog.id IN (SELECT id FROM ... WHERE NAME LIKE '%Cheddar%')

The above code fragment could also be written as follows:

inner_q = Blog.objects.filter(name__contains='Cheddar').values('pk').query
entries = Entry.objects.filter(blog__in=inner_q)

This second form is a bit less readable and unnatural to write, since it
accesses the internal query attribute and requires a ValuesQuerySet.
If your code doesn't require compatibility with Django 1.0, use the first
form, passing in a queryset directly.

If you pass in a ValuesQuerySet or ValuesListQuerySet (the result of
calling values() or values_list() on a queryset) as the value to an
__in lookup, you need to ensure you are only extracting one field in the
result. For example, this will work (filtering on the blog names):

inner_qs = Blog.objects.filter(name__contains='Ch').values('name')
entries = Entry.objects.filter(blog__name__in=inner_qs)

This example will raise an exception, since the inner query is trying to
extract two field values, where only one is expected:

Bad code! Will raise a TypeError.
inner_qs = Blog.objects.filter(name__contains='Ch').values('name', 'id')
entries = Entry.objects.filter(blog__name__in=inner_qs)

Warning

This query attribute should be considered an opaque internal attribute.
It's fine to use it like above, but its API may change between Django
versions.

Performance considerations

Be cautious about using nested queries and understand your database
server's performance characteristics (if in doubt, benchmark!). Some
database backends, most notably MySQL, don't optimize nested queries very
well. It is more efficient, in those cases, to extract a list of values
and then pass that into the second query. That is, execute two queries
instead of one:

values = Blog.objects.filter(
 name__contains='Cheddar').values_list('pk', flat=True)
entries = Entry.objects.filter(blog__in=list(values))

Note the list() call around the Blog QuerySet to force execution of
the first query. Without it, a nested query would be executed, because
QuerySets are lazy.

gt

Greater than.

Example:

Entry.objects.filter(id__gt=4)

SQL equivalent:

SELECT ... WHERE id > 4;

gte

Greater than or equal to.

lt

Less than.

lte

Less than or equal to.

startswith

Case-sensitive starts-with.

Example:

Entry.objects.filter(headline__startswith='Will')

SQL equivalent:

SELECT ... WHERE headline LIKE 'Will%';

SQLite doesn't support case-sensitive LIKE statements; startswith acts
like istartswith for SQLite.

istartswith

Case-insensitive starts-with.

Example:

Entry.objects.filter(headline__istartswith='will')

SQL equivalent:

SELECT ... WHERE headline ILIKE 'Will%';

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in
mind the database note about string
comparisons.

endswith

Case-sensitive ends-with.

Example:

Entry.objects.filter(headline__endswith='cats')

SQL equivalent:

SELECT ... WHERE headline LIKE '%cats';

SQLite doesn't support case-sensitive LIKE statements; endswith acts
like iendswith for SQLite.

iendswith

Case-insensitive ends-with.

Example:

Entry.objects.filter(headline__iendswith='will')

SQL equivalent:

SELECT ... WHERE headline ILIKE '%will'

SQLite users

When using the SQLite backend and Unicode (non-ASCII) strings, bear in
mind the database note about string
comparisons.

range

Range test (inclusive).

Example:

start_date = datetime.date(2005, 1, 1)
end_date = datetime.date(2005, 3, 31)
Entry.objects.filter(pub_date__range=(start_date, end_date))

SQL equivalent:

SELECT ... WHERE pub_date BETWEEN '2005-01-01' and '2005-03-31';

You can use range anywhere you can use BETWEEN in SQL -- for dates,
numbers and even characters.

year

For date/datetime fields, exact year match. Takes a four-digit year.

Example:

Entry.objects.filter(pub_date__year=2005)

SQL equivalent:

SELECT ... WHERE pub_date BETWEEN '2005-01-01' AND '2005-12-31 23:59:59.999999';

(The exact SQL syntax varies for each database engine.)

month

For date/datetime fields, exact month match. Takes an integer 1 (January)
through 12 (December).

Example:

Entry.objects.filter(pub_date__month=12)

SQL equivalent:

SELECT ... WHERE EXTRACT('month' FROM pub_date) = '12';

(The exact SQL syntax varies for each database engine.)

day

For date/datetime fields, exact day match.

Example:

Entry.objects.filter(pub_date__day=3)

SQL equivalent:

SELECT ... WHERE EXTRACT('day' FROM pub_date) = '3';

(The exact SQL syntax varies for each database engine.)

Note this will match any record with a pub_date on the third day of the month,
such as January 3, July 3, etc.

week_day

For date/datetime fields, a 'day of the week' match.

Takes an integer value representing the day of week from 1 (Sunday) to 7
(Saturday).

Example:

Entry.objects.filter(pub_date__week_day=2)

(No equivalent SQL code fragment is included for this lookup because
implementation of the relevant query varies among different database engines.)

Note this will match any record with a pub_date that falls on a Monday (day 2
of the week), regardless of the month or year in which it occurs. Week days
are indexed with day 1 being Sunday and day 7 being Saturday.

isnull

Takes either True or False, which correspond to SQL queries of
IS NULL and IS NOT NULL, respectively.

Example:

Entry.objects.filter(pub_date__isnull=True)

SQL equivalent:

SELECT ... WHERE pub_date IS NULL;

search

A boolean full-text search, taking advantage of full-text indexing. This is
like contains but is significantly faster due to full-text indexing.

Example:

Entry.objects.filter(headline__search="+Django -jazz Python")

SQL equivalent:

SELECT ... WHERE MATCH(tablename, headline) AGAINST (+Django -jazz Python IN BOOLEAN MODE);

Note this is only available in MySQL and requires direct manipulation of the
database to add the full-text index. By default Django uses BOOLEAN MODE for
full text searches. See the MySQL documentation for additional details. [http://dev.mysql.com/doc/refman/5.1/en/fulltext-boolean.html]

regex

Case-sensitive regular expression match.

The regular expression syntax is that of the database backend in use.
In the case of SQLite, which has no built in regular expression support,
this feature is provided by a (Python) user-defined REGEXP function, and
the regular expression syntax is therefore that of Python's re module.

Example:

Entry.objects.get(title__regex=r'^(An?|The) +')

SQL equivalents:

SELECT ... WHERE title REGEXP BINARY '^(An?|The) +'; -- MySQL

SELECT ... WHERE REGEXP_LIKE(title, '^(an?|the) +', 'c'); -- Oracle

SELECT ... WHERE title ~ '^(An?|The) +'; -- PostgreSQL

SELECT ... WHERE title REGEXP '^(An?|The) +'; -- SQLite

Using raw strings (e.g., r'foo' instead of 'foo') for passing in the
regular expression syntax is recommended.

iregex

Case-insensitive regular expression match.

Example:

Entry.objects.get(title__iregex=r'^(an?|the) +')

SQL equivalents:

SELECT ... WHERE title REGEXP '^(an?|the) +'; -- MySQL

SELECT ... WHERE REGEXP_LIKE(title, '^(an?|the) +', 'i'); -- Oracle

SELECT ... WHERE title ~* '^(an?|the) +'; -- PostgreSQL

SELECT ... WHERE title REGEXP '(?i)^(an?|the) +'; -- SQLite

Aggregation functions

Django provides the following aggregation functions in the
django.db.models module. For details on how to use these
aggregate functions, see
the topic guide on aggregation.

Avg

	
class Avg(field)

	Returns the mean value of the given field.

	Default alias: <field>__avg

	Return type: float

Count

	
class Count(field, distinct=False)

	Returns the number of objects that are related through the provided field.

	Default alias: <field>__count

	Return type: integer

Has one optional argument:

	
distinct

	If distinct=True, the count will only include unique instances. This has
the SQL equivalent of COUNT(DISTINCT field). Default value is False.

Max

	
class Max(field)

	Returns the maximum value of the given field.

	Default alias: <field>__max

	Return type: same as input field

Min

	
class Min(field)

	Returns the minimum value of the given field.

	Default alias: <field>__min

	Return type: same as input field

StdDev

	
class StdDev(field, sample=False)

	Returns the standard deviation of the data in the provided field.

	Default alias: <field>__stddev

	Return type: float

Has one optional argument:

	
sample

	By default, StdDev returns the population standard deviation. However,
if sample=True, the return value will be the sample standard deviation.

SQLite

SQLite doesn't provide StdDev out of the box. An implementation is
available as an extension module for SQLite. Consult the SQlite
documentation for instructions on obtaining and installing this extension.

Sum

	
class Sum(field)

	Computes the sum of all values of the given field.

	Default alias: <field>__sum

	Return type: same as input field

Variance

	
class Variance(field, sample=False)

	Returns the variance of the data in the provided field.

	Default alias: <field>__variance

	Return type: float

Has one optional argument:

	
sample

	By default, Variance returns the population variance. However,
if sample=True, the return value will be the sample variance.

SQLite

SQLite doesn't provide Variance out of the box. An implementation is
available as an extension module for SQLite. Consult the SQlite
documentation for instructions on obtaining and installing this extension.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Request and response objects

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Request and response objects

Quick overview

Django uses request and response objects to pass state through the system.

When a page is requested, Django creates an HttpRequest object that
contains metadata about the request. Then Django loads the appropriate view,
passing the HttpRequest as the first argument to the view function.
Each view is responsible for returning an HttpResponse object.

This document explains the APIs for HttpRequest and
HttpResponse objects.

HttpRequest objects

	
class HttpRequest

	

Attributes

All attributes except session should be considered read-only.

	
HttpRequest.path

	A string representing the full path to the requested page, not including
the domain.

Example: "/music/bands/the_beatles/"

	
HttpRequest.path_info

	Under some Web server configurations, the portion of the URL after the host
name is split up into a script prefix portion and a path info portion
(this happens, for example, when using the django.root option
with the modpython handler from Apache).
The path_info attribute always contains the path info portion of the
path, no matter what Web server is being used. Using this instead of
attr:~HttpRequest.path can make your code much easier to move between test
and deployment servers.

For example, if the django.root for your application is set to
"/minfo", then path might be "/minfo/music/bands/the_beatles/"
and path_info would be "/music/bands/the_beatles/".

	
HttpRequest.method

	A string representing the HTTP method used in the request. This is
guaranteed to be uppercase. Example:

if request.method == 'GET':
 do_something()
elif request.method == 'POST':
 do_something_else()

	
HttpRequest.encoding

	A string representing the current encoding used to decode form submission
data (or None, which means the DEFAULT_CHARSET setting is
used). You can write to this attribute to change the encoding used when
accessing the form data. Any subsequent attribute accesses (such as reading
from GET or POST) will use the new encoding value. Useful if
you know the form data is not in the DEFAULT_CHARSET encoding.

	
HttpRequest.GET

	A dictionary-like object containing all given HTTP GET parameters. See the
QueryDict documentation below.

	
HttpRequest.POST

	A dictionary-like object containing all given HTTP POST parameters. See the
QueryDict documentation below.

It's possible that a request can come in via POST with an empty POST
dictionary -- if, say, a form is requested via the POST HTTP method but
does not include form data. Therefore, you shouldn't use if request.POST
to check for use of the POST method; instead, use if request.method ==
"POST" (see above).

Note: POST does not include file-upload information. See FILES.

	
HttpRequest.REQUEST

	For convenience, a dictionary-like object that searches POST first,
then GET. Inspired by PHP's $_REQUEST.

For example, if GET = {"name": "john"} and POST = {"age": '34'},
REQUEST["name"] would be "john", and REQUEST["age"] would be
"34".

It's strongly suggested that you use GET and POST instead of
REQUEST, because the former are more explicit.

	
HttpRequest.COOKIES

	A standard Python dictionary containing all cookies. Keys and values are
strings.

	
HttpRequest.FILES

	A dictionary-like object containing all uploaded files. Each key in
FILES is the name from the <input type="file" name="" />. Each
value in FILES is an UploadedFile as described below.

See Managing files for more information.

Note that FILES will only contain data if the request method was POST
and the <form> that posted to the request had
enctype="multipart/form-data". Otherwise, FILES will be a blank
dictionary-like object.

	
HttpRequest.META

	A standard Python dictionary containing all available HTTP headers.
Available headers depend on the client and server, but here are some
examples:

	CONTENT_LENGTH

	CONTENT_TYPE

	HTTP_ACCEPT_ENCODING

	HTTP_ACCEPT_LANGUAGE

	HTTP_HOST -- The HTTP Host header sent by the client.

	HTTP_REFERER -- The referring page, if any.

	HTTP_USER_AGENT -- The client's user-agent string.

	QUERY_STRING -- The query string, as a single (unparsed) string.

	REMOTE_ADDR -- The IP address of the client.

	REMOTE_HOST -- The hostname of the client.

	REMOTE_USER -- The user authenticated by the Web server, if any.

	REQUEST_METHOD -- A string such as "GET" or "POST".

	SERVER_NAME -- The hostname of the server.

	SERVER_PORT -- The port of the server.

With the exception of CONTENT_LENGTH and CONTENT_TYPE, as given
above, any HTTP headers in the request are converted to META keys by
converting all characters to uppercase, replacing any hyphens with
underscores and adding an HTTP_ prefix to the name. So, for example, a
header called X-Bender would be mapped to the META key
HTTP_X_BENDER.

	
HttpRequest.user

	A django.contrib.auth.models.User object representing the currently
logged-in user. If the user isn't currently logged in, user will be set
to an instance of django.contrib.auth.models.AnonymousUser. You
can tell them apart with is_authenticated(), like so:

if request.user.is_authenticated():
 # Do something for logged-in users.
else:
 # Do something for anonymous users.

user is only available if your Django installation has the
AuthenticationMiddleware activated. For more, see
User authentication in Django.

	
HttpRequest.session

	A readable-and-writable, dictionary-like object that represents the current
session. This is only available if your Django installation has session
support activated. See the session documentation for full details.

	
HttpRequest.raw_post_data

	The raw HTTP POST data as a byte string. This is useful for processing
data in different formats than of conventional HTML forms: binary images,
XML payload etc. For processing form data use HttpRequest.POST.

New in Django 1.3: Please, see the release notes

You can also read from an HttpRequest using file-like interface. See
HttpRequest.read().

	
HttpRequest.urlconf

	Not defined by Django itself, but will be read if other code (e.g., a custom
middleware class) sets it. When present, this will be used as the root
URLconf for the current request, overriding the ROOT_URLCONF
setting. See How Django processes a request for details.

Methods

	
HttpRequest.get_host()

	Returns the originating host of the request using information from
the HTTP_X_FORWARDED_HOST (if enabled in the settings) and HTTP_HOST
headers (in that order). If they don't provide a value, the method
uses a combination of SERVER_NAME and SERVER_PORT as
detailed in PEP 3333 [http://www.python.org/dev/peps/pep-3333].

Example: "127.0.0.1:8000"

Note

The get_host() method fails when the host is
behind multiple proxies. One solution is to use middleware to rewrite
the proxy headers, as in the following example:

class MultipleProxyMiddleware(object):
 FORWARDED_FOR_FIELDS = [
 'HTTP_X_FORWARDED_FOR',
 'HTTP_X_FORWARDED_HOST',
 'HTTP_X_FORWARDED_SERVER',
]

 def process_request(self, request):
 """
 Rewrites the proxy headers so that only the most
 recent proxy is used.
 """
 for field in self.FORWARDED_FOR_FIELDS:
 if field in request.META:
 if ',' in request.META[field]:
 parts = request.META[field].split(',')
 request.META[field] = parts[-1].strip()

This middleware should be positionned before any other middleware that
relies on the value of get_host(), for instance
CommonMiddleware or
CsrfViewMiddleware.

	
HttpRequest.get_full_path()

	Returns the path, plus an appended query string, if applicable.

Example: "/music/bands/the_beatles/?print=true"

	
HttpRequest.build_absolute_uri(location)

	Returns the absolute URI form of location. If no location is provided,
the location will be set to request.get_full_path().

If the location is already an absolute URI, it will not be altered.
Otherwise the absolute URI is built using the server variables available in
this request.

Example: "http://example.com/music/bands/the_beatles/?print=true"

	
HttpRequest.is_secure()

	Returns True if the request is secure; that is, if it was made with
HTTPS.

	
HttpRequest.is_ajax()

	Returns True if the request was made via an XMLHttpRequest, by
checking the HTTP_X_REQUESTED_WITH header for the string
'XMLHttpRequest'. Most modern JavaScript libraries send this header.
If you write your own XMLHttpRequest call (on the browser side), you'll
have to set this header manually if you want is_ajax() to work.

	
HttpRequest.read(size=None)

	

	
HttpRequest.readline()

	

	
HttpRequest.readlines()

	

	
HttpRequest.xreadlines()

	

	
HttpRequest.__iter__()

	
New in Django 1.3: Please, see the release notes

Methods implementing a file-like interface for reading from an
HttpRequest instance. This makes it possible to consume an incoming
request in a streaming fashion. A common use-case would be to process a
big XML payload with iterative parser without constructing a whole
XML tree in memory.

Given this standard interface, an HttpRequest instance can be
passed directly to an XML parser such as ElementTree:

import xml.etree.ElementTree as ET
for element in ET.iterparse(request):
 process(element)

UploadedFile objects

	
class UploadedFile

	

Attributes

	
UploadedFile.name

	The name of the uploaded file.

	
UploadedFile.size

	The size, in bytes, of the uploaded file.

Methods

	
UploadedFile.chunks(chunk_size=None)

	Returns a generator that yields sequential chunks of data.

	
UploadedFile.read(num_bytes=None)

	Read a number of bytes from the file.

QueryDict objects

	
class QueryDict

	

In an HttpRequest object, the GET and POST attributes are instances
of django.http.QueryDict. QueryDict is a dictionary-like
class customized to deal with multiple values for the same key. This is
necessary because some HTML form elements, notably
<select multiple="multiple">, pass multiple values for the same key.

QueryDict instances are immutable, unless you create a copy() of them.
That means you can't change attributes of request.POST and request.GET
directly.

Methods

QueryDict implements all the standard dictionary methods, because it's
a subclass of dictionary. Exceptions are outlined here:

	
QueryDict.__getitem__(key)

	Returns the value for the given key. If the key has more than one value,
__getitem__() returns the last value. Raises
django.utils.datastructures.MultiValueDictKeyError if the key does not
exist. (This is a subclass of Python's standard KeyError, so you can
stick to catching KeyError.)

	
QueryDict.__setitem__(key, value)

	Sets the given key to [value] (a Python list whose single element is
value). Note that this, as other dictionary functions that have side
effects, can only be called on a mutable QueryDict (one that was created
via copy()).

	
QueryDict.__contains__(key)

	Returns True if the given key is set. This lets you do, e.g., if "foo"
in request.GET.

	
QueryDict.get(key, default)

	Uses the same logic as __getitem__() above, with a hook for returning a
default value if the key doesn't exist.

	
QueryDict.setdefault(key, default)

	Just like the standard dictionary setdefault() method, except it uses
__setitem__() internally.

	
QueryDict.update(other_dict)

	Takes either a QueryDict or standard dictionary. Just like the standard
dictionary update() method, except it appends to the current
dictionary items rather than replacing them. For example:

>>> q = QueryDict('a=1')
>>> q = q.copy() # to make it mutable
>>> q.update({'a': '2'})
>>> q.getlist('a')
[u'1', u'2']
>>> q['a'] # returns the last
[u'2']

	
QueryDict.items()

	Just like the standard dictionary items() method, except this uses the
same last-value logic as __getitem__(). For example:

>>> q = QueryDict('a=1&a=2&a=3')
>>> q.items()
[(u'a', u'3')]

	
QueryDict.iteritems()

	Just like the standard dictionary iteritems() method. Like
QueryDict.items() this uses the same last-value logic as
QueryDict.__getitem__().

	
QueryDict.iterlists()

	Like QueryDict.iteritems() except it includes all values, as a list,
for each member of the dictionary.

	
QueryDict.values()

	Just like the standard dictionary values() method, except this uses the
same last-value logic as __getitem__(). For example:

>>> q = QueryDict('a=1&a=2&a=3')
>>> q.values()
[u'3']

	
QueryDict.itervalues()

	Just like QueryDict.values(), except an iterator.

In addition, QueryDict has the following methods:

	
QueryDict.copy()

	Returns a copy of the object, using copy.deepcopy() from the Python
standard library. The copy will be mutable -- that is, you can change its
values.

	
QueryDict.getlist(key)

	Returns the data with the requested key, as a Python list. Returns an
empty list if the key doesn't exist. It's guaranteed to return a list of
some sort.

	
QueryDict.setlist(key, list_)

	Sets the given key to list_ (unlike __setitem__()).

	
QueryDict.appendlist(key, item)

	Appends an item to the internal list associated with key.

	
QueryDict.setlistdefault(key, default_list)

	Just like setdefault, except it takes a list of values instead of a
single value.

	
QueryDict.lists()

	Like items(), except it includes all values, as a list, for each
member of the dictionary. For example:

>>> q = QueryDict('a=1&a=2&a=3')
>>> q.lists()
[(u'a', [u'1', u'2', u'3'])]

	
QueryDict.urlencode([safe])

	Returns a string of the data in query-string format. Example:

>>> q = QueryDict('a=2&b=3&b=5')
>>> q.urlencode()
'a=2&b=3&b=5'

Changed in Django 1.3: The safe parameter was added.

Optionally, urlencode can be passed characters which
do not require encoding. For example:

>>> q = QueryDict('', mutable=True)
>>> q['next'] = '/a&b/'
>>> q.urlencode(safe='/')
'next=/a%26b/'

HttpResponse objects

	
class HttpResponse

	

In contrast to HttpRequest objects, which are created automatically by
Django, HttpResponse objects are your responsibility. Each view you
write is responsible for instantiating, populating and returning an
HttpResponse.

The HttpResponse class lives in the django.http module.

Usage

Passing strings

Typical usage is to pass the contents of the page, as a string, to the
HttpResponse constructor:

>>> response = HttpResponse("Here's the text of the Web page.")
>>> response = HttpResponse("Text only, please.", mimetype="text/plain")

But if you want to add content incrementally, you can use response as a
file-like object:

>>> response = HttpResponse()
>>> response.write("<p>Here's the text of the Web page.</p>")
>>> response.write("<p>Here's another paragraph.</p>")

Passing iterators

Finally, you can pass HttpResponse an iterator rather than passing it
hard-coded strings. If you use this technique, follow these guidelines:

	The iterator should return strings.

	If an HttpResponse has been initialized with an iterator as its
content, you can't use the class:HttpResponse instance as a file-like
object. Doing so will raise Exception.

Setting headers

To set or remove a header in your response, treat it like a dictionary:

>>> response = HttpResponse()
>>> response['Cache-Control'] = 'no-cache'
>>> del response['Cache-Control']

Note that unlike a dictionary, del doesn't raise KeyError if the header
doesn't exist.

HTTP headers cannot contain newlines. An attempt to set a header containing a
newline character (CR or LF) will raise BadHeaderError

Telling the browser to treat the response as a file attachment

To tell the browser to treat the response as a file attachment, use the
mimetype argument and set the Content-Disposition header. For example,
this is how you might return a Microsoft Excel spreadsheet:

>>> response = HttpResponse(my_data, mimetype='application/vnd.ms-excel')
>>> response['Content-Disposition'] = 'attachment; filename=foo.xls'

There's nothing Django-specific about the Content-Disposition header, but
it's easy to forget the syntax, so we've included it here.

Attributes

	
HttpResponse.content

	A normal Python string representing the content, encoded from a Unicode
object if necessary.

	
HttpResponse.status_code

	The HTTP Status code [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10] for the response.

Methods

	
HttpResponse.__init__(content='', mimetype=None, status=200, content_type=DEFAULT_CONTENT_TYPE)

	Instantiates an HttpResponse object with the given page content (a
string) and MIME type. The DEFAULT_CONTENT_TYPE is
'text/html'.

content can be an iterator or a string. If it's an iterator, it should
return strings, and those strings will be joined together to form the
content of the response.

status is the HTTP Status code [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10] for the response.

content_type is an alias for mimetype. Historically, this parameter
was only called mimetype, but since this is actually the value included
in the HTTP Content-Type header, it can also include the character set
encoding, which makes it more than just a MIME type specification.
If mimetype is specified (not None), that value is used.
Otherwise, content_type is used. If neither is given, the
DEFAULT_CONTENT_TYPE setting is used.

	
HttpResponse.__setitem__(header, value)

	Sets the given header name to the given value. Both header and
value should be strings.

	
HttpResponse.__delitem__(header)

	Deletes the header with the given name. Fails silently if the header
doesn't exist. Case-insensitive.

	
HttpResponse.__getitem__(header)

	Returns the value for the given header name. Case-insensitive.

	
HttpResponse.has_header(header)

	Returns True or False based on a case-insensitive check for a
header with the given name.

	
HttpResponse.set_cookie(key, value='', max_age=None, expires=None, path='/', domain=None, secure=None, httponly=False)

	
Changed in Django 1.3: Please, see the release notes

The possibility of specifying a datetime.datetime object in
expires, and the auto-calculation of max_age in such case
was added. The httponly argument was also added.

Sets a cookie. The parameters are the same as in the cookie Morsel [http://docs.python.org/library/cookie.html#Cookie.Morsel]
object in the Python standard library.

	max_age should be a number of seconds, or None (default) if
the cookie should last only as long as the client's browser session.
If expires is not specified, it will be calculated.

	expires should either be a string in the format
"Wdy, DD-Mon-YY HH:MM:SS GMT" or a datetime.datetime object
in UTC. If expires is a datetime object, the max_age
will be calculated.

	Use domain if you want to set a cross-domain cookie. For example,
domain=".lawrence.com" will set a cookie that is readable by
the domains www.lawrence.com, blogs.lawrence.com and
calendars.lawrence.com. Otherwise, a cookie will only be readable by
the domain that set it.

	Use httponly=True if you want to prevent client-side
JavaScript from having access to the cookie.

HTTPOnly [http://www.owasp.org/index.php/HTTPOnly] is a flag included in a Set-Cookie HTTP response
header. It is not part of the RFC2109 standard for cookies,
and it isn't honored consistently by all browsers. However,
when it is honored, it can be a useful way to mitigate the
risk of client side script accessing the protected cookie
data.

	
HttpResponse.delete_cookie(key, path='/', domain=None)

	Deletes the cookie with the given key. Fails silently if the key doesn't
exist.

Due to the way cookies work, path and domain should be the same
values you used in set_cookie() -- otherwise the cookie may not be
deleted.

	
HttpResponse.write(content)

	This method makes an HttpResponse instance a file-like object.

	
HttpResponse.flush()

	This method makes an HttpResponse instance a file-like object.

	
HttpResponse.tell()

	This method makes an HttpResponse instance a file-like object.

HttpResponse subclasses

Django includes a number of HttpResponse subclasses that handle different
types of HTTP responses. Like HttpResponse, these subclasses live in
django.http.

	
class HttpResponseRedirect

	The constructor takes a single argument -- the path to redirect to. This
can be a fully qualified URL (e.g. 'http://www.yahoo.com/search/') or
an absolute path with no domain (e.g. '/search/'). Note that this
returns an HTTP status code 302.

	
class HttpResponsePermanentRedirect

	Like HttpResponseRedirect, but it returns a permanent redirect
(HTTP status code 301) instead of a "found" redirect (status code 302).

	
class HttpResponseNotModified

	The constructor doesn't take any arguments. Use this to designate that a
page hasn't been modified since the user's last request (status code 304).

	
class HttpResponseBadRequest

	Acts just like HttpResponse but uses a 400 status code.

	
class HttpResponseNotFound

	Acts just like HttpResponse but uses a 404 status code.

	
class HttpResponseForbidden

	Acts just like HttpResponse but uses a 403 status code.

	
class HttpResponseNotAllowed

	Like HttpResponse, but uses a 405 status code. Takes a single,
required argument: a list of permitted methods (e.g. ['GET', 'POST']).

	
class HttpResponseGone

	Acts just like HttpResponse but uses a 410 status code.

	
class HttpResponseServerError

	Acts just like HttpResponse but uses a 500 status code.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 TemplateResponse and SimpleTemplateResponse

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

TemplateResponse and SimpleTemplateResponse

New in Django 1.3: Please, see the release notes

Standard HttpResponse objects are static structures.
They are provided with a block of pre-rendered content at time of
construction, and while that content can be modified, it isn’t in a form that
makes it easy to perform modifications.

However, it can sometimes be beneficial to allow decorators or
middleware to modify a response after it has been constructed by the
view. For example, you may want to change the template that is used,
or put additional data into the context.

TemplateResponse provides a way to do just that. Unlike basic
HttpResponse objects, TemplateResponse objects retain
the details of the template and context that was provided by the view to
compute the response. The final output of the response is not computed until
it is needed, later in the response process.

SimpleTemplateResponse objects

	
class SimpleTemplateResponse

	

Attributes

	
SimpleTemplateResponse.template_name

	The name of the template to be rendered. Accepts a
Template object, a path to a template or list
of template paths.

Example: ['foo.html', 'path/to/bar.html']

	
SimpleTemplateResponse.context_data

	The context data to be used when rendering the template. It can be
a dictionary or a context object.

Example: {'foo': 123}

	
SimpleTemplateResponse.rendered_content

	The current rendered value of the response content, using the current
template and context data.

	
SimpleTemplateResponse.is_rendered

	A boolean indicating whether the response content has been rendered.

Methods

	
SimpleTemplateResponse.__init__(template, context=None, mimetype=None, status=None, content_type=None)

	Instantiates a
SimpleTemplateResponse object
with the given template, context, MIME type and HTTP status.

	template

	The full name of a template, or a sequence of template names.
Template instances can also be used.

	context

	A dictionary of values to add to the template context. By default,
this is an empty dictionary. Context objects
are also accepted as context values.

	status

	The HTTP Status code for the response.

	content_type

	An alias for mimetype. Historically, this parameter was only called
mimetype, but since this is actually the value included in the HTTP
Content-Type header, it can also include the character set encoding,
which makes it more than just a MIME type specification. If mimetype
is specified (not None), that value is used. Otherwise,
content_type is used. If neither is given,
DEFAULT_CONTENT_TYPE is used.

	
SimpleTemplateResponse.resolve_context(context)

	Converts context data into a context instance that can be used for
rendering a template. Accepts a dictionary of context data or a
context object. Returns a Context
instance containing the provided data.

Override this method in order to customize context instantiation.

	
SimpleTemplateResponse.resolve_template(template)

	Resolves the template instance to use for rendering. Accepts a
path of a template to use, or a sequence of template paths.
Template instances may also be provided.
Returns the Template instance to be
rendered.

Override this method in order to customize template rendering.

	
SimpleTemplateResponse.add_post_rendering_callback()

	Add a callback that will be invoked after rendering has taken
place. This hook can be used to defer certain processing
operations (such as caching) until after rendering has occurred.

If the SimpleTemplateResponse
has already been rendered, the callback will be invoked
immediately.

When called, callbacks will be passed a single argument – the
rendered SimpleTemplateResponse
instance.

If the callback returns a value that is not None, this will be
used as the response instead of the original response object (and
will be passed to the next post rendering callback etc.)

	
SimpleTemplateResponse.render():

	Sets response.content to the result obtained by
SimpleTemplateResponse.rendered_content.

render() will only have an effect
the first time it is called. On subsequent calls, it will return
the result obtained from the first call.

TemplateResponse objects

	
class TemplateResponse

	TemplateResponse is a subclass of
SimpleTemplateResponse that uses
a RequestContext instead of
a Context.

Methods

	
TemplateResponse.__init__(request, template, context=None, mimetype=None, status=None, content_type=None, current_app=None)

	Instantiates an TemplateResponse object with the given
template, context, MIME type and HTTP status.

	request

	An HttpRequest instance.

	template

	The full name of a template, or a sequence of template names.
Template instances can also be used.

	context

	A dictionary of values to add to the template context. By default,
this is an empty dictionary. Context objects
are also accepted as context values.

	status

	The HTTP Status code for the response.

	content_type

	An alias for mimetype. Historically, this parameter was only called
mimetype, but since this is actually the value included in the HTTP
Content-Type header, it can also include the character set encoding,
which makes it more than just a MIME type specification. If mimetype
is specified (not None), that value is used. Otherwise,
content_type is used. If neither is given,
DEFAULT_CONTENT_TYPE is used.

	current_app

	A hint indicating which application contains the current view. See the
namespaced URL resolution strategy
for more information.

The rendering process

Before a TemplateResponse instance can be
returned to the client, it must be rendered. The rendering process takes the
intermediate representation of template and context, and turns it into the
final byte stream that can be served to the client.

There are three circumstances under which a TemplateResponse will be
rendered:

	When the TemplateResponse instance is explicitly rendered, using
the SimpleTemplateResponse.render() method.

	When the content of the response is explicitly set by assigning
response.content.

	After passing through template response middleware, but before
passing through response middleware.

A TemplateResponse can only be rendered once. The first call to
SimpleTemplateResponse.render() sets the content of the
response; subsequent rendering calls do not change the response
content.

However, when response.content is explicitly assigned, the
change is always applied. If you want to force the content to be
re-rendered, you can re-evaluate the rendered content, and assign
the content of the response manually:

Set up a rendered TemplateResponse
>>> t = TemplateResponse(request, 'original.html', {})
>>> t.render()
>>> print t.content
Original content

Re-rendering doesn't change content
>>> t.template_name = 'new.html'
>>> t.render()
>>> print t.content
Original content

Assigning content does change, no render() call required
>>> t.content = t.rendered_content
>>> print t.content
New content

Post-render callbacks

Some operations -- such as caching -- cannot be performed on an
unrendered template. They must be performed on a fully complete and
rendered response.

If you're using middleware, the solution is easy. Middleware provides
multiple opportunities to process a response on exit from a view. If
you put behavior in the Response middleware is guaranteed to execute
after template rendering has taken place.

However, if you're using a decorator, the same opportunities do not
exist. Any behavior defined in a decorator is handled immediately.

To compensate for this (and any other analogous use cases),
TemplateResponse allows you to register callbacks that will
be invoked when rendering has completed. Using this callback, you can
defer critical processing until a point where you can guarantee that
rendered content will be available.

To define a post-render callback, just define a function that takes
a single argument -- response -- and register that function with
the template response:

def my_render_callback(response):
 # Do content-sensitive processing
 do_post_processing()

def my_view(request):
 # Create a response
 response = TemplateResponse(request, 'mytemplate.html', {})
 # Register the callback
 response.add_post_render_callback(my_render_callback)
 # Return the response
 return response

my_render_callback() will be invoked after the mytemplate.html
has been rendered, and will be provided the fully rendered
TemplateResponse instance as an argument.

If the template has already been rendered, the callback will be
invoked immediately.

Using TemplateResponse and SimpleTemplateResponse

A TemplateResponse object can be used anywhere that a normal
HttpResponse can be used. It can also be used as an alternative to
calling render_to_response().

For example, the following simple view returns a
TemplateResponse() with a simple template, and a context
containing a queryset:

from django.template.response import TemplateResponse

def blog_index(request):
 return TemplateResponse(request, 'entry_list.html', {'entries': Entry.objects.all()})

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Settings

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Settings

	Available settings

	Deprecated settings

Warning

Be careful when you override settings, especially when the default value
is a non-empty tuple or dict, like MIDDLEWARE_CLASSES and
TEMPLATE_CONTEXT_PROCESSORS. Make sure you keep the components
required by the features of Django you wish to use.

Available settings

Here’s a full list of all available settings, in alphabetical order, and their
default values.

ABSOLUTE_URL_OVERRIDES

Default: {} (Empty dictionary)

A dictionary mapping "app_label.model_name" strings to functions that take
a model object and return its URL. This is a way of overriding
get_absolute_url() methods on a per-installation basis. Example:

ABSOLUTE_URL_OVERRIDES = {
 'blogs.weblog': lambda o: "/blogs/%s/" % o.slug,
 'news.story': lambda o: "/stories/%s/%s/" % (o.pub_year, o.slug),
}

Note that the model name used in this setting should be all lower-case, regardless
of the case of the actual model class name.

ADMIN_FOR

Default: () (Empty tuple)

Used for admin-site settings modules, this should be a tuple of settings
modules (in the format 'foo.bar.baz') for which this site is an admin.

The admin site uses this in its automatically-introspected documentation of
models, views and template tags.

ADMIN_MEDIA_PREFIX

Default: '/static/admin/'

The URL prefix for admin media -- CSS, JavaScript and images used by the Django
administrative interface. Make sure to use a trailing slash, and to have this be
different from the MEDIA_URL setting (since the same URL cannot be
mapped onto two different sets of files). For integration with staticfiles, this should be the same as
STATIC_URL followed by 'admin/'.

ADMINS

Default: () (Empty tuple)

A tuple that lists people who get code error notifications. When
DEBUG=False and a view raises an exception, Django will e-mail these people
with the full exception information. Each member of the tuple should be a tuple
of (Full name, e-mail address). Example:

(('John', 'john@example.com'), ('Mary', 'mary@example.com'))

Note that Django will e-mail all of these people whenever an error happens.
See Error reporting via e-mail for more information.

ALLOWED_HOSTS

Default: ['*']

A list of strings representing the host/domain names that this Django site can
serve. This is a security measure to prevent an attacker from poisoning caches
and password reset emails with links to malicious hosts by submitting requests
with a fake HTTP Host header, which is possible even under many
seemingly-safe webserver configurations.

Values in this list can be fully qualified names (e.g. 'www.example.com'),
in which case they will be matched against the request's Host header
exactly (case-insensitive, not including port). A value beginning with a period
can be used as a subdomain wildcard: '.example.com' will match
example.com, www.example.com, and any other subdomain of
example.com. A value of '*' will match anything; in this case you are
responsible to provide your own validation of the Host header (perhaps in a
middleware; if so this middleware must be listed first in
MIDDLEWARE_CLASSES).

If the Host header (or X-Forwarded-Host if
USE_X_FORWARDED_HOST is enabled) does not match any value in this
list, the django.http.HttpRequest.get_host() method will raise
SuspiciousOperation.

When DEBUG is True or when running tests, host validation is
disabled; any host will be accepted. Thus it's usually only necessary to set it
in production.

This validation only applies via get_host();
if your code accesses the Host header directly from request.META you
are bypassing this security protection.

The default value of this setting in Django 1.3.6+ is ['*'] (accept any
host) in order to avoid breaking backwards-compatibility in a security update,
but in Django 1.5+ the default is [] and explicitly configuring this
setting is required.

ALLOWED_INCLUDE_ROOTS

Default: () (Empty tuple)

A tuple of strings representing allowed prefixes for the {% ssi %} template
tag. This is a security measure, so that template authors can't access files
that they shouldn't be accessing.

For example, if ALLOWED_INCLUDE_ROOTS is ('/home/html', '/var/www'),
then {% ssi /home/html/foo.txt %} would work, but {% ssi /etc/passwd %}
wouldn't.

APPEND_SLASH

Default: True

When set to True, if the request URL does not match any of the patterns
in the URLconf and it doesn't end in a slash, an HTTP redirect is issued to the
same URL with a slash appended. Note that the redirect may cause any data
submitted in a POST request to be lost.

The APPEND_SLASH setting is only used if
CommonMiddleware is installed
(see Middleware). See also PREPEND_WWW.

AUTHENTICATION_BACKENDS

Default: ('django.contrib.auth.backends.ModelBackend',)

A tuple of authentication backend classes (as strings) to use when attempting to
authenticate a user. See the authentication backends documentation for details.

AUTH_PROFILE_MODULE

Default: Not defined

The site-specific user profile model used by this site. See
Storing additional information about users.

CACHES

New in Django 1.3: Please, see the release notes

Default:

{
 'default': {
 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache',
 }
}

A dictionary containing the settings for all caches to be used with
Django. It is a nested dictionary whose contents maps cache aliases
to a dictionary containing the options for an individual cache.

The CACHES setting must configure a default cache;
any number of additional caches may also be specified. If you
are using a cache backend other than the local memory cache, or
you need to define multiple caches, other options will be required.
The following cache options are available.

BACKEND

Default: '' (Empty string)

The cache backend to use. The built-in cache backends are:

	'django.core.cache.backends.db.DatabaseCache'

	'django.core.cache.backends.dummy.DummyCache'

	'django.core.cache.backends.filebased.FileBasedCache'

	'django.core.cache.backends.locmem.LocMemCache'

	'django.core.cache.backends.memcached.MemcachedCache'

	'django.core.cache.backends.memcached.PyLibMCCache'

You can use a cache backend that doesn't ship with Django by setting
BACKEND to a fully-qualified path of a cache
backend class (i.e. mypackage.backends.whatever.WhateverCache).
Writing a whole new cache backend from scratch is left as an exercise
to the reader; see the other backends for examples.

Note

Prior to Django 1.3, you could use a URI based version of the backend
name to reference the built-in cache backends (e.g., you could use
'db://tablename' to refer to the database backend). This format has
been deprecated, and will be removed in Django 1.5.

KEY_FUNCTION

A string containing a dotted path to a function that defines how to
compose a prefix, version and key into a final cache key. The default
implementation is equivalent to the function:

def make_key(key, key_prefix, version):
 return ':'.join([key_prefix, str(version), smart_str(key)])

You may use any key function you want, as long as it has the same
argument signature.

See the cache documentation for more information.

KEY_PREFIX

Default: '' (Empty string)

A string that will be automatically included (prepended by default) to
all cache keys used by the Django server.

See the cache documentation for more information.

LOCATION

Default: '' (Empty string)

The location of the cache to use. This might be the directory for a
file system cache, a host and port for a memcache server, or simply an
identifying name for a local memory cache. e.g.:

CACHES = {
 'default': {
 'BACKEND': 'django.core.cache.backends.filebased.FileBasedCache',
 'LOCATION': '/var/tmp/django_cache',
 }
}

OPTIONS

Default: None

Extra parameters to pass to the cache backend. Available parameters
vary depending on your cache backend.

Some information on available parameters can be found in the
Cache Backends documentation. For more information,
consult your backend module's own documentation.

TIMEOUT

Default: 300

The number of seconds before a cache entry is considered stale.

VERSION

Default: 1

The default version number for cache keys generated by the Django server.

See the cache documentation for more information.

CACHE_MIDDLEWARE_ALIAS

Default: default

The cache connection to use for the cache middleware.

CACHE_MIDDLEWARE_ANONYMOUS_ONLY

Default: False

If the value of this setting is True, only anonymous requests (i.e., not
those made by a logged-in user) will be cached. Otherwise, the middleware
caches every page that doesn't have GET or POST parameters.

If you set the value of this setting to True, you should make sure you've
activated AuthenticationMiddleware.

See Django's cache framework.

CACHE_MIDDLEWARE_KEY_PREFIX

Default: '' (Empty string)

The cache key prefix that the cache middleware should use.

See Django's cache framework.

CACHE_MIDDLEWARE_SECONDS

Default: 600

The default number of seconds to cache a page when the caching middleware or
cache_page() decorator is used.

See Django's cache framework.

CSRF_COOKIE_DOMAIN

New in Django 1.2: Please, see the release notes

Default: None

The domain to be used when setting the CSRF cookie. This can be useful for
allowing cross-subdomain requests to be exluded from the normal cross site
request forgery protection. It should be set to a string such as
".lawrence.com" to allow a POST request from a form on one subdomain to be
accepted by accepted by a view served from another subdomain.

CSRF_COOKIE_NAME

New in Django 1.2: Please, see the release notes

Default: 'csrftoken'

The name of the cookie to use for the CSRF authentication token. This can be whatever you
want. See Cross Site Request Forgery protection.

CSRF_FAILURE_VIEW

New in Django 1.2: Please, see the release notes

Default: 'django.views.csrf.csrf_failure'

A dotted path to the view function to be used when an incoming request
is rejected by the CSRF protection. The function should have this signature:

def csrf_failure(request, reason="")

where reason is a short message (intended for developers or logging, not for
end users) indicating the reason the request was rejected. See
Cross Site Request Forgery protection.

DATABASES

New in Django 1.2: Please, see the release notes

Default: {} (Empty dictionary)

A dictionary containing the settings for all databases to be used with
Django. It is a nested dictionary whose contents maps database aliases
to a dictionary containing the options for an individual database.

The DATABASES setting must configure a default database;
any number of additional databases may also be specified.

The simplest possible settings file is for a single-database setup using
SQLite. This can be configured using the following:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'mydatabase'
 }
}

For other database backends, or more complex SQLite configurations, other options
will be required. The following inner options are available.

ENGINE

Default: '' (Empty string)

The database backend to use. The built-in database backends are:

	'django.db.backends.postgresql_psycopg2'

	'django.db.backends.postgresql'

	'django.db.backends.mysql'

	'django.db.backends.sqlite3'

	'django.db.backends.oracle'

You can use a database backend that doesn't ship with Django by setting
ENGINE to a fully-qualified path (i.e.
mypackage.backends.whatever). Writing a whole new database backend from
scratch is left as an exercise to the reader; see the other backends for
examples.

Note

Prior to Django 1.2, you could use a short version of the backend name
to reference the built-in database backends (e.g., you could use
'sqlite3' to refer to the SQLite backend). This format has been
deprecated, and will be removed in Django 1.4.

HOST

Default: '' (Empty string)

Which host to use when connecting to the database. An empty string means
localhost. Not used with SQLite.

If this value starts with a forward slash ('/') and you're using MySQL,
MySQL will connect via a Unix socket to the specified socket. For example:

"HOST": '/var/run/mysql'

If you're using MySQL and this value doesn't start with a forward slash, then
this value is assumed to be the host.

If you're using PostgreSQL, an empty string means to use a Unix domain socket
for the connection, rather than a network connection to localhost. If you
explicitly need to use a TCP/IP connection on the local machine with
PostgreSQL, specify localhost here.

NAME

Default: '' (Empty string)

The name of the database to use. For SQLite, it's the full path to the database
file. When specifying the path, always use forward slashes, even on Windows
(e.g. C:/homes/user/mysite/sqlite3.db).

OPTIONS

Default: {} (Empty dictionary)

Extra parameters to use when connecting to the database. Available parameters
vary depending on your database backend.

Some information on available parameters can be found in the
Database Backends documentation. For more information,
consult your backend module's own documentation.

PASSWORD

Default: '' (Empty string)

The password to use when connecting to the database. Not used with SQLite.

PORT

Default: '' (Empty string)

The port to use when connecting to the database. An empty string means the
default port. Not used with SQLite.

USER

Default: '' (Empty string)

The username to use when connecting to the database. Not used with SQLite.

TEST_CHARSET

Default: None

The character set encoding used to create the test database. The value of this
string is passed directly through to the database, so its format is
backend-specific.

Supported for the PostgreSQL [http://www.postgresql.org/docs/8.2/static/multibyte.html] (postgresql, postgresql_psycopg2) and
MySQL [http://dev.mysql.com/doc/refman/5.0/en/charset-database.html] (mysql) backends.

TEST_COLLATION

Default: None

The collation order to use when creating the test database. This value is
passed directly to the backend, so its format is backend-specific.

Only supported for the mysql backend (see the MySQL manual [http://dev.mysql.com/doc/refman/5.0/en/charset-database.html] for details).

TEST_DEPENDENCIES

New in Django 1.3: Please, see the release notes

Default: ['default'], for all databases other than default,
which has no dependencies.

The creation-order dependencies of the database. See the documentation
on controlling the creation order of test databases for details.

TEST_MIRROR

Default: None

The alias of the database that this database should mirror during
testing.

This setting exists to allow for testing of master/slave
configurations of multiple databases. See the documentation on
testing master/slave configurations for details.

TEST_NAME

Default: None

The name of database to use when running the test suite.

If the default value (None) is used with the SQLite database engine, the
tests will use a memory resident database. For all other database engines the
test database will use the name 'test_' + DATABASE_NAME.

See Testing Django applications.

TEST_USER

Default: None

This is an Oracle-specific setting.

The username to use when connecting to the Oracle database that will be used
when running tests.

DATABASE_ROUTERS

New in Django 1.2: Please, see the release notes

Default: [] (Empty list)

The list of routers that will be used to determine which database
to use when performing a database queries.

See the documentation on automatic database routing in multi
database configurations.

DATE_FORMAT

Default: 'N j, Y' (e.g. Feb. 4, 2003)

The default formatting to use for displaying date fields in any part of the
system. Note that if USE_L10N is set to True, then the
locale-dictated format has higher precedence and will be applied instead. See
allowed date format strings.

Changed in Django 1.2: This setting can now be overriden by setting USE_L10N to True.

See also DATETIME_FORMAT, TIME_FORMAT and SHORT_DATE_FORMAT.

DATE_INPUT_FORMATS

New in Django 1.2: Please, see the release notes

Default:

('%Y-%m-%d', '%m/%d/%Y', '%m/%d/%y', '%b %d %Y',
'%b %d, %Y', '%d %b %Y', '%d %b, %Y', '%B %d %Y',
'%B %d, %Y', '%d %B %Y', '%d %B, %Y')

A tuple of formats that will be accepted when inputting data on a date field.
Formats will be tried in order, using the first valid. Note that these format
strings are specified in Python's datetime [http://docs.python.org/library/datetime.html#strftime-strptime-behavior] module syntax, that is different
from the one used by Django for formatting dates to be displayed.

When USE_L10N is True, the locale-dictated format has higher
precedence and will be applied instead.

See also DATETIME_INPUT_FORMATS and TIME_INPUT_FORMATS.

DATETIME_FORMAT

Default: 'N j, Y, P' (e.g. Feb. 4, 2003, 4 p.m.)

The default formatting to use for displaying datetime fields in any part of the
system. Note that if USE_L10N is set to True, then the
locale-dictated format has higher precedence and will be applied instead. See
allowed date format strings.

Changed in Django 1.2: This setting can now be overriden by setting USE_L10N to True.

See also DATE_FORMAT, TIME_FORMAT and SHORT_DATETIME_FORMAT.

DATETIME_INPUT_FORMATS

New in Django 1.2: Please, see the release notes

Default:

('%Y-%m-%d %H:%M:%S', '%Y-%m-%d %H:%M', '%Y-%m-%d',
'%m/%d/%Y %H:%M:%S', '%m/%d/%Y %H:%M', '%m/%d/%Y',
'%m/%d/%y %H:%M:%S', '%m/%d/%y %H:%M', '%m/%d/%y')

A tuple of formats that will be accepted when inputting data on a datetime
field. Formats will be tried in order, using the first valid. Note that these
format strings are specified in Python's datetime [http://docs.python.org/library/datetime.html#strftime-strptime-behavior] module syntax, that is
different from the one used by Django for formatting dates to be displayed.

When USE_L10N is True, the locale-dictated format has higher
precedence and will be applied instead.

See also DATE_INPUT_FORMATS and TIME_INPUT_FORMATS.

DEBUG

Default: False

A boolean that turns on/off debug mode.

If you define custom settings, django/views/debug.py [http://code.djangoproject.com/browser/django/trunk/django/views/debug.py] has a HIDDEN_SETTINGS
regular expression which will hide from the DEBUG view anything that contains
'SECRET', 'PASSWORD', 'PROFANITIES', or 'SIGNATURE'. This allows
untrusted users to be able to give backtraces without seeing sensitive (or
offensive) settings.

Still, note that there are always going to be sections of your debug output that
are inappropriate for public consumption. File paths, configuration options, and
the like all give attackers extra information about your server.

It is also important to remember that when running with DEBUG
turned on, Django will remember every SQL query it executes. This is useful
when you are debugging, but on a production server, it will rapidly consume
memory.

Never deploy a site into production with DEBUG turned on.

DEBUG_PROPAGATE_EXCEPTIONS

Default: False

If set to True, Django's normal exception handling of view functions
will be suppressed, and exceptions will propagate upwards. This can
be useful for some test setups, and should never be used on a live
site.

DECIMAL_SEPARATOR

New in Django 1.2: Please, see the release notes

Default: '.' (Dot)

Default decimal separator used when formatting decimal numbers.

DEFAULT_CHARSET

Default: 'utf-8'

Default charset to use for all HttpResponse objects, if a MIME type isn't
manually specified. Used with DEFAULT_CONTENT_TYPE to construct the
Content-Type header.

DEFAULT_CONTENT_TYPE

Default: 'text/html'

Default content type to use for all HttpResponse objects, if a MIME type
isn't manually specified. Used with DEFAULT_CHARSET to construct
the Content-Type header.

DEFAULT_FILE_STORAGE

Default: django.core.files.storage.FileSystemStorage

Default file storage class to be used for any file-related operations that don't
specify a particular storage system. See Managing files.

DEFAULT_FROM_EMAIL

Default: 'webmaster@localhost'

Default e-mail address to use for various automated correspondence from the
site manager(s).

DEFAULT_INDEX_TABLESPACE

Default: '' (Empty string)

Default tablespace to use for indexes on fields that don't specify
one, if the backend supports it.

DEFAULT_TABLESPACE

Default: '' (Empty string)

Default tablespace to use for models that don't specify one, if the
backend supports it.

DISALLOWED_USER_AGENTS

Default: () (Empty tuple)

List of compiled regular expression objects representing User-Agent strings that
are not allowed to visit any page, systemwide. Use this for bad robots/crawlers.
This is only used if CommonMiddleware is installed (see
Middleware).

EMAIL_BACKEND

New in Django 1.2: Please, see the release notes

Default: 'django.core.mail.backends.smtp.EmailBackend'

The backend to use for sending emails. For the list of available backends see
Sending e-mail.

EMAIL_FILE_PATH

New in Django 1.2: Please, see the release notes

Default: Not defined

The directory used by the file email backend to store output files.

EMAIL_HOST

Default: 'localhost'

The host to use for sending e-mail.

See also EMAIL_PORT.

EMAIL_HOST_PASSWORD

Default: '' (Empty string)

Password to use for the SMTP server defined in EMAIL_HOST. This
setting is used in conjunction with EMAIL_HOST_USER when
authenticating to the SMTP server. If either of these settings is empty,
Django won't attempt authentication.

See also EMAIL_HOST_USER.

EMAIL_HOST_USER

Default: '' (Empty string)

Username to use for the SMTP server defined in EMAIL_HOST.
If empty, Django won't attempt authentication.

See also EMAIL_HOST_PASSWORD.

EMAIL_PORT

Default: 25

Port to use for the SMTP server defined in EMAIL_HOST.

EMAIL_SUBJECT_PREFIX

Default: '[Django] '

Subject-line prefix for e-mail messages sent with django.core.mail.mail_admins
or django.core.mail.mail_managers. You'll probably want to include the
trailing space.

EMAIL_USE_TLS

Default: False

Whether to use a TLS (secure) connection when talking to the SMTP server.

FILE_CHARSET

Default: 'utf-8'

The character encoding used to decode any files read from disk. This includes
template files and initial SQL data files.

FILE_UPLOAD_HANDLERS

Default:

("django.core.files.uploadhandler.MemoryFileUploadHandler",
 "django.core.files.uploadhandler.TemporaryFileUploadHandler",)

A tuple of handlers to use for uploading. See Managing files for details.

FILE_UPLOAD_MAX_MEMORY_SIZE

Default: 2621440 (i.e. 2.5 MB).

The maximum size (in bytes) that an upload will be before it gets streamed to
the file system. See Managing files for details.

FILE_UPLOAD_PERMISSIONS

Default: None

The numeric mode (i.e. 0644) to set newly uploaded files to. For
more information about what these modes mean, see the documentation for
os.chmod [http://docs.python.org/library/os.html#os.chmod]

If this isn't given or is None, you'll get operating-system
dependent behavior. On most platforms, temporary files will have a mode
of 0600, and files saved from memory will be saved using the
system's standard umask.

Warning

Always prefix the mode with a 0.

If you're not familiar with file modes, please note that the leading
0 is very important: it indicates an octal number, which is the
way that modes must be specified. If you try to use 644, you'll
get totally incorrect behavior.

FILE_UPLOAD_TEMP_DIR

Default: None

The directory to store data temporarily while uploading files. If None,
Django will use the standard temporary directory for the operating system. For
example, this will default to '/tmp' on *nix-style operating systems.

See Managing files for details.

FIRST_DAY_OF_WEEK

New in Django 1.2: Please, see the release notes

Default: 0 (Sunday)

Number representing the first day of the week. This is especially useful
when displaying a calendar. This value is only used when not using
format internationalization, or when a format cannot be found for the
current locale.

The value must be an integer from 0 to 6, where 0 means Sunday, 1 means
Monday and so on.

FIXTURE_DIRS

Default: () (Empty tuple)

List of directories searched for fixture files, in addition to the
fixtures directory of each application, in search order.

Note that these paths should use Unix-style forward slashes, even on Windows.

See Providing initial data with fixtures and Fixture loading.

FORCE_SCRIPT_NAME

Default: None

If not None, this will be used as the value of the SCRIPT_NAME
environment variable in any HTTP request. This setting can be used to override
the server-provided value of SCRIPT_NAME, which may be a rewritten version
of the preferred value or not supplied at all.

FORMAT_MODULE_PATH

New in Django 1.2: Please, see the release notes

Default: None

A full Python path to a Python package that contains format definitions for
project locales. If not None, Django will check for a formats.py
file, under the directory named as the current locale, and will use the
formats defined on this file.

For example, if FORMAT_MODULE_PATH is set to mysite.formats,
and current language is en (English), Django will expect a directory tree
like:

mysite/
 formats/
 __init__.py
 en/
 __init__.py
 formats.py

Available formats are DATE_FORMAT, TIME_FORMAT,
DATETIME_FORMAT, YEAR_MONTH_FORMAT,
MONTH_DAY_FORMAT, SHORT_DATE_FORMAT,
SHORT_DATETIME_FORMAT, FIRST_DAY_OF_WEEK,
DECIMAL_SEPARATOR, THOUSAND_SEPARATOR and
NUMBER_GROUPING.

IGNORABLE_404_ENDS

Default: ('mail.pl', 'mailform.pl', 'mail.cgi', 'mailform.cgi', 'favicon.ico', '.php')

See also IGNORABLE_404_STARTS and Error reporting via e-mail.

IGNORABLE_404_STARTS

Default: ('/cgi-bin/', '/_vti_bin', '/_vti_inf')

A tuple of strings that specify beginnings of URLs that should be ignored by
the 404 e-mailer. See SEND_BROKEN_LINK_EMAILS, IGNORABLE_404_ENDS and
the Error reporting via e-mail.

INSTALLED_APPS

Default: () (Empty tuple)

A tuple of strings designating all applications that are enabled in this Django
installation. Each string should be a full Python path to a Python package that
contains a Django application, as created by django-admin.py startapp.

App names must be unique

The application names (that is, the final dotted part of the
path to the module containing models.py) defined in
INSTALLED_APPS must be unique. For example, you can't
include both django.contrib.auth and myproject.auth in
INSTALLED_APPS.

INTERNAL_IPS

Default: () (Empty tuple)

A tuple of IP addresses, as strings, that:

	See debug comments, when DEBUG is True

	Receive X headers if the XViewMiddleware is installed (see
Middleware)

LANGUAGE_CODE

Default: 'en-us'

A string representing the language code for this installation. This should be in
standard language format. For example, U.S. English is
"en-us". See Internationalization and localization.

LANGUAGE_COOKIE_NAME

Default: 'django_language'

The name of the cookie to use for the language cookie. This can be whatever
you want (but should be different from SESSION_COOKIE_NAME). See
Internationalization and localization.

LANGUAGES

Default: A tuple of all available languages. This list is continually growing
and including a copy here would inevitably become rapidly out of date. You can
see the current list of translated languages by looking in
django/conf/global_settings.py (or view the online source [http://code.djangoproject.com/browser/django/trunk/django/conf/global_settings.py]).

The list is a tuple of two-tuples in the format (language code, language
name), the language code part should be a
language name -- for example, ('ja', 'Japanese').
This specifies which languages are available for language selection. See
Internationalization and localization.

Generally, the default value should suffice. Only set this setting if you want
to restrict language selection to a subset of the Django-provided languages.

If you define a custom LANGUAGES setting, it's OK to mark the
languages as translation strings (as in the default value referred to above)
-- but use a "dummy" gettext() function, not the one in
django.utils.translation. You should never import
django.utils.translation from within your settings file, because that
module in itself depends on the settings, and that would cause a circular
import.

The solution is to use a "dummy" gettext() function. Here's a sample
settings file:

gettext = lambda s: s

LANGUAGES = (
 ('de', gettext('German')),
 ('en', gettext('English')),
)

With this arrangement, django-admin.py makemessages will still find and
mark these strings for translation, but the translation won't happen at
runtime -- so you'll have to remember to wrap the languages in the real
gettext() in any code that uses LANGUAGES at runtime.

LOCALE_PATHS

Default: () (Empty tuple)

A tuple of directories where Django looks for translation files.
See Using internationalization in your own projects.

Example:

LOCALE_PATHS = (
 '/home/www/project/common_files/locale',
 '/var/local/translations/locale'
)

Note that in the paths you add to the value of this setting, if you have the
typical /path/to/locale/xx/LC_MESSAGES hierarchy, you should use the path to
the locale directory (i.e. '/path/to/locale').

LOGGING

New in Django 1.3: Please, see the release notes

Default: A logging configuration dictionary.

A data structure containing configuration information. The contents of
this data structure will be passed as the argument to the
configuration method described in LOGGING_CONFIG.

The default logging configuration passes HTTP 500 server errors to an
email log handler; all other log messages are given to a NullHandler.

LOGGING_CONFIG

New in Django 1.3: Please, see the release notes

Default: 'django.utils.log.dictConfig'

A path to a callable that will be used to configure logging in the
Django project. Points at a instance of Python's dictConfig [http://docs.python.org/library/logging.config.html#configuration-dictionary-schema]
configuration method by default.

If you set LOGGING_CONFIG to None, the logging
configuration process will be skipped.

LOGIN_REDIRECT_URL

Default: '/accounts/profile/'

The URL where requests are redirected after login when the
contrib.auth.login view gets no next parameter.

This is used by the login_required()
decorator, for example.

LOGIN_URL

Default: '/accounts/login/'

The URL where requests are redirected for login, especially when using the
login_required() decorator.

LOGOUT_URL

Default: '/accounts/logout/'

LOGIN_URL counterpart.

MANAGERS

Default: () (Empty tuple)

A tuple in the same format as ADMINS that specifies who should get
broken-link notifications when SEND_BROKEN_LINK_EMAILS=True.

MEDIA_ROOT

Default: '' (Empty string)

Absolute path to the directory that holds media for this installation, used
for managing stored files.

Example: "/home/media/media.lawrence.com/"

See also MEDIA_URL.

MEDIA_URL

Default: '' (Empty string)

URL that handles the media served from MEDIA_ROOT, used
for managing stored files.

Example: "http://media.lawrence.com/"

Changed in Django 1.3: It must end in a slash if set to a non-empty value.

MESSAGE_LEVEL

New in Django 1.2: Please, see the release notes

Default: messages.INFO

Sets the minimum message level that will be recorded by the messages
framework. See the messages documentation for
more details.

MESSAGE_STORAGE

New in Django 1.2: Please, see the release notes

Default: 'django.contrib.messages.storage.user_messages.LegacyFallbackStorage'

Controls where Django stores message data. See the
messages documentation for more details.

MESSAGE_TAGS

New in Django 1.2: Please, see the release notes

Default:

{messages.DEBUG: 'debug',
messages.INFO: 'info',
messages.SUCCESS: 'success',
messages.WARNING: 'warning',
messages.ERROR: 'error',}

Sets the mapping of message levels to message tags. See the
messages documentation for more details.

MIDDLEWARE_CLASSES

Default:

('django.middleware.common.CommonMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',)

A tuple of middleware classes to use. See Middleware.

Changed in Django 1.2: 'django.contrib.messages.middleware.MessageMiddleware' was added to the
default. For more information, see the messages documentation.

MONTH_DAY_FORMAT

Default: 'F j'

The default formatting to use for date fields on Django admin change-list
pages -- and, possibly, by other parts of the system -- in cases when only the
month and day are displayed.

For example, when a Django admin change-list page is being filtered by a date
drilldown, the header for a given day displays the day and month. Different
locales have different formats. For example, U.S. English would say
"January 1," whereas Spanish might say "1 Enero."

See allowed date format strings. See also
DATE_FORMAT, DATETIME_FORMAT,
TIME_FORMAT and YEAR_MONTH_FORMAT.

NUMBER_GROUPING

New in Django 1.2: Please, see the release notes

Default: 0

Number of digits grouped together on the integer part of a number. Common use
is to display a thousand separator. If this setting is 0, then, no grouping
will be applied to the number. If this setting is greater than 0 then the
setting THOUSAND_SEPARATOR will be used as the separator between those
groups.

See also THOUSAND_SEPARATOR and USE_THOUSAND_SEPARATOR.

PASSWORD_RESET_TIMEOUT_DAYS

Default: 3

The number of days a password reset link is valid for. Used by the
django.contrib.auth password reset mechanism.

PREPEND_WWW

Default: False

Whether to prepend the "www." subdomain to URLs that don't have it. This is only
used if CommonMiddleware is installed
(see Middleware). See also APPEND_SLASH.

PROFANITIES_LIST

Default: () (Empty tuple)

A tuple of profanities, as strings, that will trigger a validation error when
the hasNoProfanities validator is called.

RESTRUCTUREDTEXT_FILTER_SETTINGS

Default: {}

A dictionary containing settings for the restructuredtext markup filter from
the django.contrib.markup application. They override
the default writer settings. See the Docutils restructuredtext writer settings
docs [http://docutils.sourceforge.net/docs/user/config.html#html4css1-writer] for details.

ROOT_URLCONF

Default: Not defined

A string representing the full Python import path to your root URLconf. For example:
"mydjangoapps.urls". Can be overridden on a per-request basis by
setting the attribute urlconf on the incoming HttpRequest
object. See How Django processes a request for details.

SECRET_KEY

Default: '' (Empty string)

A secret key for this particular Django installation. Used to provide a seed in
secret-key hashing algorithms. Set this to a random string -- the longer, the
better. django-admin.py startproject creates one automatically.

SEND_BROKEN_LINK_EMAILS

Default: False

Whether to send an e-mail to the MANAGERS each time somebody visits
a Django-powered page that is 404ed with a non-empty referer (i.e., a broken
link). This is only used if CommonMiddleware is installed (see
Middleware. See also IGNORABLE_404_STARTS,
IGNORABLE_404_ENDS and Error reporting via e-mail.

SERIALIZATION_MODULES

Default: Not defined.

A dictionary of modules containing serializer definitions (provided as
strings), keyed by a string identifier for that serialization type. For
example, to define a YAML serializer, use:

SERIALIZATION_MODULES = { 'yaml' : 'path.to.yaml_serializer' }

SERVER_EMAIL

Default: 'root@localhost'

The e-mail address that error messages come from, such as those sent to
ADMINS and MANAGERS.

SESSION_COOKIE_AGE

Default: 1209600 (2 weeks, in seconds)

The age of session cookies, in seconds. See How to use sessions.

SESSION_COOKIE_DOMAIN

Default: None

The domain to use for session cookies. Set this to a string such as
".lawrence.com" for cross-domain cookies, or use None for a standard
domain cookie. See the How to use sessions.

SESSION_COOKIE_HTTPONLY

Default: False

Whether to use HTTPOnly flag on the session cookie. If this is set to
True, client-side JavaScript will not to be able to access the
session cookie.

HTTPOnly [http://www.owasp.org/index.php/HTTPOnly] is a flag included in a Set-Cookie HTTP response header. It
is not part of the RFC2109 standard for cookies, and it isn't honored
consistently by all browsers. However, when it is honored, it can be a
useful way to mitigate the risk of client side script accessing the
protected cookie data.

SESSION_COOKIE_NAME

Default: 'sessionid'

The name of the cookie to use for sessions. This can be whatever you want (but
should be different from LANGUAGE_COOKIE_NAME).
See the How to use sessions.

SESSION_COOKIE_PATH

Default: '/'

The path set on the session cookie. This should either match the URL path of your
Django installation or be parent of that path.

This is useful if you have multiple Django instances running under the same
hostname. They can use different cookie paths, and each instance will only see
its own session cookie.

SESSION_COOKIE_SECURE

Default: False

Whether to use a secure cookie for the session cookie. If this is set to
True, the cookie will be marked as "secure," which means browsers may
ensure that the cookie is only sent under an HTTPS connection.
See the How to use sessions.

SESSION_ENGINE

Default: django.contrib.sessions.backends.db

Controls where Django stores session data. Valid values are:

	'django.contrib.sessions.backends.db'

	'django.contrib.sessions.backends.file'

	'django.contrib.sessions.backends.cache'

	'django.contrib.sessions.backends.cached_db'

See How to use sessions.

SESSION_EXPIRE_AT_BROWSER_CLOSE

Default: False

Whether to expire the session when the user closes his or her browser.
See the How to use sessions.

SESSION_FILE_PATH

Default: None

If you're using file-based session storage, this sets the directory in
which Django will store session data. See How to use sessions. When
the default value (None) is used, Django will use the standard temporary
directory for the system.

SESSION_SAVE_EVERY_REQUEST

Default: False

Whether to save the session data on every request. See
How to use sessions.

SHORT_DATE_FORMAT

New in Django 1.2: Please, see the release notes

Default: m/d/Y (e.g. 12/31/2003)

An available formatting that can be used for displaying date fields on
templates. Note that if USE_L10N is set to True, then the
corresponding locale-dictated format has higher precedence and will be applied.
See allowed date format strings.

See also DATE_FORMAT and SHORT_DATETIME_FORMAT.

SHORT_DATETIME_FORMAT

New in Django 1.2: Please, see the release notes

Default: m/d/Y P (e.g. 12/31/2003 4 p.m.)

An available formatting that can be used for displaying datetime fields on
templates. Note that if USE_L10N is set to True, then the
corresponding locale-dictated format has higher precedence and will be applied.
See allowed date format strings.

See also DATE_FORMAT and SHORT_DATETIME_FORMAT.

SITE_ID

Default: Not defined

The ID, as an integer, of the current site in the django_site database
table. This is used so that application data can hook into specific site(s)
and a single database can manage content for multiple sites.

See The "sites" framework.

STATIC_ROOT

Default: '' (Empty string)

The absolute path to the directory where collectstatic will collect
static files for deployment.

Example: "/home/example.com/static/"

If the staticfiles contrib app is enabled
(default) the collectstatic management command will collect static
files into this directory. See the howto on managing static
files for more details about usage.

Warning

This should be an (initially empty) destination directory for
collecting your static files from their permanent locations into one
directory for ease of deployment; it is not a place to store your
static files permanently. You should do that in directories that will be
found by staticfiles's
finders, which by default, are
'static/' app sub-directories and any directories you include in
STATICFILES_DIRS).

See staticfiles reference and
STATIC_URL.

STATIC_URL

Default: None

URL to use when referring to static files located in STATIC_ROOT.

Example: "/site_media/static/" or "http://static.example.com/"

If not None, this will be used as the base path for
media definitions and the
staticfiles app.

It must end in a slash if set to a non-empty value.

See STATIC_ROOT.

TEMPLATE_CONTEXT_PROCESSORS

Default:

("django.contrib.auth.context_processors.auth",
"django.core.context_processors.debug",
"django.core.context_processors.i18n",
"django.core.context_processors.media",
"django.core.context_processors.static",
"django.contrib.messages.context_processors.messages")

A tuple of callables that are used to populate the context in RequestContext.
These callables take a request object as their argument and return a dictionary
of items to be merged into the context.

Changed in Django 1.2: django.contrib.messages.context_processors.messages was added to the
default. For more information, see the messages documentation.

Changed in Django 1.2: The auth context processor was moved in this release from its old location
django.core.context_processors.auth to
django.contrib.auth.context_processors.auth.

New in Django 1.3: The django.core.context_processors.static context processor
was added in this release.

TEMPLATE_DEBUG

Default: False

A boolean that turns on/off template debug mode. If this is True, the fancy
error page will display a detailed report for any TemplateSyntaxError. This
report contains the relevant snippet of the template, with the appropriate line
highlighted.

Note that Django only displays fancy error pages if DEBUG is True, so
you'll want to set that to take advantage of this setting.

See also DEBUG.

TEMPLATE_DIRS

Default: () (Empty tuple)

List of locations of the template source files searched by
django.template.loaders.filesystem.Loader, in search order.

Note that these paths should use Unix-style forward slashes, even on Windows.

See The Django template language.

TEMPLATE_LOADERS

Default:

('django.template.loaders.filesystem.Loader',
 'django.template.loaders.app_directories.Loader')

A tuple of template loader classes, specified as strings. Each Loader class
knows how to import templates from a particular source. Optionally, a tuple can be
used instead of a string. The first item in the tuple should be the Loader's
module, subsequent items are passed to the Loader during initialization. See
The Django template language: For Python programmers.

Changed in Django 1.2: The class-based API for template loaders was introduced in Django 1.2
although the TEMPLATE_LOADERS setting will accept strings
that specify function-based loaders until compatibility with them is
completely removed in Django 1.4.

TEMPLATE_STRING_IF_INVALID

Default: '' (Empty string)

Output, as a string, that the template system should use for invalid (e.g.
misspelled) variables. See How invalid variables are handled..

TEST_RUNNER

Default: 'django.test.simple.DjangoTestSuiteRunner'

Changed in Django 1.2: Prior to 1.2, test runners were a function, not a class.

The name of the class to use for starting the test suite. See
Testing Django applications.

THOUSAND_SEPARATOR

New in Django 1.2: Please, see the release notes

Default: , (Comma)

Default thousand separator used when formatting numbers. This setting is
used only when NUMBER_GROUPING and USE_THOUSAND_SEPARATOR
are set.

See also NUMBER_GROUPING, DECIMAL_SEPARATOR and
USE_THOUSAND_SEPARATOR.

TIME_FORMAT

Default: 'P' (e.g. 4 p.m.)

The default formatting to use for displaying time fields in any part of the
system. Note that if USE_L10N is set to True, then the
locale-dictated format has higher precedence and will be applied instead. See
allowed date format strings.

Changed in Django 1.2: This setting can now be overriden by setting USE_L10N to True.

See also DATE_FORMAT and DATETIME_FORMAT.

TIME_INPUT_FORMATS

New in Django 1.2: Please, see the release notes

Default: ('%H:%M:%S', '%H:%M')

A tuple of formats that will be accepted when inputting data on a time field.
Formats will be tried in order, using the first valid. Note that these format
strings are specified in Python's datetime [http://docs.python.org/library/datetime.html#strftime-strptime-behavior] module syntax, that is different
from the one used by Django for formatting dates to be displayed.

When USE_L10N is True, the locale-dictated format has higher
precedence and will be applied instead.

See also DATE_INPUT_FORMATS and DATETIME_INPUT_FORMATS.

TIME_ZONE

Default: 'America/Chicago'

Changed in Django 1.2: None was added as an allowed value.

A string representing the time zone for this installation, or
None. See available choices [http://www.postgresql.org/docs/8.1/static/datetime-keywords.html#DATETIME-TIMEZONE-SET-TABLE]. (Note that list of available
choices lists more than one on the same line; you'll want to use just
one of the choices for a given time zone. For instance, one line says
'Europe/London GB GB-Eire', but you should use the first bit of
that -- 'Europe/London' -- as your TIME_ZONE setting.)

Note that this is the time zone to which Django will convert all
dates/times -- not necessarily the timezone of the server. For
example, one server may serve multiple Django-powered sites, each with
a separate time-zone setting.

Normally, Django sets the os.environ['TZ'] variable to the time
zone you specify in the TIME_ZONE setting. Thus, all your views
and models will automatically operate in the correct time zone.
However, Django won't set the TZ environment variable under the
following conditions:

	If you're using the manual configuration option as described in
manually configuring settings, or

	If you specify TIME_ZONE = None. This will cause Django to fall
back to using the system timezone.

If Django doesn't set the TZ environment variable, it's up to you
to ensure your processes are running in the correct environment.

Note

Django cannot reliably use alternate time zones in a Windows
environment. If you're running Django on Windows, this variable
must be set to match the system timezone.

USE_ETAGS

Default: False

A boolean that specifies whether to output the "Etag" header. This saves
bandwidth but slows down performance. This is used by the CommonMiddleware
(see Middleware) and in the``Cache Framework``
(see Django's cache framework).

USE_I18N

Default: True

A boolean that specifies whether Django's internationalization system should be
enabled. This provides an easy way to turn it off, for performance. If this is
set to False, Django will make some optimizations so as not to load the
internationalization machinery.

See also USE_L10N

USE_L10N

New in Django 1.2: Please, see the release notes

Default: False

A boolean that specifies if data will be localized by default or not. If this
is set to True, e.g. Django will display numbers and dates using the
format of the current locale.

See also USE_I18N and LANGUAGE_CODE

USE_THOUSAND_SEPARATOR

New in Django 1.2: Please, see the release notes

Default: False

A boolean that specifies wheter to display numbers using a thousand separator.
If this is set to True, Django will use values from
THOUSAND_SEPARATOR and NUMBER_GROUPING from current
locale, to format the number. USE_L10N must be set to True,
in order to format numbers.

See also THOUSAND_SEPARATOR and NUMBER_GROUPING.

USE_X_FORWARDED_HOST

New in Django 1.3.1: Please, see the release notes

Default: False

A boolean that specifies whether to use the X-Forwarded-Host header in
preference to the Host header. This should only be enabled if a proxy
which sets this header is in use.

YEAR_MONTH_FORMAT

Default: 'F Y'

The default formatting to use for date fields on Django admin change-list
pages -- and, possibly, by other parts of the system -- in cases when only the
year and month are displayed.

For example, when a Django admin change-list page is being filtered by a date
drilldown, the header for a given month displays the month and the year.
Different locales have different formats. For example, U.S. English would say
"January 2006," whereas another locale might say "2006/January."

See allowed date format strings. See also
DATE_FORMAT, DATETIME_FORMAT, TIME_FORMAT
and MONTH_DAY_FORMAT.

Deprecated settings

CACHE_BACKEND

Deprecated in Django 1.3: Deprecated since version 1.3: This setting has been replaced by BACKEND in
CACHES.

DATABASE_ENGINE

Deprecated in Django 1.2: Deprecated since version 1.2: This setting has been replaced by ENGINE in
DATABASES.

DATABASE_HOST

Deprecated in Django 1.2: Deprecated since version 1.2: This setting has been replaced by HOST in
DATABASES.

DATABASE_NAME

Deprecated in Django 1.2: Deprecated since version 1.2: This setting has been replaced by NAME in
DATABASES.

DATABASE_OPTIONS

Deprecated in Django 1.2: Deprecated since version 1.2: This setting has been replaced by OPTIONS in
DATABASES.

DATABASE_PASSWORD

Deprecated in Django 1.2: Deprecated since version 1.2: This setting has been replaced by PASSWORD in
DATABASES.

DATABASE_PORT

Deprecated in Django 1.2: Deprecated since version 1.2: This setting has been replaced by PORT in
DATABASES.

DATABASE_USER

Deprecated in Django 1.2: Deprecated since version 1.2: This setting has been replaced by USER in
DATABASES.

TEST_DATABASE_CHARSET

Deprecated in Django 1.2: Deprecated since version 1.2: This setting has been replaced by TEST_CHARSET in
DATABASES.

TEST_DATABASE_COLLATION

Deprecated in Django 1.2: Deprecated since version 1.2: This setting has been replaced by TEST_COLLATION in
DATABASES.

TEST_DATABASE_NAME

Deprecated in Django 1.2: Deprecated since version 1.2: This setting has been replaced by TEST_NAME in
DATABASES.

URL_VALIDATOR_USER_AGENT

Deprecated in Django 1.3.1: Deprecated since version 1.3.1: This setting has been removed due to intractable performance and
security problems.

Default: Django/<version> (http://www.djangoproject.com/)

The string to use as the User-Agent header when checking to see if
URLs exist (see the verify_exists option on
URLField). This setting was deprecated in
1.3.1 along with verify_exists and will be removed in 1.4.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Signals

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Signals

A list of all the signals that Django sends.

See also

See the documentation on the signal dispatcher for
information regarding how to register for and receive signals.

The comment framework sends a set
of comment-related signals.

The authentication framework sends signals when
a user is logged in / out.

Model signals

The django.db.models.signals module defines a set of signals sent by the
module system.

Warning

Many of these signals are sent by various model methods like
__init__() or
save() that you can overwrite in your own
code.

If you override these methods on your model, you must call the parent class’
methods for this signals to be sent.

Note also that Django stores signal handlers as weak references by default,
so if your handler is a local function, it may be garbage collected. To
prevent this, pass weak=False when you call the signal’s connect().

pre_init

	
django.db.models.signals.pre_init

	

Whenever you instantiate a Django model,, this signal is sent at the beginning
of the model’s __init__() method.

Arguments sent with this signal:

	sender

	The model class that just had an instance created.

	args

	A list of positional arguments passed to
__init__():

	kwargs

	A dictionary of keyword arguments passed to
__init__():.

For example, the tutorial has this line:

p = Poll(question="What's up?", pub_date=datetime.now())

The arguments sent to a pre_init handler would be:

	Argument
	Value

	sender
	Poll (the class itself)

	args
	[] (an empty list because there were no positional
arguments passed to __init__.)

	kwargs
	{'question': "What's up?", 'pub_date': datetime.now()}

post_init

	
django.db.models.signals.post_init

	

Like pre_init, but this one is sent when the __init__(): method finishes.

Arguments sent with this signal:

	sender

	As above: the model class that just had an instance created.

	instance

	The actual instance of the model that's just been created.

pre_save

	
django.db.models.signals.pre_save

	

This is sent at the beginning of a model's save()
method.

Arguments sent with this signal:

	sender

	The model class.

	instance

	The actual instance being saved.

New in Django 1.3: Please, see the release notes

	using

	The database alias being used.

post_save

	
django.db.models.signals.post_save

	

Like pre_save, but sent at the end of the
save() method.

Arguments sent with this signal:

	sender

	The model class.

	instance

	The actual instance being saved.

	created

	A boolean; True if a new record was created.

New in Django 1.3: Please, see the release notes

	using

	The database alias being used.

pre_delete

	
django.db.models.signals.pre_delete

	

Sent at the beginning of a model's delete()
method.

Arguments sent with this signal:

	sender

	The model class.

	instance

	The actual instance being deleted.

New in Django 1.3: Please, see the release notes

	using

	The database alias being used.

post_delete

	
django.db.models.signals.post_delete

	

Like pre_delete, but sent at the end of the
delete() method.

Arguments sent with this signal:

	sender

	The model class.

	instance

	The actual instance being deleted.

Note that the object will no longer be in the database, so be very
careful what you do with this instance.

New in Django 1.3: Please, see the release notes

	using

	The database alias being used.

m2m_changed

	
django.db.models.signals.m2m_changed

	

New in Django 1.2: Please, see the release notes

Sent when a ManyToManyField is changed on a model instance.
Strictly speaking, this is not a model signal since it is sent by the
ManyToManyField, but since it complements the
pre_save/post_save and pre_delete/post_delete
when it comes to tracking changes to models, it is included here.

Arguments sent with this signal:

	sender

	The intermediate model class describing the ManyToManyField.
This class is automatically created when a many-to-many field is
defined; you can access it using the through attribute on the
many-to-many field.

	instance

	The instance whose many-to-many relation is updated. This can be an
instance of the sender, or of the class the ManyToManyField
is related to.

	action

	A string indicating the type of update that is done on the relation.
This can be one of the following:

	"pre_add"

	Sent before one or more objects are added to the relation.

	"post_add"

	Sent after one or more objects are added to the relation.

	"pre_remove"

	Sent before one or more objects are removed from the relation.

	"post_remove"

	Sent after one or more objects are removed from the relation.

	"pre_clear"

	Sent before the relation is cleared.

	"post_clear"

	Sent after the relation is cleared.

	reverse

	Indicates which side of the relation is updated (i.e., if it is the
forward or reverse relation that is being modified).

	model

	The class of the objects that are added to, removed from or cleared
from the relation.

	pk_set

	For the pre_add, post_add, pre_remove and post_remove
actions, this is a list of primary key values that have been added to
or removed from the relation.

For the pre_clear and post_clear actions, this is None.

New in Django 1.3: Please, see the release notes

	using

	The database alias being used.

For example, if a Pizza can have multiple Topping objects, modeled
like this:

class Topping(models.Model):
 # ...

class Pizza(models.Model):
 # ...
 toppings = models.ManyToManyField(Topping)

If we would do something like this:

>>> p = Pizza.object.create(...)
>>> t = Topping.objects.create(...)
>>> p.toppings.add(t)

the arguments sent to a m2m_changed handler would be:

	Argument
	Value

	sender
	Pizza.toppings.through (the intermediate m2m class)

	instance
	p (the Pizza instance being modified)

	action
	"pre_add" (followed by a separate signal with "post_add")

	reverse
	False (Pizza contains the ManyToManyField,
so this call modifies the forward relation)

	model
	Topping (the class of the objects added to the
Pizza)

	pk_set
	[t.id] (since only Topping t was added to the relation)

	using
	"default" (since the default router sends writes here)

And if we would then do something like this:

>>> t.pizza_set.remove(p)

the arguments sent to a m2m_changed handler would be:

	Argument
	Value

	sender
	Pizza.toppings.through (the intermediate m2m class)

	instance
	t (the Topping instance being modified)

	action
	"pre_remove" (followed by a separate signal with "post_remove")

	reverse
	True (Pizza contains the ManyToManyField,
so this call modifies the reverse relation)

	model
	Pizza (the class of the objects removed from the
Topping)

	pk_set
	[p.id] (since only Pizza p was removed from the
relation)

	using
	"default" (since the default router sends writes here)

class_prepared

	
django.db.models.signals.class_prepared

	

Sent whenever a model class has been "prepared" -- that is, once model has
been defined and registered with Django's model system. Django uses this
signal internally; it's not generally used in third-party applications.

Arguments that are sent with this signal:

	sender

	The model class which was just prepared.

Management signals

Signals sent by django-admin.

post_syncdb

	
django.db.models.signals.post_syncdb

	

Sent by syncdb command after it installs an application, and
flush command.

Any handlers that listen to this signal need to be written in a particular
place: a management module in one of your INSTALLED_APPS. If
handlers are registered anywhere else they may not be loaded by
syncdb. It is important that handlers of this signal perform
idempotent changes (e.g. no database alterations) as this may cause the
flush management command to fail if it also ran during the
syncdb command.

Arguments sent with this signal:

	sender

	The models module that was just installed. That is, if
syncdb just installed an app called "foo.bar.myapp",
sender will be the foo.bar.myapp.models module.

	app

	Same as sender.

	created_models

	A list of the model classes from any app which syncdb has
created so far.

	verbosity

	Indicates how much information manage.py is printing on screen. See
the --verbosity flag for details.

Functions which listen for post_syncdb should adjust what they
output to the screen based on the value of this argument.

	interactive

	If interactive is True, it's safe to prompt the user to input
things on the command line. If interactive is False, functions
which listen for this signal should not try to prompt for anything.

For example, the django.contrib.auth app only prompts to create a
superuser when interactive is True.

For example, yourapp/management/__init__.py could be written like:

from django.db.models.signals import post_syncdb
import yourapp.models

def my_callback(sender, **kwargs):
 # Your specific logic here
 pass

post_syncdb.connect(my_callback, sender=yourapp.models)

Request/response signals

Signals sent by the core framework when processing a request.

request_started

	
django.core.signals.request_started

	

Sent when Django begins processing an HTTP request.

Arguments sent with this signal:

	sender

	The handler class -- e.g.
django.core.handlers.wsgi.WsgiHandler -- that handled
the request.

request_finished

	
django.core.signals.request_finished

	

Sent when Django finishes processing an HTTP request.

Arguments sent with this signal:

	sender

	The handler class, as above.

got_request_exception

	
django.core.signals.got_request_exception

	

This signal is sent whenever Django encounters an exception while processing an incoming HTTP request.

Arguments sent with this signal:

	sender

	The handler class, as above.

	request

	The HttpRequest object.

Test signals

Signals only sent when running tests.

template_rendered

	
django.test.signals.template_rendered

	

Sent when the test system renders a template. This signal is not emitted during
normal operation of a Django server -- it is only available during testing.

Arguments sent with this signal:

	sender

	The Template object which was rendered.

	template

	Same as sender

	context

	The Context with which the template was
rendered.

Database Wrappers

Signals sent by the database wrapper when a database connection is
initiated.

connection_created

	
django.db.backends.signals.connection_created

	

Changed in Django 1.2: The connection argument was added

Sent when the database wrapper makes the initial connection to the
database. This is particularly useful if you'd like to send any post
connection commands to the SQL backend.

Arguments sent with this signal:

	sender

	The database wrapper class -- i.e.
django.db.backends.postgresql_psycopg2.DatabaseWrapper or
django.db.backends.mysql.DatabaseWrapper, etc.

	connection

	The database connection that was opened. This can be used in a
multiple-database configuration to differentiate connection signals
from different databases.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Unicode data

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Unicode data

Django natively supports Unicode data everywhere. Providing your database can
somehow store the data, you can safely pass around Unicode strings to
templates, models and the database.

This document tells you what you need to know if you’re writing applications
that use data or templates that are encoded in something other than ASCII.

Creating the database

Make sure your database is configured to be able to store arbitrary string
data. Normally, this means giving it an encoding of UTF-8 or UTF-16. If you use
a more restrictive encoding – for example, latin1 (iso8859-1) – you won’t be
able to store certain characters in the database, and information will be lost.

	MySQL users, refer to the MySQL manual [http://dev.mysql.com/doc/refman/5.1/en/charset-database.html] (section 9.1.3.2 for MySQL 5.1)
for details on how to set or alter the database character set encoding.

	PostgreSQL users, refer to the PostgreSQL manual [http://www.postgresql.org/docs/8.2/static/multibyte.html#AEN24104] (section 21.2.2 in
PostgreSQL 8) for details on creating databases with the correct encoding.

	SQLite users, there is nothing you need to do. SQLite always uses UTF-8
for internal encoding.

All of Django’s database backends automatically convert Unicode strings into
the appropriate encoding for talking to the database. They also automatically
convert strings retrieved from the database into Python Unicode strings. You
don’t even need to tell Django what encoding your database uses: that is
handled transparently.

For more, see the section “The database API” below.

General string handling

Whenever you use strings with Django – e.g., in database lookups, template
rendering or anywhere else – you have two choices for encoding those strings.
You can use Unicode strings, or you can use normal strings (sometimes called
“bytestrings”) that are encoded using UTF-8.

Warning

A bytestring does not carry any information with it about its encoding.
For that reason, we have to make an assumption, and Django assumes that all
bytestrings are in UTF-8.

If you pass a string to Django that has been encoded in some other format,
things will go wrong in interesting ways. Usually, Django will raise a
UnicodeDecodeError at some point.

If your code only uses ASCII data, it’s safe to use your normal strings,
passing them around at will, because ASCII is a subset of UTF-8.

Don’t be fooled into thinking that if your DEFAULT_CHARSET setting is set
to something other than 'utf-8' you can use that other encoding in your
bytestrings! DEFAULT_CHARSET only applies to the strings generated as
the result of template rendering (and e-mail). Django will always assume UTF-8
encoding for internal bytestrings. The reason for this is that the
DEFAULT_CHARSET setting is not actually under your control (if you are the
application developer). It’s under the control of the person installing and
using your application – and if that person chooses a different setting, your
code must still continue to work. Ergo, it cannot rely on that setting.

In most cases when Django is dealing with strings, it will convert them to
Unicode strings before doing anything else. So, as a general rule, if you pass
in a bytestring, be prepared to receive a Unicode string back in the result.

Translated strings

Aside from Unicode strings and bytestrings, there’s a third type of string-like
object you may encounter when using Django. The framework’s
internationalization features introduce the concept of a “lazy translation” –
a string that has been marked as translated but whose actual translation result
isn’t determined until the object is used in a string. This feature is useful
in cases where the translation locale is unknown until the string is used, even
though the string might have originally been created when the code was first
imported.

Normally, you won’t have to worry about lazy translations. Just be aware that
if you examine an object and it claims to be a
django.utils.functional.__proxy__ object, it is a lazy translation.
Calling unicode() with the lazy translation as the argument will generate a
Unicode string in the current locale.

For more details about lazy translation objects, refer to the
internationalization documentation.

Useful utility functions

Because some string operations come up again and again, Django ships with a few
useful functions that should make working with Unicode and bytestring objects
a bit easier.

Conversion functions

The django.utils.encoding module contains a few functions that are handy
for converting back and forth between Unicode and bytestrings.

	smart_unicode(s, encoding='utf-8', strings_only=False, errors='strict')
converts its input to a Unicode string. The encoding parameter
specifies the input encoding. (For example, Django uses this internally
when processing form input data, which might not be UTF-8 encoded.) The
strings_only parameter, if set to True, will result in Python
numbers, booleans and None not being converted to a string (they keep
their original types). The errors parameter takes any of the values
that are accepted by Python’s unicode() function for its error
handling.

If you pass smart_unicode() an object that has a __unicode__
method, it will use that method to do the conversion.

	force_unicode(s, encoding='utf-8', strings_only=False,
errors='strict') is identical to smart_unicode() in almost all
cases. The difference is when the first argument is a lazy
translation instance. While smart_unicode()
preserves lazy translations, force_unicode() forces those objects to a
Unicode string (causing the translation to occur). Normally, you’ll want
to use smart_unicode(). However, force_unicode() is useful in
template tags and filters that absolutely must have a string to work
with, not just something that can be converted to a string.

	smart_str(s, encoding='utf-8', strings_only=False, errors='strict')
is essentially the opposite of smart_unicode(). It forces the first
argument to a bytestring. The strings_only parameter has the same
behavior as for smart_unicode() and force_unicode(). This is
slightly different semantics from Python’s builtin str() function,
but the difference is needed in a few places within Django’s internals.

Normally, you’ll only need to use smart_unicode(). Call it as early as
possible on any input data that might be either Unicode or a bytestring, and
from then on, you can treat the result as always being Unicode.

URI and IRI handling

Web frameworks have to deal with URLs (which are a type of IRI [http://www.ietf.org/rfc/rfc3987.txt]). One
requirement of URLs is that they are encoded using only ASCII characters.
However, in an international environment, you might need to construct a
URL from an IRI [http://www.ietf.org/rfc/rfc3987.txt] – very loosely speaking, a URI that can contain Unicode
characters. Quoting and converting an IRI to URI can be a little tricky, so
Django provides some assistance.

	The function django.utils.encoding.iri_to_uri() implements the
conversion from IRI to URI as required by the specification (RFC
3987 [http://www.ietf.org/rfc/rfc3987.txt]).

	The functions django.utils.http.urlquote() and
django.utils.http.urlquote_plus() are versions of Python’s standard
urllib.quote() and urllib.quote_plus() that work with non-ASCII
characters. (The data is converted to UTF-8 prior to encoding.)

These two groups of functions have slightly different purposes, and it’s
important to keep them straight. Normally, you would use urlquote() on the
individual portions of the IRI or URI path so that any reserved characters
such as ‘&’ or ‘%’ are correctly encoded. Then, you apply iri_to_uri() to
the full IRI and it converts any non-ASCII characters to the correct encoded
values.

Note

Technically, it isn’t correct to say that iri_to_uri() implements the
full algorithm in the IRI specification. It doesn’t (yet) perform the
international domain name encoding portion of the algorithm.

The iri_to_uri() function will not change ASCII characters that are
otherwise permitted in a URL. So, for example, the character ‘%’ is not
further encoded when passed to iri_to_uri(). This means you can pass a
full URL to this function and it will not mess up the query string or anything
like that.

An example might clarify things here:

>>> urlquote(u'Paris & Orléans')
u'Paris%20%26%20Orl%C3%A9ans'
>>> iri_to_uri(u'/favorites/François/%s' % urlquote(u'Paris & Orléans'))
'/favorites/Fran%C3%A7ois/Paris%20%26%20Orl%C3%A9ans'

If you look carefully, you can see that the portion that was generated by
urlquote() in the second example was not double-quoted when passed to
iri_to_uri(). This is a very important and useful feature. It means that
you can construct your IRI without worrying about whether it contains
non-ASCII characters and then, right at the end, call iri_to_uri() on the
result.

The iri_to_uri() function is also idempotent, which means the following is
always true:

iri_to_uri(iri_to_uri(some_string)) = iri_to_uri(some_string)

So you can safely call it multiple times on the same IRI without risking
double-quoting problems.

Models

Because all strings are returned from the database as Unicode strings, model
fields that are character based (CharField, TextField, URLField, etc) will
contain Unicode values when Django retrieves data from the database. This
is always the case, even if the data could fit into an ASCII bytestring.

You can pass in bytestrings when creating a model or populating a field, and
Django will convert it to Unicode when it needs to.

Choosing between __str__() and __unicode__()

One consequence of using Unicode by default is that you have to take some care
when printing data from the model.

In particular, rather than giving your model a __str__() method, we
recommended you implement a __unicode__() method. In the __unicode__()
method, you can quite safely return the values of all your fields without
having to worry about whether they fit into a bytestring or not. (The way
Python works, the result of __str__() is always a bytestring, even if you
accidentally try to return a Unicode object).

You can still create a __str__() method on your models if you want, of
course, but you shouldn't need to do this unless you have a good reason.
Django's Model base class automatically provides a __str__()
implementation that calls __unicode__() and encodes the result into UTF-8.
This means you'll normally only need to implement a __unicode__() method
and let Django handle the coercion to a bytestring when required.

Taking care in get_absolute_url()

URLs can only contain ASCII characters. If you're constructing a URL from
pieces of data that might be non-ASCII, be careful to encode the results in a
way that is suitable for a URL. The django.db.models.permalink() decorator
handles this for you automatically.

If you're constructing a URL manually (i.e., not using the permalink()
decorator), you'll need to take care of the encoding yourself. In this case,
use the iri_to_uri() and urlquote() functions that were documented
above. For example:

from django.utils.encoding import iri_to_uri
from django.utils.http import urlquote

def get_absolute_url(self):
 url = u'/person/%s/?x=0&y=0' % urlquote(self.location)
 return iri_to_uri(url)

This function returns a correctly encoded URL even if self.location is
something like "Jack visited Paris & Orléans". (In fact, the iri_to_uri()
call isn't strictly necessary in the above example, because all the
non-ASCII characters would have been removed in quoting in the first line.)

The database API

You can pass either Unicode strings or UTF-8 bytestrings as arguments to
filter() methods and the like in the database API. The following two
querysets are identical:

qs = People.objects.filter(name__contains=u'Å')
qs = People.objects.filter(name__contains='\xc3\x85') # UTF-8 encoding of Å

Templates

You can use either Unicode or bytestrings when creating templates manually:

from django.template import Template
t1 = Template('This is a bytestring template.')
t2 = Template(u'This is a Unicode template.')

But the common case is to read templates from the filesystem, and this creates
a slight complication: not all filesystems store their data encoded as UTF-8.
If your template files are not stored with a UTF-8 encoding, set the FILE_CHARSET
setting to the encoding of the files on disk. When Django reads in a template
file, it will convert the data from this encoding to Unicode. (FILE_CHARSET
is set to 'utf-8' by default.)

The DEFAULT_CHARSET setting controls the encoding of rendered templates.
This is set to UTF-8 by default.

Template tags and filters

A couple of tips to remember when writing your own template tags and filters:

	Always return Unicode strings from a template tag's render() method
and from template filters.

	Use force_unicode() in preference to smart_unicode() in these
places. Tag rendering and filter calls occur as the template is being
rendered, so there is no advantage to postponing the conversion of lazy
translation objects into strings. It's easier to work solely with Unicode
strings at that point.

E-mail

Django's e-mail framework (in django.core.mail) supports Unicode
transparently. You can use Unicode data in the message bodies and any headers.
However, you're still obligated to respect the requirements of the e-mail
specifications, so, for example, e-mail addresses should use only ASCII
characters.

The following code example demonstrates that everything except e-mail addresses
can be non-ASCII:

from django.core.mail import EmailMessage

subject = u'My visit to Sør-Trøndelag'
sender = u'Arnbjörg Ráðormsdóttir <arnbjorg@example.com>'
recipients = ['Fred <fred@example.com']
body = u'...'
EmailMessage(subject, body, sender, recipients).send()

Form submission

HTML form submission is a tricky area. There's no guarantee that the
submission will include encoding information, which means the framework might
have to guess at the encoding of submitted data.

Django adopts a "lazy" approach to decoding form data. The data in an
HttpRequest object is only decoded when you access it. In fact, most of
the data is not decoded at all. Only the HttpRequest.GET and
HttpRequest.POST data structures have any decoding applied to them. Those
two fields will return their members as Unicode data. All other attributes and
methods of HttpRequest return data exactly as it was submitted by the
client.

By default, the DEFAULT_CHARSET setting is used as the assumed encoding
for form data. If you need to change this for a particular form, you can set
the encoding attribute on an HttpRequest instance. For example:

def some_view(request):
 # We know that the data must be encoded as KOI8-R (for some reason).
 request.encoding = 'koi8-r'
 ...

You can even change the encoding after having accessed request.GET or
request.POST, and all subsequent accesses will use the new encoding.

Most developers won't need to worry about changing form encoding, but this is
a useful feature for applications that talk to legacy systems whose encoding
you cannot control.

Django does not decode the data of file uploads, because that data is normally
treated as collections of bytes, rather than strings. Any automatic decoding
there would alter the meaning of the stream of bytes.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Django Utils

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Django Utils

This document covers all stable modules in django.utils. Most of the
modules in django.utils are designed for internal use and only the
following parts can be considered stable and thus backwards compatible as per
the internal release deprecation policy.

django.utils.cache

This module contains helper functions for controlling caching. It does so by
managing the Vary header of responses. It includes functions to patch the
header of response objects directly and decorators that change functions to do
that header-patching themselves.

For information on the Vary header, see RFC 2616 section 14.44 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44].

Essentially, the Vary HTTP header defines which headers a cache should take
into account when building its cache key. Requests with the same path but
different header content for headers named in Vary need to get different
cache keys to prevent delivery of wrong content.

For example, internationalization middleware would need
to distinguish caches by the Accept-language header.

	
patch_cache_control(response, **kwargs)

	This function patches the Cache-Control header by adding all keyword
arguments to it. The transformation is as follows:

	All keyword parameter names are turned to lowercase, and underscores
are converted to hyphens.

	If the value of a parameter is True (exactly True, not just a
true value), only the parameter name is added to the header.

	All other parameters are added with their value, after applying
str() to it.

	
get_max_age(response)

	Returns the max-age from the response Cache-Control header as an integer
(or None if it wasn’t found or wasn’t an integer).

	
patch_response_headers(response, cache_timeout=None)

	Adds some useful headers to the given HttpResponse object:

	ETag

	Last-Modified

	Expires

	Cache-Control

Each header is only added if it isn’t already set.

cache_timeout is in seconds. The CACHE_MIDDLEWARE_SECONDS
setting is used by default.

	
add_never_cache_headers(response)

	Adds headers to a response to indicate that a page should never be cached.

	
patch_vary_headers(response, newheaders)

	Adds (or updates) the Vary header in the given HttpResponse object.
newheaders is a list of header names that should be in Vary.
Existing headers in Vary aren’t removed.

	
get_cache_key(request, key_prefix=None)

	Returns a cache key based on the request path. It can be used in the
request phase because it pulls the list of headers to take into account
from the global path registry and uses those to build a cache key to
check against.

If there is no headerlist stored, the page needs to be rebuilt, so this
function returns None.

	
learn_cache_key(request, response, cache_timeout=None, key_prefix=None)

	Learns what headers to take into account for some request path from the
response object. It stores those headers in a global path registry so that
later access to that path will know what headers to take into account
without building the response object itself. The headers are named in
the Vary header of the response, but we want to prevent response
generation.

The list of headers to use for cache key generation is stored in the same
cache as the pages themselves. If the cache ages some data out of the
cache, this just means that we have to build the response once to get at
the Vary header and so at the list of headers to use for the cache key.

SortedDict

	
class SortedDict

	The django.utils.datastructures.SortedDict class is a dictionary
that keeps its keys in the order in which they’re inserted.
SortedDict adds two additional methods to the standard Python dict
class:

	
insert(index, key, value)

	Inserts the key, value pair before the item with the given index.

	
value_for_index(index)

	Returns the value of the item at the given zero-based index.

Creating a new SortedDict

Creating a new SortedDict must be done in a way where ordering is
guaranteed. For example:

SortedDict({'b': 1, 'a': 2, 'c': 3})

will not work. Passing in a basic Python dict could produce unreliable
results. Instead do:

SortedDict([('b', 1), ('a', 2), ('c', 3)])

django.utils.encoding

	
class StrAndUnicode

	A class whose __str__ returns its __unicode__ as a UTF-8
bytestring. Useful as a mix-in.

	
smart_unicode(s, encoding='utf-8', strings_only=False, errors='strict')

	Returns a unicode object representing s. Treats bytestrings using
the 'encoding' codec.

If strings_only is True, don't convert (some) non-string-like
objects.

	
is_protected_type(obj)

	Determine if the object instance is of a protected type.

Objects of protected types are preserved as-is when passed to
force_unicode(strings_only=True).

	
force_unicode(s, encoding='utf-8', strings_only=False, errors='strict')

	Similar to smart_unicode, except that lazy instances are resolved to
strings, rather than kept as lazy objects.

If strings_only is True, don't convert (some) non-string-like
objects.

	
smart_str(s, encoding='utf-8', strings_only=False, errors='strict')

	Returns a bytestring version of s, encoded as specified in
encoding.

If strings_only is True, don't convert (some) non-string-like
objects.

	
iri_to_uri(iri)

	Convert an Internationalized Resource Identifier (IRI) portion to a URI
portion that is suitable for inclusion in a URL.

This is the algorithm from section 3.1 of RFC 3987 [http://www.ietf.org/rfc/rfc3987.txt]. However, since we
are assuming input is either UTF-8 or unicode already, we can simplify
things a little from the full method.

Returns an ASCII string containing the encoded result.

django.utils.feedgenerator

Sample usage:

>>> from django.utils import feedgenerator
>>> feed = feedgenerator.Rss201rev2Feed(
... title=u"Poynter E-Media Tidbits",
... link=u"http://www.poynter.org/column.asp?id=31",
... description=u"A group Weblog by the sharpest minds in online media/journalism/publishing.",
... language=u"en",
...)
>>> feed.add_item(
... title="Hello",
... link=u"http://www.holovaty.com/test/",
... description="Testing."
...)
>>> fp = open('test.rss', 'w')
>>> feed.write(fp, 'utf-8')
>>> fp.close()

For simplifying the selection of a generator use feedgenerator.DefaultFeed
which is currently Rss201rev2Feed

For definitions of the different versions of RSS, see:
http://diveintomark.org/archives/2004/02/04/incompatible-rss

	
get_tag_uri(url, date)

	Creates a TagURI.

See http://diveintomark.org/archives/2004/05/28/howto-atom-id

SyndicationFeed

	
class SyndicationFeed

	Base class for all syndication feeds. Subclasses should provide write().

	
__init__(title, link, description[, language=None, author_email=None, author_name=None, author_link=None, subtitle=None, categories=None, feed_url=None, feed_copyright=None, feed_guid=None, ttl=None, **kwargs])

	Initialize the feed with the given dictionary of metadata, which applies
to the entire feed.

Any extra keyword arguments you pass to __init__ will be stored in
self.feed.

All parameters should be Unicode objects, except categories, which
should be a sequence of Unicode objects.

	
add_item(title, link, description[, author_email=None, author_name=None, author_link=None, pubdate=None, comments=None, unique_id=None, enclosure=None, categories=(), item_copyright=None, ttl=None, **kwargs])

	Adds an item to the feed. All args are expected to be Python unicode
objects except pubdate, which is a datetime.datetime object, and
enclosure, which is an instance of the Enclosure class.

	
num_items()

	

	
root_attributes()

	Return extra attributes to place on the root (i.e. feed/channel)
element. Called from write().

	
add_root_elements(handler)

	Add elements in the root (i.e. feed/channel) element.
Called from write().

	
item_attributes(item)

	Return extra attributes to place on each item (i.e. item/entry)
element.

	
add_item_elements(handler, item)

	Add elements on each item (i.e. item/entry) element.

	
write(outfile, encoding)

	Outputs the feed in the given encoding to outfile, which is a
file-like object. Subclasses should override this.

	
writeString(encoding)

	Returns the feed in the given encoding as a string.

	
latest_post_date()

	Returns the latest item's pubdate. If none of them have a
pubdate, this returns the current date/time.

Enclosure

	
class Enclosure

	Represents an RSS enclosure

RssFeed

	
class RssFeed(SyndicationFeed)

	

Rss201rev2Feed

	
class Rss201rev2Feed(RssFeed)

	Spec: http://blogs.law.harvard.edu/tech/rss

RssUserland091Feed

	
class RssUserland091Feed(RssFeed)

	Spec: http://backend.userland.com/rss091

Atom1Feed

	
class Atom1Feed(SyndicationFeed)

	Spec: http://atompub.org/2005/07/11/draft-ietf-atompub-format-10.html

django.utils.functional

	
allow_lazy(func, *resultclasses)

	Django offers many utility functions (particularly in django.utils) that
take a string as their first argument and do something to that string. These
functions are used by template filters as well as directly in other code.

If you write your own similar functions and deal with translations, you'll
face the problem of what to do when the first argument is a lazy translation
object. You don't want to convert it to a string immediately, because you might
be using this function outside of a view (and hence the current thread's locale
setting will not be correct).

For cases like this, use the django.utils.functional.allow_lazy()
decorator. It modifies the function so that if it's called with a lazy
translation as the first argument, the function evaluation is delayed until it
needs to be converted to a string.

For example:

from django.utils.functional import allow_lazy

def fancy_utility_function(s, ...):
 # Do some conversion on string 's'
 ...
fancy_utility_function = allow_lazy(fancy_utility_function, unicode)

The allow_lazy() decorator takes, in addition to the function to decorate,
a number of extra arguments (*args) specifying the type(s) that the
original function can return. Usually, it's enough to include unicode here
and ensure that your function returns only Unicode strings.

Using this decorator means you can write your function and assume that the
input is a proper string, then add support for lazy translation objects at the
end.

django.utils.http

	
urlquote(url, safe='/')

	A version of Python's urllib.quote() function that can operate on
unicode strings. The url is first UTF-8 encoded before quoting. The
returned string can safely be used as part of an argument to a subsequent
iri_to_uri() call without double-quoting occurring. Employs lazy
execution.

	
urlquote_plus(url, safe='')

	A version of Python's urllib.quote_plus() function that can operate on
unicode strings. The url is first UTF-8 encoded before quoting. The
returned string can safely be used as part of an argument to a subsequent
iri_to_uri() call without double-quoting occurring. Employs lazy
execution.

	
urlencode(query, doseq=0)

	A version of Python's urllib.urlencode() function that can operate on
unicode strings. The parameters are first case to UTF-8 encoded strings
and then encoded as per normal.

	
cookie_date(epoch_seconds=None)

	Formats the time to ensure compatibility with Netscape's cookie standard.

Accepts a floating point number expressed in seconds since the epoch in
UTC--such as that outputted by time.time(). If set to None,
defaults to the current time.

Outputs a string in the format Wdy, DD-Mon-YYYY HH:MM:SS GMT.

	
http_date(epoch_seconds=None)

	Formats the time to match the RFC 1123 date format as specified by HTTP
RFC 2616 [http://www.w3.org/Protocols/rfc2616/rfc2616.txt] section 3.3.1.

Accepts a floating point number expressed in seconds since the epoch in
UTC--such as that outputted by time.time(). If set to None,
defaults to the current time.

Outputs a string in the format Wdy, DD Mon YYYY HH:MM:SS GMT.

	
base36_to_int(s)

	Converts a base 36 string to an integer.

	
int_to_base36(i)

	Converts an integer to a base 36 string.

django.utils.safestring

Functions and classes for working with "safe strings": strings that can be
displayed safely without further escaping in HTML. Marking something as a "safe
string" means that the producer of the string has already turned characters
that should not be interpreted by the HTML engine (e.g. '<') into the
appropriate entities.

	
class SafeString

	A string subclass that has been specifically marked as "safe" (requires no
further escaping) for HTML output purposes.

	
class SafeUnicode

	A unicode subclass that has been specifically marked as "safe" for HTML
output purposes.

	
mark_safe(s)

	Explicitly mark a string as safe for (HTML) output purposes. The returned
object can be used everywhere a string or unicode object is appropriate.

Can be called multiple times on a single string.

	
mark_for_escaping(s)

	Explicitly mark a string as requiring HTML escaping upon output. Has no
effect on SafeData subclasses.

Can be called multiple times on a single string (the resulting escaping is
only applied once).

django.utils.translation

For a complete discussion on the usage of the following see the
Internationalization documentation.

	
gettext(message)

	Translates message and returns it in a UTF-8 bytestring

	
ugettext(message)

	Translates message and returns it in a unicode string

	
pgettext(context, message)

	Translates message given the context and returns
it in a unicode string.

For more information, see Contextual markers.

	
gettext_lazy(message)

	

	
ugettext_lazy(message)

	

	
pgettext_lazy(context, message)

	Same as the non-lazy versions above, but using lazy execution.

See lazy translations documentation.

	
gettext_noop(message)

	

	
ugettext_noop(message)

	Marks strings for translation but doesn't translate them now. This can be
used to store strings in global variables that should stay in the base
language (because they might be used externally) and will be translated
later.

	
ngettext(singular, plural, number)

	Translates singular and plural and returns the appropriate string
based on number in a UTF-8 bytestring.

	
ungettext(singular, plural, number)

	Translates singular and plural and returns the appropriate string
based on number in a unicode string.

	
npgettext(context, singular, plural, number)

	Translates singular and plural and returns the appropriate string
based on number and the context in a unicode string.

	
ngettext_lazy(singular, plural, number)

	

	
ungettext_lazy(singular, plural, number)

	

	
npgettext_lazy(singular, plural, number)

	Same as the non-lazy versions above, but using lazy execution.

See lazy translations documentation.

	
string_concat(*strings)

	Lazy variant of string concatenation, needed for translations that are
constructed from multiple parts.

	
activate(language)

	Fetches the translation object for a given tuple of application name and
language and installs it as the current translation object for the current
thread.

	
deactivate()

	De-installs the currently active translation object so that further _ calls
will resolve against the default translation object, again.

	
deactivate_all()

	Makes the active translation object a NullTranslations() instance. This is
useful when we want delayed translations to appear as the original string
for some reason.

	
get_language()

	Returns the currently selected language code.

	
get_language_bidi()

	Returns selected language's BiDi layout:

	False = left-to-right layout

	True = right-to-left layout

	
get_date_formats()

	Checks whether translation files provide a translation for some technical
message ID to store date and time formats. If it doesn't contain one, the
formats provided in the settings will be used.

	
get_language_from_request(request)

	Analyzes the request to find what language the user wants the system to show.
Only languages listed in settings.LANGUAGES are taken into account. If the user
requests a sublanguage where we have a main language, we send out the main
language.

	
to_locale(language)

	Turns a language name (en-us) into a locale name (en_US).

	
templatize(src)

	Turns a Django template into something that is understood by xgettext. It does
so by translating the Django translation tags into standard gettext function
invocations.

django.utils.tzinfo

	
class FixedOffset

	Fixed offset in minutes east from UTC.

	
class LocalTimezone

	Proxy timezone information from time module.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Validators

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Validators

New in Django 1.2: Please, see the release notes

Writing validators

A validator is a callable that takes a value and raises a
ValidationError if it doesn’t meet some
criteria. Validators can be useful for re-using validation logic between
different types of fields.

For example, here’s a validator that only allows even numbers:

from django.core.exceptions import ValidationError

def validate_even(value):
 if value % 2 != 0:
 raise ValidationError(u'%s is not an even number' % value)

You can add this to a model field via the field's validators
argument:

from django.db import models

class MyModel(models.Model):
 even_field = models.IntegerField(validators=[validate_even])

Because values are converted to Python before validators are run, you can even
use the same validator with forms:

from django import forms

class MyForm(forms.Form):
 even_field = forms.IntegerField(validators=[validate_even])

How validators are run

See the form validation for more information on
how validators are run in forms, and Validating objects for how they're run in models. Note that validators will
not be run automatically when you save a model, but if you are using a
ModelForm, it will run your validators on any fields
that are included in your form. See the
ModelForm documentation for information on
how model validation interacts with forms.

Built-in validators

The django.core.validators module contains a collection of callable
validators for use with model and form fields. They're used internally but
are available for use with your own fields, too. They can be used in addition
to, or in lieu of custom field.clean() methods.

RegexValidator

	
class RegexValidator(regex[, message=None, code=None])

	
	
regex

	The regular expression pattern to search for the provided value,
or a pre-compiled regular expression. Raises a
ValidationError with message
and code if no match is found.

	
message

	The error message used by ValidationError
if validation fails. If no message is specified, a generic
"Enter a valid value" message is used. Default value: None.

	
code

	The error code used by ValidationError
if validation fails. If code is not specified, "invalid"
is used. Default value: None.

URLValidator

	
class URLValidator([verify_exists=False, validator_user_agent=URL_VALIDATOR_USER_AGENT])

	A RegexValidator that ensures a value looks like a URL and
optionally verifies that the URL actually exists (i.e., doesn't return a
404 status code). Raises an error code of 'invalid' if it doesn't look
like a URL, and a code of 'invalid_link' if it doesn't exist.

	
verify_exists

	Default value: False. If set to True, this validator checks
that the URL actually exists.

	
validator_user_agent

	If verify_exists is True, Django uses the value of
validator_user_agent as the "User-agent" for the request. This
defaults to settings.URL_VALIDATOR_USER_AGENT.

validate_email

	
validate_email

	A RegexValidator instance that ensures a value looks like an
e-mail address.

validate_slug

	
validate_slug

	A RegexValidator instance that ensures a value consists of only
letters, numbers, underscores or hyphens.

validate_ipv4_address

	
validate_ipv4_address

	A RegexValidator instance that ensures a value looks like an IPv4
address.

validate_comma_separated_integer_list

	
validate_comma_separated_integer_list

	A RegexValidator instance that ensures a value is a
comma-separated list of integers.

MaxValueValidator

	
class MaxValueValidator(max_value)

	Raises a ValidationError with a code of
'max_value' if value is greater than max_value.

MinValueValidator

	
class MinValueValidator(min_value)

	Raises a ValidationError with a code of
'min_value' if value is less than min_value.

MaxLengthValidator

	
class MaxLengthValidator(max_length)

	Raises a ValidationError with a code of
'max_length' if the length of value is greater than max_length.

MinLengthValidator

	
class MinLengthValidator(min_length)

	Raises a ValidationError with a code of
'min_length' if the length of value is less than min_length.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Generic views

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	API Reference

Generic views

Changed in Django 1.3: Please, see the release notes

Note

From Django 1.3, function-based generic views have been deprecated in favor
of a class-based approach, described in the class-based views topic
guide and detailed reference.

Writing Web applications can be monotonous, because we repeat certain patterns
again and again. In Django, the most common of these patterns have been
abstracted into “generic views” that let you quickly provide common views of
an object without actually needing to write any Python code.

A general introduction to generic views can be found in the topic guide.

This reference contains details of Django’s built-in generic views, along with
a list of all keyword arguments that a generic view expects. Remember that
arguments may either come from the URL pattern or from the extra_context
additional-information dictionary.

Most generic views require the queryset key, which is a QuerySet
instance; see Making queries for more information about QuerySet
objects.

“Simple” generic views

The django.views.generic.simple module contains simple views to handle a
couple of common cases: rendering a template when no view logic is needed,
and issuing a redirect.

django.views.generic.simple.direct_to_template

Description:

Renders a given template, passing it a {{ params }} template variable,
which is a dictionary of the parameters captured in the URL.

Required arguments:

	template: The full name of a template to use.

Optional arguments:

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	mimetype: The MIME type to use for the resulting document. Defaults
to the value of the DEFAULT_CONTENT_TYPE setting.

Example:

Given the following URL patterns:

from django.views.generic.simple import direct_to_template

urlpatterns = patterns('',
 (r'^foo/$', direct_to_template, {'template': 'foo_index.html'}),
 (r'^foo/(?P<id>\d+)/$', direct_to_template, {'template': 'foo_detail.html'}),
)

... a request to /foo/ would render the template foo_index.html, and a
request to /foo/15/ would render the foo_detail.html with a context
variable {{ params.id }} that is set to 15.

django.views.generic.simple.redirect_to

Description:

Redirects to a given URL.

The given URL may contain dictionary-style string formatting, which will be
interpolated against the parameters captured in the URL. Because keyword
interpolation is always done (even if no arguments are passed in), any "%"
characters in the URL must be written as "%%" so that Python will convert
them to a single percent sign on output.

If the given URL is None, Django will return an HttpResponseGone (410).

Required arguments:

	url: The URL to redirect to, as a string. Or None to raise a 410
(Gone) HTTP error.

Optional arguments:

	permanent: Whether the redirect should be permanent. The only
difference here is the HTTP status code returned. If True, then the
redirect will use status code 301. If False, then the redirect will
use status code 302. By default, permanent is True.

	query_string: Whether to pass along the GET query string to
the new location. If True, then the query string is appended
to the URL. If False, then the query string is discarded. By
default, query_string is False.

New in Django 1.3: The query_string keyword argument is new in Django 1.3.

Example:

This example issues a permanent redirect (HTTP status code 301) from
/foo/<id>/ to /bar/<id>/:

from django.views.generic.simple import redirect_to

urlpatterns = patterns('',
 ('^foo/(?P<id>\d+)/$', redirect_to, {'url': '/bar/%(id)s/'}),
)

This example issues a non-permanent redirect (HTTP status code 302) from
/foo/<id>/ to /bar/<id>/:

from django.views.generic.simple import redirect_to

urlpatterns = patterns('',
 ('^foo/(?P<id>\d+)/$', redirect_to, {'url': '/bar/%(id)s/', 'permanent': False}),
)

This example returns a 410 HTTP error for requests to /bar/:

from django.views.generic.simple import redirect_to

urlpatterns = patterns('',
 ('^bar/$', redirect_to, {'url': None}),
)

This example shows how "%" characters must be written in the URL in order
to avoid confusion with Python's string formatting markers. If the redirect
string is written as "%7Ejacob/" (with only a single %), an exception would be raised:

from django.views.generic.simple import redirect_to

urlpatterns = patterns('',
 ('^bar/$', redirect_to, {'url': '%%7Ejacob.'}),
)

Date-based generic views

Date-based generic views (in the module django.views.generic.date_based)
are views for displaying drilldown pages for date-based data.

django.views.generic.date_based.archive_index

Description:

A top-level index page showing the "latest" objects, by date. Objects with
a date in the future are not included unless you set allow_future to
True.

Required arguments:

	queryset: A QuerySet of objects for which the archive serves.

	date_field: The name of the DateField or DateTimeField in
the QuerySet's model that the date-based archive should use to
determine the objects on the page.

Optional arguments:

	num_latest: The number of latest objects to send to the template
context. By default, it's 15.

	template_name: The full name of a template to use in rendering the
page. This lets you override the default template name (see below).

	template_loader: The template loader to use when loading the
template. By default, it's django.template.loader.

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	allow_empty: A boolean specifying whether to display the page if no
objects are available. If this is False and no objects are available,
the view will raise a 404 instead of displaying an empty page. By
default, this is True.

	context_processors: A list of template-context processors to apply to
the view's template.

	mimetype: The MIME type to use for the resulting document. Defaults
to the value of the DEFAULT_CONTENT_TYPE setting.

	allow_future: A boolean specifying whether to include "future"
objects on this page, where "future" means objects in which the field
specified in date_field is greater than the current date/time. By
default, this is False.

	template_object_name: Designates the name of the template variable
to use in the template context. By default, this is 'latest'.

Template name:

If template_name isn't specified, this view will use the template
<app_label>/<model_name>_archive.html by default, where:

	<model_name> is your model's name in all lowercase. For a model
StaffMember, that'd be staffmember.

	<app_label> is the right-most part of the full Python path to
your model's app. For example, if your model lives in
apps/blog/models.py, that'd be blog.

Template context:

In addition to extra_context, the template's context will be:

	date_list: A DateQuerySet object containing all years that have
have objects available according to queryset, represented as
datetime.datetime objects. These are ordered in reverse. This is
equivalent to queryset.dates(date_field, 'year')[::-1].

	latest: The num_latest objects in the system, ordered descending
by date_field. For example, if num_latest is 10, then
latest will be a list of the latest 10 objects in queryset.

This variable's name depends on the template_object_name parameter,
which is 'latest' by default. If template_object_name is
'foo', this variable's name will be foo.

django.views.generic.date_based.archive_year

Description:

A yearly archive page showing all available months in a given year. Objects
with a date in the future are not displayed unless you set allow_future
to True.

Required arguments:

	year: The four-digit year for which the archive serves.

	queryset: A QuerySet of objects for which the archive serves.

	date_field: The name of the DateField or DateTimeField in
the QuerySet's model that the date-based archive should use to
determine the objects on the page.

Optional arguments:

	template_name: The full name of a template to use in rendering the
page. This lets you override the default template name (see below).

	template_loader: The template loader to use when loading the
template. By default, it's django.template.loader.

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	allow_empty: A boolean specifying whether to display the page if no
objects are available. If this is False and no objects are available,
the view will raise a 404 instead of displaying an empty page. By
default, this is False.

	context_processors: A list of template-context processors to apply to
the view's template.

	template_object_name: Designates the name of the template variable
to use in the template context. By default, this is 'object'. The
view will append '_list' to the value of this parameter in
determining the variable's name.

	make_object_list: A boolean specifying whether to retrieve the full
list of objects for this year and pass those to the template. If True,
this list of objects will be made available to the template as
object_list. (The name object_list may be different; see the docs
for object_list in the "Template context" section below.) By default,
this is False.

	mimetype: The MIME type to use for the resulting document. Defaults
to the value of the DEFAULT_CONTENT_TYPE setting.

	allow_future: A boolean specifying whether to include "future"
objects on this page, where "future" means objects in which the field
specified in date_field is greater than the current date/time. By
default, this is False.

Template name:

If template_name isn't specified, this view will use the template
<app_label>/<model_name>_archive_year.html by default.

Template context:

In addition to extra_context, the template's context will be:

	date_list: A DateQuerySet object containing all months that have
have objects available according to queryset, represented as
datetime.datetime objects, in ascending order.

	year: The given year, as a four-character string.

	object_list: If the make_object_list parameter is True, this
will be set to a list of objects available for the given year, ordered by
the date field. This variable's name depends on the
template_object_name parameter, which is 'object' by default. If
template_object_name is 'foo', this variable's name will be
foo_list.

If make_object_list is False, object_list will be passed to
the template as an empty list.

django.views.generic.date_based.archive_month

Description:

A monthly archive page showing all objects in a given month. Objects with a
date in the future are not displayed unless you set allow_future to
True.

Required arguments:

	year: The four-digit year for which the archive serves (a string).

	month: The month for which the archive serves, formatted according to
the month_format argument.

	queryset: A QuerySet of objects for which the archive serves.

	date_field: The name of the DateField or DateTimeField in
the QuerySet's model that the date-based archive should use to
determine the objects on the page.

Optional arguments:

	month_format: A format string that regulates what format the
month parameter uses. This should be in the syntax accepted by
Python's time.strftime. (See the strftime docs [http://docs.python.org/library/time.html#time.strftime].) It's set to
"%b" by default, which is a three-letter month abbreviation. To
change it to use numbers, use "%m".

	template_name: The full name of a template to use in rendering the
page. This lets you override the default template name (see below).

	template_loader: The template loader to use when loading the
template. By default, it's django.template.loader.

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	allow_empty: A boolean specifying whether to display the page if no
objects are available. If this is False and no objects are available,
the view will raise a 404 instead of displaying an empty page. By
default, this is False.

	context_processors: A list of template-context processors to apply to
the view's template.

	template_object_name: Designates the name of the template variable
to use in the template context. By default, this is 'object'. The
view will append '_list' to the value of this parameter in
determining the variable's name.

	mimetype: The MIME type to use for the resulting document. Defaults
to the value of the DEFAULT_CONTENT_TYPE setting.

	allow_future: A boolean specifying whether to include "future"
objects on this page, where "future" means objects in which the field
specified in date_field is greater than the current date/time. By
default, this is False.

Template name:

If template_name isn't specified, this view will use the template
<app_label>/<model_name>_archive_month.html by default.

Template context:

New in Django 1.2: The inclusion of date_list in the template's context is new.

In addition to extra_context, the template's context will be:

	date_list: A DateQuerySet object containing all days that have
have objects available in the given month, according to queryset,
represented as datetime.datetime objects, in ascending order.

	month: A datetime.date object representing the given month.

	next_month: A datetime.date object representing the first day of
the next month. If the next month is in the future, this will be
None.

	previous_month: A datetime.date object representing the first day
of the previous month. Unlike next_month, this will never be
None.

	object_list: A list of objects available for the given month. This
variable's name depends on the template_object_name parameter, which
is 'object' by default. If template_object_name is 'foo',
this variable's name will be foo_list.

django.views.generic.date_based.archive_week

Description:

A weekly archive page showing all objects in a given week. Objects with a date
in the future are not displayed unless you set allow_future to True.

Required arguments:

	year: The four-digit year for which the archive serves (a string).

	week: The week of the year for which the archive serves (a string).
Weeks start with Sunday.

	queryset: A QuerySet of objects for which the archive serves.

	date_field: The name of the DateField or DateTimeField in
the QuerySet's model that the date-based archive should use to
determine the objects on the page.

Optional arguments:

	template_name: The full name of a template to use in rendering the
page. This lets you override the default template name (see below).

	template_loader: The template loader to use when loading the
template. By default, it's django.template.loader.

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	allow_empty: A boolean specifying whether to display the page if no
objects are available. If this is False and no objects are available,
the view will raise a 404 instead of displaying an empty page. By
default, this is True.

	context_processors: A list of template-context processors to apply to
the view's template.

	template_object_name: Designates the name of the template variable
to use in the template context. By default, this is 'object'. The
view will append '_list' to the value of this parameter in
determining the variable's name.

	mimetype: The MIME type to use for the resulting document. Defaults
to the value of the DEFAULT_CONTENT_TYPE setting.

	allow_future: A boolean specifying whether to include "future"
objects on this page, where "future" means objects in which the field
specified in date_field is greater than the current date/time. By
default, this is False.

Template name:

If template_name isn't specified, this view will use the template
<app_label>/<model_name>_archive_week.html by default.

Template context:

In addition to extra_context, the template's context will be:

	week: A datetime.date object representing the first day of the
given week.

	object_list: A list of objects available for the given week. This
variable's name depends on the template_object_name parameter, which
is 'object' by default. If template_object_name is 'foo',
this variable's name will be foo_list.

django.views.generic.date_based.archive_day

Description:

A day archive page showing all objects in a given day. Days in the future throw
a 404 error, regardless of whether any objects exist for future days, unless
you set allow_future to True.

Required arguments:

	year: The four-digit year for which the archive serves (a string).

	month: The month for which the archive serves, formatted according to
the month_format argument.

	day: The day for which the archive serves, formatted according to the
day_format argument.

	queryset: A QuerySet of objects for which the archive serves.

	date_field: The name of the DateField or DateTimeField in
the QuerySet's model that the date-based archive should use to
determine the objects on the page.

Optional arguments:

	month_format: A format string that regulates what format the
month parameter uses. This should be in the syntax accepted by
Python's time.strftime. (See the strftime docs [http://docs.python.org/library/time.html#time.strftime].) It's set to
"%b" by default, which is a three-letter month abbreviation. To
change it to use numbers, use "%m".

	day_format: Like month_format, but for the day parameter.
It defaults to "%d" (day of the month as a decimal number, 01-31).

	template_name: The full name of a template to use in rendering the
page. This lets you override the default template name (see below).

	template_loader: The template loader to use when loading the
template. By default, it's django.template.loader.

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	allow_empty: A boolean specifying whether to display the page if no
objects are available. If this is False and no objects are available,
the view will raise a 404 instead of displaying an empty page. By
default, this is False.

	context_processors: A list of template-context processors to apply to
the view's template.

	template_object_name: Designates the name of the template variable
to use in the template context. By default, this is 'object'. The
view will append '_list' to the value of this parameter in
determining the variable's name.

	mimetype: The MIME type to use for the resulting document. Defaults
to the value of the DEFAULT_CONTENT_TYPE setting.

	allow_future: A boolean specifying whether to include "future"
objects on this page, where "future" means objects in which the field
specified in date_field is greater than the current date/time. By
default, this is False.

Template name:

If template_name isn't specified, this view will use the template
<app_label>/<model_name>_archive_day.html by default.

Template context:

In addition to extra_context, the template's context will be:

	day: A datetime.date object representing the given day.

	next_day: A datetime.date object representing the next day. If
the next day is in the future, this will be None.

	previous_day: A datetime.date object representing the previous day.
Unlike next_day, this will never be None.

	object_list: A list of objects available for the given day. This
variable's name depends on the template_object_name parameter, which
is 'object' by default. If template_object_name is 'foo',
this variable's name will be foo_list.

django.views.generic.date_based.archive_today

Description:

A day archive page showing all objects for today. This is exactly the same as
archive_day, except the year/month/day arguments are not used,
and today's date is used instead.

django.views.generic.date_based.object_detail

Description:

A page representing an individual object. If the object has a date value in the
future, the view will throw a 404 error by default, unless you set
allow_future to True.

Required arguments:

	year: The object's four-digit year (a string).

	month: The object's month , formatted according to the
month_format argument.

	day: The object's day , formatted according to the day_format
argument.

	queryset: A QuerySet that contains the object.

	date_field: The name of the DateField or DateTimeField in
the QuerySet's model that the generic view should use to look up the
object according to year, month and day.

	Either object_id or (slug and slug_field) is required.

If you provide object_id, it should be the value of the primary-key
field for the object being displayed on this page.

Otherwise, slug should be the slug of the given object, and
slug_field should be the name of the slug field in the QuerySet's
model. By default, slug_field is 'slug'.

Optional arguments:

	month_format: A format string that regulates what format the
month parameter uses. This should be in the syntax accepted by
Python's time.strftime. (See the strftime docs [http://docs.python.org/library/time.html#time.strftime].) It's set to
"%b" by default, which is a three-letter month abbreviation. To
change it to use numbers, use "%m".

	day_format: Like month_format, but for the day parameter.
It defaults to "%d" (day of the month as a decimal number, 01-31).

	template_name: The full name of a template to use in rendering the
page. This lets you override the default template name (see below).

	template_name_field: The name of a field on the object whose value is
the template name to use. This lets you store template names in the data.
In other words, if your object has a field 'the_template' that
contains a string 'foo.html', and you set template_name_field to
'the_template', then the generic view for this object will use the
template 'foo.html'.

It's a bit of a brain-bender, but it's useful in some cases.

	template_loader: The template loader to use when loading the
template. By default, it's django.template.loader.

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	context_processors: A list of template-context processors to apply to
the view's template.

	template_object_name: Designates the name of the template variable
to use in the template context. By default, this is 'object'.

	mimetype: The MIME type to use for the resulting document. Defaults
to the value of the DEFAULT_CONTENT_TYPE setting.

	allow_future: A boolean specifying whether to include "future"
objects on this page, where "future" means objects in which the field
specified in date_field is greater than the current date/time. By
default, this is False.

Template name:

If template_name isn't specified, this view will use the template
<app_label>/<model_name>_detail.html by default.

Template context:

In addition to extra_context, the template's context will be:

	object: The object. This variable's name depends on the
template_object_name parameter, which is 'object' by default. If
template_object_name is 'foo', this variable's name will be
foo.

List/detail generic views

The list-detail generic-view framework (in the
django.views.generic.list_detail module) is similar to the date-based one,
except the former simply has two views: a list of objects and an individual
object page.

django.views.generic.list_detail.object_list

Description:

A page representing a list of objects.

Required arguments:

	queryset: A QuerySet that represents the objects.

Optional arguments:

	paginate_by: An integer specifying how many objects should be
displayed per page. If this is given, the view will paginate objects with
paginate_by objects per page. The view will expect either a page
query string parameter (via GET) or a page variable specified in
the URLconf. See Notes on pagination below.

	page: The current page number, as an integer, or the string
'last'. This is 1-based. See Notes on pagination below.

	template_name: The full name of a template to use in rendering the
page. This lets you override the default template name (see below).

	template_loader: The template loader to use when loading the
template. By default, it's django.template.loader.

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	allow_empty: A boolean specifying whether to display the page if no
objects are available. If this is False and no objects are available,
the view will raise a 404 instead of displaying an empty page. By
default, this is True.

	context_processors: A list of template-context processors to apply to
the view's template.

	template_object_name: Designates the name of the template variable
to use in the template context. By default, this is 'object'. The
view will append '_list' to the value of this parameter in
determining the variable's name.

	mimetype: The MIME type to use for the resulting document. Defaults
to the value of the DEFAULT_CONTENT_TYPE setting.

Template name:

If template_name isn't specified, this view will use the template
<app_label>/<model_name>_list.html by default.

Template context:

In addition to extra_context, the template's context will be:

	object_list: The list of objects. This variable's name depends on the
template_object_name parameter, which is 'object' by default. If
template_object_name is 'foo', this variable's name will be
foo_list.

	is_paginated: A boolean representing whether the results are
paginated. Specifically, this is set to False if the number of
available objects is less than or equal to paginate_by.

If the results are paginated, the context will contain these extra variables:

	paginator: An instance of django.core.paginator.Paginator.

	page_obj: An instance of django.core.paginator.Page.

Notes on pagination

If paginate_by is specified, Django will paginate the results. You can
specify the page number in the URL in one of two ways:

	Use the page parameter in the URLconf. For example, this is what
your URLconf might look like:

(r'^objects/page(?P<page>[0-9]+)/$', 'object_list', dict(info_dict))

	Pass the page number via the page query-string parameter. For
example, a URL would look like this:

/objects/?page=3

	To loop over all the available page numbers, use the page_range
variable. You can iterate over the list provided by page_range
to create a link to every page of results.

These values and lists are 1-based, not 0-based, so the first page would be
represented as page 1.

For more on pagination, read the pagination documentation.

As a special case, you are also permitted to use last as a value for
page:

/objects/?page=last

This allows you to access the final page of results without first having to
determine how many pages there are.

Note that page must be either a valid page number or the value last;
any other value for page will result in a 404 error.

django.views.generic.list_detail.object_detail

A page representing an individual object.

Description:

A page representing an individual object.

Required arguments:

	queryset: A QuerySet that contains the object.

	Either object_id or (slug and slug_field) is required.

If you provide object_id, it should be the value of the primary-key
field for the object being displayed on this page.

Otherwise, slug should be the slug of the given object, and
slug_field should be the name of the slug field in the QuerySet's
model. By default, slug_field is 'slug'.

Optional arguments:

	template_name: The full name of a template to use in rendering the
page. This lets you override the default template name (see below).

	template_name_field: The name of a field on the object whose value is
the template name to use. This lets you store template names in the data.
In other words, if your object has a field 'the_template' that
contains a string 'foo.html', and you set template_name_field to
'the_template', then the generic view for this object will use the
template 'foo.html'.

It's a bit of a brain-bender, but it's useful in some cases.

	template_loader: The template loader to use when loading the
template. By default, it's django.template.loader.

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	context_processors: A list of template-context processors to apply to
the view's template.

	template_object_name: Designates the name of the template variable
to use in the template context. By default, this is 'object'.

	mimetype: The MIME type to use for the resulting document. Defaults
to the value of the DEFAULT_CONTENT_TYPE setting.

Template name:

If template_name isn't specified, this view will use the template
<app_label>/<model_name>_detail.html by default.

Template context:

In addition to extra_context, the template's context will be:

	object: The object. This variable's name depends on the
template_object_name parameter, which is 'object' by default. If
template_object_name is 'foo', this variable's name will be
foo.

Create/update/delete generic views

The django.views.generic.create_update module contains a set of functions
for creating, editing and deleting objects.

django.views.generic.create_update.create_object

Description:

A page that displays a form for creating an object, redisplaying the form with
validation errors (if there are any) and saving the object.

Required arguments:

	Either form_class or model is required.

If you provide form_class, it should be a django.forms.ModelForm
subclass. Use this argument when you need to customize the model's form.
See the ModelForm docs for more
information.

Otherwise, model should be a Django model class and the form used
will be a standard ModelForm for model.

Optional arguments:

	post_save_redirect: A URL to which the view will redirect after
saving the object. By default, it's object.get_absolute_url().

post_save_redirect may contain dictionary string formatting, which
will be interpolated against the object's field attributes. For example,
you could use post_save_redirect="/polls/%(slug)s/".

	login_required: A boolean that designates whether a user must be
logged in, in order to see the page and save changes. This hooks into the
Django authentication system. By default, this is
False.

If this is True, and a non-logged-in user attempts to visit this page
or save the form, Django will redirect the request to /accounts/login/.

	template_name: The full name of a template to use in rendering the
page. This lets you override the default template name (see below).

	template_loader: The template loader to use when loading the
template. By default, it's django.template.loader.

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	context_processors: A list of template-context processors to apply to
the view's template.

Template name:

If template_name isn't specified, this view will use the template
<app_label>/<model_name>_form.html by default.

Template context:

In addition to extra_context, the template's context will be:

	form: A django.forms.ModelForm instance representing the form
for creating the object. This lets you refer to form fields easily in the
template system.

For example, if the model has two fields, name and address:

<form action="" method="post">
<p>{{ form.name.label_tag }} {{ form.name }}</p>
<p>{{ form.address.label_tag }} {{ form.address }}</p>
</form>

See the forms documentation for more
information about using Form objects in templates.

django.views.generic.create_update.update_object

Description:

A page that displays a form for editing an existing object, redisplaying the
form with validation errors (if there are any) and saving changes to the
object. This uses a form automatically generated from the object's
model class.

Required arguments:

	Either form_class or model is required.

If you provide form_class, it should be a django.forms.ModelForm
subclass. Use this argument when you need to customize the model's form.
See the ModelForm docs for more
information.

Otherwise, model should be a Django model class and the form used
will be a standard ModelForm for model.

	Either object_id or (slug and slug_field) is required.

If you provide object_id, it should be the value of the primary-key
field for the object being displayed on this page.

Otherwise, slug should be the slug of the given object, and
slug_field should be the name of the slug field in the QuerySet's
model. By default, slug_field is 'slug'.

Optional arguments:

	post_save_redirect: A URL to which the view will redirect after
saving the object. By default, it's object.get_absolute_url().

post_save_redirect may contain dictionary string formatting, which
will be interpolated against the object's field attributes. For example,
you could use post_save_redirect="/polls/%(slug)s/".

	login_required: A boolean that designates whether a user must be
logged in, in order to see the page and save changes. This hooks into the
Django authentication system. By default, this is
False.

If this is True, and a non-logged-in user attempts to visit this page
or save the form, Django will redirect to LOGIN_URL (which
defaults to /accounts/login/).

	template_name: The full name of a template to use in rendering the
page. This lets you override the default template name (see below).

	template_loader: The template loader to use when loading the
template. By default, it's django.template.loader.

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	context_processors: A list of template-context processors to apply to
the view's template.

	template_object_name: Designates the name of the template variable
to use in the template context. By default, this is 'object'.

Template name:

If template_name isn't specified, this view will use the template
<app_label>/<model_name>_form.html by default.

Template context:

In addition to extra_context, the template's context will be:

	form: A django.forms.ModelForm instance representing the form
for editing the object. This lets you refer to form fields easily in the
template system.

For example, if the model has two fields, name and address:

<form action="" method="post">
<p>{{ form.name.label_tag }} {{ form.name }}</p>
<p>{{ form.address.label_tag }} {{ form.address }}</p>
</form>

See the forms documentation for more
information about using Form objects in templates.

	object: The original object being edited. This variable's name
depends on the template_object_name parameter, which is 'object'
by default. If template_object_name is 'foo', this variable's
name will be foo.

django.views.generic.create_update.delete_object

Description:

A view that displays a confirmation page and deletes an existing object. The
given object will only be deleted if the request method is POST. If this
view is fetched via GET, it will display a confirmation page that should
contain a form that POSTs to the same URL.

Required arguments:

	model: The Django model class of the object that the form will
delete.

	Either object_id or (slug and slug_field) is required.

If you provide object_id, it should be the value of the primary-key
field for the object being displayed on this page.

Otherwise, slug should be the slug of the given object, and
slug_field should be the name of the slug field in the QuerySet's
model. By default, slug_field is 'slug'.

	post_delete_redirect: A URL to which the view will redirect after
deleting the object.

Optional arguments:

	login_required: A boolean that designates whether a user must be
logged in, in order to see the page and save changes. This hooks into the
Django authentication system. By default, this is
False.

If this is True, and a non-logged-in user attempts to visit this page
or save the form, Django will redirect to LOGIN_URL (which
defaults to /accounts/login/).

	template_name: The full name of a template to use in rendering the
page. This lets you override the default template name (see below).

	template_loader: The template loader to use when loading the
template. By default, it's django.template.loader.

	extra_context: A dictionary of values to add to the template
context. By default, this is an empty dictionary. If a value in the
dictionary is callable, the generic view will call it
just before rendering the template.

	context_processors: A list of template-context processors to apply to
the view's template.

	template_object_name: Designates the name of the template variable
to use in the template context. By default, this is 'object'.

Template name:

If template_name isn't specified, this view will use the template
<app_label>/<model_name>_confirm_delete.html by default.

Template context:

In addition to extra_context, the template's context will be:

	object: The original object that's about to be deleted. This
variable's name depends on the template_object_name parameter, which
is 'object' by default. If template_object_name is 'foo',
this variable's name will be foo.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Glossary

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

Glossary

	field

	An attribute on a model; a given field usually maps directly to
a single database column.

See Models.

	generic view

	A higher-order view function that provides an abstract/generic
implementation of a common idiom or pattern found in view development.

See Generic views.

	model

	Models store your application’s data.

See Models.

	MTV

	“Model-template-view”; a software pattern, similar in style to MVC, but
a better description of the way Django does things.

See the FAQ entry.

	MVC

	Model-view-controller [http://en.wikipedia.org/wiki/Model-view-controller]; a software pattern. Django follows MVC
to some extent.

	project

	A Python package – i.e. a directory of code – that contains all the
settings for an instance of Django. This would include database
configuration, Django-specific options and application-specific
settings.

	property

	Also known as “managed attributes”, and a feature of Python since
version 2.2. From the property documentation [http://www.python.org/download/releases/2.2/descrintro/#property]:

Properties are a neat way to implement attributes whose usage
resembles attribute access, but whose implementation uses method
calls. [...] You
could only do this by overriding __getattr__ and
__setattr__; but overriding __setattr__ slows down all
attribute assignments considerably, and overriding __getattr__
is always a bit tricky to get right. Properties let you do this
painlessly, without having to override __getattr__ or
__setattr__.

	queryset

	An object representing some set of rows to be fetched from the database.

See Making queries.

	slug

	A short label for something, containing only letters, numbers,
underscores or hyphens. They’re generally used in URLs. For
example, in a typical blog entry URL:

http://www.djangoproject.com/weblog/2008/apr/12/spring/

the last bit (spring) is the slug.

	template

	A chunk of text that acts as formatting for representing data. A
template helps to abstract the presentation of data from the data
itself.

See The Django template language.

	view

	A function responsible for rending a page.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Django internals

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

Django internals

Documentation for people hacking on Django itself. This is the place to go if
you’d like to help improve Django, learn or learn about how Django works “under
the hood”.

Warning

Elsewhere in the Django documentation, coverage of a feature is a sort of a
contract: once an API is in the official documentation, we consider it
“stable” and don’t change it without a good reason. APIs covered here,
however, are considered “internal-only”: we reserve the right to change
these internals if we must.

	Contributing to Django

	How the Django documentation works

	Django committers

	Django’s release process

	Django Deprecation Timeline

	The Django source code repository

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 Contributing to Django

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	Django internals

Contributing to Django

If you think working with Django is fun, wait until you start working on
it. We’re passionate about helping Django users make the jump to contributing
members of the community, so there are many ways you can help Django’s
development:

	Blog about Django. We syndicate all the Django blogs we know about on
the community page [http://www.djangoproject.com/community/]; contact jacob@jacobian.org if you’ve got a blog
you’d like to see on that page.

	Report bugs and request features in our ticket tracker [http://code.djangoproject.com/newticket]. Please read
Reporting bugs, below, for the details on how we like our bug reports
served up.

	Submit patches for new and/or fixed behavior. Please read Submitting
patches, below, for details on how to submit a patch. If you’re looking
for an easy way to start contributing to Django have a look at the
easy-pickings [http://code.djangoproject.com/query?status=new&status=assigned&status=reopened&keywords=~easy-pickings&order=priority] tickets.

	Join the django-developers [http://groups.google.com/group/django-developers] mailing list and share your ideas for how
to improve Django. We’re always open to suggestions, although we’re
likely to be skeptical of large-scale suggestions without some code to
back it up.

	Triage patches that have been submitted by other users. Please read
Ticket triage below, for details on the triage process.

That’s all you need to know if you’d like to join the Django development
community. The rest of this document describes the details of how our community
works and how it handles bugs, mailing lists, and all the other minutiae of
Django development.

See also

This document contains specific details for contributing to
Django. However, many new contributors find this guide confusing
or intimidating at first. For a simpler introduction
to becoming a contributor please see the How to contribute to Django guide.

Reporting bugs

Well-written bug reports are incredibly helpful. However, there’s a certain
amount of overhead involved in working with any bug tracking system so your
help in keeping our ticket tracker as useful as possible is appreciated. In
particular:

	Do read the FAQ to see if your issue might
be a well-known question.

	Do search the tracker [http://code.djangoproject.com/search] to see if your issue has already been filed.

	Do ask on django-users [http://groups.google.com/group/django-users] first if you’re not sure if what you’re
seeing is a bug.

	Do write complete, reproducible, specific bug reports. Include as
much information as you possibly can, complete with code snippets, test
cases, etc. This means including a clear, concise description of the
problem, and a clear set of instructions for replicating the problem.
A minimal example that illustrates the bug in a nice small test case
is the best possible bug report.

	Don’t use the ticket system to ask support questions. Use the
django-users [http://groups.google.com/group/django-users] list, or the #django IRC channel for that.

	Don’t use the ticket system to make large-scale feature requests.
We like to discuss any big changes to Django’s core on the
django-developers [http://groups.google.com/group/django-developers] list before actually working on them.

	Don’t reopen issues that have been marked “wontfix”. This mark
means that the decision has been made that we can’t or won’t fix
this particular issue. If you’re not sure why, please ask
on django-developers [http://groups.google.com/group/django-developers].

	Don’t use the ticket tracker for lengthy discussions, because they’re
likely to get lost. If a particular ticket is controversial, please move
discussion to django-developers [http://groups.google.com/group/django-developers].

	Don’t post to django-developers just to announce that you have filed
a bug report. All the tickets are mailed to another list
(django-updates [http://groups.google.com/group/django-updates]), which is tracked by developers and interested
community members; we see them as they are filed.

Reporting security issues

Report security issues to security@djangoproject.com. This is a private list
only open to long-time, highly trusted Django developers, and its archives are
not publicly readable.

In the event of a confirmed vulnerability in Django itself, we will take the
following actions:

	Acknowledge to the reporter that we’ve received the report and that a
fix is forthcoming. We’ll give a rough timeline and ask the reporter
to keep the issue confidential until we announce it.

	Focus on developing a fix as quickly as possible and produce patches
against the current and two previous releases.

	Determine a go-public date for announcing the vulnerability and the fix.
To try to mitigate a possible “arms race” between those applying the
patch and those trying to exploit the hole, we will not announce
security problems immediately.

	Pre-notify third-party distributors of Django (“vendors”). We will send
these vendor notifications through private email which will include
documentation of the vulnerability, links to the relevant patch(es), and a
request to keep the vulnerability confidential until the official
go-public date.

	Publicly announce the vulnerability and the fix on the pre-determined
go-public date. This will probably mean a new release of Django, but
in some cases it may simply be patches against current releases.

Submitting patches

We’re always grateful for patches to Django’s code. Indeed, bug reports
with associated patches will get fixed far more quickly than those
without patches.

“Claiming” tickets

In an open-source project with hundreds of contributors around the world, it’s
important to manage communication efficiently so that work doesn’t get
duplicated and contributors can be as effective as possible. Hence, our policy
is for contributors to “claim” tickets in order to let other developers know
that a particular bug or feature is being worked on.

If you have identified a contribution you want to make and you’re capable of
fixing it (as measured by your coding ability, knowledge of Django internals
and time availability), claim it by following these steps:

	Create an account [http://www.djangoproject.com/accounts/register/] to use in our ticket system.

	If a ticket for this issue doesn’t exist yet, create one in our
ticket tracker [http://code.djangoproject.com/newticket].

	If a ticket for this issue already exists, make sure nobody else has
claimed it. To do this, look at the “Assigned to” section of the ticket.
If it’s assigned to “nobody,” then it’s available to be claimed.
Otherwise, somebody else is working on this ticket, and you either find
another bug/feature to work on, or contact the developer working on the
ticket to offer your help.

	Log into your account, if you haven’t already, by clicking “Login” in the
upper right of the ticket page.

	Claim the ticket by clicking the radio button next to “Accept ticket”
near the bottom of the page, then clicking “Submit changes.”

If you have an account but have forgotten your password, you can reset it
using the password reset page [http://www.djangoproject.com/accounts/password/reset/].

Ticket claimers’ responsibility

Once you’ve claimed a ticket, you have a responsibility to work on that ticket
in a reasonably timely fashion. If you don’t have time to work on it, either
unclaim it or don’t claim it in the first place!

If there’s no sign of progress on a particular claimed ticket for a week or
two, another developer may ask you to relinquish the ticket claim so that it’s
no longer monopolized and somebody else can claim it.

If you’ve claimed a ticket and it’s taking a long time (days or weeks) to code,
keep everybody updated by posting comments on the ticket. If you don’t provide
regular updates, and you don’t respond to a request for a progress report,
your claim on the ticket may be revoked. As always, more communication is
better than less communication!

Which tickets should be claimed?

Of course, going through the steps of claiming tickets is overkill in some
cases. In the case of small changes, such as typos in the documentation or
small bugs that will only take a few minutes to fix, you don’t need to jump
through the hoops of claiming tickets. Just submit your patch and be done with
it.

Patch style

	Make sure your code matches our coding style.

	Submit patches in the format returned by the svn diff command.
An exception is for code changes that are described more clearly in
plain English than in code. Indentation is the most common example; it’s
hard to read patches when the only difference in code is that it’s
indented.

Patches in git diff format are also acceptable.

	When creating patches, always run svn diff from the top-level
trunk directory – i.e., the one that contains django, docs,
tests, AUTHORS, etc. This makes it easy for other people to
apply your patches.

	Attach patches to a ticket in the ticket tracker [http://code.djangoproject.com/newticket], using the “attach
file” button. Please don’t put the patch in the ticket description
or comment unless it’s a single line patch.

	Name the patch file with a .diff extension; this will let the ticket
tracker apply correct syntax highlighting, which is quite helpful.

	Check the “Has patch” box on the ticket details. This will make it
obvious that the ticket includes a patch, and it will add the ticket to
the list of tickets with patches [http://code.djangoproject.com/query?status=new&status=assigned&status=reopened&has_patch=1&order=priority].

	The code required to fix a problem or add a feature is an essential part
of a patch, but it is not the only part. A good patch should also include
a regression test to validate the behavior that has been fixed
(and prevent the problem from arising again).

	If the code associated with a patch adds a new feature, or modifies
behavior of an existing feature, the patch should also contain
documentation.

Non-trivial patches

A “non-trivial” patch is one that is more than a simple bug fix. It’s a patch
that introduces Django functionality and makes some sort of design decision.

If you provide a non-trivial patch, include evidence that alternatives have
been discussed on django-developers [http://groups.google.com/group/django-developers]. If you’re not sure whether your patch
should be considered non-trivial, just ask.

Ticket triage

Unfortunately, not all bug reports in the ticket tracker [http://code.djangoproject.com/newticket] provide all
the required details. A number of tickets have patches, but those patches
don’t meet all the requirements of a good patch.

One way to help out is to triage bugs that have been reported by other
users. The core team–as well as many community members–work on this
regularly, but more help is always appreciated.

Most of the workflow is based around the concept of a ticket’s “triage stage”.
This stage describes where in its lifetime a given ticket is at any time.
Along with a handful of flags, this field easily tells us what and who each
ticket is waiting on.

Since a picture is worth a thousand words, let’s start there:

[image: Django's ticket workflow]
We’ve got two roles in this diagram:

	Core developers: people with commit access who are responsible for
making the big decisions, writing large portions of the code and
integrating the contributions of the community.

	Ticket triagers: anyone in the Django community who chooses to
become involved in Django’s development process. Our Trac installation
is intentionally left open to the public, and anyone can triage tickets.
Django is a community project, and we encourage triage by the
community.

Triage stages

Second, note the five triage stages:

	A ticket starts as Unreviewed, meaning that nobody has examined
the ticket.

	Design decision needed means “this concept requires a design
decision,” which should be discussed either in the ticket comments or on
django-developers [http://groups.google.com/group/django-developers]. The “Design decision needed” step will generally
only be used for feature requests. It can also be used for issues
that might be bugs, depending on opinion or interpretation. Obvious
bugs (such as crashes, incorrect query results, or non-compliance with a
standard) skip this step and move straight to “Accepted”.

	Once a ticket is ruled to be approved for fixing, it’s moved into the
Accepted stage. This stage is where all the real work gets done.

	In some cases, a ticket might get moved to the Someday/Maybe state.
This means the ticket is an enhancement request that we might consider
adding to the framework if an excellent patch is submitted. These
tickets are not a high priority.

	If a ticket has an associated patch (see below), it will be reviewed
by the community. If the patch is complete, it’ll be marked as Ready
for checkin so that a core developer knows to review and commit the
patch.

The second part of this workflow involves a set of flags the describe what the
ticket has or needs in order to be “ready for checkin”:

	“Has patch”

	This means the ticket has an associated patch. These will be
reviewed to see if the patch is “good”.

	“Needs documentation”

	This flag is used for tickets with patches that need associated
documentation. Complete documentation of features is a prerequisite
before we can check them into the codebase.

	“Needs tests”

	This flags the patch as needing associated unit tests. Again, this is a
required part of a valid patch.

	“Patch needs improvement”

	This flag means that although the ticket has a patch, it’s not quite
ready for checkin. This could mean the patch no longer applies
cleanly, there is a flaw in the implementation, or that the code
doesn’t meet our standards.

See also

The contributing howto guide has a detailed
explanation of each of the triage stages and how the triage process works in
Trac.

Ticket Resolutions

A ticket can be resolved in a number of ways:

	“fixed”

	Used by the core developers once a patch has been rolled into
Django and the issue is fixed.

	“invalid”

	Used if the ticket is found to be incorrect. This means that the
issue in the ticket is actually the result of a user error, or
describes a problem with something other than Django, or isn’t
a bug report or feature request at all (for example, some new users
submit support queries as tickets).

	“wontfix”

	Used when a core developer decides that this request is not
appropriate for consideration in Django. This is usually chosen after
discussion in the django-developers mailing list. Feel free to
start or join in discussions of “wontfix” tickets on the mailing list,
but please do not reopen tickets closed as “wontfix” by core
developers.

	“duplicate”

	Used when another ticket covers the same issue. By closing duplicate
tickets, we keep all the discussion in one place, which helps everyone.

	“worksforme”

	Used when the ticket doesn’t contain enough detail to replicate
the original bug.

	“needsinfo”

	Used when the ticket does not contain enough information to replicate
the reported issue but is potentially still valid. The ticket
should be reopened when more information is supplied.

If you believe that the ticket was closed in error – because you’re
still having the issue, or it’s popped up somewhere else, or the triagers have
made a mistake – please reopen the ticket and provide further information.
Please do not reopen tickets that have been marked as “wontfix” by core
developers.

See also

For more information on what to do when closing a ticket, please see the
contributing howto guide.

Triage by the general community

Although the core developers make the big decisions in the ticket triage
process, there’s a lot that general community members can do to help the
triage process. In particular, you can help out by:

	Closing “Unreviewed” tickets as “invalid”, “worksforme” or “duplicate.”

	Promoting “Unreviewed” tickets to “Design decision needed” if a design
decision needs to be made, or “Accepted” in case of obvious bugs.

	Correcting the “Needs tests”, “Needs documentation”, or “Has patch”
flags for tickets where they are incorrectly set.

	Adding the easy-pickings [http://code.djangoproject.com/query?status=new&status=assigned&status=reopened&keywords=~easy-pickings&order=priority] keyword to tickets that are small and
relatively straightforward.

	Checking that old tickets are still valid. If a ticket hasn’t seen
any activity in a long time, it’s possible that the problem has been
fixed but the ticket hasn’t yet been closed.

	Contacting the owners of tickets that have been claimed but have not
seen any recent activity. If the owner doesn’t respond after a week
or so, remove the owner’s claim on the ticket.

	Identifying trends and themes in the tickets. If there a lot of bug
reports about a particular part of Django, it may indicate we should
consider refactoring that part of the code. If a trend is emerging,
you should raise it for discussion (referencing the relevant tickets)
on django-developers [http://groups.google.com/group/django-developers].

However, we do ask the following of all general community members working in
the ticket database:

	Please don’t close tickets as “wontfix.” The core developers will
make the final determination of the fate of a ticket, usually after
consultation with the community.

	Please don’t promote your own tickets to “Ready for checkin”. You
may mark other people’s tickets which you’ve reviewed as “Ready for
checkin”, but you should get at minimum one other community member to
review a patch that you submit.

	Please don’t reverse a decision that has been made by a core
developer. If you disagree with a decision that has been made,
please post a message to django-developers [http://groups.google.com/group/django-developers].

	If you’re unsure if you should be making a change, don’t make the change
but instead leave a comment with your concerns on the ticket, or
post a message to django-developers [http://groups.google.com/group/django-developers]. It’s okay to be unsure, but
your input is still valuable.

Submitting and maintaining translations

Various parts of Django, such as the admin site and validation error messages,
are internationalized. This means they display different text depending on a
user’s language setting. For this, Django uses the same internationalization
infrastructure available to Django applications described in the
i18n documentation.

These translations are contributed by Django users worldwide. If you find an
incorrect translation or want to discuss specific translations, go to the
Django project page [http://www.transifex.net/projects/p/django/] on Transifex [http://www.transifex.net/]. If you would like to help out with
translating or add a language that isn’t yet translated, here’s what to do:

	Join the Django i18n mailing list [http://groups.google.com/group/django-i18n/] and introduce yourself.

	Make sure you read the notes about Specialties of Django translation.

	Signup at Transifex [http://www.transifex.net/] and visit the Django project page [http://www.transifex.net/projects/p/django/].

	On the Django project page [http://www.transifex.net/projects/p/django/] page, choose the language you want
to work on, or – in case the language doesn’t exist yet –
request a new language team by clicking on the “Request language”
link and select the appropriate language.

	Then, click the “Join Team” button to become a member of this team.
Every team has at least one coordinator who is responsible to review
your membership request. You can of course also contact the team
coordinator to clarify procedural problems and handle the actual
translation process.

	Once you are a member of a team choose the translation resource you
want update on the team page. For example the “core” resource refers
to the translation catalogue that contains all non-app translations.
Each of the contrib apps also have a resource (prefixed with “contrib-”).

Note

For more information about how to use Transifex, see the
Transifex Help [http://help.transifex.net/]

	Optionally, review and update the conf/locale/<locale>/formats.py
file to describe the date, time and numbers formatting particularities
of your locale. These files aren’t covered by the use of Transifex and
require a patch against the Django source tree, just as a code change
would:

	Create a diff against the current Subversion trunk.

	Open a ticket in Django’s ticket system, set its Component field
to Translations, and attach the patch to it. See
Format localization for details.

Submitting javascript patches

New in Django 1.2: Please, see the release notes

Django’s admin system leverages the jQuery framework to increase the
capabilities of the admin interface. In conjunction, there is an emphasis on
admin javascript performance and minimizing overall admin media file size.
Serving compressed or “minified” versions of javascript files is considered
best practice in this regard.

To that end, patches for javascript files should include both the original
code for future development (e.g. “foo.js”), and a compressed version for
production use (e.g. “foo.min.js”). Any links to the file in the codebase
should point to the compressed version.

To simplify the process of providing optimized javascript code, Django
includes a handy script which should be used to create a “minified” version.
This script is located at /contrib/admin/media/js/compress.py.

Behind the scenes, compress.py is a front-end for Google’s
Closure Compiler [https://developers.google.com/closure/compiler/] which is written in Java. However, the Closure Compiler
library is not bundled with Django directly, so those wishing to contribute
complete javascript patches will need to download and install the library
independently.

The Closure Compiler library requires Java version 6 or higher (Java 1.6 or
higher on Mac OS X). Note that Mac OS X 10.5 and earlier did not ship with Java
1.6 by default, so it may be necessary to upgrade your Java installation before
the tool will be functional. Also note that even after upgrading Java, the
default /usr/bin/java command may remain linked to the previous Java
binary, so relinking that command may be necessary as well.

Please don’t forget to run compress.py and include the diff of the
minified scripts when submitting patches for Django’s javascript.

Django conventions

Various Django-specific code issues are detailed in this section.

Use of django.conf.settings

Modules should not in general use settings stored in django.conf.settings
at the top level (i.e. evaluated when the module is imported). The explanation
for this is as follows:

Manual configuration of settings (i.e. not relying on the
DJANGO_SETTINGS_MODULE environment variable) is allowed and possible as
follows:

from django.conf import settings

settings.configure({}, SOME_SETTING='foo')

However, if any setting is accessed before the settings.configure line,
this will not work. (Internally, settings is a LazyObject which
configures itself automatically when the settings are accessed if it has not
already been configured).

So, if there is a module containing some code as follows:

from django.conf import settings
from django.core.urlresolvers import get_callable

default_foo_view = get_callable(settings.FOO_VIEW)

...then importing this module will cause the settings object to be configured.
That means that the ability for third parties to import the module at the top
level is incompatible with the ability to configure the settings object
manually, or makes it very difficult in some circumstances.

Instead of the above code, a level of laziness or indirection must be used,
such as django.utils.functional.LazyObject`, django.utils.functional.lazy
or lambda.

Coding style

Please follow these coding standards when writing code for inclusion in Django:

	Unless otherwise specified, follow PEP 8 [http://www.python.org/dev/peps/pep-0008].

You could use a tool like pep8.py [http://pypi.python.org/pypi/pep8/] to check for some problems in this
area, but remember that PEP 8 is only a guide, so respect the style of
the surrounding code as a primary goal.

	Use four spaces for indentation.

	Use underscores, not camelCase, for variable, function and method names
(i.e. poll.get_unique_voters(), not poll.getUniqueVoters).

	Use InitialCaps for class names (or for factory functions that
return classes).

	Mark all strings for internationalization; see the i18n
documentation for details.

	In docstrings, use "action words" such as:

def foo():
 """
 Calculates something and returns the result.
 """
 pass

Here's an example of what not to do:

def foo():
 """
 Calculate something and return the result.
 """
 pass

	Please don't put your name in the code you contribute. Our policy is to
keep contributors' names in the AUTHORS file distributed with Django
-- not scattered throughout the codebase itself. Feel free to include a
change to the AUTHORS file in your patch if you make more than a
single trivial change.

Template style

	In Django template code, put one (and only one) space between the curly
brackets and the tag contents.

Do this:

{{ foo }}

Don't do this:

{{foo}}

View style

	In Django views, the first parameter in a view function should be called
request.

Do this:

def my_view(request, foo):
 # ...

Don't do this:

def my_view(req, foo):
 # ...

Model style

	Field names should be all lowercase, using underscores instead of
camelCase.

Do this:

class Person(models.Model):
 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)

Don't do this:

class Person(models.Model):
 FirstName = models.CharField(max_length=20)
 Last_Name = models.CharField(max_length=40)

	The class Meta should appear after the fields are defined, with
a single blank line separating the fields and the class definition.

Do this:

class Person(models.Model):
 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)

 class Meta:
 verbose_name_plural = 'people'

Don't do this:

class Person(models.Model):
 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)
 class Meta:
 verbose_name_plural = 'people'

Don't do this, either:

class Person(models.Model):
 class Meta:
 verbose_name_plural = 'people'

 first_name = models.CharField(max_length=20)
 last_name = models.CharField(max_length=40)

	The order of model inner classes and standard methods should be as
follows (noting that these are not all required):

	All database fields

	Custom manager attributes

	class Meta

	def __unicode__()

	def __str__()

	def save()

	def get_absolute_url()

	Any custom methods

	If choices is defined for a given model field, define the choices as
a tuple of tuples, with an all-uppercase name, either near the top of the
model module or just above the model class. Example:

GENDER_CHOICES = (
 ('M', 'Male'),
 ('F', 'Female'),
)

Documentation style

We place a high importance on consistency and readability of documentation.
(After all, Django was created in a journalism environment!)

How to document new features

We treat our documentation like we treat our code: we aim to improve it as
often as possible. This section explains how writers can craft their
documentation changes in the most useful and least error-prone ways.

Documentation changes come in two forms:

	General improvements -- Typo corrections, error fixes and better
explanations through clearer writing and more examples.

	New features -- Documentation of features that have been added to the
framework since the last release.

Our policy is:

All documentation of new features should be written in a way that clearly
designates the features are only available in the Django development
version. Assume documentation readers are using the latest release, not the
development version.

Our preferred way for marking new features is by prefacing the features'
documentation with: ".. versionadded:: X.Y", followed by an optional one line
comment and a mandatory blank line.

General improvements, or other changes to the APIs that should be emphasized
should use the ".. versionchanged:: X.Y" directive (with the same format as the
versionadded mentioned above.

There's a full page of information about the Django documentation
system that you should read prior to working on the
documentation.

Guidelines for reST files

These guidelines regulate the format of our reST documentation:

	In section titles, capitalize only initial words and proper nouns.

	Wrap the documentation at 80 characters wide, unless a code example
is significantly less readable when split over two lines, or for another
good reason.

Commonly used terms

Here are some style guidelines on commonly used terms throughout the
documentation:

	Django -- when referring to the framework, capitalize Django. It is
lowercase only in Python code and in the djangoproject.com logo.

	e-mail -- it has a hyphen.

	MySQL

	PostgreSQL

	Python -- when referring to the language, capitalize Python.

	realize, customize, initialize, etc. -- use the American
"ize" suffix, not "ise."

	SQLite

	subclass -- it's a single word without a hyphen, both as a verb
("subclass that model") and as a noun ("create a subclass").

	Web, World Wide Web, the Web -- note Web is always
capitalized when referring to the World Wide Web.

	Web site -- use two words, with Web capitalized.

Django-specific terminology

	model -- it's not capitalized.

	template -- it's not capitalized.

	URLconf -- use three capitalized letters, with no space before
"conf."

	view -- it's not capitalized.

Committing code

Please follow these guidelines when committing code to Django's Subversion
repository:

	For any medium-to-big changes, where "medium-to-big" is according to your
judgment, please bring things up on the django-developers [http://groups.google.com/group/django-developers] mailing list
before making the change.

If you bring something up on django-developers [http://groups.google.com/group/django-developers] and nobody responds,
please don't take that to mean your idea is great and should be
implemented immediately because nobody contested it. Django's lead
developers don't have a lot of time to read mailing-list discussions
immediately, so you may have to wait a couple of days before getting a
response.

	Write detailed commit messages in the past tense, not present tense.

	Good: "Fixed Unicode bug in RSS API."

	Bad: "Fixes Unicode bug in RSS API."

	Bad: "Fixing Unicode bug in RSS API."

	For commits to a branch, prefix the commit message with the branch name.
For example: "magic-removal: Added support for mind reading."

	Limit commits to the most granular change that makes sense. This means,
use frequent small commits rather than infrequent large commits. For
example, if implementing feature X requires a small change to library Y,
first commit the change to library Y, then commit feature X in a separate
commit. This goes a long way in helping all core Django developers
follow your changes.

	Separate bug fixes from feature changes.

Bug fixes need to be added to the current bugfix branch (e.g. the
1.0.X branch) as well as the current trunk.

	If your commit closes a ticket in the Django ticket tracker [http://code.djangoproject.com/newticket], begin
your commit message with the text "Fixed #abc", where "abc" is the number
of the ticket your commit fixes. Example: "Fixed #123 -- Added support
for foo". We've rigged Subversion and Trac so that any commit message
in that format will automatically close the referenced ticket and post a
comment to it with the full commit message.

If your commit closes a ticket and is in a branch, use the branch name
first, then the "Fixed #abc." For example:
"magic-removal: Fixed #123 -- Added whizbang feature."

For the curious: We're using a Trac post-commit hook [http://trac.edgewall.org/browser/trunk/contrib/trac-svn-post-commit-hook.cmd] for this.

	If your commit references a ticket in the Django ticket tracker [http://code.djangoproject.com/newticket] but
does not close the ticket, include the phrase "Refs #abc", where "abc"
is the number of the ticket your commit references. We've rigged
Subversion and Trac so that any commit message in that format will
automatically post a comment to the appropriate ticket.

Reverting commits

Nobody's perfect; mistakes will be committed. When a mistaken commit is
discovered, please follow these guidelines:

	Try very hard to ensure that mistakes don't happen. Just because we
have a reversion policy doesn't relax your responsibility to aim for
the highest quality possible. Really: double-check your work before
you commit it in the first place!

	If possible, have the original author revert his/her own commit.

	Don't revert another author's changes without permission from the
original author.

	If the original author can't be reached (within a reasonable amount
of time -- a day or so) and the problem is severe -- crashing bug,
major test failures, etc -- then ask for objections on django-dev
then revert if there are none.

	If the problem is small (a feature commit after feature freeze,
say), wait it out.

	If there's a disagreement between the committer and the
reverter-to-be then try to work it out on the django-developers [http://groups.google.com/group/django-developers]
mailing list. If an agreement can't be reached then it should
be put to a vote.

	If the commit introduced a confirmed, disclosed security
vulnerability then the commit may be reverted immediately without
permission from anyone.

	The release branch maintainer may back out commits to the release
branch without permission if the commit breaks the release branch.

Unit tests

Django comes with a test suite of its own, in the tests directory of the
Django tarball. It's our policy to make sure all tests pass at all times.

The tests cover:

	Models and the database API (tests/modeltests/).

	Everything else in core Django code (tests/regressiontests)

	Contrib apps (django/contrib/<contribapp>/tests, see below)

We appreciate any and all contributions to the test suite!

The Django tests all use the testing infrastructure that ships with Django for
testing applications. See Testing Django applications
for an explanation of how to write new tests.

Running the unit tests

Quickstart

Running the tests requires a Django settings module that defines the
databases to use. To make it easy to get started. Django provides a
sample settings module that uses the SQLite database. To run the tests
with this sample settings module, cd into the Django
tests/ directory and run:

./runtests.py --settings=test_sqlite

If you get an ImportError: No module named django.contrib error,
you need to add your install of Django to your PYTHONPATH. For
more details on how to do this, read Pointing Python at the new
Django version below.

Using another settings module

The included settings module allows you to run the test suite using
SQLite. If you want to test behavior using a different database (and
if you're proposing patches for Django, it's a good idea to test
across databases), you may need to define your own settings file.

To run the tests with different settings, cd to the tests/ directory
and type:

./runtests.py --settings=path.to.django.settings

The DATABASES setting in this test settings module needs to define
two databases:

	A default database. This database should use the backend that
you want to use for primary testing

	A database with the alias other. The other database is
used to establish that queries can be directed to different
databases. As a result, this database can use any backend you
want. It doesn't need to use the same backend as the default
database (although it can use the same backend if you want to).

If you're using a backend that isn't SQLite, you will need to provide other
details for each database:

	The USER option for each of your databases needs to
specify an existing user account for the database.

	The PASSWORD option needs to provide the password for
the USER that has been specified.

	The NAME option must be the name of an existing database to
which the given user has permission to connect. The unit tests will not
touch this database; the test runner creates a new database whose name is
NAME prefixed with test_, and this test database is
deleted when the tests are finished. This means your user account needs
permission to execute CREATE DATABASE.

You will also need to ensure that your database uses UTF-8 as the default
character set. If your database server doesn't use UTF-8 as a default charset,
you will need to include a value for TEST_CHARSET in the settings
dictionary for the applicable database.

Running only some of the tests

Django's entire test suite takes a while to run, and running every single test
could be redundant if, say, you just added a test to Django that you want to
run quickly without running everything else. You can run a subset of the unit
tests by appending the names of the test modules to runtests.py on the
command line.

For example, if you'd like to run tests only for generic relations and
internationalization, type:

./runtests.py --settings=path.to.settings generic_relations i18n

How do you find out the names of individual tests? Look in tests/modeltests
and tests/regressiontests -- each directory name there is the name of a
test.

If you just want to run a particular class of tests, you can specify a list of
paths to individual test classes. For example, to run the TranslationTests
of the i18n module, type:

./runtests.py --settings=path.to.settings i18n.TranslationTests

Going beyond that, you can specify an individual test method like this:

./runtests.py --settings=path.to.settings i18n.TranslationTests.test_lazy_objects

Running all the tests

If you want to run the full suite of tests, you'll need to install a number of
dependencies:

	PyYAML [http://pyyaml.org/wiki/PyYAML]

	Markdown [http://pypi.python.org/pypi/Markdown/1.7]

	Textile [http://pypi.python.org/pypi/textile]

	Docutils [http://pypi.python.org/pypi/docutils/0.4]

	setuptools [http://pypi.python.org/pypi/setuptools/]

	memcached [http://www.danga.com/memcached/], plus a supported Python binding

	gettext [http://www.gnu.org/software/gettext/manual/gettext.html] (gettext on Windows)

If you want to test the memcached cache backend, you'll also need to define
a CACHES setting that points at your memcached instance.

Each of these dependencies is optional. If you're missing any of them, the
associated tests will be skipped.

Contrib apps

Tests for apps in django/contrib/ go in their respective directories under
django/contrib/, in a tests.py file. (You can split the tests over
multiple modules by using a tests directory in the normal Python way.)

For the tests to be found, a models.py file must exist (it doesn't
have to have anything in it). If you have URLs that need to be
mapped, put them in tests/urls.py.

To run tests for just one contrib app (e.g. markup), use the same
method as above:

./runtests.py --settings=settings markup

Requesting features

We're always trying to make Django better, and your feature requests are a key
part of that. Here are some tips on how to make a request most effectively:

	Request the feature on django-developers [http://groups.google.com/group/django-developers], not in the ticket tracker.
It'll get read more closely if it's on the mailing list.

	Describe clearly and concisely what the missing feature is and how you'd
like to see it implemented. Include example code (non-functional is OK)
if possible.

	Explain why you'd like the feature. In some cases this is obvious, but
since Django is designed to help real developers get real work done,
you'll need to explain it, if it isn't obvious why the feature would be
useful.

As with most open-source projects, code talks. If you are willing to write the
code for the feature yourself or if (even better) you've already written it,
it's much more likely to be accepted. If it's a large feature that might need
multiple developers, we're always happy to give you an experimental branch in
our repository; see below.

Branch policy

In general, the trunk must be kept stable. People should be able to run
production sites against the trunk at any time. Additionally, commits to trunk
ought to be as atomic as possible -- smaller changes are better. Thus, large
feature changes -- that is, changes too large to be encapsulated in a single
patch, or changes that need multiple eyes on them -- must happen on dedicated
branches.

This means that if you want to work on a large feature -- anything that would
take more than a single patch, or requires large-scale refactoring -- you need
to do it on a feature branch. Our development process recognizes two options
for feature branches:

	Feature branches using a distributed revision control system like
Git [http://git-scm.com/], Mercurial [http://mercurial.selenic.com/], Bazaar [http://bazaar.canonical.com/], etc.

If you're familiar with one of these tools, this is probably your best
option since it doesn't require any support or buy-in from the Django
core developers.

However, do keep in mind that Django will continue to use Subversion for
the foreseeable future, and this will naturally limit the recognition of
your branch. Further, if your branch becomes eligible for merging to
trunk you'll need to find a core developer familiar with your DVCS of
choice who'll actually perform the merge.

If you do decided to start a distributed branch of Django and choose to
make it public, please add the branch to the Django branches [http://code.djangoproject.com/wiki/DjangoBranches] wiki
page.

	Feature branches using SVN have a higher bar. If you want a branch
in SVN itself, you'll need a "mentor" among the core committers. This person is responsible for actually
creating the branch, monitoring your process (see below), and
ultimately merging the branch into trunk.

If you want a feature branch in SVN, you'll need to ask in
django-developers [http://groups.google.com/group/django-developers] for a mentor.

Branch rules

We've got a few rules for branches born out of experience with what makes a
successful Django branch.

DVCS branches are obviously not under central control, so we have no way of
enforcing these rules. However, if you're using a DVCS, following these rules
will give you the best chance of having a successful branch (read: merged back
to trunk).

Developers with branches in SVN, however, must follow these rules. The
branch mentor will keep on eye on the branch and will delete it if these
rules are broken.

	Only branch entire copies of the Django tree, even if work is only
happening on part of that tree. This makes it painless to switch to a
branch.

	Merge changes from trunk no less than once a week, and preferably every
couple-three days.

In our experience, doing regular trunk merges is often the difference
between a successful branch and one that fizzles and dies.

If you're working on an SVN branch, you should be using svnmerge.py [http://www.orcaware.com/svn/wiki/Svnmerge.py]
to track merges from trunk.

	Keep tests passing and documentation up-to-date. As with patches,
we'll only merge a branch that comes with tests and documentation.

Once the branch is stable and ready to be merged into the trunk, alert
django-developers [http://groups.google.com/group/django-developers].

After a branch has been merged, it should be considered "dead"; write access to
it will be disabled, and old branches will be periodically "trimmed." To keep
our SVN wrangling to a minimum, we won't be merging from a given branch into
the trunk more than once.

Using branches

To use a branch, you'll need to do two things:

	Get the branch's code through Subversion.

	Point your Python site-packages directory at the branch's version of
the django package rather than the version you already have
installed.

Getting the code from Subversion

To get the latest version of a branch's code, check it out using Subversion:

svn co http://code.djangoproject.com/svn/django/branches/<branch>/

...where <branch> is the branch's name. See the list of branch names [http://code.djangoproject.com/browser/django/branches].

Alternatively, you can automatically convert an existing directory of the
Django source code as long as you've checked it out via Subversion. To do the
conversion, execute this command from within your django directory:

svn switch http://code.djangoproject.com/svn/django/branches/<branch>/

The advantage of using svn switch instead of svn co is that the
switch command retains any changes you might have made to your local copy
of the code. It attempts to merge those changes into the "switched" code. The
disadvantage is that it may cause conflicts with your local changes if the
"switched" code has altered the same lines of code.

(Note that if you use svn switch, you don't need to point Python at the new
version, as explained in the next section.)

Pointing Python at the new Django version

Once you've retrieved the branch's code, you'll need to change your Python
site-packages directory so that it points to the branch version of the
django directory. (The site-packages directory is somewhere such as
/usr/lib/python2.4/site-packages or
/usr/local/lib/python2.4/site-packages or C:\Python\site-packages.)

The simplest way to do this is by renaming the old django directory to
django.OLD and moving the trunk version of the code into the directory
and calling it django.

Alternatively, you can use a symlink called django that points to the
location of the branch's django package. If you want to switch back, just
change the symlink to point to the old code.

A third option is to use a path file [http://docs.python.org/library/site.html] (<something>.pth) which should
work on all systems (including Windows, which doesn't have symlinks
available). First, make sure there are no files, directories or symlinks named
django in your site-packages directory. Then create a text file named
django.pth and save it to your site-packages directory. That file
should contain a path to your copy of Django on a single line and optional
comments. Here is an example that points to multiple branches. Just uncomment
the line for the branch you want to use ('Trunk' in this example) and make
sure all other lines are commented:

Trunk is a svn checkout of:
http://code.djangoproject.com/svn/django/trunk/
#
/path/to/trunk

<branch> is a svn checkout of:
http://code.djangoproject.com/svn/django/branches/<branch>/
#
#/path/to/<branch>

On windows a path may look like this:
C:/path/to/<branch>

If you're using Django 0.95 or earlier and installed it using
python setup.py install, you'll have a directory called something like
Django-0.95-py2.4.egg instead of django. In this case, edit the file
setuptools.pth and remove the line that references the Django .egg
file. Then copy the branch's version of the django directory into
site-packages.

How we make decisions

Whenever possible, we strive for a rough consensus. To that end, we'll often
have informal votes on django-developers [http://groups.google.com/group/django-developers] about a feature. In these votes we
follow the voting style invented by Apache and used on Python itself, where
votes are given as +1, +0, -0, or -1. Roughly translated, these votes mean:

	+1: "I love the idea and I'm strongly committed to it."

	+0: "Sounds OK to me."

	-0: "I'm not thrilled, but I won't stand in the way."

	-1: "I strongly disagree and would be very unhappy to see the idea turn
into reality."

Although these votes on django-developers are informal, they'll be taken very
seriously. After a suitable voting period, if an obvious consensus arises
we'll follow the votes.

However, consensus is not always possible. If consensus cannot be reached, or
if the discussion towards a consensus fizzles out without a concrete decision,
we use a more formal process.

Any core committer (see below) may call for a formal vote using the same
voting mechanism above. A proposition will be considered carried by the core
team if:

	There are three "+1" votes from members of the core team.

	There is no "-1" vote from any member of the core team.

	The BDFLs haven't stepped in and executed their positive or negative
veto.

When calling for a vote, the caller should specify a deadline by which
votes must be received. One week is generally suggested as the minimum
amount of time.

Since this process allows any core committer to veto a proposal, any "-1"
votes (or BDFL vetos) should be accompanied by an explanation that explains
what it would take to convert that "-1" into at least a "+0".

Whenever possible, these formal votes should be announced and held in
public on the django-developers [http://groups.google.com/group/django-developers] mailing list. However, overly sensitive
or contentious issues -- including, most notably, votes on new core
committers -- may be held in private.

Commit access

Django has two types of committers:

	Core committers

	These are people who have a long history of contributions to Django's
codebase, a solid track record of being polite and helpful on the
mailing lists, and a proven desire to dedicate serious time to Django's
development. The bar is high for full commit access.

	Partial committers

	These are people who are "domain experts." They have direct check-in access
to the subsystems that fall under their jurisdiction, and they're given a
formal vote in questions that involve their subsystems. This type of access
is likely to be given to someone who contributes a large subframework to
Django and wants to continue to maintain it.

Partial commit access is granted by the same process as full
committers. However, the bar is set lower; proven expertise in the area
in question is likely to be sufficient.

Decisions on new committers will follow the process explained above in how
we make decisions.

To request commit access, please contact an existing committer privately.
Public requests for commit access are potential flame-war starters, and
will be ignored.

 Copyright Django Software Foundation and contributors.
 Last updated on Jan 07, 2015.
 Created using Sphinx 1.2.2.

 How the Django documentation works

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.3.7 documentation

 	Django internals

How the Django documentation works

... and how to contribute.

Django’s documentation uses the Sphinx [http://sphinx.pocoo.org/] documentation system, which in turn is
based on docutils [http://docutils.sourceforge.net/]. The basic idea is that lightly-formatted plain-text
documentation is transformed into HTML, PDF, and any other output format.

To actually build the documentation locally, you’ll currently need to install
Sphinx – easy_install Sphinx should do the trick.

Note

Building the Django documentation requires Sphinx 1.0.2 or newer. Sphinx
also requires the Pygments [http://pygments.org] library for syntax highlighting; building the
Django documentation requires Pygments 1.1 or newer (a new-enough version
should automatically be installed along with Sphinx).

Then, building the HTML is easy; just make html from the docs directory.

To get started contributing, you’ll want to read the reStructuredText
Primer [http://sphinx.pocoo.org/rest.html]. After that, you’ll want to read about the Sphinx-specific markup [http://sphinx.pocoo.org/markup/]
that’s used to manage metadata, indexing, and cross-references.

The main thing to keep in mind as you write and edit docs is that the more
semantic markup you can add the better. So:

Add ``django.contrib.auth`` to your ``INSTALLED_APPS``...

Isn't nearly as helpful as:

Add :mod:`django.contrib.auth` to your :setting:`INSTALLED_APPS`...

This is because Sphinx will generate proper links for the latter, which greatly
helps readers. There's basically no limit to the amount of useful markup you can
add.

Django-specific markup

Besides the Sphinx built-in markup [http://sphinx.pocoo.org/markup/desc.html], Django's docs defines some extra description units:

	Settings:

.. setting:: INSTALLED_APPS

To link to a setting, use :setting:`INSTALLED_APPS`.

	Template tags:

.. templatetag:: regroup

To link, use :ttag:`regroup`.

	Template filters:

.. templatefilter:: linebreaksbr

To link, use :tfilter:`linebreaksbr`.

	Field lookups (i.e. Foo.objects.filter(bar__exact=whatever)):

.. fieldlookup:: exact

To link, use :lookup:`exact`.

	django-admin commands:

.. django-admin:: syncdb

To link, use :djadmin:`syncdb`.

	django-admin command-line options:

.. django-admin-option:: --traceback

To link, use :djadminopt:`--traceback`.

An example

For a quick example of how it all fits together, consider this hypothetical
example:

	First, the ref/settings.txt document could have an overall layout
like this:

========
Settings
========

...

.. _available-settings:

Available settings
==================

...

.. _deprecated-settings:

Deprecated settings
===================

...

	Next, the topics/settings.txt document could contain something like
this:

You can access a :ref:`listing of all available settings
<available-settings>`. For a list of deprecated settings see
:ref:`deprecated-settings`.

You can find both in the :doc:`settings reference document </ref/settings>`.

We use the Sphinx doc [http://sphinx.pocoo.org/markup/inline.html#role-doc] cross reference element when we want to link to
another document as a whole and the ref [http://sphinx.pocoo.org/markup/inline.html#role-ref] element when we want to link to
an arbitrary location in a document.

	Next, notice how the settings are annotated:

.. setting:: ADMIN_FOR

ADMIN_FOR

Default: ``()`` (Empty tuple)

Used for admin-site settings modules, this should be a tuple of settings
modules (in the format ``'foo.bar.baz'``) for which this site is an
admin.

The admin site uses this in its automatically-introspected
documentation of models, views and template tags.

This marks up the following header as the "canonical" target for the
setting ADMIN_FOR This means any time I talk about ADMIN_FOR, I
can reference it using :setting:`ADMIN_FOR`.

That's basically how everything fits together.

TODO

The work is mostly done, but here's what's left, in rough order of priority.

	Most of the various index.txt documents have very short or even
non-existent intro text. Each of those documents needs a good short intro
the content below that point.

	The glossary is very perfunctory. It needs to be filled out.

	Add more metadata targets: there's lots of places that look like:

``File.close()``
~~~~~~~~~~~~~~~~





... these should be:

.. method:: File.close()





That is, use metadata instead of titles.



	Add more links -- nearly everything that's an inline code literal
right now can probably be turned into a xref.

See the literals_to_xrefs.py file in _ext -- it's a shell script
to help do this work.

This will probably be a continuing, never-ending project.



	Add info field lists [http://sphinx.pocoo.org/markup/desc.html#info-field-lists] where appropriate.



	Add .. code-block:: <lang> to literal blocks so that they get
highlighted.








Hints

Some hints for making things look/read better:


	Whenever possible, use links. So, use :setting:`ADMIN_FOR` instead of
``ADMIN_FOR``.



	Some directives (.. setting::, for one) are prefix-style directives;
they go before the unit they're describing. These are known as
"crossref" directives. Others (.. class::, e.g.) generate their own
markup; these should go inside the section they're describing. These are
called "description units".

You can tell which are which by looking at in _ext/djangodocs.py;
it registers roles as one of the other.



	When referring to classes/functions/modules, etc., you'll want to use the
fully-qualified name of the target
(:class:`django.contrib.contenttypes.models.ContentType`).

Since this doesn't look all that awesome in the output -- it shows the
entire path to the object -- you can prefix the target with a ~
(that's a tilde) to get just the "last bit" of that path. So
:class:`~django.contrib.contenttypes.models.ContentType` will just
display a link with the title "ContentType".











          

      

      

    


    
         Copyright Django Software Foundation and contributors.
      Last updated on Jan 07, 2015.
      Created using Sphinx 1.2.2.
    

  

  
    
    
    Django committers
    
    

    

 

















  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Django 1.3.7 documentation 

          	Django internals 
 
      

    


    
      
          
            
  
Django committers


The original team

Django originally started at World Online, the Web department of the Lawrence
Journal-World [http://ljworld.com/] of Lawrence, Kansas, USA.


	Adrian Holovaty [http://holovaty.com/]

	Adrian is a Web developer with a background in journalism. He’s known in
journalism circles as one of the pioneers of “journalism via computer
programming”, and in technical circles as “the guy who invented Django.”

He was lead developer at World Online for 2.5 years, during which time
Django was developed and implemented on World Online’s sites. He’s now the
leader and founder of EveryBlock [http://everyblock.com/], a “news feed for your block”.

Adrian lives in Chicago, USA.



	Simon Willison [http://simonwillison.net/]

	Simon is a well-respected Web developer from England. He had a one-year
internship at World Online, during which time he and Adrian developed Django
from scratch. The most enthusiastic Brit you’ll ever meet, he’s passionate
about best practices in Web development and maintains a well-read
web-development blog [http://simonwillison.net/].

Simon lives in Brighton, England.



	Jacob Kaplan-Moss [http://jacobian.org/]

	Jacob is a partner at Revolution Systems [http://revsys.com/] which provides support services
around Django and related open source technologies. A good deal of Jacob’s
work time is devoted to working on Django. Jacob previously worked at World
Online, where Django was invented, where he was the lead developer of
Ellington, a commercial Web publishing platform for media companies.

Jacob lives in Lawrence, Kansas, USA.



	Wilson Miner [http://wilsonminer.com/]

	Wilson’s design-fu is what makes Django look so nice. He designed the
Web site you’re looking at right now, as well as Django’s acclaimed admin
interface. Wilson is the designer for EveryBlock [http://everyblock.com/].

Wilson lives in San Francisco, USA.








Current developers

Currently, Django is led by a team of volunteers from around the globe.


BDFLs

Adrian and Jacob are the Co-Benevolent Dictators for Life [http://en.wikipedia.org/wiki/Benevolent_Dictator_For_Life] of Django. When
“rough consensus and working code” fails, they’re the ones who make the tough
decisions.




Core developers

These are the folks who have a long history of contributions, a solid track
record of being helpful on the mailing lists, and a proven desire to dedicate
serious time to Django. In return, they’ve been granted the coveted commit bit,
and have free rein to hack on all parts of Django.


	Malcolm Tredinnick [http://www.pointy-stick.com/]

	Malcolm originally wanted to be a mathematician, somehow ended up a software
developer. He’s contributed to many Open Source projects, has served on the
board of the GNOME foundation, and will kick your ass at chess.

When he’s not busy being an International Man of Mystery, Malcolm lives in
Sydney, Australia.






	Russell Keith-Magee [http://cecinestpasun.com/]

	Russell studied physics as an undergraduate, and studied neural networks for
his PhD. His first job was with a startup in the defense industry developing
simulation frameworks. Over time, mostly through work with Django, he’s
become more involved in Web development.

Russell has helped with several major aspects of Django, including a
couple major internal refactorings, creation of the test system, and more.

Russell lives in the most isolated capital city in the world — Perth,
Australia.






	Joseph Kocherhans

	Joseph is currently a developer at EveryBlock [http://everyblock.com/], and previously worked for
the Lawrence Journal-World where he built most of the backend for their
Marketplace site. He often disappears for several days into the woods,
attempts to teach himself computational linguistics, and annoys his
neighbors with his Charango [http://en.wikipedia.org/wiki/Charango] playing.

Joseph’s first contribution to Django was a series of improvements to the
authorization system leading up to support for pluggable authorization.
Since then, he’s worked on the new forms system, its use in the admin, and
many other smaller improvements.

Joseph lives in Chicago, USA.






	Luke Plant [http://lukeplant.me.uk/]

	At University Luke studied physics and Materials Science and also
met Michael Meeks [http://en.wikipedia.org/wiki/Michael_Meeks_(software)] who introduced him to Linux and Open Source,
re-igniting an interest in programming.  Since then he has
contributed to a number of Open Source projects and worked
professionally as a developer.

Luke has contributed many excellent improvements to Django,
including database-level improvements, the CSRF middleware and
many unit tests.

Luke currently works for a church in Bradford, UK, and part-time
as a freelance developer.






	Brian Rosner [http://oebfare.com/]

	Brian is currently the tech lead at Eldarion [http://eldarion.com/] managing and developing
Django / Pinax [http://pinaxproject.com/] based Web sites. He enjoys learning more about programming
languages and system architectures and contributing to open source
projects. Brian is the host of the Django Dose [http://djangodose.com/] podcasts.

Brian helped immensely in getting Django’s “newforms-admin” branch finished
in time for Django 1.0; he’s now a full committer, continuing to improve on
the admin and forms system.

Brian lives in Denver, Colorado, USA.






	Gary Wilson [http://gdub.wordpress.com/]

	Gary starting contributing patches to Django in 2006 while developing Web
applications for The University of Texas [http://www.utexas.edu/] (UT).  Since, he has made
contributions to the e-mail and forms systems, as well as many other
improvements and code cleanups throughout the code base.

Gary is currently a developer and software engineering graduate student at
UT, where his dedication to spreading the ways of Python and Django never
ceases.

Gary lives in Austin, Texas, USA.






	Justin Bronn

	Justin Bronn is a computer scientist and attorney specializing
in legal topics related to intellectual property and spatial law.

In 2007, Justin began developing django.contrib.gis in a branch,
a.k.a. GeoDjango [http://geodjango.org/], which was merged in time for Django 1.0.  While
implementing GeoDjango, Justin obtained a deep knowledge of Django’s
internals including the ORM, the admin, and Oracle support.

Justin lives in Houston, Texas.






	Karen Tracey

	Karen has a background in distributed operating systems (graduate school),
communications software (industry) and crossword puzzle construction
(freelance).  The last of these brought her to Django, in late 2006, when
she set out to put a Web front-end on her crossword puzzle database.
That done, she stuck around in the community answering questions, debugging
problems, etc. – because coding puzzles are as much fun as word puzzles.

Karen lives in Apex, NC, USA.



	Jannis Leidel [http://jezdez.com/]

	Jannis graduated in media design from Bauhaus-University Weimar [http://www.uni-weimar.de/],
is the author of a number of pluggable Django apps and likes to
contribute to Open Source projects like Pinax [http://pinaxproject.com/]. He currently works as
a freelance Web developer and designer.

Jannis lives in Berlin, Germany.






	James Tauber [http://jtauber.com/]

	James is the lead developer of Pinax [http://pinaxproject.com/] and the CEO and founder of
Eldarion [http://eldarion.com/]. He has been doing open source software since 1993, Python
since 1998 and Django since 2006. He serves on the board of the Python
Software Foundation and is currently on a leave of absence from a PhD in
linguistics.

James currently lives in Boston, MA, USA but originally hails from
Perth, Western Australia where he attended the same high school as
Russell Keith-Magee.






	Alex Gaynor [http://alexgaynor.net]

	Alex is a student at Rensselaer Polytechnic Institute, and is also an
independent contractor.  He found Django in 2007 and has been addicted ever
since he found out you don’t need to write out your forms by hand.  He has
a small obsession with compilers.  He’s contributed to the ORM, forms,
admin, and other components of Django.

Alex lives in Chicago, IL, but spends most of his time in Troy, NY.






	Andrew Godwin [http://www.aeracode.org/]

	Andrew is a freelance Python developer and tinkerer, and has been
developing against Django since 2007. He graduated from Oxford University
with a degree in Computer Science, and has become most well known
in the Django community for his work on South, the schema migrations
library.

Andrew lives in London, UK.






	Carl Meyer [http://www.oddbird.net/about/#hcard-carl]

	Carl has been working with Django since 2007 (long enough to remember
queryset-refactor, but not magic-removal), and works as a freelance
developer with OddBird [http://www.oddbird.net/] and Eldarion [http://eldarion.com/]. He became a Django contributor by
accident, because fixing bugs is more interesting than working around
them.

Carl lives in Elkhart, IN, USA.






	Ramiro Morales

	Ramiro has been reading Django source code and submitting patches since
mid-2006 after researching for a Python Web tool with matching awesomeness
and being pointed to it by an old ninja.

A software developer in the electronic transactions industry, he is a
living proof of the fact that anyone with enough enthusiasm can contribute
to Django, learning a lot and having fun in the process.

Ramiro lives in Córdoba, Argentina.



	Chris Beaven [http://smileychris.com/]

	Chris has been submitting patches and suggesting crazy ideas for Django
since early 2006. An advocate for community involvement and a long-term
triager, he is still often found answering questions in the #django IRC
channel.

Chris lives in Napier, New Zealand (adding to the pool of Oceanic core
developers). He works remotely as a developer for Lincoln Loop [http://lincolnloop.com/].






	Honza Král

	Honza first discovered Django in 2006 and started using it right away,
first for school and personal projects and later in his full time job. He
contributed various patches and fixes mostly to the newforms library,
newforms admin and, through participation in the Google Summer of Code
project, assisted in creating the model validation functionality.

He is currently working for Whiskey Media [http://www.whiskeymedia.com/] in San Francisco developing
awesome sites running on pure Django.






	Idan Gazit [http://idan.gazit.me]

	As a self-professed design geek, Idan was initially attracted to Django
sometime between magic-removal and queryset-refactor. Formally trained
as a software engineer, Idan straddles the worlds of design and code,
jack of two trades and master of none. He is passionate about usability
and finding novel ways to extract meaning from data, and is a longtime
photographer [http://flickr.com/photos/idangazit].

Idan previously accepted freelance work under the Pixane [http://pixane.com] imprint, but
now splits his days between his startup, Skills [http://skillsapp.com], and beautifying all
things Django and Python.








Specialists


	James Bennett [http://b-list.org/]

	James is Django’s release manager; he also contributes to the documentation.

James came to Web development from philosophy when he discovered
that programmers get to argue just as much while collecting much
better pay. He lives in Lawrence, Kansas, where he works for the
Journal-World developing Ellington. He keeps a blog [http://b-list.org/], has
written a book on Django [http://www.amazon.com/dp/1590599969/?tag=djangoproject-20], and enjoys fine port and talking to
his car.






	Ian Kelly

	Ian is responsible for Django’s support for Oracle.

	Matt Boersma

	Matt is also responsible for Django’s Oracle support.

	Jeremy Dunck

	Jeremy is the lead developer of Pegasus News, a personalized local site based
in Dallas, Texas. An early contributor to Greasemonkey and Django, he sees
technology as a tool for communication and access to knowledge.

Jeremy helped kick off GeoDjango development, and is mostly responsible for
the serious speed improvements that signals received in Django 1.0.

Jeremy lives in Dallas, Texas, USA.



	Simon Meers [http://simonmeers.com/]

	Simon discovered Django 0.96 during his Computer Science PhD research and
has been developing with it full-time ever since. His core code
contributions are mostly in Django’s admin application. He is also helping
to improve Django’s documentation.

Simon works as a freelance developer based in Wollongong, Australia.






	Gabriel Hurley [http://strikeawe.com/]

	Gabriel has been working with Django since 2008, shortly after the 1.0
release. Convinced by his business partner that Python and Django were the
right direction for the company, he couldn’t have been more happy with the
decision. His contributions range across many areas in Django, but years of
copy-editing and an eye for detail lead him to be particularly at home
while working on Django’s documentation.

Gabriel works as a web developer in Berkeley, CA, USA.






	Tim Graham

	When exploring Web frameworks for an independent study project in the fall
of 2008, Tim discovered Django and was lured to it by the documentation.
He enjoys contributing to the docs because they’re awesome.

Tim works as a software engineer and lives in Philadelphia, PA, USA.










Developers Emeritus


	Georg “Hugo” Bauer

	Georg created Django’s internationalization system, managed i18n
contributions and made a ton of excellent tweaks, feature additions and bug
fixes.

	Robert Wittams

	Robert was responsible for the first refactoring of Django’s admin
application to allow for easier reuse and has made a ton of
excellent tweaks, feature additions and bug fixes.









          

      

      

    


    
         Copyright Django Software Foundation and contributors.
      Last updated on Jan 07, 2015.
      Created using Sphinx 1.2.2.
    

  

  
    
    
    Django’s release process
    
    

    

 

















  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Django 1.3.7 documentation 

          	Django internals 
 
      

    


    
      
          
            
  
Django’s release process


Official releases

Django’s release numbering works as follows:


	Versions are numbered in the form A.B or A.B.C.

	A is the major version number, which is only incremented for major
changes to Django, and these changes are not necessarily
backwards-compatible. That is, code you wrote for Django 6.0 may break
when we release Django 7.0.

	B is the minor version number, which is incremented for large yet
backwards compatible changes.  Code written for Django 6.4 will continue
to work under Django 6.5.

	C is the micro version number which, is incremented for bug and
security fixes.  A new micro-release will always be 100%
backwards-compatible with the previous micro-release.

	In some cases, we’ll make alpha, beta, or release candidate releases.
These are of the form A.B alpha/beta/rc N, which means the Nth
alpha/beta/release candidate of version A.B.



An exception to this version numbering scheme is the pre-1.0 Django code.
There’s no guarantee of backwards-compatibility until the 1.0 release.

In Subversion, each Django release will be tagged under tags/releases.  If
it’s necessary to release a bug fix release or a security release that doesn’t
come from the trunk, we’ll copy that tag to branches/releases to make the
bug fix release.


Major releases

Major releases (1.0, 2.0, etc.) will happen very infrequently (think “years”,
not “months”), and will probably represent major, sweeping changes to Django.




Minor releases

Minor release (1.1, 1.2, etc.) will happen roughly every nine months – see
release process, below for details.

These releases will contain new features, improvements to existing features, and
such. A minor release may deprecate certain features from previous releases. If a
feature in version A.B is deprecated, it will continue to work in version
A.B+1. In version A.B+2, use of the feature will raise a
DeprecationWarning but will continue to work. Version A.B+3 will
remove the feature entirely.

So, for example, if we decided to remove a function that existed in Django 1.0:


	Django 1.1 will contain a backwards-compatible replica of the function
which will raise a PendingDeprecationWarning. This warning is silent
by default; you need to explicitly turn on display of these warnings.

	Django 1.2 will contain the backwards-compatible replica, but the warning
will be promoted to a full-fledged DeprecationWarning. This warning is
loud by default, and will likely be quite annoying.

	Django 1.3 will remove the feature outright.






Micro releases

Micro releases (1.0.1, 1.0.2, 1.1.1, etc.) will be issued at least once half-way
between minor releases, and probably more often as needed.

These releases will always be 100% compatible with the associated minor release
– the answer to “should I upgrade to the latest micro release?” will always be
“yes.”

Each minor release of Django will have a “release maintainer” appointed. This
person will be responsible for making sure that bug fixes are applied to both
trunk and the maintained micro-release branch. This person will also work with
the release manager to decide when to release the micro releases.






Supported versions

At any moment in time, Django’s developer team will support a set of releases to
varying levels:


	The current development trunk will get new features and bug fixes
requiring major refactoring.

	All bug fixes applied to the trunk will also be applied to the last
minor release, to be released as the next micro release.

	Security fixes will be applied to the current trunk and the previous two
minor releases.




	Documentation fixes will generally be more freely backported to the last
release branch (at the discretion of the committer), and don’t need to meet
the “critical fixes only” bar as it’s highly advantageous to have the docs
for the last release be up-to-date and correct, and the downside of
backporting (risk of introducing regressions) is much less of a concern
with doc fixes.



As a concrete example, consider a moment in time halfway between the release of
Django 1.3 and 1.4. At this point in time:


	Features will be added to development trunk, to be released as Django 1.4.

	Bug fixes will be applied to a 1.3.X branch, and released as 1.3.1,
1.3.2, etc.

	Security releases will be applied to trunk, a 1.3.X branch and a
1.2.X branch. Security fixes will trigger the release of 1.3.1,
1.2.1, etc.




	Documentation fixes will be applied to trunk, and if easily backported, to
the 1.3.X branch.






Release process

Django uses a time-based release schedule, with minor (i.e. 1.1, 1.2, etc.)
releases every nine months, or more, depending on features.

After each previous release (and after a suitable cooling-off period of a week
or two), the core development team will examine the landscape and announce a
timeline for the next release. Most releases will be scheduled in the 6-9 month
range, but if we have bigger features to development we might schedule a longer
period to allow for more ambitious work.


Release cycle

Each release cycle will be split into three periods, each lasting roughly
one-third of the cycle:


Phase one: feature proposal

The first phase of the release process will be devoted to figuring out what
features to include in the next version. This should include a good deal of
preliminary work on those features – working code trumps grand design.

At the end of part one, the core developers will propose a feature list for the
upcoming release. This will be broken into:


	“Must-have”: critical features that will delay the release if not finished

	“Maybe” features: that will be pushed to the next release if not finished

	“Not going to happen”: features explicitly deferred to a later release.



Anything that hasn’t got at least some work done by the end of the first third
isn’t eligible for the next release; a design alone isn’t sufficient.




Phase two: development

The second third of the release schedule is the “heads-down” working period.
Using the roadmap produced at the end of phase one, we’ll all work very hard to
get everything on it done.

Longer release schedules will likely spend more than a third of the time in this
phase.

At the end of phase two, any unfinished “maybe” features will be postponed until
the next release. Though it shouldn’t happen, any “must-have” features will
extend phase two, and thus postpone the final release.

Phase two will culminate with an alpha release.




Phase three: bugfixes

The last third of a release is spent fixing bugs – no new features will be
accepted during this time. We’ll release a beta release about halfway through,
and an rc complete with string freeze two weeks before the end of the schedule.






Bug-fix releases

After a minor release (i.e 1.1), the previous release will go into bug-fix mode.

A branch will be created of the form branches/releases/1.0.X to track
bug-fixes to the previous release. When possible, bugs fixed on trunk must
also be fixed on the bug-fix branch; this means that commits need to cleanly
separate bug fixes from feature additions. The developer who commits a fix to
trunk will be responsible for also applying the fix to the current bug-fix
branch.  Each bug-fix branch will have a maintainer who will work with the
committers to keep them honest on backporting bug fixes.




How this all fits together

Let’s look at a hypothetical example for how this all first together. Imagine,
if you will, a point about halfway between 1.1 and 1.2. At this point,
development will be happening in a bunch of places:


	On trunk, development towards 1.2 proceeds with small additions, bugs
fixes, etc. being checked in daily.

	On the branch “branches/releases/1.1.X”, bug fixes found in the 1.1
release are checked in as needed. At some point, this branch will be
released as “1.1.1”, “1.1.2”, etc.

	On the branch “branches/releases/1.0.X”, security fixes are made if
needed and released as “1.0.2”, “1.0.3”, etc.

	On feature branches, development of major features is done. These
branches will be merged into trunk before the end of phase two.











          

      

      

    


    
         Copyright Django Software Foundation and contributors.
      Last updated on Jan 07, 2015.
      Created using Sphinx 1.2.2.
    

  

  
    
    
    Django Deprecation Timeline
    
    

    

 

















  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Django 1.3.7 documentation 

          	Django internals 
 
      

    


    
      
          
            
  
Django Deprecation Timeline

This document outlines when various pieces of Django will be removed, following
their deprecation, as per the Django deprecation policy


	
	1.3

	
	AdminSite.root().  This release will remove the old method for
hooking up admin URLs.  This has been deprecated since the 1.1
release.

	Authentication backends need to define the boolean attributes
supports_object_permissions and supports_anonymous_user.
The old backend style is deprecated since the 1.2 release.

	The django.contrib.gis.db.backend module, including the
SpatialBackend interface, is deprecated since the 1.2 release.









	
	1.4

	
	CsrfResponseMiddleware.  This has been deprecated since the 1.2
release, in favor of the template tag method for inserting the CSRF
token.  CsrfMiddleware, which combines CsrfResponseMiddleware
and CsrfViewMiddleware, is also deprecated.

	The old imports for CSRF functionality (django.contrib.csrf.*),
which moved to core in 1.2, will be removed.

	SMTPConnection. The 1.2 release deprecated the SMTPConnection
class in favor of a generic E-mail backend API.

	The many to many SQL generation functions on the database backends
will be removed.

	The ability to use the DATABASE_* family of top-level settings to
define database connections will be removed.

	The ability to use shorthand notation to specify a database backend
(i.e., sqlite3 instead of django.db.backends.sqlite3) will be
removed.

	The get_db_prep_save, get_db_prep_value and
get_db_prep_lookup methods on Field were modified in 1.2
to support multiple databases. In 1.4, the support functions
that allow methods with the old prototype to continue
working will be removed.

	The Message model (in django.contrib.auth), its related
manager in the User model (user.message_set), and the
associated methods (user.message_set.create() and
user.get_and_delete_messages()), which have
been deprecated since the 1.2 release, will be removed.  The
messages framework should be used
instead.

	Authentication backends need to support the obj parameter for
permission checking. The supports_object_permissions variable
is not checked any longer and can be removed.

	Authentication backends need to support the AnonymousUser
being passed to all methods dealing with permissions.
The supports_anonymous_user variable is not checked any
longer and can be removed.

	The ability to specify a callable template loader rather than a
Loader class will be removed, as will the load_template_source
functions that are included with the built in template loaders for
backwards compatibility. These have been deprecated since the 1.2
release.

	django.utils.translation.get_date_formats() and
django.utils.translation.get_partial_date_formats(). These
functions are replaced by the new locale aware formatting; use
django.utils.formats.get_format() to get the appropriate
formats.

	In django.forms.fields: DEFAULT_DATE_INPUT_FORMATS,
DEFAULT_TIME_INPUT_FORMATS and
DEFAULT_DATETIME_INPUT_FORMATS. Use
django.utils.formats.get_format() to get the appropriate
formats.

	The ability to use a function-based test runners will be removed,
along with the django.test.simple.run_tests() test runner.

	The views.feed() view and feeds.Feed class in
django.contrib.syndication have been deprecated since the 1.2
release. The class-based view views.Feed should be used instead.

	django.core.context_processors.auth.  This release will
remove the old method in favor of the new method in
django.contrib.auth.context_processors.auth.  This has been
deprecated since the 1.2 release.

	The postgresql database backend has been deprecated in favor of
the postgresql_psycopg2 backend.

	The no language code has been deprecated in favor of the nb
language code.

	Authentication backends need to define the boolean attribute
supports_inactive_user.

	django.db.models.fields.XMLField will be removed. This was
deprecated as part of the 1.3 release. An accelerated deprecation
schedule has been used because the field hasn’t performed any role
beyond that of a simple TextField since the removal of oldforms.
All uses of XMLField can be replaced with TextField.




	django.db.models.fields.URLField.verify_exists has been
deprecated due to intractable security and performance
issues. Validation behavior has been removed in 1.4, and the
argument will be removed in 1.5.









	
	1.5

	
	The mod_python request handler has been deprecated since the 1.3
release. The mod_wsgi handler should be used instead.

	The template attribute on Response
objects returned by the test client has been
deprecated since the 1.3 release. The
templates attribute should be
used instead.

	The features of the django.test.simple.DjangoTestRunner
(including fail-fast and Ctrl-C test termination) can now be provided
by the unittest-native TextTestRunner. The
DjangoTestRunner will be removed in
favor of using the unittest-native class.

	The undocumented function
django.contrib.formtools.utils.security_hash()
is deprecated, in favor of django.contrib.formtools.utils.form_hmac()

	The function-based generic views have been deprecated in
favor of their class-based cousins. The following modules
will be removed:
	django.views.generic.create_update

	django.views.generic.date_based

	django.views.generic.list_detail

	django.views.generic.simple





	The AdminMediaHandler has
been deprecated in favor of the
StaticFilesHandler.

	The url and ssi template tags will be
modified so that the first argument to each tag is a
template variable, not an implied string. The new-style
behavior is provided in the future template tag library.

	The reset and sqlreset management commands
are deprecated.

	Authentication backends need to support a inactive user
being passed to all methods dealing with permissions.
The supports_inactive_user variable is not checked any
longer and can be removed.

	transform() will raise
a GEOSException when called
on a geometry with no SRID value.

	CompatCookie will be removed in favor of
SimpleCookie.

	django.core.context_processors.PermWrapper and
django.core.context_processors.PermLookupDict
will be moved to django.contrib.auth.context_processors.PermWrapper
and django.contrib.auth.context_processors.PermLookupDict,
respectively.

	The MEDIA_URL or STATIC_URL settings are
required to end with a trailing slash to ensure there is a consistent
way to combine paths in templates.

	Translations located under the so-called project path will be
ignored during the translation building process performed at runtime.
The LOCALE_PATHS setting can be used for the same task by
including the filesystem path to a locale directory containing
non-app-specific translations in its value.









	
	2.0

	
	django.views.defaults.shortcut(). This function has been moved
to django.contrib.contenttypes.views.shortcut() as part of the
goal of removing all django.contrib references from the core
Django codebase. The old shortcut will be removed in the 2.0
release.















          

      

      

    


    
         Copyright Django Software Foundation and contributors.
      Last updated on Jan 07, 2015.
      Created using Sphinx 1.2.2.
    

  

  
    
    
    The Django source code repository
    
    

    

 

















  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Django 1.3.7 documentation 

          	Django internals 
 
      

    


    
      
          
            
  
The Django source code repository

When deploying a Django application into a real production
environment, you will almost always want to use an official packaged
release of Django [http://www.djangoproject.com/download/]. However, if you’d like to try out in-development
code from an upcoming release or contribute to the development of
Django, you’ll need to obtain a checkout from Django’s source code
repository. This document covers the way the code repository is laid
out and how to work with and find things in it.


High-level overview

The Django source code repository uses Subversion [http://subversion.tigris.org/] to track changes
to the code over time, so you’ll need a copy of the Subversion client
(a program called svn) on your computer, and you’ll want to
familiarize yourself with the basics of how Subversion
works. Subversion’s Web site offers downloads for various operating
systems, and a free online book [http://svnbook.red-bean.com/] is available to help you get up to
speed with using Subversion.

The Django Subversion repository is located online at
code.djangoproject.com/svn [http://code.djangoproject.com/svn/]. A
friendly Web-based interface for browsing the code [http://code.djangoproject.com/browser/] is also
available, though when using Subversion you’ll always want to use the
repository address instead. At the top level of the repository are two
directories: django contains the full source code for all Django
releases, while djangoproject.com contains the source code and
templates for the djangoproject.com [http://www.djangoproject.com/]
Web site. For trying out in-development Django code, or contributing
to Django, you’ll always want to check out code from some location in
the django directory.

Inside the django directory, Django’s source code is organized
into three areas:


	branches contains branched copies of Django’s code, which are
(or were) maintained for various purposes. Some branches exist to
provide a place to develop major or experimental new features
without affecting the rest of Django’s code, while others serve to
provide bug fixes or support for older Django releases.

	tags contains snapshots of Django’s code at various important
points in its history; mostly these are the exact revisions from
which packaged Django releases were produced.

	trunk contains the main in-development code which will become
the next packaged release of Django, and is where most development
activity is focused.






Working with Django’s trunk

If you’d like to try out the in-development code for the next release
of Django, or if you’d like to contribute to Django by fixing bugs or
developing new features, you’ll want to get the code from trunk. You
can get a complete copy of this code (a “Subversion checkout”) by
typing:

svn co http://code.djangoproject.com/svn/django/trunk/





Note that this will get all of Django: in addition to the top-level
django module containing Python code, you'll also get a copy of
Django's documentation, unit-test suite, packaging scripts and other
miscellaneous bits. Django's code will be present in your checkout as
a directory named django.

To try out the in-development trunk code with your own applications,
simply place the directory containing your checkout on your Python
import path. Then import statements which look for Django will find
the django module within your checkout.

If you're going to be working on Django's code (say, to fix a bug or
develop a new feature), you can probably stop reading here and move
over to the documentation for contributing to Django, which covers things like the preferred
coding style and how to generate and submit a patch.




Branches

Django uses branches for two main purposes:


	Development of major or experimental features, to keep them from
affecting progress on other work in trunk.

	Security and bug-fix support for older releases of Django, during
their support lifetimes.




Feature-development branches

Feature-development branches tend by their nature to be
temporary. Some produce successful features which are merged back into
Django's trunk to become part of an official release, but others do
not; in either case there comes a time when the branch is no longer
being actively worked on by any developer. At this point the branch is
considered closed.

Unfortunately, Subversion has no standard way of indicating this. As a
workaround, branches of Django which are closed and no longer
maintained are moved into the directory django/branches/attic.

For reference, the following are branches whose code eventually became
part of Django itself, and so are no longer separately maintained:


	boulder-oracle-sprint: Added support for Oracle databases to
Django's object-relational mapper. This has been part of Django
since the 1.0 release.

	gis: Added support for geographic/spatial queries to Django's
object-relational mapper. This has been part of Django since the 1.0
release, as the bundled application django.contrib.gis.

	i18n: Added internationalization support to
Django. This has been part of Django since the 0.90 release.

	magic-removal: A major refactoring of both the internals and
public APIs of Django's object-relational mapper. This has been part
of Django since the 0.95 release.

	multi-auth: A refactoring of Django's bundled
authentication framework which added support for
authentication backends. This has
been part of Django since the 0.95 release.

	new-admin: A refactoring of Django's bundled
administrative application. This became part of
Django as of the 0.91 release, but was superseded by another
refactoring (see next listing) prior to the Django 1.0 release.

	newforms-admin: The second refactoring of Django's bundled
administrative application. This became part of Django as of the 1.0
release, and is the basis of the current incarnation of
django.contrib.admin.

	queryset-refactor: A refactoring of the internals of Django's
object-relational mapper. This became part of Django as of the 1.0
release.

	unicode: A refactoring of Django's internals to consistently use
Unicode-based strings in most places within Django and Django
applications. This became part of Django as of the 1.0 release.



Additionally, the following branches are closed, but their code was
never merged into Django and the features they aimed to implement
were never finished:


	full-history

	generic-auth

	multiple-db-support

	per-object-permissions

	schema-evolution

	schema-evolution-ng

	search-api

	sqlalchemy



All of the above-mentioned branches now reside in
django/branches/attic.




Support and bugfix branches

In addition to fixing bugs in current trunk, the Django project
provides official bug-fix support for the most recent released version
of Django, and security support for the two most recently-released
versions of Django. This support is provided via branches in which the
necessary bug or security fixes are applied; the branches are then
used as the basis for issuing bugfix or security releases.

As of the Django 1.0 release, these branches can be found in the
repository in the directory django/branches/releases, and new branches
will be created there approximately one month after each new Django
release. For example, shortly after the release of Django 1.0, the
branch django/branches/releases/1.0.X was created to receive bug
fixes, and shortly after the release of Django 1.1 the branch
django/branches/releases/1.1.X was created.

Prior to the Django 1.0 release, these branches were maintained within
the top-level django/branches directory, and so the following
branches exist there and provided support for older Django releases:


	0.90-bugfixes

	0.91-bugfixes

	0.95-bugfixes

	0.96-bugfixes



Official support for those releases has expired, and so they no longer
receive direct maintenance from the Django project. However, the
branches continue to exist and interested community members have
occasionally used them to provide unofficial support for old Django
releases.






Tags

The directory django/tags within the repository contains complete
copies of the Django source code as it existed at various points in
its history. These "tagged" copies of Django are never changed or
updated; new tags may be added as needed, but once added they are
considered read-only and serve as useful guides to Django's
development history.

Within django/tags/releases are copies of the code which formed each
packaged release of Django, and each tag is named with the version
number of the release to which it corresponds. So, for example,
django/tags/releases/1.1 is a complete copy of the code which was
packaged as the Django 1.1 release.

Within django/tags/notable_moments are copies of the Django code from
points which do not directly correspond to releases, but which are
nonetheless important historical milestones for Django
development. The current "notable moments" marked there are:


	ipo: Django's code as it existed at the moment Django was first
publicly announced in 2005.

	pre-magic-removal: The state of Django's code just before the
merging of the magic-removal branch (described above), which
significantly updated Django's object-relational mapper.

	pre-newforms-admin: The state of Django's code just before the
merging of the newforms-admin branch (see above), which
significantly updated Django's bundled administrative application.

	Tags corresponding to each of the alpha, beta and release-candidate
packages in the run up to the Django 1.0 release.









          

      

      

    


    
         Copyright Django Software Foundation and contributors.
      Last updated on Jan 07, 2015.
      Created using Sphinx 1.2.2.
    

  

  
    
    
    Deprecated/obsolete documentation
    
    

    

 

















  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Django 1.3.7 documentation 
 
      

    


    
      
          
            
  
Deprecated/obsolete documentation

These documents cover features that have been deprecated or that have been
replaced in newer versions of Django. They’re preserved here for folks using old
versions of Django or those still using deprecated APIs. No new code based on
these APIs should be written.



	Customizing the Django admin interface









          

      

      

    


    
         Copyright Django Software Foundation and contributors.
      Last updated on Jan 07, 2015.
      Created using Sphinx 1.2.2.
    

  

  
    
    
    Customizing the Django admin interface
    
    

    

 

















  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	Django 1.3.7 documentation 

          	Deprecated/obsolete documentation 
 
      

    


    
      
          
            
  
Customizing the Django admin interface


Warning

The design of the admin has changed somewhat since this document was
written, and parts may not apply any more. This document is no longer
maintained since an official API for customizing the Django admin interface
is in development.



Django’s dynamic admin interface gives you a fully-functional admin for free
with no hand-coding required. The dynamic admin is designed to be
production-ready, not just a starting point, so you can use it as-is on a real
site. While the underlying format of the admin pages is built in to Django, you
can customize the look and feel by editing the admin stylesheet and images.

Here’s a quick and dirty overview some of the main styles and classes used in
the Django admin CSS.


Modules

The .module class is a basic building block for grouping content in the
admin. It’s generally applied to a div or a fieldset. It wraps the content
group in a box and applies certain styles to the elements within. An h2
within a div.module will align to the top of the div as a header for the
whole group.

[image: Example use of module class on admin homepage]



Column Types


Note

All admin pages (except the dashboard) are fluid-width. All fixed-width
classes from previous Django versions have been removed.



The base template for each admin page has a block that defines the column
structure for the page. This sets a class on the page content area
(div#content) so everything on the page knows how wide it should be. There
are three column types available.


	colM

	This is the default column setting for all pages. The “M” stands for “main”.
Assumes that all content on the page is in one main column
(div#content-main).

	colMS

	This is for pages with one main column and a sidebar on the right. The “S”
stands for “sidebar”. Assumes that main content is in div#content-main
and sidebar content is in div#content-related. This is used on the main
admin page.

	colSM

	Same as above, with the sidebar on the left. The source order of the columns
doesn’t matter.



For instance, you could stick this in a template to make a two-column page with
the sidebar on the right:

{% block coltype %}colMS{% endblock %}








Text Styles


Font Sizes

Most HTML elements (headers, lists, etc.) have base font sizes in the stylesheet
based on context. There are three classes are available for forcing text to a
certain size in any context.


	small

	11px

	tiny

	10px

	mini

	9px (use sparingly)






Font Styles and Alignment

There are also a few styles for styling text.


	.quiet

	Sets font color to light gray. Good for side notes in instructions. Combine
with .small or .tiny for sheer excitement.

	.help

	This is a custom class for blocks of inline help text explaining the
function of form elements. It makes text smaller and gray, and when applied
to p elements within .form-row elements (see Form Styles below),
it will offset the text to align with the form field. Use this for help
text, instead of small quiet. It works on other elements, but try to
put the class on a p whenever you can.

	.align-left

	It aligns the text left. Only works on block elements containing inline
elements.

	.align-right

	Are you paying attention?

	.nowrap

	Keeps text and inline objects from wrapping. Comes in handy for table
headers you want to stay on one line.






Floats and Clears


	float-left

	floats left

	float-right

	floats right

	clear

	clears all








Object Tools

Certain actions which apply directly to an object are used in form and
changelist pages. These appear in a "toolbar" row above the form or changelist,
to the right of the page. The tools are wrapped in a ul with the class
object-tools. There are two custom tool types which can be defined with an
additional class on the a for that tool. These are .addlink and
.viewsitelink.

Example from a changelist page:

<ul class="object-tools">
  <li><a href="/stories/add/" class="addlink">Add redirect</a></li>
</ul>





[image: Object tools on a changelist page]
and from a form page:

<ul class="object-tools">
 <li><a href="/history/303/152383/">History</a></li>
 <li><a href="/r/303/152383/" class="viewsitelink">View on site</a></li>
</ul>





[image: Object tools on a form page]



Form Styles


Fieldsets

Admin forms are broken up into groups by fieldset elements. Each form fieldset
should have a class .module. Each fieldset should have a header h2 within the
fieldset at the top (except the first group in the form, and in some cases where the
group of fields doesn't have a logical label).

Each fieldset can also take extra classes in addition to .module to apply
appropriate formatting to the group of fields.


	.aligned

	This will align the labels and inputs side by side on the same line.

	.wide

	Used in combination with .aligned to widen the space available for the
labels.






Form Rows

Each row of the form (within the fieldset) should be enclosed in a div
with class form-row. If the field in the row is required, a class of
required should also be added to the div.form-row.

[image: Example use of form-row class]



Labels

Form labels should always precede the field, except in the case
of checkboxes and radio buttons, where the input should come first. Any
explanation or help text should follow the label in a p with class
.help.









          

      

      

    


    
         Copyright Django Software Foundation and contributors.
      Last updated on Jan 07, 2015.
      Created using Sphinx 1.2.2.
    

  

  
    
    
    Python Module Index
    
    

    


 



















  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	Django 1.3.7 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   c | 
   d | 
   f | 
   h | 
   m | 
   s | 
   t | 
   u | 
   v
   


   
     			

     		
       c	

     
       	[image: -]
       	
       django.conf	
       

     
       	
       	
       django.conf.urls.defaults	
       

     
       	[image: -]
       	
       django.contrib	
       

     
       	
       	
       django.contrib.admin	
       Django's admin site.

     
       	
       	
       django.contrib.admindocs	
       Django's admin documentation generator.

     
       	
       	
       django.contrib.auth	
       Django's authentication framework.

     
       	
       	
       django.contrib.auth.backends	
       Django's built-in authentication backend classes.

     
       	
       	
       django.contrib.auth.forms	
       

     
       	
       	
       django.contrib.auth.middleware	
       Authentication middleware.

     
       	
       	
       django.contrib.auth.views	
       

     
       	
       	
       django.contrib.comments	
       Django's comment framework

     
       	
       	
       django.contrib.comments.forms	
       Forms for dealing with the built-in comment model.

     
       	
       	
       django.contrib.comments.models	
       The built-in comment models

     
       	
       	
       django.contrib.comments.moderation	
       Support for automatic comment moderation.

     
       	
       	
       django.contrib.comments.signals	
       Signals sent by the comment module.

     
       	
       	
       django.contrib.contenttypes	
       Provides generic interface to installed models.

     
       	
       	
       django.contrib.contenttypes.generic	
       

     
       	
       	
       django.contrib.databrowse	
       Databrowse is a Django application that lets you browse your data.

     
       	
       	
       django.contrib.flatpages	
       A framework for managing simple ?flat? HTML content in a database.

     
       	
       	
       django.contrib.formtools.preview	
       Displays an HTML form, forces a preview, then does something
with the submission.

     
       	
       	
       django.contrib.formtools.wizard	
       Splits forms across multiple Web pages.

     
       	
       	
       django.contrib.gis	
       Geographic Information System (GIS) extensions for Django

     
       	
       	
       django.contrib.gis.admin	
       GeoDjango's extensions to the admin site.

     
       	
       	
       django.contrib.gis.db.models	
       GeoDjango model and field API.

     
       	
       	
       django.contrib.gis.feeds	
       GeoDjango's framework for generating spatial feeds.

     
       	
       	
       django.contrib.gis.gdal	
       GeoDjango's high-level interface to the GDAL library.

     
       	
       	
       django.contrib.gis.geos	
       GeoDjango's high-level interface to the GEOS library.

     
       	
       	
       django.contrib.gis.measure	
       GeoDjango's distance and area measurment objects.

     
       	
       	
       django.contrib.gis.utils	
       GeoDjango's collection of utilities.

     
       	
       	
       django.contrib.gis.utils.geoip	
       High-level Python interface for MaxMind's GeoIP C library.

     
       	
       	
       django.contrib.gis.utils.layermapping	
       Spatial data import utility for GeoDjango models.

     
       	
       	
       django.contrib.gis.utils.ogrinspect	
       Utilities for inspecting OGR data sources.

     
       	
       	
       django.contrib.humanize	
       A set of Django template filters useful for adding a "human
touch" to data.

     
       	
       	
       django.contrib.localflavor	
       A collection of various Django snippets that are useful only for
a particular country or culture.

     
       	
       	
       django.contrib.markup	
       A collection of template filters that implement common markup languages.

     
       	
       	
       django.contrib.messages	
       Provides cookie- and session-based temporary message storage.

     
       	
       	
       django.contrib.messages.middleware	
       Message middleware.

     
       	
       	
       django.contrib.redirects	
       A framework for managing redirects.

     
       	
       	
       django.contrib.sessions	
       Provides session management for Django projects.

     
       	
       	
       django.contrib.sessions.middleware	
       Session middleware.

     
       	
       	
       django.contrib.sitemaps	
       A framework for generating Google sitemap XML files.

     
       	
       	
       django.contrib.sites	
       Lets you operate multiple Web sites from the same database and
Django project

     
       	
       	
       django.contrib.staticfiles	
       An app for handling static files.

     
       	
       	
       django.contrib.syndication	
       A framework for generating syndication feeds, in RSS and Atom,
quite easily.

     
       	
       	
       django.contrib.webdesign	
       Helpers and utilities targeted primarily at Web *designers*
rather than Web *developers*.

     
       	[image: -]
       	
       django.core	
       

     
       	
       	
       django.core.exceptions	
       Django specific exceptions

     
       	
       	
       django.core.files	
       File handling and storage

     
       	
       	
       django.core.files.storage	
       

     
       	
       	
       django.core.mail	
       Helpers to easily send e-mail.

     
       	
       	
       django.core.paginator	
       Classes to help you easily manage paginated data.

     
       	
       	
       django.core.signals	
       Core signals sent by the request/response system.

     
       	
       	
       django.core.urlresolvers	
       

     
       	
       	
       django.core.validators	
       Validation utilities and base classes

     			

     		
       d	

     
       	[image: -]
       	
       django.db	
       

     
       	
       	
       django.db.backends	
       Core signals sent by the database wrapper.

     
       	
       	
       django.db.models	
       

     
       	
       	
       django.db.models.fields	
       Built-in field types.

     
       	
       	
       django.db.models.fields.related	
       Related field types

     
       	
       	
       django.db.models.signals	
       Signals sent by the model system.

     
       	
       	
       django.db.transaction	
       

     
       	
       	
       django.dispatch	
       Signal dispatch

     			

     		
       f	

     
       	[image: -]
       	
       django.forms	
       

     
       	
       	
       django.forms.fields	
       Django's built-in form fields.

     
       	
       	
       django.forms.forms	
       

     
       	
       	
       django.forms.models	
       ModelForm and ModelFormset.

     
       	
       	
       django.forms.widgets	
       Django's built-in form widgets.

     			

     		
       h	

     
       	
       	
       django.http	
       Classes dealing with HTTP requests and responses.

     			

     		
       m	

     
       	[image: -]
       	
       django.middleware	
       Django's built-in middleware classes.

     
       	
       	
       django.middleware.cache	
       Middleware for the site-wide cache.

     
       	
       	
       django.middleware.common	
       Middleware adding "common" conveniences for perfectionists.

     
       	
       	
       django.middleware.csrf	
       Middleware adding protection against Cross Site Request
Forgeries.

     
       	
       	
       django.middleware.doc	
       Middleware to help your app self-document.

     
       	
       	
       django.middleware.gzip	
       Middleware to serve gziped content for performance.

     
       	
       	
       django.middleware.http	
       Middleware handling advanced HTTP features.

     
       	
       	
       django.middleware.locale	
       Middleware to enable language selection based on the request.

     
       	
       	
       django.middleware.transaction	
       Middleware binding a database transaction to each Web request.

     			

     		
       s	

     
       	
       	
       django.shortcuts	
       Convenience shortcuts that spam multiple levels of Django's MVC stack.

     			

     		
       t	

     
       	[image: -]
       	
       django.template	
       

     
       	
       	
       django.template.response	
       Classes dealing with lazy-rendered HTTP responses.

     
       	[image: -]
       	
       django.test	
       Testing tools for Django applications.

     
       	
       	
       django.test.client	
       Django's test client.

     
       	
       	
       django.test.signals	
       Signals sent during testing.

     
       	
       	
       django.test.utils	
       Helpers to write custom test runners.

     			

     		
       u	

     
       	[image: -]
       	
       django.utils	
       Django's built-in utilities.

     
       	
       	
       django.utils.cache	
       Helper functions for controlling caching.

     
       	
       	
       django.utils.datastructures	
       A dictionary that keeps its keys in the order in which they're inserted.

     
       	
       	
       django.utils.encoding	
       A series of helper classes and function to manage character encoding.

     
       	
       	
       django.utils.feedgenerator	
       Syndication feed generation library -- used for generating RSS, etc.

     
       	
       	
       django.utils.functional	
       Functional programming tools.

     
       	
       	
       django.utils.http	
       HTTP helper functions. (URL encoding, cookie handling, ...)

     
       	
       	
       django.utils.log	
       Logging tools for Django applications

     
       	
       	
       django.utils.safestring	
       Functions and classes for working with strings that can be displayed safely without further escaping in HTML.

     
       	
       	
       django.utils.translation	
       

     
       	
       	
       django.utils.tzinfo	
       Implementation of ``tzinfo`` classes for use with ``datetime.datetime``.

     			

     		
       v	

     
       	[image: -]
       	
       django.views	
       

     
       	
       	
       django.views.decorators.gzip	
       

     
       	
       	
       django.views.decorators.http	
       

     
       	
       	
       django.views.decorators.vary	
       

     
       	
       	
       django.views.generic.create_update	
       

     
       	
       	
       django.views.generic.date_based	
       

     
       	
       	
       django.views.generic.list_detail	
       

     
       	
       	
       django.views.generic.simple	
       

     
       	
       	
       django.views.i18n	
       

   



          

      

      

    


    
         Copyright Django Software Foundation and contributors.
      Last updated on Jan 07, 2015.
      Created using Sphinx 1.2.2.
    

  

  
    
    
    Index
    
    

    

 

















  
  

    
      Navigation

      
        	
          index

        	
          modules |

        	Django 1.3.7 documentation 
 
      

    


    
      
          
            

Index



 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Y
 | Z
 


Symbols


  	
      
  	
    --addrport
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --adminmedia
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --all
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --blank
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --database
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --decimal
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --domain
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --email
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --exclude
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --extension
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --failfast
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --format
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --geom-name
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --help
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --ignore
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --indent
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --insecure
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --ipv6
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --layer
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --locale
  


      	
        
  	django-admin command-line option
  


      


  

  	
      
  	
    --mapping
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --multi-geom
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --name-field
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --natural
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --no-default-ignore
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --no-imports
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --no-wrap
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --noinput
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --noreload
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --nostatic
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --null
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --pythonpath
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --settings
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --srid
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --symlinks
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --traceback
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --username
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --verbosity
  


      	
        
  	django-admin command-line option
  


      


      
  	
    --version
  


      	
        
  	django-admin command-line option
  


      


  





_


  	
      
  	__contains__() (backends.base.SessionBase method)
  


      	
        
  	(QueryDict method)
  


      


      
  	__delitem__() (backends.base.SessionBase method)
  


      	
        
  	(HttpResponse method)
  


      


      
  	__getattr__() (Area method)
  


      	
        
  	(Distance method)
  


      


      
  	__getitem__() (backends.base.SessionBase method)
  


      	
        
  	(HttpResponse method)
  


        
  	(OGRGeometry method)
  


        
  	(QueryDict method)
  


        
  	(SpatialReference method)
  


      


      
  	__init__() (Field method)
  


      	
        
  	(HttpResponse method)
  


        
  	(RequestSite method)
  


        
  	(SimpleTemplateResponse method)
  


        
  	(SyndicationFeed method)
  


        
  	(TemplateResponse method)
  


      


  

  	
      
  	__iter__() (File method)
  


      	
        
  	(HttpRequest method)
  


        
  	(OGRGeometry method)
  


      


      
  	__len__() (OGRGeometry method)
  


      
  	__setitem__() (backends.base.SessionBase method)
  


      	
        
  	(HttpResponse method)
  


        
  	(QueryDict method)
  


      


      
  	__str__() (Model method)
  


      
  	__unicode__() (Model method)
  


  





A


  	
      
  	A (class in django.contrib.gis.measure)
  


      
  	
    ABSOLUTE_URL_OVERRIDES
  


      	
        
  	setting
  


      


      
  	abstract (Options attribute)
  


      
  	accessed_time() (Storage method)
  


      
  	actions (ModelAdmin attribute)
  


      
  	actions_on_bottom (ModelAdmin attribute)
  


      
  	actions_on_top (ModelAdmin attribute)
  


      
  	actions_selection_counter (ModelAdmin attribute)
  


      
  	activate() (in module django.utils.translation)
  


      
  	
    add
  


      	
        
  	template filter
  


      


      
  	add() (GeometryCollection method)
  


      	
        
  	(RelatedManager method)
  


      


      
  	add_action() (AdminSite method)
  


      
  	add_form_template (ModelAdmin attribute)
  


      
  	add_item() (SyndicationFeed method)
  


      
  	add_item_elements() (SyndicationFeed method)
  


      
  	add_never_cache_headers() (in module django.utils.cache)
  


      
  	add_post_rendering_callback() (SimpleTemplateResponse method)
  


      
  	add_root_elements() (SyndicationFeed method)
  


      
  	add_view() (ModelAdmin method)
  


      
  	
    addslashes
  


      	
        
  	template filter
  


      


      
  	
    ADMIN_FOR
  


      	
        
  	setting
  


      


      
  	
    ADMIN_MEDIA_PREFIX
  


      	
        
  	setting
  


      


      
  	AdminEmailHandler (class in django.utils.log)
  


      
  	AdminPasswordChangeForm (class in django.contrib.auth.forms)
  


      
  	
    ADMINS
  


      	
        
  	setting
  


      


      
  	AdminSite (class in django.contrib.admin)
  


      
  	aggregate() (in module django.db.models.query.QuerySet)
  


      
  	all() (in module django.db.models.query.QuerySet)
  


      
  	allow() (CommentModerator method)
  


      
  	allow_empty (BaseDateListView attribute)
  


      	
        
  	(MultipleObjectMixin attribute)
  


      


      
  	allow_future (DateMixin attribute)
  


      
  	allow_lazy() (in module django.utils.functional)
  


      
  	allow_relation()
  


      
  	allow_syncdb()
  


      
  	
    ALLOWED_HOSTS
  


      	
        
  	setting
  


      


      
  	
    ALLOWED_INCLUDE_ROOTS
  


      	
        
  	setting
  


      


      
  	angular_name (SpatialReference attribute)
  


      
  	angular_units (SpatialReference attribute)
  


      
  	annotate() (in module django.db.models.query.QuerySet)
  


      
  	
    apnumber
  


      	
        
  	template filter
  


      


      
  	app_label (ContentType attribute)
  


      	
        
  	(Options attribute)
  


      


      
  	app_name (ResolverMatch attribute)
  


      
  	AppCommand (built-in class)
  


      
  	
    APPEND_SLASH
  


      	
        
  	setting
  


      


      
  	appendlist() (QueryDict method)
  


      
  	ar.forms.ARCUITField (class in django.contrib.localflavor)
  


      
  	ar.forms.ARDNIField (class in django.contrib.localflavor)
  


  

  	
      
  	ar.forms.ARPostalCodeField (class in django.contrib.localflavor)
  


      
  	ar.forms.ARProvinceSelect (class in django.contrib.localflavor)
  


      
  	ArchiveIndexView (class in django.views.generic.dates)
  


      
  	Area (class in django.contrib.gis.measure)
  


      
  	area (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	area() (GeoQuerySet method)
  


      
  	args (BaseCommand attribute)
  


      	
        
  	(ResolverMatch attribute)
  


      


      
  	as_datetime() (Field method)
  


      
  	as_double() (Field method)
  


      
  	as_int() (Field method)
  


      
  	as_p() (Form method)
  


      
  	as_string() (Field method)
  


      
  	as_table() (Form method)
  


      
  	as_ul() (Form method)
  


      
  	assertContains() (TestCase method)
  


      
  	assertFormError() (TestCase method)
  


      
  	assertNotContains() (TestCase method)
  


      
  	assertNumQueries() (TestCase method)
  


      
  	assertQuerysetEqual() (TestCase method)
  


      
  	assertRedirects() (TestCase method)
  


      
  	assertTemplateNotUsed() (TestCase method)
  


      
  	assertTemplateUsed() (TestCase method)
  


      
  	at.forms.ATSocialSecurityNumberField (class in django.contrib.localflavor)
  


      
  	at.forms.ATStateSelect (class in django.contrib.localflavor)
  


      
  	at.forms.ATZipCodeField (class in django.contrib.localflavor)
  


      
  	Atom1Feed (class in django.utils.feedgenerator)
  


      
  	attr_value() (SpatialReference method)
  


      
  	attrs (Widget attribute)
  


      
  	au.forms.AUPhoneNumberField (class in django.contrib.localflavor)
  


      
  	au.forms.AUPostCodeField (class in django.contrib.localflavor)
  


      
  	au.forms.AUStateSelect (class in django.contrib.localflavor)
  


      
  	auth_code() (SpatialReference method)
  


      
  	auth_name() (SpatialReference method)
  


      
  	
    AUTH_PROFILE_MODULE
  


      	
        
  	setting
  


      


      
  	authenticate() (in module django.contrib.auth)
  


      
  	
    AUTHENTICATION_BACKENDS
  


      	
        
  	setting
  


      


      
  	AuthenticationForm (class in django.contrib.auth.forms)
  


      
  	AuthenticationMiddleware (class in django.contrib.auth.middleware)
  


      
  	auto_close_field (CommentModerator attribute)
  


      
  	auto_moderate_field (CommentModerator attribute)
  


      
  	auto_now (DateField attribute)
  


      
  	auto_now_add (DateField attribute)
  


      
  	autocommit() (in module django.db.transaction)
  


      
  	
    autoescape
  


      	
        
  	template tag
  


      


      
  	AutoField (class in django.db.models)
  


      
  	Avg (class in django.db.models)
  


  





B


  	
      
  	backends.base.SessionBase (class in django.contrib.sessions)
  


      
  	base36_to_int() (in module django.utils.http)
  


      
  	BaseArchiveIndexView (class in django.views.generic.dates)
  


      
  	BaseCommand (built-in class)
  


      
  	BaseCreateView (class in django.views.generic.edit)
  


      
  	BaseDateDetailView (class in django.views.generic.dates)
  


      
  	BaseDateListView (class in django.views.generic.dates)
  


      
  	BaseDayArchiveView (class in django.views.generic.dates)
  


      
  	BaseDeleteView (class in django.views.generic.edit)
  


      
  	BaseDetailView (class in django.views.generic.detail)
  


      
  	BaseFormView (class in django.views.generic.edit)
  


      
  	BaseListView (class in django.views.generic.list)
  


      
  	BaseMonthArchiveView (class in django.views.generic.dates)
  


      
  	BaseTodayArchiveView (class in django.views.generic.dates)
  


      
  	BaseUpdateView (class in django.views.generic.edit)
  


      
  	BaseWeekArchiveView (class in django.views.generic.dates)
  


      
  	BaseYearArchiveView (class in django.views.generic.dates)
  


      
  	
    bbcontains
  


      	
        
  	field lookup type
  


      


      
  	
    bboverlaps
  


      	
        
  	field lookup type
  


      


      
  	be.forms.BEPhoneNumberField (class in django.contrib.localflavor)
  


  

  	
      
  	be.forms.BEPostalCodeField (class in django.contrib.localflavor)
  


      
  	be.forms.BEProvinceSelect (class in django.contrib.localflavor)
  


      
  	be.forms.BERegionSelect (class in django.contrib.localflavor)
  


      
  	BigIntegerField (class in django.db.models)
  


      
  	blank (Field attribute)
  


      
  	
    block
  


      	
        
  	template tag
  


      


      
  	BooleanField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	boundary (GEOSGeometry attribute)
  


      
  	boundary() (OGRGeometry method)
  


      
  	BoundField (class in django.forms)
  


      
  	br.forms.BRCNPJField (class in django.contrib.localflavor)
  


      
  	br.forms.BRCPFField (class in django.contrib.localflavor)
  


      
  	br.forms.BRPhoneNumberField (class in django.contrib.localflavor)
  


      
  	br.forms.BRStateSelect (class in django.contrib.localflavor)
  


      
  	br.forms.BRZipCodeField (class in django.contrib.localflavor)
  


      
  	buffer() (GEOSGeometry method)
  


      
  	build_absolute_uri() (HttpRequest method)
  


      
  	build_suite() (DjangoTestSuiteRunner method)
  


      
  	byteorder (WKBWriter attribute)
  


  





C


  	
      
  	ca.forms.CAPhoneNumberField (class in django.contrib.localflavor)
  


      
  	ca.forms.CAPostalCodeField (class in django.contrib.localflavor)
  


      
  	ca.forms.CAProvinceField (class in django.contrib.localflavor)
  


      
  	ca.forms.CAProvinceSelect (class in django.contrib.localflavor)
  


      
  	ca.forms.CASocialInsuranceNumberField (class in django.contrib.localflavor)
  


      
  	
    CACHE_BACKEND
  


      	
        
  	setting
  


      


      
  	
    CACHE_MIDDLEWARE_ALIAS
  


      	
        
  	setting
  


      


      
  	
    CACHE_MIDDLEWARE_ANONYMOUS_ONLY
  


      	
        
  	setting
  


      


      
  	
    CACHE_MIDDLEWARE_KEY_PREFIX
  


      	
        
  	setting
  


      


      
  	
    CACHE_MIDDLEWARE_SECONDS
  


      	
        
  	setting
  


      


      
  	
    CACHES
  


      	
        
  	setting
  


      


      
  	
    CACHES-BACKEND
  


      	
        
  	setting
  


      


      
  	
    CACHES-KEY_FUNCTION
  


      	
        
  	setting
  


      


      
  	
    CACHES-KEY_PREFIX
  


      	
        
  	setting
  


      


      
  	
    CACHES-LOCATION
  


      	
        
  	setting
  


      


      
  	
    CACHES-OPTIONS
  


      	
        
  	setting
  


      


      
  	
    CACHES-TIMEOUT
  


      	
        
  	setting
  


      


      
  	
    CACHES-VERSION
  


      	
        
  	setting
  


      


      
  	can_delete (InlineModelAdmin attribute)
  


      
  	can_import_settings (BaseCommand attribute)
  


      
  	
    capfirst
  


      	
        
  	template filter
  


      


      
  	cascaded_union (MultiPolygon attribute)
  


      
  	
    center
  


      	
        
  	template filter
  


      


      
  	centroid (GEOSGeometry attribute)
  


      	
        
  	(Polygon attribute)
  


      


      
  	centroid() (GeoQuerySet method)
  


      
  	ch.forms.CHIdentityCardNumberField (class in django.contrib.localflavor)
  


      
  	ch.forms.CHPhoneNumberField (class in django.contrib.localflavor)
  


      
  	ch.forms.CHStateSelect (class in django.contrib.localflavor)
  


      
  	ch.forms.CHZipCodeField (class in django.contrib.localflavor)
  


      
  	change_form_template (ModelAdmin attribute)
  


      
  	change_list_template (ModelAdmin attribute)
  


      
  	change_view() (ModelAdmin method)
  


      
  	changefreq (Sitemap attribute)
  


      
  	changelist_view() (ModelAdmin method)
  


      
  	
    changepassword
  


      	
        
  	django-admin command
  


      


      
  	CharField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	charset (UploadedFile attribute)
  


      
  	check_password() (in module django.contrib.auth.models)
  


      	
        
  	(models.User method)
  


      


      
  	check_test (CheckboxInput attribute)
  


      
  	CheckboxInput (class in django.forms)
  


      
  	CheckboxSelectMultiple (class in django.forms)
  


      
  	ChoiceField (class in django.forms)
  


      
  	choices (ChoiceField attribute)
  


      	
        
  	(Field attribute)
  


      


      
  	chunks() (File method)
  


      	
        
  	(UploadedFile method), [1]
  


      


      
  	city() (GeoIP method)
  


      
  	city_info (GeoIP attribute)
  


      
  	cl.forms.CLRegionSelect (class in django.contrib.localflavor)
  


      
  	cl.forms.CLRutField (class in django.contrib.localflavor)
  


      
  	clean() (Field method)
  


      	
        
  	(Model method)
  


      


      
  	clean_fields() (Model method)
  


      
  	clean_username() (RemoteUserBackend method)
  


      
  	cleaned_data (Form attribute)
  


      
  	
    cleanup
  


      	
        
  	django-admin command
  


      


      
  	clear() (backends.base.SessionBase method)
  


      	
        
  	(RelatedManager method)
  


      


      
  	clear_cache() (ContentTypeManager method)
  


      
  	ClearableFileInput (class in django.forms)
  


      
  	Client (class in django.test.client)
  


      
  	client (Response attribute)
  


      	
        
  	(TestCase attribute)
  


      


      
  	client_class (TestCase attribute)
  


      
  	clone() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


        
  	(SpatialReference method)
  


      


      
  	close() (FieldFile method)
  


      	
        
  	(File method)
  


      


      
  	close_after (CommentModerator attribute)
  


      
  	close_rings() (OGRGeometry method)
  


      
  	code (RegexValidator attribute)
  


      
  	codename (Permission attribute)
  


      
  	coerce (TypedChoiceField attribute)
  


      
  	Collect (class in django.contrib.gis.db.models)
  


      
  	collect() (GeoQuerySet method)
  


      
  	
    collectstatic
  


      	
        
  	django-admin command
  


      


      
  	ComboField (class in django.forms)
  


      
  	CommandError (built-in class)
  


      
  	CommaSeparatedIntegerField (class in django.db.models)
  


      
  	
    comment
  


      	
        
  	template tag
  


      


      
  	Comment (class in django.contrib.comments.models)
  


      
  	comment (Comment attribute)
  


      
  	
    comment_form_target
  


      	
        
  	template tag
  


      


      
  	
    COMMENT_MAX_LENGTH
  


      	
        
  	setting
  


      


  

  	
      
  	CommentDetailsForm (class in django.contrib.comments.forms)
  


      
  	CommentForm (class in django.contrib.comments.forms)
  


      
  	CommentModerator (class in django.contrib.comments.moderation)
  


      
  	
    COMMENTS_APP
  


      	
        
  	setting
  


      


      
  	
    COMMENTS_HIDE_REMOVED
  


      	
        
  	setting
  


      


      
  	CommentSecurityForm (class in django.contrib.comments.forms)
  


      
  	commit_manually() (in module django.db.transaction)
  


      
  	commit_on_success() (in module django.db.transaction)
  


      
  	CommonMiddleware (class in django.middleware.common)
  


      
  	
    compilemessages
  


      	
        
  	django-admin command
  


      


      
  	condition() (in module django.views.decorators.http)
  


      
  	ConditionalGetMiddleware (class in django.middleware.http)
  


      
  	configure_user() (RemoteUserBackend method)
  


      
  	connect() (Moderator method)
  


      	
        
  	(Signal method)
  


      


      
  	
    contained
  


      	
        
  	field lookup type
  


      


      
  	
    contains
  


      	
        
  	field lookup type
  


      


      
  	contains() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


        
  	(PreparedGeometry method)
  


      


      
  	
    contains_properly
  


      	
        
  	field lookup type
  


      


      
  	contains_properly() (PreparedGeometry method)
  


      
  	content (HttpResponse attribute)
  


      	
        
  	(Response attribute)
  


      


      
  	content_object (Comment attribute)
  


      
  	content_type (Comment attribute)
  


      	
        
  	(Permission attribute)
  


        
  	(UploadedFile attribute)
  


      


      
  	ContentFile (class in django.core.files.base)
  


      
  	ContentType (class in django.contrib.contenttypes.models)
  


      
  	ContentTypeManager (class in django.contrib.contenttypes.models)
  


      
  	context (Response attribute)
  


      
  	context_data (SimpleTemplateResponse attribute)
  


      
  	context_object_name (MultipleObjectMixin attribute)
  


      	
        
  	(SingleObjectMixin attribute)
  


      


      
  	convex_hull (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	cookie_date() (in module django.utils.http)
  


      
  	cookies (Client attribute)
  


      
  	COOKIES (HttpRequest attribute)
  


      
  	coord_dim (OGRGeometry attribute)
  


      
  	coords (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	coords() (GeoIP method)
  


      
  	CoordTransform (class in django.contrib.gis.gdal)
  


      
  	copy() (QueryDict method)
  


      
  	Count (class in django.db.models)
  


      
  	count (Paginator attribute)
  


      
  	count() (in module django.db.models.query.QuerySet)
  


      
  	country() (GeoIP method)
  


      
  	country_code() (GeoIP method)
  


      
  	country_code_by_addr() (GeoIP method)
  


      
  	country_code_by_name() (GeoIP method)
  


      
  	country_info (GeoIP attribute)
  


      
  	country_name() (GeoIP method)
  


      
  	country_name_by_addr() (GeoIP method)
  


      
  	country_name_by_name() (GeoIP method)
  


      
  	
    coupling
  


      	
        
  	loose
  


      


      
  	
    coveredby
  


      	
        
  	field lookup type
  


      


      
  	
    covers
  


      	
        
  	field lookup type
  


      


      
  	covers() (PreparedGeometry method)
  


      
  	create() (in module django.db.models.query.QuerySet)
  


      	
        
  	(RelatedManager method)
  


        
  	(models.User.message_set method)
  


      


      
  	create_test_db() (in module django.test.utils)
  


      
  	create_unknown_user (RemoteUserBackend attribute)
  


      
  	create_user() (models.UserManager method)
  


      
  	
    createcachetable
  


      	
        
  	django-admin command
  


      


      
  	created_time() (Storage method)
  


      
  	
    createsuperuser
  


      	
        
  	django-admin command
  


      


      
  	CreateView (class in django.views.generic.edit)
  


      
  	
    crosses
  


      	
        
  	field lookup type
  


      


      
  	crosses() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


      


      
  	
    CSRF_COOKIE_DOMAIN
  


      	
        
  	setting
  


      


      
  	
    CSRF_COOKIE_NAME
  


      	
        
  	setting
  


      


      
  	
    CSRF_FAILURE_VIEW
  


      	
        
  	setting
  


      


      
  	
    csrf_token
  


      	
        
  	template tag
  


      


      
  	CsrfMiddleware (class in django.middleware.csrf)
  


      
  	css_classes() (BoundField method)
  


      
  	ct_field (GenericInlineModelAdmin attribute)
  


      
  	ct_fk_field (GenericInlineModelAdmin attribute)
  


      
  	CurrentSiteManager (class in django.contrib.sites.managers)
  


      
  	
    cut
  


      	
        
  	template filter
  


      


      
  	
    cycle
  


      	
        
  	template tag
  


      


      
  	cz.forms.CZBirthNumberField (class in django.contrib.localflavor)
  


      
  	cz.forms.CZICNumberField (class in django.contrib.localflavor)
  


      
  	cz.forms.CZPostalCodeField (class in django.contrib.localflavor)
  


      
  	cz.forms.CZRegionSelect (class in django.contrib.localflavor)
  


  





D


  	
      
  	D (class in django.contrib.gis.measure)
  


      
  	
    daemonize
  


      	
        
  	django-admin command-line option
  


      


      
  	
    DATABASE-ENGINE
  


      	
        
  	setting
  


      


      
  	
    DATABASE_ENGINE
  


      	
        
  	setting
  


      


      
  	
    DATABASE_HOST
  


      	
        
  	setting
  


      


      
  	
    DATABASE_NAME
  


      	
        
  	setting
  


      


      
  	
    DATABASE_OPTIONS
  


      	
        
  	setting
  


      


      
  	
    DATABASE_PASSWORD
  


      	
        
  	setting
  


      


      
  	
    DATABASE_PORT
  


      	
        
  	setting
  


      


      
  	
    DATABASE_ROUTERS
  


      	
        
  	setting
  


      


      
  	
    DATABASE_USER
  


      	
        
  	setting
  


      


      
  	DatabaseError
  


      
  	
    DATABASES
  


      	
        
  	setting
  


      


      
  	DataSource (class in django.contrib.gis.gdal)
  


      
  	
    date
  


      	
        
  	template filter
  


      


      
  	date_field (DateMixin attribute)
  


      
  	
    DATE_FORMAT
  


      	
        
  	setting
  


      


      
  	date_hierarchy (ModelAdmin attribute)
  


      
  	
    DATE_INPUT_FORMATS
  


      	
        
  	setting
  


      


      
  	date_joined (models.User attribute)
  


      
  	DateDetailView (class in django.views.generic.dates)
  


      
  	DateField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	DateInput (class in django.forms)
  


      
  	DateMixin (class in django.views.generic.dates)
  


      
  	dates() (in module django.db.models.query.QuerySet)
  


      
  	
    DATETIME_FORMAT
  


      	
        
  	setting
  


      


      
  	
    DATETIME_INPUT_FORMATS
  


      	
        
  	setting
  


      


      
  	DateTimeField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	DateTimeInput (class in django.forms)
  


      
  	
    day
  


      	
        
  	field lookup type
  


      


      
  	day (DayMixin attribute)
  


      
  	day_format (DayMixin attribute)
  


      
  	DayArchiveView (class in django.views.generic.dates)
  


      
  	DayMixin (class in django.views.generic.dates)
  


      
  	db (QuerySet attribute)
  


      
  	db_column (Field attribute)
  


      
  	db_for_read()
  


      
  	db_for_write()
  


      
  	db_index (Field attribute)
  


      
  	db_table (ManyToManyField attribute)
  


      	
        
  	(Options attribute)
  


      


      
  	db_tablespace (Field attribute)
  


      	
        
  	(Options attribute)
  


      


      
  	db_type() (Field method)
  


      
  	
    dbshell
  


      	
        
  	django-admin command
  


      


      
  	de.forms.DEIdentityCardNumberField (class in django.contrib.localflavor)
  


      
  	de.forms.DEStateSelect (class in django.contrib.localflavor)
  


      
  	de.forms.DEZipCodeField (class in django.contrib.localflavor)
  


      
  	deactivate() (in module django.utils.translation)
  


      
  	deactivate_all() (in module django.utils.translation)
  


      
  	
    debug
  


      	
        
  	django-admin command-line option
  


        
  	template tag
  


      


      
  	
    DEBUG
  


      	
        
  	setting
  


      


      
  	decimal_places (DecimalField attribute), [1]
  


      
  	
    DECIMAL_SEPARATOR
  


      	
        
  	setting
  


      


      
  	DecimalField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	decorators.login_required() (in module django.contrib.auth)
  


      
  	
    default
  


      	
        
  	template filter
  


      


      
  	default (Field attribute)
  


      
  	
    DEFAULT_CHARSET
  


      	
        
  	setting
  


      


      
  	
    DEFAULT_CONTENT_TYPE
  


      	
        
  	setting
  


      


      
  	
    DEFAULT_FILE_STORAGE
  


      	
        
  	setting
  


      


      
  	
    DEFAULT_FROM_EMAIL
  


      	
        
  	setting
  


      


      
  	
    default_if_none
  


      	
        
  	template filter
  


      


      
  	
    DEFAULT_INDEX_TABLESPACE
  


      	
        
  	setting
  


      


      
  	default_lat (GeoModelAdmin attribute)
  


      
  	default_lon (GeoModelAdmin attribute)
  


      
  	
    DEFAULT_TABLESPACE
  


      	
        
  	setting
  


      


      
  	default_zoom (GeoModelAdmin attribute)
  


      
  	DefaultStorage (class in django.core.files.storage)
  


      
  	defer() (in module django.db.models.query.QuerySet)
  


      
  	delete() (Client method)
  


      	
        
  	(FieldFile method)
  


        
  	(File method)
  


        
  	(Model method)
  


        
  	(Storage method)
  


        
  	(in module django.db.models.query.QuerySet)
  


      


      
  	delete_confirmation_template (ModelAdmin attribute)
  


      
  	delete_cookie() (HttpResponse method)
  


      
  	delete_model() (ModelAdmin method)
  


      
  	delete_selected_confirmation_template (ModelAdmin attribute)
  


      
  	delete_test_cookie() (backends.base.SessionBase method)
  


      
  	delete_view() (ModelAdmin method)
  


      
  	DeleteView (class in django.views.generic.edit)
  


      
  	DeletionMixin (class in django.views.generic.edit)
  


      
  	description (Field attribute)
  


      
  	destroy_test_db() (in module django.test.utils)
  


      
  	DetailView (class in django.views.generic.detail)
  


      
  	
    dictsort
  


      	
        
  	template filter
  


      


      
  	
    dictsortreversed
  


      	
        
  	template filter
  


      


      
  	difference() (GeoQuerySet method)
  


      	
        
  	(GEOSGeometry method)
  


        
  	(OGRGeometry method)
  


      


      
  	
    diffsettings
  


      	
        
  	django-admin command
  


      


      
  	dim (GeometryField attribute)
  


      
  	dimension (OGRGeometry attribute)
  


      
  	disable_action() (AdminSite method)
  


      
  	
    DISALLOWED_USER_AGENTS
  


      	
        
  	setting
  


      


      
  	disconnect() (Signal method)
  


      
  	
    disjoint
  


      	
        
  	field lookup type
  


      


      
  	disjoint() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


      


      
  	dispatch() (View method)
  


      
  	Distance (class in django.contrib.gis.measure)
  


      
  	distance() (GeoQuerySet method)
  


      	
        
  	(GEOSGeometry method)
  


      


      
  	
    distance_gt
  


      	
        
  	field lookup type
  


      


      
  	
    distance_gte
  


      	
        
  	field lookup type
  


      


      
  	
    distance_lt
  


      	
        
  	field lookup type
  


      


      
  	
    distance_lte
  


      	
        
  	field lookup type
  


      


      
  	distinct (Count attribute)
  


      
  	distinct() (in module django.db.models.query.QuerySet)
  


      
  	
    divisibleby
  


      	
        
  	template filter
  


      


      
  	django (OGRGeomType attribute)
  


      
  	
    django-admin command
  


      	
        
  	changepassword
  


        
  	cleanup
  


        
  	collectstatic
  


        
  	compilemessages
  


        
  	createcachetable
  


        
  	createsuperuser
  


        
  	dbshell
  


        
  	diffsettings
  


        
  	dumpdata
  


        
  	findstatic
  


        
  	flush
  


        
  	inspectdb
  


        
  	loaddata
  


        
  	makemessages
  


        
  	ogrinspect
  


        
  	ping_google
  


        
  	reset
  


        
  	runfcgi
  


        
  	runserver, [1]
  


        
  	shell
  


        
  	sql
  


        
  	sqlall
  


        
  	sqlclear
  


        
  	sqlcustom
  


        
  	sqlflush
  


        
  	sqlindexes
  


        
  	sqlreset
  


        
  	sqlsequencereset
  


        
  	startapp
  


        
  	startproject
  


        
  	syncdb
  


        
  	test
  


        
  	testserver
  


        
  	validate
  


      


      
  	
    django-admin command-line option
  


      	
        
  	--addrport
  


        
  	--adminmedia
  


        
  	--all
  


        
  	--blank
  


        
  	--database
  


        
  	--decimal
  


        
  	--domain
  


        
  	--email
  


        
  	--exclude
  


        
  	--extension
  


        
  	--failfast
  


        
  	--format
  


        
  	--geom-name
  


        
  	--help
  


        
  	--ignore
  


        
  	--indent
  


        
  	--insecure
  


        
  	--ipv6
  


        
  	--layer
  


        
  	--locale
  


        
  	--mapping
  


        
  	--multi-geom
  


        
  	--name-field
  


        
  	--natural
  


        
  	--no-default-ignore
  


        
  	--no-imports
  


        
  	--no-wrap
  


        
  	--noinput
  


        
  	--noreload
  


        
  	--nostatic
  


        
  	--null
  


        
  	--pythonpath
  


        
  	--settings
  


        
  	--srid
  


        
  	--symlinks
  


        
  	--traceback
  


        
  	--username
  


        
  	--verbosity
  


        
  	--version
  


        
  	daemonize
  


        
  	debug
  


        
  	errlog
  


        
  	host
  


        
  	maxchildren
  


        
  	maxrequests
  


        
  	maxspare
  


        
  	method
  


        
  	minspare
  


        
  	outlog
  


        
  	pidfile
  


        
  	port
  


        
  	protocol
  


        
  	socket
  


        
  	umask
  


        
  	workdir
  


      


      
  	django.conf.settings.configure() (built-in function)
  


      
  	django.conf.urls.defaults (module)
  


      
  	django.contrib.admin (module)
  


      
  	django.contrib.admindocs (module)
  


      
  	django.contrib.auth (module)
  


      
  	django.contrib.auth.backends (module)
  


      
  	django.contrib.auth.backends.RemoteUserBackend (class in django.contrib.auth.backends)
  


      
  	django.contrib.auth.forms (module)
  


      
  	django.contrib.auth.middleware (module)
  


      
  	django.contrib.auth.signals.user_logged_in (in module django.contrib.auth)
  


      
  	django.contrib.auth.signals.user_logged_out (in module django.contrib.auth)
  


      
  	django.contrib.auth.views (module)
  


      
  	django.contrib.comments (module)
  


      
  	django.contrib.comments.forms (module)
  


      
  	django.contrib.comments.models (module)
  


      
  	django.contrib.comments.moderation (module)
  


      
  	django.contrib.comments.signals (module)
  


      
  	django.contrib.comments.signals.comment_was_flagged (built-in variable)
  


      
  	django.contrib.comments.signals.comment_was_posted (built-in variable)
  


      
  	django.contrib.comments.signals.comment_will_be_posted (built-in variable)
  


  

  	
      
  	django.contrib.contenttypes (module)
  


      
  	django.contrib.contenttypes.generic (module)
  


      
  	django.contrib.databrowse (module)
  


      
  	django.contrib.flatpages (module)
  


      
  	django.contrib.formtools.preview (module)
  


      
  	django.contrib.formtools.wizard (module)
  


      
  	django.contrib.gis (module)
  


      
  	django.contrib.gis.admin (module)
  


      
  	django.contrib.gis.db.models (module), [1]
  


      
  	django.contrib.gis.feeds (module)
  


      
  	django.contrib.gis.gdal (module)
  


      
  	django.contrib.gis.geos (module)
  


      
  	django.contrib.gis.measure (module)
  


      
  	django.contrib.gis.utils (module)
  


      
  	django.contrib.gis.utils.geoip (module)
  


      
  	django.contrib.gis.utils.layermapping (module)
  


      
  	django.contrib.gis.utils.ogrinspect (module)
  


      
  	django.contrib.humanize (module)
  


      
  	django.contrib.localflavor (module)
  


      
  	django.contrib.markup (module)
  


      
  	django.contrib.messages (module)
  


      
  	django.contrib.messages.middleware (module)
  


      
  	django.contrib.redirects (module)
  


      
  	django.contrib.sessions (module)
  


      
  	django.contrib.sessions.middleware (module)
  


      
  	django.contrib.sitemaps (module)
  


      
  	django.contrib.sites (module)
  


      
  	django.contrib.staticfiles (module)
  


      
  	django.contrib.staticfiles.urls.staticfiles_urlpatterns() (built-in function)
  


      
  	django.contrib.staticfiles.views.serve() (built-in function)
  


      
  	django.contrib.syndication (module)
  


      
  	django.contrib.syndication.views.Feed (class in django.contrib.syndication)
  


      
  	django.contrib.webdesign (module)
  


      
  	django.core.context_processors.static() (built-in function)
  


      
  	django.core.exceptions (module)
  


      
  	django.core.files (module)
  


      
  	django.core.files.storage (module)
  


      
  	django.core.mail (module)
  


      
  	django.core.mail.outbox (in module django.core.mail)
  


      
  	django.core.management.call_command() (built-in function)
  


      
  	django.core.paginator (module)
  


      
  	django.core.signals (module)
  


      
  	django.core.signals.got_request_exception (built-in variable)
  


      
  	django.core.signals.request_finished (built-in variable)
  


      
  	django.core.signals.request_started (built-in variable)
  


      
  	django.core.urlresolvers (module)
  


      
  	django.core.validators (module)
  


      
  	django.db (module)
  


      
  	django.db.backends (module)
  


      
  	django.db.backends.signals.connection_created (built-in variable)
  


      
  	django.db.models (module)
  


      
  	django.db.models.fields (module)
  


      
  	django.db.models.fields.related (module)
  


      
  	django.db.models.signals (module)
  


      
  	django.db.models.signals.class_prepared (built-in variable)
  


      
  	django.db.models.signals.m2m_changed (built-in variable)
  


      
  	django.db.models.signals.post_delete (built-in variable)
  


      
  	django.db.models.signals.post_init (built-in variable)
  


      
  	django.db.models.signals.post_save (built-in variable)
  


      
  	django.db.models.signals.post_syncdb (built-in variable)
  


      
  	django.db.models.signals.pre_delete (built-in variable)
  


      
  	django.db.models.signals.pre_save (built-in variable)
  


      
  	django.db.models.SubfieldBase (class in django.db.models)
  


      
  	django.db.transaction (module)
  


      
  	django.dispatch (module)
  


      
  	django.forms.fields (module)
  


      
  	django.forms.forms (module)
  


      
  	django.forms.models (module)
  


      
  	django.forms.widgets (module)
  


      
  	django.http (module)
  


      
  	django.http.Http404 (built-in class)
  


      
  	django.middleware (module)
  


      
  	django.middleware.cache (module)
  


      
  	django.middleware.common (module)
  


      
  	django.middleware.csrf (module), [1]
  


      
  	django.middleware.doc (module)
  


      
  	django.middleware.gzip (module)
  


      
  	django.middleware.http (module)
  


      
  	django.middleware.locale (module)
  


      
  	django.middleware.transaction (module)
  


      
  	django.shortcuts (module)
  


      
  	django.template.Context (built-in class)
  


      
  	django.template.ContextPopException
  


      
  	django.template.loader.get_template() (built-in function)
  


      
  	django.template.loader.render_to_string() (built-in function)
  


      
  	django.template.loader.select_template() (built-in function)
  


      
  	django.template.RequestContext (built-in class)
  


      
  	django.template.response (module)
  


      
  	django.template.Template (built-in class)
  


      
  	django.test (module)
  


      
  	django.test.client (module)
  


      
  	django.test.signals (module)
  


      
  	django.test.signals.template_rendered (built-in variable)
  


      
  	django.test.utils (module)
  


      
  	django.utils (module)
  


      
  	django.utils.cache (module)
  


      
  	django.utils.datastructures (module)
  


      
  	django.utils.encoding (module)
  


      
  	django.utils.feedgenerator (module)
  


      
  	django.utils.functional (module)
  


      
  	django.utils.http (module)
  


      
  	django.utils.log (module)
  


      
  	django.utils.safestring (module)
  


      
  	django.utils.translation (module), [1]
  


      
  	django.utils.tzinfo (module)
  


      
  	django.views.decorators.gzip (module)
  


      
  	django.views.decorators.http (module)
  


      
  	django.views.decorators.vary (module)
  


      
  	django.views.generic.create_update (module)
  


      
  	django.views.generic.date_based (module)
  


      
  	django.views.generic.list_detail (module)
  


      
  	django.views.generic.simple (module)
  


      
  	django.views.i18n (module)
  


      
  	DJANGO_SETTINGS_MODULE, [1]
  


      
  	DjangoTestSuiteRunner (class in django.test.simple)
  


      
  	DoesNotExist
  


      
  	domain (Site attribute)
  


      
  	Don't repeat yourself
  


      
  	done() (FormWizard method)
  


      
  	Driver (class in django.contrib.gis.gdal)
  


      
  	driver_count (Driver attribute)
  


      
  	DRY
  


      
  	
    dumpdata
  


      	
        
  	django-admin command
  


      


      
  	
    dwithin
  


      	
        
  	field lookup type
  


      


  





E


  	
      
  	editable (Field attribute)
  


      
  	ellisoid (SpatialReference attribute)
  


      
  	email (models.User attribute)
  


      
  	email() (CommentModerator method)
  


      
  	
    EMAIL_BACKEND
  


      	
        
  	setting
  


      


      
  	
    EMAIL_FILE_PATH
  


      	
        
  	setting
  


      


      
  	
    EMAIL_HOST
  


      	
        
  	setting
  


      


      
  	
    EMAIL_HOST_PASSWORD
  


      	
        
  	setting
  


      


      
  	
    EMAIL_HOST_USER
  


      	
        
  	setting
  


      


      
  	email_notification (CommentModerator attribute)
  


      
  	
    EMAIL_PORT
  


      	
        
  	setting
  


      


      
  	
    EMAIL_SUBJECT_PREFIX
  


      	
        
  	setting
  


      


      
  	
    EMAIL_USE_TLS
  


      	
        
  	setting
  


      


      
  	email_user() (models.User method)
  


      
  	EmailField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	EmailMessage (class in django.core.mail)
  


      
  	empty (GEOSGeometry attribute)
  


      
  	empty_label (ModelChoiceField attribute)
  


      
  	empty_value (TypedChoiceField attribute)
  


      
  	EmptyPage
  


      
  	enable_field (CommentModerator attribute)
  


      
  	Enclosure (class in django.utils.feedgenerator)
  


      
  	encoding (HttpRequest attribute)
  


      
  	end_index() (Page method)
  


      
  	
    endswith
  


      	
        
  	field lookup type
  


      


      
  	Envelope (class in django.contrib.gis.gdal)
  


      
  	envelope (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	envelope() (GeoQuerySet method)
  


      
  	
    environment variable
  


      	
        
  	DJANGO_SETTINGS_MODULE, [1]
  


      


      
  	
    equals
  


      	
        
  	field lookup type
  


      


      
  	equals() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


      


  

  	
      
  	equals_exact() (GEOSGeometry method)
  


      
  	
    errlog
  


      	
        
  	django-admin command-line option
  


      


      
  	error_messages (Field attribute), [1]
  


      
  	errors (BoundField attribute)
  


      	
        
  	(Form attribute)
  


      


      
  	es.forms.ESCCCField (class in django.contrib.localflavor)
  


      
  	es.forms.ESIdentityCardNumberField (class in django.contrib.localflavor)
  


      
  	es.forms.ESPhoneNumberField (class in django.contrib.localflavor)
  


      
  	es.forms.ESPostalCodeField (class in django.contrib.localflavor)
  


      
  	es.forms.ESProvinceSelect (class in django.contrib.localflavor)
  


      
  	es.forms.ESRegionSelect (class in django.contrib.localflavor)
  


      
  	
    escape
  


      	
        
  	template filter
  


      


      
  	
    escapejs
  


      	
        
  	template filter
  


      


      
  	etag() (in module django.views.decorators.http)
  


      
  	ewkb (GEOSGeometry attribute)
  


      
  	ewkt (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	
    exact
  


      	
        
  	field lookup type, [1]
  


      


      
  	exclude (ModelAdmin attribute)
  


      
  	exclude() (in module django.db.models.query.QuerySet)
  


      
  	execute() (BaseCommand method)
  


      
  	exists() (in module django.db.models.query.QuerySet)
  


      	
        
  	(Storage method)
  


      


      
  	expand_to_include() (Envelope method)
  


      
  	
    extends
  


      	
        
  	template tag
  


      


      
  	Extent (class in django.contrib.gis.db.models)
  


      
  	extent (GEOSGeometry attribute)
  


      	
        
  	(Layer attribute)
  


        
  	(OGRGeometry attribute)
  


      


      
  	extent() (GeoQuerySet method)
  


      
  	Extent3D (class in django.contrib.gis.db.models)
  


      
  	extent3d() (GeoQuerySet method)
  


      
  	exterior_ring (Polygon attribute)
  


      
  	extra (InlineModelAdmin attribute)
  


      
  	extra() (in module django.db.models.query.QuerySet)
  


      
  	extra_js (GeoModelAdmin attribute)
  


  





F


  	
      
  	Feature (class in django.contrib.gis.gdal)
  


      
  	Feed (class in django.contrib.gis.feeds)
  


      
  	FetchFromCacheMiddleware (class in django.middleware.cache)
  


      
  	fi.forms.FIMunicipalitySelect (class in django.contrib.localflavor)
  


      
  	fi.forms.FISocialSecurityNumber (class in django.contrib.localflavor)
  


      
  	fi.forms.FIZipCodeField (class in django.contrib.localflavor)
  


      
  	fid (Feature attribute)
  


      
  	Field
  


      
  	field
  


      
  	Field (class in django.contrib.gis.gdal)
  


      	
        
  	(class in django.db.models)
  


        
  	(class in django.forms)
  


      


      
  	
    field lookup type
  


      	
        
  	bbcontains
  


        
  	bboverlaps
  


        
  	contained
  


        
  	contains
  


        
  	contains_properly
  


        
  	coveredby
  


        
  	covers
  


        
  	crosses
  


        
  	day
  


        
  	disjoint
  


        
  	distance_gt
  


        
  	distance_gte
  


        
  	distance_lt
  


        
  	distance_lte
  


        
  	dwithin
  


        
  	endswith
  


        
  	equals
  


        
  	exact, [1]
  


        
  	gis-contains
  


        
  	gt
  


        
  	gte
  


        
  	icontains
  


        
  	iendswith
  


        
  	iexact
  


        
  	in
  


        
  	intersects
  


        
  	iregex
  


        
  	isnull
  


        
  	istartswith
  


        
  	left
  


        
  	lt
  


        
  	lte
  


        
  	month
  


        
  	overlaps
  


        
  	overlaps_above
  


        
  	overlaps_below
  


        
  	overlaps_left
  


        
  	overlaps_right
  


        
  	range
  


        
  	regex
  


        
  	relate
  


        
  	right
  


        
  	same_as
  


        
  	search
  


        
  	startswith
  


        
  	strictly_above
  


        
  	strictly_below
  


        
  	touches
  


        
  	week_day
  


        
  	within
  


        
  	year
  


      


      
  	field_precisions (Layer attribute)
  


      
  	field_widths (Layer attribute)
  


      
  	FieldError
  


      
  	fields (ComboField attribute)
  


      	
        
  	(Feature attribute)
  


        
  	(Layer attribute)
  


        
  	(ModelAdmin attribute)
  


        
  	(MultiValueField attribute)
  


      


      
  	fieldsets (ModelAdmin attribute)
  


      
  	File (class in django.core.files)
  


      
  	file (File attribute)
  


      
  	
    FILE_CHARSET
  


      	
        
  	setting
  


      


      
  	
    FILE_UPLOAD_HANDLERS
  


      	
        
  	setting
  


      


      
  	
    FILE_UPLOAD_MAX_MEMORY_SIZE
  


      	
        
  	setting
  


      


      
  	
    FILE_UPLOAD_PERMISSIONS
  


      	
        
  	setting
  


      


      
  	
    FILE_UPLOAD_TEMP_DIR
  


      	
        
  	setting
  


      


      
  	FileField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	FileInput (class in django.forms)
  


      
  	FilePathField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	FILES (HttpRequest attribute)
  


      
  	
    filesizeformat
  


      	
        
  	template filter
  


      


      
  	FileSystemStorage (class in django.core.files.storage)
  


      
  	
    filter
  


      	
        
  	template tag
  


      


      
  	filter() (in module django.db.models.query.QuerySet)
  


      
  	filter_horizontal (ModelAdmin attribute)
  


      
  	filter_vertical (ModelAdmin attribute)
  


      
  	
    findstatic
  


      	
        
  	django-admin command
  


      


      
  	
    first
  


      	
        
  	template filter
  


      


      
  	
    FIRST_DAY_OF_WEEK
  


      	
        
  	setting
  


      


      
  	first_name (models.User attribute)
  


      
  	
    firstof
  


      	
        
  	template tag
  


      


      
  	
    fix_ampersands
  


      	
        
  	template filter
  


      


      
  	FixedOffset (class in django.utils.tzinfo)
  


      
  	
    FIXTURE_DIRS
  


      	
        
  	setting
  


      


  

  	
      
  	fixtures (TestCase attribute)
  


      
  	fk_name (InlineModelAdmin attribute)
  


      
  	FlatPage (class in django.contrib.flatpages.models)
  


      
  	FlatpageFallbackMiddleware (class in django.contrib.flatpages.middleware)
  


      
  	FlatPageSitemap (class in django.contrib.sitemaps)
  


      
  	FloatField (class in django.db.models)
  


      
  	
    floatformat
  


      	
        
  	template filter
  


      


      
  	
    flush
  


      	
        
  	django-admin command
  


      


      
  	flush() (backends.base.SessionBase method)
  


      	
        
  	(HttpResponse method)
  


      


      
  	
    for
  


      	
        
  	template tag
  


      


      
  	
    force_escape
  


      	
        
  	template filter
  


      


      
  	force_rhr() (GeoQuerySet method)
  


      
  	force_unicode() (in module django.utils.encoding)
  


      
  	ForeignKey (class in django.db.models)
  


      
  	Form
  


      	
        
  	(class in django.forms)
  


      


      
  	form (InlineModelAdmin attribute)
  


      	
        
  	(ModelAdmin attribute)
  


      


      
  	Form Media
  


      
  	form_class (FormMixin attribute)
  


      
  	form_invalid() (FormMixin method)
  


      	
        
  	(ModelFormMixin method)
  


      


      
  	form_valid() (FormMixin method)
  


      	
        
  	(ModelFormMixin method)
  


      


      
  	format (DateInput attribute)
  


      	
        
  	(DateTimeInput attribute)
  


        
  	(TimeInput attribute)
  


      


      
  	
    FORMAT_MODULE_PATH
  


      	
        
  	setting
  


      


      
  	formfield() (Field method)
  


      
  	formfield_for_choice_field() (ModelAdmin method)
  


      
  	formfield_for_foreignkey() (ModelAdmin method)
  


      
  	formfield_for_manytomany() (ModelAdmin method)
  


      
  	formfield_overrides (ModelAdmin attribute)
  


      
  	FormMixin (class in django.views.generic.edit)
  


      
  	FormPreview (class in django.contrib.formtools.preview)
  


      
  	formset (InlineModelAdmin attribute)
  


      
  	FormView (class in django.views.generic.edit)
  


      
  	FormWizard (class in django.contrib.formtools.wizard)
  


      
  	fr.forms.FRDepartmentSelect (class in django.contrib.localflavor)
  


      
  	fr.forms.FRPhoneNumberField (class in django.contrib.localflavor)
  


      
  	fr.forms.FRZipCodeField (class in django.contrib.localflavor)
  


      
  	from_bbox() (django.contrib.gis.gdal.OGRGeometry class method)
  


      	
        
  	(django.contrib.gis.geos.Polygon class method)
  


      


      
  	from_esri() (SpatialReference method)
  


      
  	fromfile() (in module django.contrib.gis.geos)
  


      
  	fromstr() (in module django.contrib.gis.geos)
  


      
  	full_clean() (Model method)
  


      
  	func (ResolverMatch attribute)
  


  





G


  	
      
  	
    GDAL_LIBRARY_PATH
  


      	
        
  	setting
  


      


      
  	generic view
  


      
  	GenericForeignKey (class in django.contrib.contenttypes.generic)
  


      
  	GenericInlineModelAdmin (class in django.contrib.contenttypes.generic)
  


      
  	GenericRelation (class in django.contrib.contenttypes.generic)
  


      
  	GenericSitemap (class in django.contrib.sitemaps)
  


      
  	GeoAtom1Feed (class in django.contrib.gis.feeds)
  


      
  	geographic (SpatialReference attribute)
  


      
  	geography (GeometryField attribute)
  


      
  	geohash() (GeoQuerySet method)
  


      
  	GeoIP (class in django.contrib.gis.utils)
  


      
  	
    GEOIP_CITY
  


      	
        
  	setting
  


      


      
  	
    GEOIP_COUNTRY
  


      	
        
  	setting
  


      


      
  	
    GEOIP_LIBRARY_PATH
  


      	
        
  	setting
  


      


      
  	
    GEOIP_PATH
  


      	
        
  	setting
  


      


      
  	geojson (GEOSGeometry attribute)
  


      
  	geojson() (GeoQuerySet method)
  


      
  	geom (Feature attribute)
  


      
  	geom_count (OGRGeometry attribute)
  


      
  	geom_name (OGRGeometry attribute)
  


      
  	geom_type (Feature attribute)
  


      	
        
  	(GEOSGeometry attribute)
  


        
  	(Layer attribute)
  


        
  	(OGRGeometry attribute)
  


      


      
  	geom_typeid (GEOSGeometry attribute)
  


      
  	GeoManager (class in django.contrib.gis.db.models)
  


      
  	geometry() (Feed method)
  


      
  	GeometryCollection (class in django.contrib.gis.gdal)
  


      	
        
  	(class in django.contrib.gis.geos)
  


      


      
  	GeometryCollectionField (class in django.contrib.gis.db.models)
  


      
  	GeometryField (class in django.contrib.gis.db.models)
  


      
  	GeoModelAdmin (class in django.contrib.gis.admin)
  


      
  	GeoQuerySet (class in django.contrib.gis.db.models)
  


      
  	GeoRSSFeed (class in django.contrib.gis.feeds)
  


      
  	geos (OGRGeometry attribute)
  


      
  	geos() (GeoIP method)
  


      
  	
    GEOS_LIBRARY_PATH
  


      	
        
  	setting
  


      


      
  	GEOSGeometry (class in django.contrib.gis.geos)
  


      
  	get (Feature attribute)
  


      
  	GET (HttpRequest attribute)
  


      
  	get() (backends.base.SessionBase method)
  


      	
        
  	(Client method)
  


        
  	(ProcessFormView method)
  


        
  	(QueryDict method)
  


        
  	(in module django.db.models.query.QuerySet)
  


      


      
  	get_absolute_url() (Model method)
  


      
  	get_actions() (ModelAdmin method)
  


      
  	get_all_permissions() (models.User method)
  


      
  	get_allow_empty() (MultipleObjectMixin method)
  


      
  	get_allow_future() (DateMixin method)
  


      
  	get_and_delete_messages() (models.User method)
  


      
  	get_approve_url() (in module django.contrib.comments)
  


      
  	get_available_name() (Storage method)
  


      
  	get_by_natural_key() (ContentTypeManager method)
  


      
  	get_cache_key() (in module django.utils.cache)
  


      
  	
    get_comment_count
  


      	
        
  	template tag
  


      


      
  	
    get_comment_form
  


      	
        
  	template tag
  


      


      
  	
    get_comment_list
  


      	
        
  	template tag
  


      


      
  	
    get_comment_permalink
  


      	
        
  	template tag
  


      


      
  	get_connection() (in module django.core.mail)
  


      
  	get_context_data() (FormMixin method)
  


      	
        
  	(MultipleObjectMixin method)
  


        
  	(SingleObjectMixin method)
  


        
  	(TemplateView method)
  


      


      
  	get_context_object_name() (MultipleObjectMixin method)
  


      	
        
  	(SingleObjectMixin method)
  


      


      
  	get_current_site() (in module django.contrib.sites.models)
  


      
  	get_date_field() (DateMixin method)
  


      
  	get_date_formats() (in module django.utils.translation)
  


      
  	get_date_list() (BaseDateListView method)
  


      
  	get_dated_queryset() (BaseDateListView method)
  


      
  	get_day() (DayMixin method)
  


      
  	get_day_format() (DayMixin method)
  


      
  	get_db_prep_lookup() (Field method)
  


      
  	get_db_prep_save() (Field method)
  


      
  	get_db_prep_value() (Field method)
  


      
  	get_delete_url() (in module django.contrib.comments)
  


      
  	
    get_digit
  


      	
        
  	template filter
  


      


      
  	get_expire_at_browser_close() (backends.base.SessionBase method)
  


      
  	get_expiry_age() (backends.base.SessionBase method)
  


      
  	get_expiry_date() (backends.base.SessionBase method)
  


      
  	get_fields() (Layer method)
  


  

  	
      
  	get_flag_url() (in module django.contrib.comments)
  


      
  	
    get_flatpages
  


      	
        
  	template tag
  


      


      
  	get_FOO_display() (Model method)
  


      
  	get_for_model() (ContentTypeManager method)
  


      
  	get_form() (FormMixin method)
  


      	
        
  	(in module django.contrib.comments)
  


      


      
  	get_form_class() (FormMixin method)
  


      	
        
  	(ModelFormMixin method)
  


      


      
  	get_form_kwargs() (FormMixin method)
  


      	
        
  	(ModelFormMixin method)
  


      


      
  	get_form_target() (in module django.contrib.comments)
  


      
  	get_full_name() (models.User method)
  


      
  	get_full_path() (HttpRequest method)
  


      
  	get_geoms() (Layer method)
  


      
  	get_group_permissions() (models.User method)
  


      
  	get_host() (HttpRequest method)
  


      
  	get_initial() (FormMixin method)
  


      
  	get_internal_type() (Field method)
  


      
  	get_language() (in module django.utils.translation)
  


      
  	get_language_bidi() (in module django.utils.translation)
  


      
  	get_language_from_request() (in module django.utils.translation)
  


      
  	get_language_info() (in module django.utils.translation)
  


      
  	get_latest_by (Options attribute)
  


      
  	get_list_or_404() (in module django.shortcuts)
  


      
  	get_make_object_list() (YearArchiveView method)
  


      
  	get_max_age() (in module django.utils.cache)
  


      
  	get_model() (in module django.contrib.comments)
  


      
  	get_month() (MonthMixin method)
  


      
  	get_month_format() (MonthMixin method)
  


      
  	get_next_by_FOO() (Model method)
  


      
  	get_next_day() (DayMixin method)
  


      
  	get_next_month() (MonthMixin method)
  


      
  	get_object() (SingleObjectMixin method)
  


      
  	get_object_for_this_type() (ContentType method)
  


      
  	get_object_or_404() (in module django.shortcuts)
  


      
  	get_or_create() (in module django.db.models.query.QuerySet)
  


      
  	get_paginate_by() (MultipleObjectMixin method)
  


      
  	get_paginator() (ModelAdmin method)
  


      	
        
  	(MultipleObjectMixin method)
  


      


      
  	get_prep_lookup() (Field method)
  


      
  	get_prep_value() (Field method)
  


      
  	get_prev_day() (DayMixin method)
  


      
  	get_prev_month() (MonthMixin method)
  


      
  	get_previous_by_FOO() (Model method)
  


      
  	get_profile() (models.User method)
  


      
  	get_queryset() (MultipleObjectMixin method)
  


      	
        
  	(SingleObjectMixin method)
  


      


      
  	get_readonly_fields() (ModelAdmin method)
  


      
  	get_redirect_url() (RedirectView method)
  


      
  	get_script_prefix() (in module django.core.urlresolvers)
  


      
  	
    get_static_prefix
  


      	
        
  	template tag
  


      


      
  	get_storage_class() (in module django.core.files.storage)
  


      
  	get_success_url() (DeletionMixin method)
  


      	
        
  	(FormMixin method)
  


        
  	(ModelFormMixin method)
  


      


      
  	get_tag_uri() (in module django.utils.feedgenerator)
  


      
  	get_template() (FormWizard method)
  


      
  	get_template_names() (MultipleObjectTemplateResponseMixin method)
  


      	
        
  	(SingleObjectTemplateResponseMixin method)
  


        
  	(TemplateResponseMixin method)
  


      


      
  	get_urls() (ModelAdmin method)
  


      
  	get_valid_name() (Storage method)
  


      
  	get_version() (BaseCommand method)
  


      
  	get_week() (WeekMixin method)
  


      
  	get_week_format() (WeekMixin method)
  


      
  	get_year() (YearMixin method)
  


      
  	get_year_format() (YearMixin method)
  


      
  	getlist() (QueryDict method)
  


      
  	gettext() (in module django.utils.translation)
  


      
  	gettext_lazy() (in module django.utils.translation)
  


      
  	gettext_noop() (in module django.utils.translation)
  


      
  	
    gis-contains
  


      	
        
  	field lookup type
  


      


      
  	gml (OGRGeometry attribute)
  


      
  	gml() (GeoQuerySet method)
  


      
  	
    gt
  


      	
        
  	field lookup type
  


      


      
  	
    gte
  


      	
        
  	field lookup type
  


      


      
  	gzip_page() (in module django.views.decorators.gzip)
  


      
  	GZipMiddleware (class in django.middleware.gzip)
  


  





H


  	
      
  	handle() (BaseCommand method)
  


      
  	handle_app() (AppCommand method)
  


      
  	handle_label() (LabelCommand method)
  


      
  	handle_noargs() (NoArgsCommand method)
  


      
  	handler404 (in module django.conf.urls.defaults)
  


      
  	handler500 (in module django.conf.urls.defaults)
  


      
  	has_add_permission() (ModelAdmin method)
  


      
  	has_change_permission() (ModelAdmin method)
  


      
  	has_delete_permission() (ModelAdmin method)
  


      
  	has_header() (HttpResponse method)
  


      
  	has_module_perms() (models.User method)
  


      
  	has_next() (Page method)
  


      
  	has_other_pages() (Page method)
  


      
  	has_perm() (models.User method)
  


      
  	has_perms() (models.User method)
  


      
  	has_previous() (Page method)
  


      
  	has_usable_password() (models.User method)
  


      
  	hasz (GEOSGeometry attribute)
  


      
  	head() (Client method)
  


      
  	height (ImageFile attribute)
  


      
  	height_field (ImageField attribute)
  


  

  	
      
  	help (BaseCommand attribute)
  


      
  	help_text (Field attribute), [1]
  


      
  	hex (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	hexewkb (GEOSGeometry attribute)
  


      
  	HiddenInput (class in django.forms)
  


      
  	history_view() (ModelAdmin method)
  


      
  	
    HOST
  


      	
        
  	setting
  


      


      
  	
    host
  


      	
        
  	django-admin command-line option
  


      


      
  	http_date() (in module django.utils.http)
  


      
  	http_method_not_allowed() (View method)
  


      
  	HttpRequest (class in django.http)
  


      
  	HttpResponse (class in django.http)
  


      
  	HttpResponseBadRequest (class in django.http)
  


      
  	HttpResponseForbidden (class in django.http)
  


      
  	HttpResponseGone (class in django.http)
  


      
  	HttpResponseNotAllowed (class in django.http)
  


      
  	HttpResponseNotFound (class in django.http)
  


      
  	HttpResponseNotModified (class in django.http)
  


      
  	HttpResponsePermanentRedirect (class in django.http)
  


      
  	HttpResponseRedirect (class in django.http)
  


      
  	HttpResponseServerError (class in django.http)
  


  





I


  	
      
  	
    icontains
  


      	
        
  	field lookup type
  


      


      
  	id.forms.IDLicensePlateField (class in django.contrib.localflavor)
  


      
  	id.forms.IDLicensePlatePrefixSelect (class in django.contrib.localflavor)
  


      
  	id.forms.IDNationalIdentityNumberField (class in django.contrib.localflavor)
  


      
  	id.forms.IDPhoneNumberField (class in django.contrib.localflavor)
  


      
  	id.forms.IDPostCodeField (class in django.contrib.localflavor)
  


      
  	id.forms.IDProvinceSelect (class in django.contrib.localflavor)
  


      
  	identify_epsg() (SpatialReference method)
  


      
  	ie.forms.IECountySelect (class in django.contrib.localflavor)
  


      
  	
    iendswith
  


      	
        
  	field lookup type
  


      


      
  	
    iexact
  


      	
        
  	field lookup type
  


      


      
  	
    if
  


      	
        
  	template tag
  


      


      
  	
    ifchanged
  


      	
        
  	template tag
  


      


      
  	
    ifequal
  


      	
        
  	template tag
  


      


      
  	
    ifnotequal
  


      	
        
  	template tag
  


      


      
  	
    IGNORABLE_404_ENDS
  


      	
        
  	setting
  


      


      
  	
    IGNORABLE_404_STARTS
  


      	
        
  	setting
  


      


      
  	il.forms.ILIDNumberField (class in django.contrib.localflavor)
  


      
  	il.forms.ILPostalCodeField (class in django.contrib.localflavor)
  


      
  	ImageField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	ImageFile (class in django.core.files.images)
  


      
  	import_epsg() (SpatialReference method)
  


      
  	import_proj() (SpatialReference method)
  


      
  	import_user_input() (SpatialReference method)
  


      
  	import_wkt() (SpatialReference method)
  


      
  	import_xml() (SpatialReference method)
  


      
  	ImproperlyConfigured
  


      
  	
    in
  


      	
        
  	field lookup type
  


      


      
  	in.forms.INStateField (class in django.contrib.localflavor)
  


      
  	in.forms.INStateSelect (class in django.contrib.localflavor)
  


      
  	in.forms.INZipCodeField (class in django.contrib.localflavor)
  


      
  	in_bulk() (in module django.db.models.query.QuerySet)
  


      
  	
    include
  


      	
        
  	template tag
  


      


      
  	include() (in module django.conf.urls.defaults)
  


      
  	index (Feature attribute)
  


      
  	index_template (AdminSite attribute)
  


      
  	info (GeoIP attribute)
  


      
  	initial (Field attribute)
  


      	
        
  	(Form attribute)
  


        
  	(FormMixin attribute)
  


        
  	(FormWizard attribute)
  


      


      
  	InlineModelAdmin (class in django.contrib.admin)
  


      
  	inlines (ModelAdmin attribute)
  


      
  	input_date_formats (SplitDateTimeField attribute)
  


      
  	input_formats (DateField attribute)
  


      	
        
  	(DateTimeField attribute)
  


        
  	(TimeField attribute)
  


      


      
  	input_time_formats (SplitDateTimeField attribute)
  


      
  	insert() (SortedDict method)
  


      
  	
    inspectdb
  


      	
        
  	django-admin command
  


      


      
  	
    INSTALLED_APPS
  


      	
        
  	setting
  


      


      
  	int_to_base36() (in module django.utils.http)
  


  

  	
      
  	
    intcomma
  


      	
        
  	template filter
  


      


      
  	IntegerField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	IntegrityError
  


      
  	
    INTERNAL_IPS
  


      	
        
  	setting
  


      


      
  	intersection() (GeoQuerySet method)
  


      	
        
  	(OGRGeometry method)
  


      


      
  	
    intersects
  


      	
        
  	field lookup type
  


      


      
  	intersects() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


        
  	(PreparedGeometry method)
  


      


      
  	
    intword
  


      	
        
  	template filter
  


      


      
  	InvalidPage
  


      
  	inverse_flattening (SpatialReference attribute)
  


      
  	ip_address (Comment attribute)
  


      
  	IPAddressField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	
    iregex
  


      	
        
  	field lookup type
  


      


      
  	iri_to_uri() (in module django.utils.encoding)
  


      
  	
    iriencode
  


      	
        
  	template filter
  


      


      
  	is_.forms.ISIdNumberField (class in django.contrib.localflavor)
  


      
  	is_.forms.ISPhoneNumberField (class in django.contrib.localflavor)
  


      
  	is_.forms.ISPostalCodeSelect (class in django.contrib.localflavor)
  


      
  	is_active (models.User attribute)
  


      
  	is_ajax() (HttpRequest method)
  


      
  	is_anonymous() (models.User method)
  


      
  	is_authenticated() (models.User method)
  


      
  	is_bound (Form attribute)
  


      
  	is_protected_type() (in module django.utils.encoding)
  


      
  	is_public (Comment attribute)
  


      
  	is_removed (Comment attribute)
  


      
  	is_rendered (SimpleTemplateResponse attribute)
  


      
  	is_secure() (HttpRequest method)
  


      
  	is_staff (models.User attribute)
  


      
  	is_superuser (models.User attribute)
  


      
  	is_valid() (Form method)
  


      
  	
    isnull
  


      	
        
  	field lookup type
  


      


      
  	
    istartswith
  


      	
        
  	field lookup type
  


      


      
  	it.forms.ITProvinceSelect (class in django.contrib.localflavor)
  


      
  	it.forms.ITRegionSelect (class in django.contrib.localflavor)
  


      
  	it.forms.ITSocialSecurityNumberField (class in django.contrib.localflavor)
  


      
  	it.forms.ITVatNumberField (class in django.contrib.localflavor)
  


      
  	it.forms.ITZipCodeField (class in django.contrib.localflavor)
  


      
  	item_attributes() (SyndicationFeed method)
  


      
  	item_geometry() (Feed method)
  


      
  	items (Sitemap attribute)
  


      
  	items() (backends.base.SessionBase method)
  


      	
        
  	(QueryDict method)
  


      


      
  	iterator() (in module django.db.models.query.QuerySet)
  


      
  	iteritems() (QueryDict method)
  


      
  	iterlists() (QueryDict method)
  


      
  	itervalues() (QueryDict method)
  


  





J


  	
      
  	Java
  


      
  	javascript_catalog() (in module django.views.i18n)
  


      
  	
    join
  


      	
        
  	template filter
  


      


      
  	jp.forms.JPPostalCodeField (class in django.contrib.localflavor)
  


      
  	jp.forms.JPPrefectureSelect (class in django.contrib.localflavor)
  


  

  	
      
  	json (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	JVM
  


      
  	Jython
  


      
  	JYTHONPATH
  


  





K


  	
      
  	keys() (backends.base.SessionBase method)
  


      
  	kml (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	kml() (GeoQuerySet method)
  


  

  	
      
  	kw.forms.KWCivilIDNumberField (class in django.contrib.localflavor)
  


      
  	kwargs (ResolverMatch attribute)
  


  





L


  	
      
  	label (Field attribute)
  


      
  	LabelCommand (built-in class)
  


      
  	language code
  


      
  	
    LANGUAGE_CODE
  


      	
        
  	setting
  


      


      
  	
    LANGUAGE_COOKIE_NAME
  


      	
        
  	setting
  


      


      
  	
    LANGUAGES
  


      	
        
  	setting
  


      


      
  	
    last
  


      	
        
  	template filter
  


      


      
  	last_login (models.User attribute)
  


      
  	last_modified() (in module django.views.decorators.http)
  


      
  	last_name (models.User attribute)
  


      
  	lastmod (Sitemap attribute)
  


      
  	lat_lon() (GeoIP method)
  


      
  	latest() (in module django.db.models.query.QuerySet)
  


      
  	latest_post_date() (SyndicationFeed method)
  


      
  	Layer (class in django.contrib.gis.gdal)
  


      
  	layer_count (DataSource attribute)
  


      
  	layer_name (Feature attribute)
  


      
  	LayerMapping (class in django.contrib.gis.utils)
  


      
  	learn_cache_key() (in module django.utils.cache)
  


      
  	
    left
  


      	
        
  	field lookup type
  


      


      
  	
    length
  


      	
        
  	template filter
  


      


      
  	length (GEOSGeometry attribute)
  


      
  	length() (GeoQuerySet method)
  


      
  	
    length_is
  


      	
        
  	template filter
  


      


      
  	limit_choices_to (ForeignKey attribute)
  


      	
        
  	(ManyToManyField attribute)
  


      


      
  	linear_name (SpatialReference attribute)
  


      
  	linear_units (SpatialReference attribute)
  


      
  	LinearRing (class in django.contrib.gis.geos)
  


      
  	
    linebreaks
  


      	
        
  	template filter
  


      


      
  	
    linebreaksbr
  


      	
        
  	template filter
  


      


      
  	
    linenumbers
  


      	
        
  	template filter
  


      


      
  	LineString (class in django.contrib.gis.gdal)
  


      	
        
  	(class in django.contrib.gis.geos)
  


      


      
  	LineStringField (class in django.contrib.gis.db.models)
  


      
  	list_display (ModelAdmin attribute)
  


      
  	list_display_links (ModelAdmin attribute)
  


  

  	
      
  	list_editable (ModelAdmin attribute)
  


      
  	list_filter (ModelAdmin attribute)
  


      
  	list_per_page (ModelAdmin attribute)
  


      
  	list_select_related (ModelAdmin attribute)
  


      
  	listdir() (Storage method)
  


      
  	lists() (QueryDict method)
  


      
  	ListView (class in django.views.generic.list)
  


      
  	
    ljust
  


      	
        
  	template filter
  


      


      
  	ll (Envelope attribute)
  


      
  	
    load
  


      	
        
  	template tag
  


      


      
  	
    loaddata
  


      	
        
  	django-admin command
  


      


      
  	local (SpatialReference attribute)
  


      
  	locale name
  


      
  	
    LOCALE_PATHS
  


      	
        
  	setting
  


      


      
  	LocaleMiddleware (class in django.middleware.locale)
  


      
  	
    localize
  


      	
        
  	template filter
  


        
  	template tag
  


      


      
  	localize (Field attribute)
  


      
  	LocalTimezone (class in django.utils.tzinfo)
  


      
  	location (Sitemap attribute)
  


      
  	
    LOGGING
  


      	
        
  	setting
  


      


      
  	
    LOGGING_CONFIG
  


      	
        
  	setting
  


      


      
  	login() (Client method)
  


      	
        
  	(in module django.contrib.auth)
  


      


      
  	login_form (AdminSite attribute)
  


      
  	
    LOGIN_REDIRECT_URL
  


      	
        
  	setting
  


      


      
  	login_template (AdminSite attribute)
  


      
  	
    LOGIN_URL
  


      	
        
  	setting
  


      


      
  	logout() (Client method)
  


      	
        
  	(in module django.contrib.auth)
  


        
  	(in module django.contrib.auth.views)
  


      


      
  	logout_template (AdminSite attribute)
  


      
  	logout_then_login() (in module django.contrib.auth.views)
  


      
  	
    LOGOUT_URL
  


      	
        
  	setting
  


      


      
  	lon_lat() (GeoIP method)
  


      
  	
    lower
  


      	
        
  	template filter
  


      


      
  	
    lt
  


      	
        
  	field lookup type
  


      


      
  	
    lte
  


      	
        
  	field lookup type
  


      


  





M


  	
      
  	mail_admins() (in module django.core.mail)
  


      
  	mail_managers() (in module django.core.mail)
  


      
  	make_line() (GeoQuerySet method)
  


      
  	
    make_list
  


      	
        
  	template filter
  


      


      
  	make_object_list (YearArchiveView attribute)
  


      
  	make_random_password() (models.UserManager method)
  


      
  	MakeLine (class in django.contrib.gis.db.models)
  


      
  	
    makemessages
  


      	
        
  	django-admin command
  


      


      
  	managed (Options attribute)
  


      
  	Manager (class in django.db.models)
  


      
  	
    MANAGERS
  


      	
        
  	setting
  


      


      
  	ManyToManyField (class in django.db.models)
  


      
  	map_height (GeoModelAdmin attribute)
  


      
  	map_template (GeoModelAdmin attribute)
  


      
  	map_width (GeoModelAdmin attribute)
  


      
  	mapping() (in module django.contrib.gis.utils)
  


      
  	mark_for_escaping() (in module django.utils.safestring)
  


      
  	mark_safe() (in module django.utils.safestring)
  


      
  	match (FilePathField attribute), [1]
  


      
  	Max (class in django.db.models)
  


      
  	max_digits (DecimalField attribute), [1]
  


      
  	max_length (CharField attribute), [1]
  


      	
        
  	(URLField attribute)
  


      


      
  	max_num (InlineModelAdmin attribute)
  


      
  	max_value (DecimalField attribute)
  


      	
        
  	(IntegerField attribute)
  


      


      
  	max_x (Envelope attribute)
  


      
  	max_y (Envelope attribute)
  


      
  	
    maxchildren
  


      	
        
  	django-admin command-line option
  


      


      
  	MaxLengthValidator (class in django.core.validators)
  


      
  	
    maxrequests
  


      	
        
  	django-admin command-line option
  


      


      
  	
    maxspare
  


      	
        
  	django-admin command-line option
  


      


      
  	MaxValueValidator (class in django.core.validators)
  


      
  	
    MEDIA_ROOT
  


      	
        
  	setting
  


      


      
  	
    MEDIA_URL
  


      	
        
  	setting
  


      


      
  	mem_size() (GeoQuerySet method)
  


      
  	merged (MultiLineString attribute)
  


      
  	message (RegexValidator attribute)
  


      
  	message file
  


      
  	message_user() (ModelAdmin method)
  


      
  	MessageMiddleware (class in django.contrib.messages.middleware)
  


      
  	META (HttpRequest attribute)
  


      
  	
    method
  


      	
        
  	django-admin command-line option
  


      


      
  	method (HttpRequest attribute)
  


      
  	
    MIDDLEWARE_CLASSES
  


      	
        
  	setting
  


      


      
  	MiddlewareNotUsed
  


      
  	Min (class in django.db.models)
  


      
  	min_length (CharField attribute)
  


      	
        
  	(URLField attribute)
  


      


      
  	min_value (DecimalField attribute)
  


      	
        
  	(IntegerField attribute)
  


      


      
  	min_x (Envelope attribute)
  


      
  	min_y (Envelope attribute)
  


  

  	
      
  	MinLengthValidator (class in django.core.validators)
  


      
  	
    minspare
  


      	
        
  	django-admin command-line option
  


      


      
  	MinValueValidator (class in django.core.validators)
  


      
  	mode (File attribute)
  


      
  	model
  


      
  	Model (class in django.db.models)
  


      
  	model (ContentType attribute)
  


      	
        
  	(InlineModelAdmin attribute)
  


        
  	(MultipleObjectMixin attribute)
  


        
  	(SingleObjectMixin attribute)
  


      


      
  	model_class() (ContentType method)
  


      
  	ModelAdmin (class in django.contrib.admin)
  


      
  	ModelBackend (class in django.contrib.auth.backends)
  


      
  	ModelChoiceField (class in django.forms)
  


      
  	ModelForm (class in django.forms)
  


      
  	ModelFormMixin (class in django.views.generic.edit)
  


      
  	ModelMultipleChoiceField (class in django.forms)
  


      
  	models.AnonymousUser (class in django.contrib.auth)
  


      
  	models.Redirect (class in django.contrib.redirects)
  


      
  	models.User (class in django.contrib.auth), [1], [2]
  


      
  	models.UserManager (class in django.contrib.auth)
  


      
  	moderate() (CommentModerator method)
  


      
  	moderate_after (CommentModerator attribute)
  


      
  	Moderator (class in django.contrib.comments.moderation)
  


      
  	moderator.register() (in module django.contrib.comments.moderation)
  


      
  	moderator.unregister() (in module django.contrib.comments.moderation)
  


      
  	modifiable (GeoModelAdmin attribute)
  


      
  	modified_time() (Storage method)
  


      
  	
    month
  


      	
        
  	field lookup type
  


      


      
  	month (MonthMixin attribute)
  


      
  	
    MONTH_DAY_FORMAT
  


      	
        
  	setting
  


      


      
  	month_format (MonthMixin attribute)
  


      
  	MonthArchiveView (class in django.views.generic.dates)
  


      
  	MonthMixin (class in django.views.generic.dates)
  


      
  	MTV
  


      
  	multi_db (TestCase attribute)
  


      
  	MultiLineString (class in django.contrib.gis.geos)
  


      
  	MultiLineStringField (class in django.contrib.gis.db.models)
  


      
  	multiple_chunks() (File method)
  


      	
        
  	(UploadedFile method)
  


      


      
  	MultipleChoiceField (class in django.forms)
  


      
  	MultipleHiddenInput (class in django.forms)
  


      
  	MultipleObjectMixin (class in django.views.generic.list)
  


      
  	MultipleObjectsReturned
  


      
  	MultipleObjectTemplateResponseMixin (class in django.views.generic.list)
  


      
  	MultiPoint (class in django.contrib.gis.geos)
  


      
  	MultiPointField (class in django.contrib.gis.db.models)
  


      
  	MultiPolygon (class in django.contrib.gis.geos)
  


      
  	MultiPolygonField (class in django.contrib.gis.db.models)
  


      
  	MultiValueField (class in django.forms)
  


      
  	MultiWidget (class in django.forms)
  


      
  	MVC
  


      
  	mx.forms.MXStateSelect (class in django.contrib.localflavor)
  


  





N


  	
      
  	
    NAME
  


      	
        
  	setting
  


      


      
  	name (ContentType attribute)
  


      	
        
  	(DataSource attribute)
  


        
  	(Field attribute)
  


        
  	(File attribute)
  


        
  	(Layer attribute)
  


        
  	(OGRGeomType attribute)
  


        
  	(Permission attribute)
  


        
  	(Site attribute)
  


        
  	(SpatialReference attribute)
  


        
  	(UploadedFile attribute), [1]
  


      


      
  	namespace (ResolverMatch attribute)
  


      
  	namespaces (ResolverMatch attribute)
  


      
  	
    naturalday
  


      	
        
  	template filter
  


      


      
  	next_page_number() (Page method)
  


      
  	ngettext() (in module django.utils.translation)
  


      
  	ngettext_lazy() (in module django.utils.translation)
  


      
  	nl.forms.NLPhoneNumberField (class in django.contrib.localflavor)
  


      
  	nl.forms.NLProvinceSelect (class in django.contrib.localflavor)
  


      
  	nl.forms.NLSofiNumberField (class in django.contrib.localflavor)
  


      
  	nl.forms.NLZipCodeField (class in django.contrib.localflavor)
  


      
  	no.forms.NOMunicipalitySelect (class in django.contrib.localflavor)
  


      
  	no.forms.NOSocialSecurityNumber (class in django.contrib.localflavor)
  


      
  	no.forms.NOZipCodeField (class in django.contrib.localflavor)
  


      
  	NoArgsCommand (built-in class)
  


      
  	none() (in module django.db.models.query.QuerySet)
  


      
  	NoReverseMatch
  


      
  	
    now
  


      	
        
  	template tag
  


      


  

  	
      
  	npgettext() (in module django.utils.translation)
  


      
  	npgettext_lazy() (in module django.utils.translation)
  


      
  	null (Field attribute)
  


      
  	NullBooleanField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	NullBooleanSelect (class in django.forms)
  


      
  	num (OGRGeomType attribute)
  


      
  	num_coords (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	num_feat (Layer attribute)
  


      
  	num_fields (Feature attribute)
  


      	
        
  	(Layer attribute)
  


      


      
  	num_geom (GEOSGeometry attribute)
  


      
  	num_geom() (GeoQuerySet method)
  


      
  	num_interior_rings (Polygon attribute)
  


      
  	num_items() (SyndicationFeed method)
  


      
  	num_pages (Paginator attribute)
  


      
  	num_points (OGRGeometry attribute)
  


      
  	num_points() (GeoQuerySet method)
  


      
  	number (Page attribute)
  


      
  	
    NUMBER_GROUPING
  


      	
        
  	setting
  


      


  





O


  	
      
  	object_history_template (ModelAdmin attribute)
  


      
  	object_list (Page attribute)
  


      
  	object_pk (Comment attribute)
  


      
  	ObjectDoesNotExist
  


      
  	ogr (GEOSGeometry attribute)
  


      
  	OGRGeometry (class in django.contrib.gis.gdal)
  


      
  	OGRGeomType (class in django.contrib.gis.gdal)
  


      
  	
    ogrinspect
  


      	
        
  	django-admin command
  


      


      
  	on_delete (ForeignKey attribute)
  


      
  	OneToOneField (class in django.db.models)
  


      
  	only() (in module django.db.models.query.QuerySet)
  


      
  	open() (django.contrib.gis.utils.GeoIP class method)
  


      	
        
  	(FieldFile method)
  


        
  	(File method)
  


        
  	(Storage method)
  


      


      
  	openlayers_url (GeoModelAdmin attribute)
  


      
  	option_list (BaseCommand attribute)
  


      
  	
    OPTIONS
  


      	
        
  	setting
  


      


      
  	options() (Client method)
  


  

  	
      
  	order_by() (in module django.db.models.query.QuerySet)
  


      
  	order_with_respect_to (Options attribute)
  


      
  	ordered (QuerySet attribute)
  


      
  	ordering (ModelAdmin attribute)
  


      	
        
  	(Options attribute)
  


      


      
  	
    ordinal
  


      	
        
  	template filter
  


      


      
  	OSMGeoAdmin (class in django.contrib.gis.admin)
  


      
  	outdim (WKBWriter attribute)
  


      
  	
    outlog
  


      	
        
  	django-admin command-line option
  


      


      
  	output_transaction (BaseCommand attribute)
  


      
  	
    overlaps
  


      	
        
  	field lookup type
  


      


      
  	overlaps() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


      


      
  	
    overlaps_above
  


      	
        
  	field lookup type
  


      


      
  	
    overlaps_below
  


      	
        
  	field lookup type
  


      


      
  	
    overlaps_left
  


      	
        
  	field lookup type
  


      


      
  	
    overlaps_right
  


      	
        
  	field lookup type
  


      


  





P


  	
      
  	Page (class in django.core.paginator)
  


      
  	page() (Paginator method)
  


      
  	page_range (Paginator attribute)
  


      
  	PageNotAnInteger
  


      
  	paginate_by (MultipleObjectMixin attribute)
  


      
  	paginate_queryset() (MultipleObjectMixin method)
  


      
  	Paginator (class in django.core.paginator)
  


      
  	paginator (ModelAdmin attribute)
  


      	
        
  	(Page attribute)
  


      


      
  	paginator_class (MultipleObjectMixin attribute)
  


      
  	parent_link (OneToOneField attribute)
  


      
  	parse_params() (FormWizard method)
  


      
  	
    PASSWORD
  


      	
        
  	setting
  


      


      
  	password (models.User attribute)
  


      
  	password_change() (in module django.contrib.auth.views)
  


      
  	password_change_done() (in module django.contrib.auth.views)
  


      
  	password_change_done_template (AdminSite attribute)
  


      
  	password_change_template (AdminSite attribute)
  


      
  	password_reset() (in module django.contrib.auth.views)
  


      
  	password_reset_complete() (in module django.contrib.auth.views)
  


      
  	password_reset_confirm() (in module django.contrib.auth.views)
  


      
  	password_reset_done() (in module django.contrib.auth.views)
  


      
  	
    PASSWORD_RESET_TIMEOUT_DAYS
  


      	
        
  	setting
  


      


      
  	PasswordChangeForm (class in django.contrib.auth.forms)
  


      
  	PasswordInput (class in django.forms)
  


      
  	PasswordResetForm (class in django.contrib.auth.forms)
  


      
  	patch_cache_control() (in module django.utils.cache)
  


      
  	patch_response_headers() (in module django.utils.cache)
  


      
  	patch_vary_headers() (in module django.utils.cache)
  


      
  	path (FilePathField attribute), [1]
  


      	
        
  	(HttpRequest attribute)
  


      


      
  	path() (Storage method)
  


      
  	path_info (HttpRequest attribute)
  


      
  	patterns() (in module django.conf.urls.defaults)
  


      
  	pe.forms.PEDepartmentSelect (class in django.contrib.localflavor)
  


      
  	pe.forms.PEDNIField (class in django.contrib.localflavor)
  


      
  	pe.forms.PERUCField (class in django.contrib.localflavor)
  


      
  	perimeter() (GeoQuerySet method)
  


      
  	permalink() (in module django.db.models)
  


      
  	permanent (RedirectView attribute)
  


      
  	Permission (class in django.contrib.auth.models)
  


      
  	permission_required() (in module django.contrib.auth.decorators)
  


      
  	PermissionDenied
  


      
  	permissions (Options attribute)
  


      
  	pgettext() (in module django.utils.translation)
  


      
  	pgettext_lazy() (in module django.utils.translation)
  


      
  	
    phone2numeric
  


      	
        
  	template filter
  


      


      
  	
    pidfile
  


      	
        
  	django-admin command-line option
  


      


      
  	
    ping_google
  


      	
        
  	django-admin command
  


      


      
  	ping_google() (in module django.contrib.sitemaps)
  


      
  	pk (Model attribute)
  


      
  	pl.forms.PLCountySelect (class in django.contrib.localflavor)
  


      
  	pl.forms.PLNIPField (class in django.contrib.localflavor)
  


      
  	pl.forms.PLPESELField (class in django.contrib.localflavor)
  


      
  	pl.forms.PLPostalCodeField (class in django.contrib.localflavor)
  


      
  	pl.forms.PLProvinceSelect (class in django.contrib.localflavor)
  


      
  	pl.forms.PLREGONField (class in django.contrib.localflavor)
  


  

  	
      
  	
    pluralize
  


      	
        
  	template filter
  


      


      
  	Point (class in django.contrib.gis.gdal)
  


      	
        
  	(class in django.contrib.gis.geos)
  


      


      
  	point_count (OGRGeometry attribute)
  


      
  	point_on_surface (GEOSGeometry attribute)
  


      
  	point_on_surface() (GeoQuerySet method)
  


      
  	PointField (class in django.contrib.gis.db.models)
  


      
  	Polygon (class in django.contrib.gis.gdal)
  


      	
        
  	(class in django.contrib.gis.geos)
  


      


      
  	PolygonField (class in django.contrib.gis.db.models)
  


      
  	pop()
  


      	
        
  	(backends.base.SessionBase method)
  


      


      
  	
    port
  


      	
        
  	django-admin command-line option
  


      


      
  	
    PORT
  


      	
        
  	setting
  


      


      
  	PositiveIntegerField (class in django.db.models)
  


      
  	PositiveSmallIntegerField (class in django.db.models)
  


      
  	POST (HttpRequest attribute)
  


      
  	post() (Client method)
  


      	
        
  	(ProcessFormView method)
  


      


      
  	post_save_moderation() (Moderator method)
  


      
  	
    POSTGIS_TEMPLATE
  


      	
        
  	setting
  


      


      
  	
    POSTGIS_VERSION
  


      	
        
  	setting
  


      


      
  	
    pprint
  


      	
        
  	template filter
  


      


      
  	pre_init (django.db.models.signals attribute)
  


      
  	pre_save() (Field method)
  


      
  	pre_save_moderation() (Moderator method)
  


      
  	precision (Field attribute)
  


      
  	prefix (Form attribute)
  


      
  	prefix_for_step() (FormWizard method)
  


      
  	prepared (GEOSGeometry attribute)
  


      
  	PreparedGeometry (class in django.contrib.gis.geos)
  


      
  	
    PREPEND_WWW
  


      	
        
  	setting
  


      


      
  	prepopulated_fields (ModelAdmin attribute)
  


      
  	pretty_wkt (SpatialReference attribute)
  


      
  	previous_page_number() (Page method)
  


      
  	primary_key (Field attribute)
  


      
  	priority() (Sitemap method)
  


      
  	process_exception()
  


      
  	process_preview() (FormPreview method)
  


      
  	process_request()
  


      
  	process_response()
  


      
  	process_step() (FormWizard method)
  


      
  	process_template_response()
  


      
  	process_view()
  


      
  	ProcessFormView (class in django.views.generic.edit)
  


      
  	
    PROFANITIES_LIST
  


      	
        
  	setting
  


      


      
  	proj (SpatialReference attribute)
  


      
  	proj4 (SpatialReference attribute)
  


      
  	project
  


      
  	projected (SpatialReference attribute)
  


      
  	property
  


      
  	
    protocol
  


      	
        
  	django-admin command-line option
  


      


      
  	proxy (Options attribute)
  


      
  	pt.forms.PTPhoneNumberField (class in django.contrib.localflavor)
  


      
  	pt.forms.PTZipCodeField (class in django.contrib.localflavor)
  


      
  	push()
  


      
  	put() (Client method)
  


      
  	
    Python Enhancement Proposals
  


      	
        
  	PEP 257
  


        
  	PEP 3333
  


        
  	PEP 8, [1]
  


      


  





Q


  	
      
  	query_string (RedirectView attribute)
  


      
  	QueryDict (class in django.http)
  


      
  	queryset
  


  

  	
      
  	QuerySet (class in django.db.models.query)
  


      
  	queryset (ModelChoiceField attribute)
  


      	
        
  	(ModelMultipleChoiceField attribute)
  


        
  	(MultipleObjectMixin attribute)
  


        
  	(SingleObjectMixin attribute)
  


      


      
  	queryset() (ModelAdmin method)
  


  





R


  	
      
  	radio_fields (ModelAdmin attribute)
  


      
  	RadioSelect (class in django.forms)
  


      
  	
    random
  


      	
        
  	template filter
  


      


      
  	
    range
  


      	
        
  	field lookup type
  


      


      
  	raw() (Manager method)
  


      
  	raw_id_fields (InlineModelAdmin attribute)
  


      	
        
  	(ModelAdmin attribute)
  


      


      
  	raw_post_data (HttpRequest attribute)
  


      
  	read() (File method)
  


      	
        
  	(HttpRequest method)
  


        
  	(UploadedFile method), [1]
  


      


      
  	readline() (HttpRequest method)
  


      
  	readlines() (HttpRequest method)
  


      
  	readonly_fields (ModelAdmin attribute)
  


      
  	record_by_addr() (GeoIP method)
  


      
  	record_by_name() (GeoIP method)
  


      
  	recursive (FilePathField attribute), [1]
  


      
  	redirect() (in module django.shortcuts)
  


      
  	redirect_to_login() (in module django.contrib.auth.views)
  


      
  	RedirectView (class in django.views.generic.base)
  


      
  	
    regex
  


      	
        
  	field lookup type
  


      


      
  	regex (RegexField attribute)
  


      	
        
  	(RegexValidator attribute)
  


      


      
  	RegexField (class in django.forms)
  


      
  	RegexValidator (class in django.core.validators)
  


      
  	region_by_addr() (GeoIP method)
  


      
  	region_by_name() (GeoIP method)
  


      
  	
    regroup
  


      	
        
  	template tag
  


      


      
  	
    relate
  


      	
        
  	field lookup type
  


      


      
  	relate() (GEOSGeometry method)
  


      
  	relate_pattern() (GEOSGeometry method)
  


      
  	related_name (ForeignKey attribute)
  


      	
        
  	(ManyToManyField attribute)
  


      


      
  	RelatedManager (class in django.db.models.fields.related)
  


      
  	RemoteUserBackend (class in django.contrib.auth.backends)
  


      
  	remove() (RelatedManager method)
  


      
  	
    removetags
  


      	
        
  	template filter
  


      


      
  	render()
  


      	
        
  	(in module django.shortcuts)
  


      


      
  	
    render_comment_form
  


      	
        
  	template tag
  


      


      
  	
    render_comment_list
  


      	
        
  	template tag
  


      


      
  	render_hash_failure() (FormWizard method)
  


      
  	render_template() (FormWizard method)
  


      
  	render_to_response() (in module django.shortcuts)
  


      	
        
  	(TemplateResponseMixin method)
  


      


      
  	render_value (PasswordInput attribute)
  


  

  	
      
  	rendered_content (SimpleTemplateResponse attribute)
  


      
  	REQUEST (HttpRequest attribute)
  


      
  	request (Response attribute)
  


      
  	RequestFactory (class in django.test.client)
  


      
  	RequestSite (class in django.contrib.sites.models)
  


      
  	require_GET() (in module django.views.decorators.http)
  


      
  	require_http_methods() (in module django.views.decorators.http)
  


      
  	require_POST() (in module django.views.decorators.http)
  


      
  	required (Field attribute)
  


      
  	requires_model_validation (BaseCommand attribute)
  


      
  	
    reset
  


      	
        
  	django-admin command
  


      


      
  	resolve() (in module django.core.urlresolvers)
  


      
  	resolve_context() (SimpleTemplateResponse method)
  


      
  	resolve_template() (SimpleTemplateResponse method)
  


      
  	ResolverMatch (class in django.core.urlresolvers)
  


      
  	Response (class in django.test.client)
  


      
  	response_class (TemplateResponseMixin attribute)
  


      
  	
    RESTRUCTUREDTEXT_FILTER_SETTINGS
  


      	
        
  	setting
  


      


      
  	reverse() (in module django.core.urlresolvers)
  


      	
        
  	(in module django.db.models.query.QuerySet)
  


      


      
  	reverse_geom() (GeoQuerySet method)
  


      
  	
    right
  


      	
        
  	field lookup type
  


      


      
  	ring (GEOSGeometry attribute)
  


      
  	
    rjust
  


      	
        
  	template filter
  


      


      
  	ro.forms.ROCIFField (class in django.contrib.localflavor)
  


      
  	ro.forms.ROCNPField (class in django.contrib.localflavor)
  


      
  	ro.forms.ROCountyField (class in django.contrib.localflavor)
  


      
  	ro.forms.ROCountySelect (class in django.contrib.localflavor)
  


      
  	ro.forms.ROIBANField (class in django.contrib.localflavor)
  


      
  	ro.forms.ROPhoneNumberField (class in django.contrib.localflavor)
  


      
  	ro.forms.ROPostalCodeField (class in django.contrib.localflavor)
  


      
  	root_attributes() (SyndicationFeed method)
  


      
  	
    ROOT_URLCONF
  


      	
        
  	setting
  


      


      
  	Rss201rev2Feed (class in django.utils.feedgenerator)
  


      
  	RssFeed (class in django.utils.feedgenerator)
  


      
  	RssUserland091Feed (class in django.utils.feedgenerator)
  


      
  	run_suite() (DjangoTestSuiteRunner method)
  


      
  	run_tests() (DjangoTestSuiteRunner method)
  


      
  	
    runfcgi
  


      	
        
  	django-admin command
  


      


      
  	
    runserver
  


      	
        
  	django-admin command, [1]
  


      


  





S


  	
      
  	
    safe
  


      	
        
  	template filter
  


      


      
  	
    safeseq
  


      	
        
  	template filter
  


      


      
  	SafeString (class in django.utils.safestring)
  


      
  	SafeUnicode (class in django.utils.safestring)
  


      
  	
    same_as
  


      	
        
  	field lookup type
  


      


      
  	sample (StdDev attribute)
  


      	
        
  	(Variance attribute)
  


      


      
  	save() (FieldFile method)
  


      	
        
  	(File method)
  


        
  	(LayerMapping method)
  


        
  	(Model method)
  


        
  	(Storage method)
  


      


      
  	save_as (ModelAdmin attribute)
  


      
  	save_formset() (ModelAdmin method)
  


      
  	save_model() (ModelAdmin method)
  


      
  	save_on_top (ModelAdmin attribute)
  


      
  	savepoint() (transaction method)
  


      
  	savepoint_commit() (transaction method)
  


      
  	savepoint_rollback() (transaction method)
  


      
  	scale() (GeoQuerySet method)
  


      
  	schema_path (in module django.db.models)
  


      
  	se.forms.SECountySelect (class in django.contrib.localflavor)
  


      
  	se.forms.SEOrganisationNumber (class in django.contrib.localflavor)
  


      
  	se.forms.SEPersonalIdentityNumber (class in django.contrib.localflavor)
  


      
  	se.forms.SEPostalCodeField (class in django.contrib.localflavor)
  


      
  	
    search
  


      	
        
  	field lookup type
  


      


      
  	search_fields (ModelAdmin attribute)
  


      
  	
    SECRET_KEY
  


      	
        
  	setting
  


      


      
  	security_hash() (FormWizard method)
  


      
  	Select (class in django.forms)
  


      
  	select_related() (in module django.db.models.query.QuerySet)
  


      
  	SelectDateWidget (class in django.forms.extras.widgets)
  


      
  	SelectMultiple (class in django.forms)
  


      
  	semi_major (SpatialReference attribute)
  


      
  	semi_minor (SpatialReference attribute)
  


      
  	send() (Signal method)
  


      
  	
    SEND_BROKEN_LINK_EMAILS
  


      	
        
  	setting
  


      


      
  	send_mail() (in module django.core.mail)
  


      
  	send_mass_mail() (in module django.core.mail)
  


      
  	send_robust() (Signal method)
  


      
  	
    SERIALIZATION_MODULES
  


      	
        
  	setting
  


      


      
  	serve() (in module django.views.static)
  


      
  	
    SERVER_EMAIL
  


      	
        
  	setting
  


      


      
  	session (Client attribute)
  


      	
        
  	(HttpRequest attribute)
  


      


      
  	
    SESSION_COOKIE_AGE
  


      	
        
  	setting
  


      


      
  	
    SESSION_COOKIE_DOMAIN
  


      	
        
  	setting
  


      


      
  	
    SESSION_COOKIE_HTTPONLY
  


      	
        
  	setting
  


      


      
  	
    SESSION_COOKIE_NAME
  


      	
        
  	setting
  


      


      
  	
    SESSION_COOKIE_PATH
  


      	
        
  	setting
  


      


      
  	
    SESSION_COOKIE_SECURE
  


      	
        
  	setting
  


      


      
  	
    SESSION_ENGINE
  


      	
        
  	setting
  


      


      
  	
    SESSION_EXPIRE_AT_BROWSER_CLOSE
  


      	
        
  	setting
  


      


      
  	
    SESSION_FILE_PATH
  


      	
        
  	setting
  


      


      
  	
    SESSION_SAVE_EVERY_REQUEST
  


      	
        
  	setting
  


      


      
  	SessionMiddleware (class in django.contrib.sessions.middleware)
  


      
  	set_cookie() (HttpResponse method)
  


      
  	set_expiry() (backends.base.SessionBase method)
  


      
  	set_language() (in module django.views.i18n)
  


      
  	set_password() (models.User method)
  


      
  	set_test_cookie() (backends.base.SessionBase method)
  


      
  	set_unusable_password() (models.User method)
  


      
  	setdefault() (backends.base.SessionBase method)
  


      	
        
  	(QueryDict method)
  


      


      
  	setlist() (QueryDict method)
  


      
  	setlistdefault() (QueryDict method)
  


      
  	SetPasswordForm (class in django.contrib.auth.forms)
  


      
  	SetRemoteAddrFromForwardedFor (class in django.middleware.http)
  


      
  	
    setting
  


      	
        
  	ABSOLUTE_URL_OVERRIDES
  


        
  	ADMINS
  


        
  	ADMIN_FOR
  


        
  	ADMIN_MEDIA_PREFIX
  


        
  	ALLOWED_HOSTS
  


        
  	ALLOWED_INCLUDE_ROOTS
  


        
  	APPEND_SLASH
  


        
  	AUTHENTICATION_BACKENDS
  


        
  	AUTH_PROFILE_MODULE
  


        
  	CACHES
  


        
  	CACHES-BACKEND
  


        
  	CACHES-KEY_FUNCTION
  


        
  	CACHES-KEY_PREFIX
  


        
  	CACHES-LOCATION
  


        
  	CACHES-OPTIONS
  


        
  	CACHES-TIMEOUT
  


        
  	CACHES-VERSION
  


        
  	CACHE_BACKEND
  


        
  	CACHE_MIDDLEWARE_ALIAS
  


        
  	CACHE_MIDDLEWARE_ANONYMOUS_ONLY
  


        
  	CACHE_MIDDLEWARE_KEY_PREFIX
  


        
  	CACHE_MIDDLEWARE_SECONDS
  


        
  	COMMENTS_APP
  


        
  	COMMENTS_HIDE_REMOVED
  


        
  	COMMENT_MAX_LENGTH
  


        
  	CSRF_COOKIE_DOMAIN
  


        
  	CSRF_COOKIE_NAME
  


        
  	CSRF_FAILURE_VIEW
  


        
  	DATABASE-ENGINE
  


        
  	DATABASES
  


        
  	DATABASE_ENGINE
  


        
  	DATABASE_HOST
  


        
  	DATABASE_NAME
  


        
  	DATABASE_OPTIONS
  


        
  	DATABASE_PASSWORD
  


        
  	DATABASE_PORT
  


        
  	DATABASE_ROUTERS
  


        
  	DATABASE_USER
  


        
  	DATETIME_FORMAT
  


        
  	DATETIME_INPUT_FORMATS
  


        
  	DATE_FORMAT
  


        
  	DATE_INPUT_FORMATS
  


        
  	DEBUG
  


        
  	DECIMAL_SEPARATOR
  


        
  	DEFAULT_CHARSET
  


        
  	DEFAULT_CONTENT_TYPE
  


        
  	DEFAULT_FILE_STORAGE
  


        
  	DEFAULT_FROM_EMAIL
  


        
  	DEFAULT_INDEX_TABLESPACE
  


        
  	DEFAULT_TABLESPACE
  


        
  	DISALLOWED_USER_AGENTS
  


        
  	EMAIL_BACKEND
  


        
  	EMAIL_FILE_PATH
  


        
  	EMAIL_HOST
  


        
  	EMAIL_HOST_PASSWORD
  


        
  	EMAIL_HOST_USER
  


        
  	EMAIL_PORT
  


        
  	EMAIL_SUBJECT_PREFIX
  


        
  	EMAIL_USE_TLS
  


        
  	FILE_CHARSET
  


        
  	FILE_UPLOAD_HANDLERS
  


        
  	FILE_UPLOAD_MAX_MEMORY_SIZE
  


        
  	FILE_UPLOAD_PERMISSIONS
  


        
  	FILE_UPLOAD_TEMP_DIR
  


        
  	FIRST_DAY_OF_WEEK
  


        
  	FIXTURE_DIRS
  


        
  	FORMAT_MODULE_PATH
  


        
  	GDAL_LIBRARY_PATH
  


        
  	GEOIP_CITY
  


        
  	GEOIP_COUNTRY
  


        
  	GEOIP_LIBRARY_PATH
  


        
  	GEOIP_PATH
  


        
  	GEOS_LIBRARY_PATH
  


        
  	HOST
  


        
  	IGNORABLE_404_ENDS
  


        
  	IGNORABLE_404_STARTS
  


        
  	INSTALLED_APPS
  


        
  	INTERNAL_IPS
  


        
  	LANGUAGES
  


        
  	LANGUAGE_CODE
  


        
  	LANGUAGE_COOKIE_NAME
  


        
  	LOCALE_PATHS
  


        
  	LOGGING
  


        
  	LOGGING_CONFIG
  


        
  	LOGIN_REDIRECT_URL
  


        
  	LOGIN_URL
  


        
  	LOGOUT_URL
  


        
  	MANAGERS
  


        
  	MEDIA_ROOT
  


        
  	MEDIA_URL
  


        
  	MIDDLEWARE_CLASSES
  


        
  	MONTH_DAY_FORMAT
  


        
  	NAME
  


        
  	NUMBER_GROUPING
  


        
  	OPTIONS
  


        
  	PASSWORD
  


        
  	PASSWORD_RESET_TIMEOUT_DAYS
  


        
  	PORT
  


        
  	POSTGIS_TEMPLATE
  


        
  	POSTGIS_VERSION
  


        
  	PREPEND_WWW
  


        
  	PROFANITIES_LIST
  


        
  	RESTRUCTUREDTEXT_FILTER_SETTINGS
  


        
  	ROOT_URLCONF
  


        
  	SECRET_KEY
  


        
  	SEND_BROKEN_LINK_EMAILS
  


        
  	SERIALIZATION_MODULES
  


        
  	SERVER_EMAIL
  


        
  	SESSION_COOKIE_AGE
  


        
  	SESSION_COOKIE_DOMAIN
  


        
  	SESSION_COOKIE_HTTPONLY
  


        
  	SESSION_COOKIE_NAME
  


        
  	SESSION_COOKIE_PATH
  


        
  	SESSION_COOKIE_SECURE
  


        
  	SESSION_ENGINE
  


        
  	SESSION_EXPIRE_AT_BROWSER_CLOSE
  


        
  	SESSION_FILE_PATH
  


        
  	SESSION_SAVE_EVERY_REQUEST
  


        
  	SHORT_DATETIME_FORMAT
  


        
  	SHORT_DATE_FORMAT
  


        
  	SITE_ID
  


        
  	SPATIALITE_SQL
  


        
  	STATICFILES_DIRS
  


        
  	STATICFILES_FINDERS
  


        
  	STATICFILES_STORAGE
  


        
  	STATIC_ROOT
  


        
  	STATIC_URL
  


        
  	TEMPLATE_CONTEXT_PROCESSORS
  


        
  	TEMPLATE_DEBUG
  


        
  	TEMPLATE_DIRS
  


        
  	TEMPLATE_LOADERS
  


        
  	TEMPLATE_STRING_IF_INVALID
  


        
  	TEST_CHARSET
  


        
  	TEST_COLLATION
  


        
  	TEST_DATABASE_CHARSET
  


        
  	TEST_DATABASE_COLLATION
  


        
  	TEST_DATABASE_NAME
  


        
  	TEST_DEPENDENCIES
  


        
  	TEST_MIRROR
  


        
  	TEST_NAME
  


        
  	TEST_RUNNER
  


        
  	TEST_USER
  


        
  	THOUSAND_SEPARATOR
  


        
  	TIME_FORMAT
  


        
  	TIME_INPUT_FORMATS
  


        
  	TIME_ZONE
  


        
  	USER
  


        
  	USE_ETAGS
  


        
  	USE_I18N
  


        
  	USE_L10N
  


        
  	USE_THOUSAND_SEPARATOR
  


        
  	USE_X_FORWARDED_HOST
  


        
  	YEAR_MONTH_FORMAT
  


      


      
  	setup_databases() (DjangoTestSuiteRunner method)
  


      
  	setup_test_environment() (DjangoTestSuiteRunner method)
  


      	
        
  	(in module django.test.utils)
  


      


      
  	
    shell
  


      	
        
  	django-admin command
  


      


      
  	shell (Polygon attribute)
  


      
  	
    SHORT_DATE_FORMAT
  


      	
        
  	setting
  


      


      
  	
    SHORT_DATETIME_FORMAT
  


      	
        
  	setting
  


      


      
  	shortcuts
  


      
  	Signal (class in django.dispatch)
  


      
  	simple (GEOSGeometry attribute)
  


      
  	SimpleTemplateResponse (class in django.template.response)
  


      
  	simplify() (GEOSGeometry method)
  


  

  	
      
  	SingleObjectMixin (class in django.views.generic.detail)
  


      
  	SingleObjectTemplateResponseMixin (class in django.views.generic.detail)
  


      
  	Site (class in django.contrib.sites.models)
  


      
  	site (Comment attribute)
  


      
  	
    SITE_ID
  


      	
        
  	setting
  


      


      
  	Sitemap (class in django.contrib.sitemaps)
  


      
  	size (File attribute)
  


      	
        
  	(UploadedFile attribute), [1]
  


      


      
  	size() (Storage method)
  


      
  	sk.forms.SKDistrictSelect (class in django.contrib.localflavor)
  


      
  	sk.forms.SKPostalCodeField (class in django.contrib.localflavor)
  


      
  	sk.forms.SKRegionSelect (class in django.contrib.localflavor)
  


      
  	
    slice
  


      	
        
  	template filter
  


      


      
  	slug
  


      
  	slug_field (SingleObjectMixin attribute)
  


      
  	SlugField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	
    slugify
  


      	
        
  	template filter
  


      


      
  	SmallIntegerField (class in django.db.models)
  


      
  	smart_str() (in module django.utils.encoding)
  


      
  	smart_unicode() (in module django.utils.encoding)
  


      
  	SMTPConnection (class in django.core.mail)
  


      
  	snap_to_grid() (GeoQuerySet method)
  


      
  	
    socket
  


      	
        
  	django-admin command-line option
  


      


      
  	SortedDict (class in django.utils.datastructures)
  


      
  	
    spaceless
  


      	
        
  	template tag
  


      


      
  	spatial_filter (Layer attribute)
  


      
  	spatial_index (GeometryField attribute)
  


      
  	
    SPATIALITE_SQL
  


      	
        
  	setting
  


      


      
  	SpatialReference (class in django.contrib.gis.gdal)
  


      
  	SplitDateTimeField (class in django.forms)
  


      
  	SplitDateTimeWidget (class in django.forms)
  


      
  	
    sql
  


      	
        
  	django-admin command
  


      


      
  	
    sqlall
  


      	
        
  	django-admin command
  


      


      
  	
    sqlclear
  


      	
        
  	django-admin command
  


      


      
  	
    sqlcustom
  


      	
        
  	django-admin command
  


      


      
  	
    sqlflush
  


      	
        
  	django-admin command
  


      


      
  	
    sqlindexes
  


      	
        
  	django-admin command
  


      


      
  	
    sqlreset
  


      	
        
  	django-admin command
  


      


      
  	
    sqlsequencereset
  


      	
        
  	django-admin command
  


      


      
  	srid (GeometryField attribute)
  


      	
        
  	(GEOSGeometry attribute)
  


        
  	(OGRGeometry attribute)
  


        
  	(SpatialReference attribute)
  


        
  	(WKBWriter attribute)
  


      


      
  	srs (GEOSGeometry attribute)
  


      	
        
  	(Layer attribute)
  


        
  	(OGRGeometry attribute)
  


      


      
  	
    ssi
  


      	
        
  	template tag
  


      


      
  	StackedInline (class in django.contrib.admin)
  


      
  	start_index() (Page method)
  


      
  	
    startapp
  


      	
        
  	django-admin command
  


      


      
  	
    startproject
  


      	
        
  	django-admin command
  


      


      
  	
    startswith
  


      	
        
  	field lookup type
  


      


      
  	static() (in module django.conf.urls.static)
  


      
  	
    STATIC_ROOT
  


      	
        
  	setting
  


      


      
  	
    STATIC_URL
  


      	
        
  	setting
  


      


      
  	
    STATICFILES_DIRS
  


      	
        
  	setting
  


      


      
  	
    STATICFILES_FINDERS
  


      	
        
  	setting
  


      


      
  	
    STATICFILES_STORAGE
  


      	
        
  	setting
  


      


      
  	status_code (HttpResponse attribute)
  


      	
        
  	(Response attribute)
  


      


      
  	StdDev (class in django.db.models)
  


      
  	Storage (class in django.core.files.storage)
  


      
  	storage (FileField attribute)
  


      
  	StrAndUnicode (class in django.utils.encoding)
  


      
  	
    strictly_above
  


      	
        
  	field lookup type
  


      


      
  	
    strictly_below
  


      	
        
  	field lookup type
  


      


      
  	string_concat() (in module django.utils.translation)
  


      
  	
    stringformat
  


      	
        
  	template filter
  


      


      
  	
    striptags
  


      	
        
  	template filter
  


      


      
  	submit_date (Comment attribute)
  


      
  	success_url (DeletionMixin attribute)
  


      	
        
  	(FormMixin attribute)
  


        
  	(ModelFormMixin attribute)
  


      


      
  	suite_result() (DjangoTestSuiteRunner method)
  


      
  	Sum (class in django.db.models)
  


      
  	SuspiciousOperation
  


      
  	svg() (GeoQuerySet method)
  


      
  	sym_difference() (GeoQuerySet method)
  


      	
        
  	(GEOSGeometry method)
  


        
  	(OGRGeometry method)
  


      


      
  	symmetrical (ManyToManyField attribute)
  


      
  	
    syncdb
  


      	
        
  	django-admin command
  


      


      
  	SyndicationFeed (class in django.utils.feedgenerator)
  


  





T


  	
      
  	TabularInline (class in django.contrib.admin)
  


      
  	teardown_databases() (DjangoTestSuiteRunner method)
  


      
  	teardown_test_environment() (DjangoTestSuiteRunner method)
  


      	
        
  	(in module django.test.utils)
  


      


      
  	tell() (HttpResponse method)
  


      
  	template
  


      	
        
  	(InlineModelAdmin attribute)
  


      


      
  	
    template filter
  


      	
        
  	add
  


        
  	addslashes
  


        
  	apnumber
  


        
  	capfirst
  


        
  	center
  


        
  	cut
  


        
  	date
  


        
  	default
  


        
  	default_if_none
  


        
  	dictsort
  


        
  	dictsortreversed
  


        
  	divisibleby
  


        
  	escape
  


        
  	escapejs
  


        
  	filesizeformat
  


        
  	first
  


        
  	fix_ampersands
  


        
  	floatformat
  


        
  	force_escape
  


        
  	get_digit
  


        
  	intcomma
  


        
  	intword
  


        
  	iriencode
  


        
  	join
  


        
  	last
  


        
  	length
  


        
  	length_is
  


        
  	linebreaks
  


        
  	linebreaksbr
  


        
  	linenumbers
  


        
  	ljust
  


        
  	localize
  


        
  	lower
  


        
  	make_list
  


        
  	naturalday
  


        
  	ordinal
  


        
  	phone2numeric
  


        
  	pluralize
  


        
  	pprint
  


        
  	random
  


        
  	removetags
  


        
  	rjust
  


        
  	safe
  


        
  	safeseq
  


        
  	slice
  


        
  	slugify
  


        
  	stringformat
  


        
  	striptags
  


        
  	time
  


        
  	timesince
  


        
  	timeuntil
  


        
  	title
  


        
  	truncatewords
  


        
  	truncatewords_html
  


        
  	unlocalize
  


        
  	unordered_list
  


        
  	upper
  


        
  	urlencode
  


        
  	urlize
  


        
  	urlizetrunc
  


        
  	wordcount
  


        
  	wordwrap
  


        
  	yesno
  


      


      
  	
    template tag
  


      	
        
  	autoescape
  


        
  	block
  


        
  	comment
  


        
  	comment_form_target
  


        
  	csrf_token
  


        
  	cycle
  


        
  	debug
  


        
  	extends
  


        
  	filter
  


        
  	firstof
  


        
  	for
  


        
  	get_comment_count
  


        
  	get_comment_form
  


        
  	get_comment_list
  


        
  	get_comment_permalink
  


        
  	get_flatpages
  


        
  	get_static_prefix
  


        
  	if
  


        
  	ifchanged
  


        
  	ifequal
  


        
  	ifnotequal
  


        
  	include
  


        
  	load
  


        
  	localize
  


        
  	now
  


        
  	regroup
  


        
  	render_comment_form
  


        
  	render_comment_list
  


        
  	spaceless
  


        
  	ssi
  


        
  	templatetag
  


        
  	url
  


        
  	widthratio
  


        
  	with
  


      


      
  	
    TEMPLATE_CONTEXT_PROCESSORS
  


      	
        
  	setting
  


      


      
  	
    TEMPLATE_DEBUG
  


      	
        
  	setting
  


      


      
  	
    TEMPLATE_DIRS
  


      	
        
  	setting
  


      


      
  	
    TEMPLATE_LOADERS
  


      	
        
  	setting
  


      


      
  	template_name (SimpleTemplateResponse attribute)
  


      	
        
  	(TemplateResponseMixin attribute)
  


        
  	(TemplateView attribute)
  


      


      
  	template_name_field (SingleObjectTemplateResponseMixin attribute)
  


      
  	template_name_suffix (MultipleObjectTemplateResponseMixin attribute)
  


      	
        
  	(SingleObjectTemplateResponseMixin attribute)
  


      


      
  	
    TEMPLATE_STRING_IF_INVALID
  


      	
        
  	setting
  


      


      
  	TemplateResponse (class in django.template.response)
  


      
  	TemplateResponseMixin (class in django.views.generic.base)
  


      
  	templates (Response attribute)
  


      
  	
    templatetag
  


      	
        
  	template tag
  


      


      
  	TemplateView (class in django.views.generic.base)
  


      
  	templatize() (in module django.utils.translation)
  


      
  	temporary_file_path (UploadedFile attribute)
  


      
  	
    test
  


      	
        
  	django-admin command
  


      


      
  	test_capability() (Layer method)
  


      
  	
    TEST_CHARSET
  


      	
        
  	setting
  


      


      
  	
    TEST_COLLATION
  


      	
        
  	setting
  


      


      
  	test_cookie_worked() (backends.base.SessionBase method)
  


      
  	
    TEST_DATABASE_CHARSET
  


      	
        
  	setting
  


      


      
  	
    TEST_DATABASE_COLLATION
  


      	
        
  	setting
  


      


      
  	
    TEST_DATABASE_NAME
  


      	
        
  	setting
  


      


      
  	
    TEST_DEPENDENCIES
  


      	
        
  	setting
  


      


      
  	
    TEST_MIRROR
  


      	
        
  	setting
  


      


      
  	
    TEST_NAME
  


      	
        
  	setting
  


      


      
  	
    TEST_RUNNER
  


      	
        
  	setting
  


      


      
  	
    TEST_USER
  


      	
        
  	setting
  


      


      
  	TestCase (class in django.test)
  


      
  	
    testserver
  


      	
        
  	django-admin command
  


      


      
  	Textarea (class in django.forms)
  


  

  	
      
  	TextField (class in django.db.models)
  


      
  	TextInput (class in django.forms)
  


      
  	
    THOUSAND_SEPARATOR
  


      	
        
  	setting
  


      


      
  	through (ManyToManyField attribute)
  


      
  	
    time
  


      	
        
  	template filter
  


      


      
  	
    TIME_FORMAT
  


      	
        
  	setting
  


      


      
  	
    TIME_INPUT_FORMATS
  


      	
        
  	setting
  


      


      
  	
    TIME_ZONE
  


      	
        
  	setting
  


      


      
  	TimeField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	TimeInput (class in django.forms)
  


      
  	
    timesince
  


      	
        
  	template filter
  


      


      
  	
    timeuntil
  


      	
        
  	template filter
  


      


      
  	
    title
  


      	
        
  	template filter
  


      


      
  	to_esri() (SpatialReference method)
  


      
  	to_field (ForeignKey attribute)
  


      
  	to_locale() (in module django.utils.translation)
  


      
  	to_python() (Field method)
  


      
  	TodayArchiveView (class in django.views.generic.dates)
  


      
  	
    touches
  


      	
        
  	field lookup type
  


      


      
  	touches() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


      


      
  	tr.forms.TRIdentificationNumberField (class in django.contrib.localflavor)
  


      
  	tr.forms.TRPhoneNumberField (class in django.contrib.localflavor)
  


      
  	tr.forms.TRProvinceSelect (class in django.contrib.localflavor)
  


      
  	tr.forms.TRZipCodeField (class in django.contrib.localflavor)
  


      
  	TransactionManagementError
  


      
  	TransactionMiddleware (class in django.middleware.transaction)
  


      
  	TransactionTestCase (class in django.test)
  


      
  	transform() (GeoQuerySet method)
  


      	
        
  	(GEOSGeometry method)
  


        
  	(OGRGeometry method)
  


      


      
  	translate() (GeoQuerySet method)
  


      
  	translation string
  


      
  	
    truncatewords
  


      	
        
  	template filter
  


      


      
  	
    truncatewords_html
  


      	
        
  	template filter
  


      


      
  	tuple (Envelope attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	type (Field attribute)
  


      
  	type_name (Field attribute)
  


      
  	TypedChoiceField (class in django.forms)
  


      
  	TypedMultipleChoiceField (class in django.forms)
  


  





U


  	
      
  	ugettext() (in module django.utils.translation)
  


      
  	ugettext_lazy() (in module django.utils.translation)
  


      
  	ugettext_noop() (in module django.utils.translation)
  


      
  	uk.forms.UKCountySelect (class in django.contrib.localflavor)
  


      
  	uk.forms.UKNationSelect (class in django.contrib.localflavor)
  


      
  	uk.forms.UKPostcodeField (class in django.contrib.localflavor)
  


      
  	
    umask
  


      	
        
  	django-admin command-line option
  


      


      
  	ungettext() (in module django.utils.translation)
  


      
  	ungettext_lazy() (in module django.utils.translation)
  


      
  	Union (class in django.contrib.gis.db.models)
  


      
  	union() (GeoQuerySet method)
  


      	
        
  	(GEOSGeometry method)
  


        
  	(OGRGeometry method)
  


      


      
  	unionagg() (GeoQuerySet method)
  


      
  	unique (Field attribute)
  


      
  	unique_for_date (Field attribute)
  


      
  	unique_for_month (Field attribute)
  


      
  	unique_for_year (Field attribute)
  


      
  	unique_together (Options attribute)
  


      
  	unit_attname() (django.contrib.gis.measure.Area class method)
  


      	
        
  	(django.contrib.gis.measure.Distance class method)
  


      


      
  	units (SpatialReference attribute)
  


      
  	
    unlocalize
  


      	
        
  	template filter
  


      


      
  	
    unordered_list
  


      	
        
  	template filter
  


      


      
  	update()
  


      	
        
  	(QueryDict method)
  


        
  	(in module django.db.models.query.QuerySet)
  


      


      
  	UpdateCacheMiddleware (class in django.middleware.cache)
  


      
  	UpdateView (class in django.views.generic.edit)
  


      
  	upload_to (FileField attribute)
  


      
  	UploadedFile (class in django.core.files.uploadedfile)
  


      	
        
  	(class in django.http)
  


      


      
  	
    upper
  


      	
        
  	template filter
  


      


      
  	ur (Envelope attribute)
  


      
  	
    url
  


      	
        
  	template tag
  


      


      
  	url (RedirectView attribute)
  


      
  	url() (in module django.conf.urls.defaults)
  


      	
        
  	(Storage method)
  


      


      
  	url_name (ResolverMatch attribute)
  


      
  	urlconf (HttpRequest attribute)
  


      
  	
    urlencode
  


      	
        
  	template filter
  


      


      
  	urlencode() (in module django.utils.http)
  


      	
        
  	(QueryDict method)
  


      


      
  	URLField (class in django.db.models)
  


      	
        
  	(class in django.forms)
  


      


      
  	
    urlize
  


      	
        
  	template filter
  


      


      
  	
    urlizetrunc
  


      	
        
  	template filter
  


      


      
  	urlquote() (in module django.utils.http)
  


  

  	
      
  	urlquote_plus() (in module django.utils.http)
  


      
  	
    urls
  


      	
        
  	definitive
  


      


      
  	urls (TestCase attribute)
  


      
  	URLValidator (class in django.core.validators)
  


      
  	us.forms.USPhoneNumberField (class in django.contrib.localflavor)
  


      
  	us.forms.USPSSelect (class in django.contrib.localflavor)
  


      
  	us.forms.USSocialSecurityNumberField (class in django.contrib.localflavor)
  


      
  	us.forms.USStateField (class in django.contrib.localflavor)
  


      
  	us.forms.USStateSelect (class in django.contrib.localflavor)
  


      
  	us.forms.USZipCodeField (class in django.contrib.localflavor)
  


      
  	us.models.PhoneNumberField (class in django.contrib.localflavor)
  


      
  	us.models.USPostalCodeField (class in django.contrib.localflavor)
  


      
  	us.models.USStateField (class in django.contrib.localflavor)
  


      
  	us.us_states.ARMED_FORCES_STATES (in module django.contrib.localflavor)
  


      
  	us.us_states.COFA_STATES (in module django.contrib.localflavor)
  


      
  	us.us_states.CONTIGUOUS_STATES (in module django.contrib.localflavor)
  


      
  	us.us_states.OBSOLETE_STATES (in module django.contrib.localflavor)
  


      
  	us.us_states.STATE_CHOICES (in module django.contrib.localflavor)
  


      
  	us.us_states.US_STATES (in module django.contrib.localflavor)
  


      
  	us.us_states.US_TERRITORIES (in module django.contrib.localflavor)
  


      
  	us.us_states.USPS_CHOICES (in module django.contrib.localflavor)
  


      
  	
    USE_ETAGS
  


      	
        
  	setting
  


      


      
  	
    USE_I18N
  


      	
        
  	setting
  


      


      
  	
    USE_L10N
  


      	
        
  	setting
  


      


      
  	
    USE_THOUSAND_SEPARATOR
  


      	
        
  	setting
  


      


      
  	
    USE_X_FORWARDED_HOST
  


      	
        
  	setting
  


      


      
  	
    USER
  


      	
        
  	setting
  


      


      
  	user (Comment attribute)
  


      	
        
  	(HttpRequest attribute)
  


      


      
  	user_email (Comment attribute)
  


      
  	user_name (Comment attribute)
  


      
  	user_passes_test() (in module django.contrib.auth.decorators)
  


      
  	user_url (Comment attribute)
  


      
  	UserChangeForm (class in django.contrib.auth.forms)
  


      
  	UserCreationForm (class in django.contrib.auth.forms)
  


      
  	username (models.User attribute)
  


      
  	using() (in module django.db.models.query.QuerySet)
  


      
  	uy.forms.UYCIField (class in django.contrib.localflavor)
  


      
  	uy.forms.UYDepartamentSelect (class in django.contrib.localflavor)
  


  





V


  	
      
  	valid (GEOSGeometry attribute)
  


      
  	valid_reason (GEOSGeometry attribute)
  


      
  	
    validate
  


      	
        
  	django-admin command
  


      


      
  	validate() (SpatialReference method)
  


      
  	validate_comma_separated_integer_list (in module django.core.validators)
  


      
  	validate_email (in module django.core.validators)
  


      
  	validate_ipv4_address (in module django.core.validators)
  


      
  	validate_slug (in module django.core.validators)
  


      
  	validate_unique() (Model method)
  


      
  	ValidationError
  


      
  	validator_user_agent (URLField attribute)
  


      	
        
  	(URLValidator attribute)
  


      


      
  	validators (Field attribute), [1]
  


      
  	value (Field attribute)
  


      
  	value() (BoundField method)
  


  

  	
      
  	value_for_index() (SortedDict method)
  


      
  	value_to_string() (Field method)
  


      
  	values() (in module django.db.models.query.QuerySet)
  


      	
        
  	(QueryDict method)
  


      


      
  	values_list() (in module django.db.models.query.QuerySet)
  


      
  	Variance (class in django.db.models)
  


      
  	vary_on_cookie() (in module django.views.decorators.vary)
  


      
  	vary_on_headers() (in module django.views.decorators.vary)
  


      
  	verbose_name (Field attribute)
  


      	
        
  	(InlineModelAdmin attribute)
  


        
  	(Options attribute)
  


      


      
  	verbose_name_plural (InlineModelAdmin attribute)
  


      	
        
  	(Options attribute)
  


      


      
  	verify_exists (URLField attribute), [1]
  


      	
        
  	(URLValidator attribute)
  


      


      
  	view
  


      
  	View (class in django.views.generic.base)
  


      
  	ViewDoesNotExist
  


      
  	views.login() (in module django.contrib.auth)
  


  





W


  	
      
  	W3CGeoFeed (class in django.contrib.gis.feeds)
  


      
  	week (WeekMixin attribute)
  


      
  	
    week_day
  


      	
        
  	field lookup type
  


      


      
  	week_format (WeekMixin attribute)
  


      
  	WeekArchiveView (class in django.views.generic.dates)
  


      
  	WeekMixin (class in django.views.generic.dates)
  


      
  	Widget
  


      
  	widget (Field attribute)
  


      	
        
  	(Form attribute)
  


      


      
  	width (Field attribute)
  


      	
        
  	(ImageFile attribute)
  


      


      
  	width_field (ImageField attribute)
  


      
  	
    widthratio
  


      	
        
  	template tag
  


      


      
  	
    with
  


      	
        
  	template tag
  


      


      
  	
    within
  


      	
        
  	field lookup type
  


      


      
  	within() (GEOSGeometry method)
  


      	
        
  	(OGRGeometry method)
  


      


  

  	
      
  	wkb (GEOSGeometry attribute)
  


      	
        
  	(OGRGeometry attribute)
  


      


      
  	wkb_size (OGRGeometry attribute)
  


      
  	WKBReader (class in django.contrib.gis.geos)
  


      
  	WKBWriter (class in django.contrib.gis.geos)
  


      
  	wkt (Envelope attribute)
  


      	
        
  	(GEOSGeometry attribute)
  


        
  	(OGRGeometry attribute)
  


        
  	(SpatialReference attribute)
  


      


      
  	WKTReader (class in django.contrib.gis.geos)
  


      
  	WKTWriter (class in django.contrib.gis.geos)
  


      
  	
    wordcount
  


      	
        
  	template filter
  


      


      
  	
    wordwrap
  


      	
        
  	template filter
  


      


      
  	
    workdir
  


      	
        
  	django-admin command-line option
  


      


      
  	write() (File method)
  


      	
        
  	(HttpResponse method)
  


        
  	(SyndicationFeed method)
  


        
  	(WKBWriter method)
  


        
  	(WKTWriter method)
  


      


      
  	write_hex() (WKBWriter method)
  


      
  	writeString() (SyndicationFeed method)
  


  





X


  	
      
  	x (LineString attribute)
  


      	
        
  	(Point attribute)
  


      


      
  	
    xml
  


      	
        
  	suckiness of
  


      


      
  	xml (SpatialReference attribute)
  


  

  	
      
  	XMLField (class in django.db.models)
  


      
  	xreadlines() (HttpRequest method)
  


      
  	XViewMiddleware (class in django.middleware.doc)
  


  





Y


  	
      
  	y (LineString attribute)
  


      	
        
  	(Point attribute)
  


      


      
  	
    year
  


      	
        
  	field lookup type
  


      


      
  	year (YearMixin attribute)
  


      
  	year_format (YearMixin attribute)
  


      
  	
    YEAR_MONTH_FORMAT
  


      	
        
  	setting
  


      


  

  	
      
  	YearArchiveView (class in django.views.generic.dates)
  


      
  	YearMixin (class in django.views.generic.dates)
  


      
  	years (SelectDateWidget.List attribute)
  


      
  	
    yesno
  


      	
        
  	template filter
  


      


  





Z


  	
      
  	z (LineString attribute)
  


      	
        
  	(Point attribute)
  


      


      
  	za.forms.ZAIDField (class in django.contrib.localflavor)
  


  

  	
      
  	za.forms.ZAPostCodeField (class in django.contrib.localflavor)
  


  







          

      

      

    


    
         Copyright Django Software Foundation and contributors.
      Last updated on Jan 07, 2015.
      Created using Sphinx 1.2.2.
    

  
_images/objecttools_01.png
Add redirect






_images/flatfiles_admin.png
[ —
e
. —
e—
-
[
e
T
e
e
E
T
s
—






_images/admin07.png
Home Polls » What's up?
Change poll

Date Date: |2007-12-01 | Today [
published:
Time 131228 | New! ©

Question: What's up?

2 Delete





_images/admin14t.png
Select ol to change o
Mt s ston. Tt [






_static/comment-bright.png





_static/file.png





_static/minus.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Django 1.3.7 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright Django Software Foundation and contributors.
      Last updated on Jan 07, 2015.
      Created using Sphinx 1.2.2.
    

  

_stati