

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Django 1.2.7 documentation

Django documentation contents

	Getting started
	Django at a glance
	Design your model

	Install it

	Enjoy the free API

	A dynamic admin interface: it’s not just scaffolding – it’s the whole house

	Design your URLs

	Write your views

	Design your templates

	This is just the surface

	Quick install guide
	Install Python

	Set up a database

	Remove any old versions of Django

	Install Django

	That’s it!

	Writing your first Django app, part 1
	Creating a project

	Creating models

	Activating models

	Playing with the API

	Writing your first Django app, part 2
	Activate the admin site

	Start the development server

	Enter the admin site

	Make the poll app modifiable in the admin

	Explore the free admin functionality

	Customize the admin form

	Adding related objects

	Customize the admin change list

	Customize the admin look and feel

	Customize the admin index page

	Writing your first Django app, part 3
	Philosophy

	Design your URLs

	Write your first view

	Write views that actually do something

	Raising 404

	Write a 404 (page not found) view

	Write a 500 (server error) view

	Use the template system

	Simplifying the URLconfs

	Decoupling the URLconfs

	Writing your first Django app, part 4
	Write a simple form

	Use generic views: Less code is better

	Coming soon

	What to read next
	Finding documentation

	How the documentation is organized

	How documentation is updated

	Where to get it

	Differences between versions

	Using Django
	How to install Django
	Install Python

	Install Apache and mod_wsgi

	Get your database running

	Remove any old versions of Django

	Install the Django code

	Models and databases
	Models

	Making queries

	Aggregation

	Managers

	Performing raw SQL queries

	Managing database transactions

	Multiple databases

	Database access optimization

	Handling HTTP requests
	URL dispatcher

	Writing views

	View decorators

	File Uploads

	Django shortcut functions

	Generic views

	Middleware

	How to use sessions

	Working with forms
	Overview

	Form objects

	Further topics

	The Django template language
	Templates

	Variables

	Filters

	Tags

	Comments

	Template inheritance

	Automatic HTML escaping

	Custom tag and filter libraries

	Generic views
	Using generic views

	Generic views of objects

	Extending generic views

	Managing files
	Using files in models

	The File object

	File storage

	Testing Django applications
	Writing tests

	Running tests

	Testing tools

	Using different testing frameworks

	User authentication in Django
	Overview

	Installation

	Users

	Authentication in Web requests

	Permissions

	Authentication data in templates

	Groups

	Messages

	Other authentication sources

	Django’s cache framework
	Setting up the cache

	The per-site cache

	The per-view cache

	Template fragment caching

	The low-level cache API

	Upstream caches

	Using Vary headers

	Controlling cache: Using other headers

	Other optimizations

	Order of MIDDLEWARE_CLASSES

	Conditional View Processing
	The condition decorator

	Shortcuts for only computing one value

	Using the decorators with other HTTP methods

	Comparison with middleware conditional processing

	Sending e-mail
	Quick example

	send_mail()

	send_mass_mail()

	mail_admins()

	mail_managers()

	Examples

	Preventing header injection

	The EmailMessage class

	E-Mail Backends

	Testing e-mail sending

	SMTPConnection

	Internationalization and localization
	Overview

	Glossary

	Specialties of Django translation

	Pagination
	Example

	Using Paginator in a view

	Paginator objects

	InvalidPage exceptions

	Page objects

	Serializing Django objects
	Serializing data

	Deserializing data

	Serialization formats

	Natural keys

	Django settings
	The basics

	Designating the settings

	Default settings

	Using settings in Python code

	Altering settings at runtime

	Security

	Available settings

	Creating your own settings

	Using settings without setting DJANGO_SETTINGS_MODULE

	Signals
	Listening to signals

	Defining and sending signals

	Disconnecting signals

	“How-to” guides
	Authenticating against Django’s user database from Apache
	Configuring Apache

	Authentication using REMOTE_USER
	Configuration

	RemoteUserBackend

	How to contribute to Django
	“The Spirit of Contributing”

	Understanding Trac

	Advice for new contributors

	FAQs

	Writing custom django-admin commands
	Command objects

	Writing custom model fields
	Introduction

	Background theory

	Writing a field subclass

	Writing a FileField subclass

	Custom template tags and filters
	Introduction

	Writing a custom storage system
	_open(name, mode='rb')

	_save(name, content)

	get_valid_name(name)

	get_available_name(name)

	Deploying Django
	How to use Django with Apache and mod_wsgi

	How to use Django with Apache and mod_python

	How to use Django with FastCGI, SCGI, or AJP

	Error reporting via e-mail
	Server errors

	404 errors

	Providing initial data for models
	Providing initial data with fixtures

	Providing initial SQL data

	Using internationalization in your own projects
	Using translations outside views and templates

	Running Django on Jython
	Installing Jython

	Creating a servlet container

	Installing Django

	Installing Jython platform support libraries

	Differences with Django on Jython

	Integrating Django with a legacy database
	Give Django your database parameters

	Auto-generate the models

	Install the core Django tables

	Test and tweak

	Outputting CSV with Django
	Using the Python CSV library

	Using the template system

	Other text-based formats

	Outputting PDFs with Django
	Install ReportLab

	Write your view

	Complex PDFs

	Further resources

	Other formats

	How to serve static files
	The big, fat disclaimer

	How to do it

	Directory listings

	Limiting use to DEBUG=True

	Django FAQ
	FAQ: General
	Why does this project exist?

	What does “Django” mean, and how do you pronounce it?

	Is Django stable?

	Does Django scale?

	Who’s behind this?

	Which sites use Django?

	Django appears to be a MVC framework, but you call the Controller the “view”, and the View the “template”. How come you don’t use the standard names?

	<Framework X> does <feature Y> – why doesn’t Django?

	Why did you write all of Django from scratch, instead of using other Python libraries?

	Is Django a content-management-system (CMS)?

	How can I download the Django documentation to read it offline?

	Where can I find Django developers for hire?

	FAQ: Installation
	How do I get started?

	What are Django’s prerequisites?

	Do I lose anything by using Python 2.4 versus newer Python versions, such as Python 2.5 or 2.6?

	Can I use Django with Python 2.3?

	Can I use Django with Python 3?

	Will Django run under shared hosting (like TextDrive or Dreamhost)?

	Should I use the stable version or development version?

	FAQ: Using Django
	Why do I get an error about importing DJANGO_SETTINGS_MODULE?

	I can’t stand your template language. Do I have to use it?

	Do I have to use your model/database layer?

	How do I use image and file fields?

	How do I make a variable available to all my templates?

	FAQ: Getting Help
	How do I do X? Why doesn’t Y work? Where can I go to get help?

	Why hasn’t my message appeared on django-users?

	Nobody on django-users answered my question! What should I do?

	I think I’ve found a bug! What should I do?

	I think I’ve found a security problem! What should I do?

	FAQ: Databases and models
	How can I see the raw SQL queries Django is running?

	Can I use Django with a pre-existing database?

	If I make changes to a model, how do I update the database?

	Do Django models support multiple-column primary keys?

	How do I add database-specific options to my CREATE TABLE statements, such as specifying MyISAM as the table type?

	Why is Django leaking memory?

	FAQ: The admin
	I can’t log in. When I enter a valid username and password, it just brings up the login page again, with no error messages.

	I can’t log in. When I enter a valid username and password, it brings up the login page again, with a “Please enter a correct username and password” error.

	How can I prevent the cache middleware from caching the admin site?

	How do I automatically set a field’s value to the user who last edited the object in the admin?

	How do I limit admin access so that objects can only be edited by the users who created them?

	My admin-site CSS and images showed up fine using the development server, but they’re not displaying when using mod_python.

	My “list_filter” contains a ManyToManyField, but the filter doesn’t display.

	How can I customize the functionality of the admin interface?

	The dynamically-generated admin site is ugly! How can I change it?

	FAQ: Contributing code
	How can I get started contributing code to Django?

	I submitted a bug fix in the ticket system several weeks ago. Why are you ignoring my patch?

	When and how might I remind the core team of a patch I care about?

	But I’ve reminded you several times and you keep ignoring my patch!

	API Reference
	Authentication backends
	Available authentication backends

	contrib packages
	The Django admin site

	django.contrib.auth

	Django’s comments framework

	The contenttypes framework

	Cross Site Request Forgery protection

	Databrowse

	The flatpages app

	django.contrib.formtools

	GeoDjango

	django.contrib.humanize

	The “local flavor” add-ons

	django.contrib.markup

	The messages framework

	The redirects app

	The sitemap framework

	The “sites” framework

	The syndication feed framework

	django.contrib.webdesign

	admin

	auth

	comments

	contenttypes

	csrf

	flatpages

	formtools

	gis

	humanize

	localflavor

	markup

	messages

	redirects

	sessions

	sites

	sitemaps

	syndication

	webdesign

	Other add-ons

	Databases
	PostgreSQL notes

	MySQL notes

	SQLite notes

	Oracle notes

	Using a 3rd-party database backend

	django-admin.py and manage.py
	Usage

	Available commands

	Commands provided by applications

	Default options

	Common options

	Extra niceties

	Running management commands from your code

	Django Exceptions
	Django-specific Exceptions

	Database Exceptions

	Python Exceptions

	File handling
	The File object

	File storage API

	Forms
	The Forms API

	Form fields

	Widgets

	Form and field validation

	Generic views
	“Simple” generic views

	Date-based generic views

	List/detail generic views

	Create/update/delete generic views

	Middleware
	Available middleware

	Models
	Model field reference

	Related objects reference

	Model Meta options

	Model instance reference

	QuerySet API reference

	Request and response objects
	Quick overview

	HttpRequest objects

	UploadedFile objects

	QueryDict objects

	HttpResponse objects

	Settings
	Available settings

	Deprecated settings

	Signals
	Model signals

	Management signals

	Request/response signals

	Test signals

	Database Wrappers

	Templates
	Built-in template tags and filters

	The Django template language: For Python programmers

	Unicode data
	Creating the database

	General string handling

	Models

	The database API

	Templates

	E-mail

	Form submission

	Django Utils
	django.utils.cache

	SortedDict

	django.utils.encoding

	django.utils.feedgenerator

	django.utils.http

	django.utils.safestring

	django.utils.translation

	django.utils.tzinfo

	Validators
	Writing validators

	How validators are run

	Built-in validators

	Meta-documentation and miscellany
	API stability
	What “stable” means

	Stable APIs

	Exceptions

	Design philosophies
	Overall

	Models

	Database API

	URL design

	Template system

	Views

	Third-party distributions of Django
	For distributors

	Glossary

	Release notes
	Final releases
	1.2 release

	1.1 release

	1.0 release

	Pre-1.0 releases

	Development releases
	Django 1.2 RC 1 release notes

	Django 1.2 beta 1 release notes

	Django 1.2 alpha 1 release notes

	Django 1.1 RC 1 release notes

	Django 1.1 beta 1 release notes

	Django 1.1 alpha 1 release notes

	Django 1.0 beta 2 release notes

	Django 1.0 beta 1 release notes

	Django 1.0 alpha 2 release notes

	Django 1.0 alpha release notes

	Django internals
	Contributing to Django
	Reporting bugs

	Reporting security issues

	Submitting patches

	Ticket triage

	Submitting and maintaining translations

	Submitting javascript patches

	Django conventions

	Coding style

	Documentation style

	Committing code

	Unit tests

	Requesting features

	Branch policy

	How we make decisions

	Commit access

	How the Django documentation works
	Django-specific markup

	An example

	TODO

	Hints

	Django committers
	The original team

	Current developers

	Developers Emeritus

	Django’s release process
	Official releases

	Supported versions

	Release process

	Django Deprecation Timeline

	The Django source code repository
	High-level overview

	Working with Django’s trunk

	Branches

	Tags

Indices, glossary and tables

	Index

	Module Index

	Glossary

Deprecated/obsolete documentation

The following documentation covers features that have been deprecated or that
have been replaced in newer versions of Django.

	Deprecated/obsolete documentation
	Customizing the Django admin interface

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Using Django

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

Using Django

Introductions to all the key parts of Django you’ll need to know:

	How to install Django

	Models and databases

	Handling HTTP requests

	Working with forms

	The Django template language

	Generic views

	Managing files

	Testing Django applications

	User authentication in Django

	Django’s cache framework

	Conditional View Processing

	Sending e-mail

	Internationalization and localization

	Pagination

	Serializing Django objects

	Django settings

	Signals

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 How to install Django

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

How to install Django

This document will get you up and running with Django.

Install Python

Being a Python Web framework, Django requires Python.

It works with any Python version from 2.4 to 2.7 (due to backwards
incompatibilities in Python 3.0, Django does not currently work with
Python 3.0; see the Django FAQ for more
information on supported Python versions and the 3.0 transition).

Get Python at http://www.python.org. If you’re running Linux or Mac OS X, you
probably already have it installed.

Django on Jython

If you use Jython [http://jython.org/] (a Python implementation for the Java platform), you’ll
need to follow a few additional steps. See Running Django on Jython for details.

Install Apache and mod_wsgi

If you just want to experiment with Django, skip ahead to the next section;
Django includes a lightweight Web server you can use for testing, so you won’t
need to set up Apache until you’re ready to deploy Django in production.

If you want to use Django on a production site, use Apache with mod_wsgi [http://code.google.com/p/modwsgi/].
mod_wsgi is similar to mod_perl – it embeds Python within Apache and loads
Python code into memory when the server starts. Code stays in memory throughout
the life of an Apache process, which leads to significant performance gains over
other server arrangements. Make sure you have Apache installed, with the
mod_wsgi module activated. Django will work with any version of Apache that
supports mod_wsgi.

See How to use Django with mod_wsgi for
information on how to configure mod_wsgi once you have it installed.

If you can’t use mod_wsgi for some reason, fear not: Django supports many other
deployment options. A great second choice is mod_python, the predecessor to mod_wsgi. Additionally, Django
follows the WSGI [http://www.python.org/dev/peps/pep-0333/] spec, which allows it to run on a variety of server platforms.
See the server-arrangements wiki page [http://code.djangoproject.com/wiki/ServerArrangements] for specific installation instructions
for each platform.

Get your database running

If you plan to use Django’s database API functionality, you’ll need to make
sure a database server is running. Django supports many different database
servers and is officially supported with PostgreSQL [http://www.postgresql.org/], MySQL [http://www.mysql.com/], Oracle [http://www.oracle.com/] and
SQLite [http://www.sqlite.org/] (although SQLite doesn’t require a separate server to be running).

In addition to the officially supported databases, there are backends provided
by 3rd parties that allow you to use other databases with Django:

	Sybase SQL Anywhere [http://code.google.com/p/sqlany-django/]

	IBM DB2 [http://code.google.com/p/ibm-db/]

	Microsoft SQL Server 2005 [http://code.google.com/p/django-mssql/]

	Firebird [http://code.google.com/p/django-firebird/]

	ODBC [http://code.google.com/p/django-pyodbc/]

The Django versions and ORM features supported by these unofficial backends
vary considerably. Queries regarding the specific capabilities of these
unofficial backends, along with any support queries, should be directed to the
support channels provided by each 3rd party project.

In addition to a database backend, you’ll need to make sure your Python
database bindings are installed.

	If you’re using PostgreSQL, you’ll need the psycopg [http://initd.org/pub/software/psycopg/] package. Django supports
both version 1 and 2. (When you configure Django’s database layer, specify
either postgresql [for version 1] or postgresql_psycopg2 [for version 2].)
You might want to refer to our PostgreSQL notes for
further technical details specific to this database.

If you’re on Windows, check out the unofficial compiled Windows version [http://stickpeople.com/projects/python/win-psycopg/].

	If you’re using MySQL, you’ll need MySQLdb [http://sourceforge.net/projects/mysql-python], version 1.2.1p2 or higher. You
will also want to read the database-specific notes for the MySQL
backend.

	If you’re using SQLite and Python 2.4, you’ll need pysqlite [http://trac.edgewall.org/wiki/PySqlite]. Use version
2.0.3 or higher. Python 2.5 ships with an SQLite wrapper in the standard
library, so you don’t need to install anything extra in that case. Please
read the SQLite backend notes.

	If you’re using Oracle, you’ll need a copy of cx_Oracle [http://cx-oracle.sourceforge.net/], but please
read the database-specific notes for the Oracle backend
for important information regarding supported versions of both Oracle and
cx_Oracle.

	If you’re using an unofficial 3rd party backend, please consult the
documentation provided for any additional requirements.

If you plan to use Django’s manage.py syncdb command to
automatically create database tables for your models, you’ll need to
ensure that Django has permission to create and alter tables in the
database you’re using; if you plan to manually create the tables, you
can simply grant Django SELECT, INSERT, UPDATE and
DELETE permissions. On some databases, Django will need
ALTER TABLE privileges during syncdb but won’t issue
ALTER TABLE statements on a table once syncdb has created it.

If you’re using Django’s testing framework to test database queries,
Django will need permission to create a test database.

Remove any old versions of Django

If you are upgrading your installation of Django from a previous version,
you will need to uninstall the old Django version before installing the
new version.

If you installed Django using setup.py install, uninstalling
is as simple as deleting the django directory from your Python
site-packages.

If you installed Django from a Python egg, remove the Django .egg file,
and remove the reference to the egg in the file named easy-install.pth.
This file should also be located in your site-packages directory.

Where are my site-packages stored?

The location of the site-packages directory depends on the operating
system, and the location in which Python was installed. To find out your
system’s site-packages location, execute the following:

python -c "from distutils.sysconfig import get_python_lib; print get_python_lib()"

(Note that this should be run from a shell prompt, not a Python interactive
prompt.)

Install the Django code

Installation instructions are slightly different depending on whether you're
installing a distribution-specific package, downloading the latest official
release, or fetching the latest development version.

It's easy, no matter which way you choose.

Installing a distribution-specific package

Check the distribution specific notes to see if your
platform/distribution provides official Django packages/installers.
Distribution-provided packages will typically allow for automatic installation
of dependencies and easy upgrade paths.

Installing an official release

	Download the latest release from our download page [http://www.djangoproject.com/download/].

	Untar the downloaded file (e.g. tar xzvf Django-NNN.tar.gz,
where NNN is the version number of the latest release).
If you're using Windows, you can download the command-line tool
bsdtar [http://gnuwin32.sourceforge.net/packages/bsdtar.htm] to do this, or you can use a GUI-based tool such as 7-zip [http://www.7-zip.org/].

	Change into the directory created in step 2 (e.g. cd Django-NNN).

	If you're using Linux, Mac OS X or some other flavor of Unix, enter
the command sudo python setup.py install at the shell prompt.
If you're using Windows, start up a command shell with administrator
privileges and run the command setup.py install.

These commands will install Django in your Python installation's
site-packages directory.

Installing the development version

Tracking Django development

If you decide to use the latest development version of Django,
you'll want to pay close attention to the development timeline [http://code.djangoproject.com/timeline],
and you'll want to keep an eye on the list of
backwards-incompatible changes [http://code.djangoproject.com/wiki/BackwardsIncompatibleChanges]. This will help you stay on top
of any new features you might want to use, as well as any changes
you'll need to make to your code when updating your copy of Django.
(For stable releases, any necessary changes are documented in the
release notes.)

If you'd like to be able to update your Django code occasionally with the
latest bug fixes and improvements, follow these instructions:

	Make sure that you have Subversion [http://subversion.tigris.org/] installed, and that you can run its
commands from a shell. (Enter svn help at a shell prompt to test
this.)

	Check out Django's main development branch (the 'trunk') like so:

svn co http://code.djangoproject.com/svn/django/trunk/ django-trunk

	Next, make sure that the Python interpreter can load Django's code. There
are various ways of accomplishing this. One of the most convenient, on
Linux, Mac OSX or other Unix-like systems, is to use a symbolic link:

ln -s WORKING-DIR/django-trunk/django SITE-PACKAGES-DIR/django

(In the above line, change SITE-PACKAGES-DIR to match the location of
your system's site-packages directory, as explained in the
"Where are my site-packages stored?" section above. Change WORKING-DIR
to match the full path to your new django-trunk directory.)

Alternatively, you can define your PYTHONPATH environment variable
so that it includes the django-trunk directory. This is perhaps the
most convenient solution on Windows systems, which don't support symbolic
links. (Environment variables can be defined on Windows systems from the
Control Panel [http://www.microsoft.com/resources/documentation/windows/xp/all/proddocs/en-us/sysdm_advancd_environmnt_addchange_variable.mspx].)

What about Apache and mod_python?

If you take the approach of setting PYTHONPATH, you'll need to
remember to do the same thing in your Apache configuration once you
deploy your production site. Do this by setting PythonPath in your
Apache configuration file.

More information about deployment is available, of course, in our
How to use Django with mod_python
documentation.

	On Unix-like systems, create a symbolic link to the file
django-trunk/django/bin/django-admin.py in a directory on your system
path, such as /usr/local/bin. For example:

ln -s WORKING-DIR/django-trunk/django/bin/django-admin.py /usr/local/bin

(In the above line, change WORKING-DIR to match the full path to your new
django-trunk directory.)

This simply lets you type django-admin.py from within any directory,
rather than having to qualify the command with the full path to the file.

On Windows systems, the same result can be achieved by copying the file
django-trunk/django/bin/django-admin.py to somewhere on your system
path, for example C:\Python24\Scripts.

You don't have to run python setup.py install, because you've already
carried out the equivalent actions in steps 3 and 4.

When you want to update your copy of the Django source code, just run the
command svn update from within the django-trunk directory. When you do
this, Subversion will automatically download any changes.

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Models

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

 	Models and databases

Models

A model is the single, definitive source of data about your data. It contains
the essential fields and behaviors of the data you’re storing. Generally, each
model maps to a single database table.

The basics:

	Each model is a Python class that subclasses
django.db.models.Model.

	Each attribute of the model represents a database field.

	With all of this, Django gives you an automatically-generated
database-access API; see Making queries.

See also

A companion to this document is the official repository of model
examples [http://code.djangoproject.com/browser/django/trunk/tests/modeltests]. (In the Django source distribution, these examples are in the
tests/modeltests directory.)

Quick example

This example model defines a Person, which has a first_name and
last_name:

from django.db import models

class Person(models.Model):
 first_name = models.CharField(max_length=30)
 last_name = models.CharField(max_length=30)

first_name and last_name are fields of the model. Each field is
specified as a class attribute, and each attribute maps to a database column.

The above Person model would create a database table like this:

CREATE TABLE myapp_person (
 "id" serial NOT NULL PRIMARY KEY,
 "first_name" varchar(30) NOT NULL,
 "last_name" varchar(30) NOT NULL
);

Some technical notes:

	The name of the table, myapp_person, is automatically derived from
some model metadata but can be overridden. See Table names for more
details..

	An id field is added automatically, but this behavior can be
overridden. See Automatic primary key fields.

	The CREATE TABLE SQL in this example is formatted using PostgreSQL
syntax, but it's worth noting Django uses SQL tailored to the database
backend specified in your settings file.

Using models

Once you have defined your models, you need to tell Django you're going to use
those models. Do this by editing your settings file and changing the
INSTALLED_APPS setting to add the name of the module that contains
your models.py.

For example, if the models for your application live in the module
mysite.myapp.models (the package structure that is created for an
application by the manage.py startapp script),
INSTALLED_APPS should read, in part:

INSTALLED_APPS = (
 #...
 'mysite.myapp',
 #...
)

When you add new apps to INSTALLED_APPS, be sure to run
manage.py syncdb.

Fields

The most important part of a model -- and the only required part of a model --
is the list of database fields it defines. Fields are specified by class
attributes.

Example:

class Musician(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 instrument = models.CharField(max_length=100)

class Album(models.Model):
 artist = models.ForeignKey(Musician)
 name = models.CharField(max_length=100)
 release_date = models.DateField()
 num_stars = models.IntegerField()

Field types

Each field in your model should be an instance of the appropriate
Field class. Django uses the field class types to
determine a few things:

	The database column type (e.g. INTEGER, VARCHAR).

	The widget to use in Django's admin interface,
if you care to use it (e.g. <input type="text">, <select>).

	The minimal validation requirements, used in Django's admin and in
automatically-generated forms.

Django ships with dozens of built-in field types; you can find the complete list
in the model field reference. You can easily write
your own fields if Django's built-in ones don't do the trick; see
Writing custom model fields.

Field options

Each field takes a certain set of field-specific arguments (documented in the
model field reference). For example,
CharField (and its subclasses) require a
max_length argument which specifies the size
of the VARCHAR database field used to store the data.

There's also a set of common arguments available to all field types. All are
optional. They're fully explained in the reference, but here's a quick summary of the most often-used
ones:

	null

	If True, Django will store empty values as NULL in the database.
Default is False.

	blank

	If True, the field is allowed to be blank. Default is False.

Note that this is different than null.
null is purely database-related, whereas
blank is validation-related. If a field has
blank=True, validation on Django's admin site will
allow entry of an empty value. If a field has blank=False, the field will be required.

	choices

	An iterable (e.g., a list or tuple) of 2-tuples to use as choices for
this field. If this is given, Django's admin will use a select box
instead of the standard text field and will limit choices to the choices
given.

A choices list looks like this:

YEAR_IN_SCHOOL_CHOICES = (
 (u'FR', u'Freshman'),
 (u'SO', u'Sophomore'),
 (u'JR', u'Junior'),
 (u'SR', u'Senior'),
 (u'GR', u'Graduate'),
)

The first element in each tuple is the value that will be stored in the
database, the second element will be displayed by the admin interface,
or in a ModelChoiceField. Given an instance of a model object, the
display value for a choices field can be accessed using the
get_FOO_display method. For example:

from django.db import models

class Person(models.Model):
 GENDER_CHOICES = (
 (u'M', u'Male'),
 (u'F', u'Female'),
)
 name = models.CharField(max_length=60)
 gender = models.CharField(max_length=2, choices=GENDER_CHOICES)

>>> p = Person(name="Fred Flinstone", gender="M")
>>> p.save()
>>> p.gender
u'M'
>>> p.get_gender_display()
u'Male'

	default

	The default value for the field. This can be a value or a callable
object. If callable it will be called every time a new object is
created.

	help_text

	Extra "help" text to be displayed under the field on the object's admin
form. It's useful for documentation even if your object doesn't have an
admin form.

	primary_key

	If True, this field is the primary key for the model.

If you don't specify primary_key=True for
any fields in your model, Django will automatically add an
IntegerField to hold the primary key, so you don't need to set
primary_key=True on any of your fields
unless you want to override the default primary-key behavior. For more,
see Automatic primary key fields.

	unique

	If True, this field must be unique throughout the table.

Again, these are just short descriptions of the most common field options. Full
details can be found in the common model field option reference.

Automatic primary key fields

By default, Django gives each model the following field:

id = models.AutoField(primary_key=True)

This is an auto-incrementing primary key.

If you'd like to specify a custom primary key, just specify
primary_key=True on one of your fields. If Django
sees you've explicitly set Field.primary_key, it won't add the automatic
id column.

Each model requires exactly one field to have primary_key=True.

Verbose field names

Each field type, except for ForeignKey,
ManyToManyField and
OneToOneField, takes an optional first positional
argument -- a verbose name. If the verbose name isn't given, Django will
automatically create it using the field's attribute name, converting underscores
to spaces.

In this example, the verbose name is "person's first name":

first_name = models.CharField("person's first name", max_length=30)

In this example, the verbose name is "first name":

first_name = models.CharField(max_length=30)

ForeignKey,
ManyToManyField and
OneToOneField require the first argument to be a
model class, so use the verbose_name keyword argument:

poll = models.ForeignKey(Poll, verbose_name="the related poll")
sites = models.ManyToManyField(Site, verbose_name="list of sites")
place = models.OneToOneField(Place, verbose_name="related place")

The convention is not to capitalize the first letter of the
verbose_name. Django will automatically capitalize the first
letter where it needs to.

Relationships

Clearly, the power of relational databases lies in relating tables to each
other. Django offers ways to define the three most common types of database
relationships: many-to-one, many-to-many and one-to-one.

Many-to-one relationships

To define a many-to-one relationship, use django.db.models.ForeignKey.
You use it just like any other Field type: by
including it as a class attribute of your model.

ForeignKey requires a positional argument: the class
to which the model is related.

For example, if a Car model has a Manufacturer -- that is, a
Manufacturer makes multiple cars but each Car only has one
Manufacturer -- use the following definitions:

class Manufacturer(models.Model):
 # ...

class Car(models.Model):
 manufacturer = models.ForeignKey(Manufacturer)
 # ...

You can also create recursive relationships (an
object with a many-to-one relationship to itself) and relationships to
models not yet defined; see the model field
reference for details.

It's suggested, but not required, that the name of a
ForeignKey field (manufacturer in the example
above) be the name of the model, lowercase. You can, of course, call the field
whatever you want. For example:

class Car(models.Model):
 company_that_makes_it = models.ForeignKey(Manufacturer)
 # ...

See also

ForeignKey fields accept a number of extra
arguments which are explained in the model field reference. These options help define how the relationship
should work; all are optional.

For details on accessing backwards-related objects, see the
Following relationships backward example [http://docs.djangoproject.com/en/dev/topics/db/queries/#backwards-related-objects].

For sample code, see the Many-to-one relationship model tests [http://code.djangoproject.com/browser/django/trunk/tests/modeltests/many_to_one].

Many-to-many relationships

To define a many-to-many relationship, use
ManyToManyField. You use it just like any other
Field type: by including it as a class attribute of
your model.

ManyToManyField requires a positional argument: the
class to which the model is related.

For example, if a Pizza has multiple Topping objects -- that is, a
Topping can be on multiple pizzas and each Pizza has multiple toppings
-- here's how you'd represent that:

class Topping(models.Model):
 # ...

class Pizza(models.Model):
 # ...
 toppings = models.ManyToManyField(Topping)

As with ForeignKey, you can also create
recursive relationships (an object with a
many-to-many relationship to itself) and relationships to models not yet
defined; see the model field reference for details.

It's suggested, but not required, that the name of a
ManyToManyField (toppings in the example above)
be a plural describing the set of related model objects.

It doesn't matter which model gets the
ManyToManyField, but you only need it in one of the
models -- not in both.

Generally, ManyToManyField instances should go in the
object that's going to be edited in the admin interface, if you're using
Django's admin. In the above example, toppings is in Pizza (rather than
Topping having a pizzas ManyToManyField)
because it's more natural to think about a pizza having toppings than a
topping being on multiple pizzas. The way it's set up above, the Pizza admin
form would let users select the toppings.

See also

See the Many-to-many relationship model example [http://code.djangoproject.com/browser/django/trunk/tests/modeltests/many_to_many/models.py] for a full example.

ManyToManyField fields also accept a number of extra
arguments which are explained in the model field reference. These options help define how the relationship should
work; all are optional.

Extra fields on many-to-many relationships

When you're only dealing with simple many-to-many relationships such as
mixing and matching pizzas and toppings, a standard ManyToManyField is all you need. However, sometimes
you may need to associate data with the relationship between two models.

For example, consider the case of an application tracking the musical groups
which musicians belong to. There is a many-to-many relationship between a person
and the groups of which they are a member, so you could use a
ManyToManyField to represent this relationship.
However, there is a lot of detail about the membership that you might want to
collect, such as the date at which the person joined the group.

For these situations, Django allows you to specify the model that will be used
to govern the many-to-many relationship. You can then put extra fields on the
intermediate model. The intermediate model is associated with the
ManyToManyField using the
through argument to point to the model
that will act as an intermediary. For our musician example, the code would look
something like this:

class Person(models.Model):
 name = models.CharField(max_length=128)

 def __unicode__(self):
 return self.name

class Group(models.Model):
 name = models.CharField(max_length=128)
 members = models.ManyToManyField(Person, through='Membership')

 def __unicode__(self):
 return self.name

class Membership(models.Model):
 person = models.ForeignKey(Person)
 group = models.ForeignKey(Group)
 date_joined = models.DateField()
 invite_reason = models.CharField(max_length=64)

When you set up the intermediary model, you explicitly specify foreign
keys to the models that are involved in the ManyToMany relation. This
explicit declaration defines how the two models are related.

There are a few restrictions on the intermediate model:

	Your intermediate model must contain one - and only one - foreign key
to the target model (this would be Person in our example). If you
have more than one foreign key, a validation error will be raised.

	Your intermediate model must contain one - and only one - foreign key
to the source model (this would be Group in our example). If you
have more than one foreign key, a validation error will be raised.

	The only exception to this is a model which has a many-to-many
relationship to itself, through an intermediary model. In this
case, two foreign keys to the same model are permitted, but they
will be treated as the two (different) sides of the many-to-many
relation.

	When defining a many-to-many relationship from a model to
itself, using an intermediary model, you must use
symmetrical=False (see
the model field reference).

Now that you have set up your ManyToManyField to use
your intermediary model (Membership, in this case), you're ready to start
creating some many-to-many relationships. You do this by creating instances of
the intermediate model:

>>> ringo = Person.objects.create(name="Ringo Starr")
>>> paul = Person.objects.create(name="Paul McCartney")
>>> beatles = Group.objects.create(name="The Beatles")
>>> m1 = Membership(person=ringo, group=beatles,
... date_joined=date(1962, 8, 16),
... invite_reason= "Needed a new drummer.")
>>> m1.save()
>>> beatles.members.all()
[<Person: Ringo Starr>]
>>> ringo.group_set.all()
[<Group: The Beatles>]
>>> m2 = Membership.objects.create(person=paul, group=beatles,
... date_joined=date(1960, 8, 1),
... invite_reason= "Wanted to form a band.")
>>> beatles.members.all()
[<Person: Ringo Starr>, <Person: Paul McCartney>]

Unlike normal many-to-many fields, you can't use add, create,
or assignment (i.e., beatles.members = [...]) to create relationships:

THIS WILL NOT WORK
>>> beatles.members.add(john)
NEITHER WILL THIS
>>> beatles.members.create(name="George Harrison")
AND NEITHER WILL THIS
>>> beatles.members = [john, paul, ringo, george]

Why? You can't just create a relationship between a Person and a Group
- you need to specify all the detail for the relationship required by the
Membership model. The simple add, create and assignment calls
don't provide a way to specify this extra detail. As a result, they are
disabled for many-to-many relationships that use an intermediate model.
The only way to create this type of relationship is to create instances of the
intermediate model.

The remove() method is
disabled for similar reasons. However, the
clear() method can be
used to remove all many-to-many relationships for an instance:

Beatles have broken up
>>> beatles.members.clear()

Once you have established the many-to-many relationships by creating instances
of your intermediate model, you can issue queries. Just as with normal
many-to-many relationships, you can query using the attributes of the
many-to-many-related model:

Find all the groups with a member whose name starts with 'Paul'
>>> Group.objects.filter(members__name__startswith='Paul')
[<Group: The Beatles>]

As you are using an intermediate model, you can also query on its attributes:

Find all the members of the Beatles that joined after 1 Jan 1961
>>> Person.objects.filter(
... group__name='The Beatles',
... membership__date_joined__gt=date(1961,1,1))
[<Person: Ringo Starr]

One-to-one relationships

To define a one-to-one relationship, use
OneToOneField. You use it just like any other
Field type: by including it as a class attribute of your model.

This is most useful on the primary key of an object when that object "extends"
another object in some way.

OneToOneField requires a positional argument: the
class to which the model is related.

For example, if you were building a database of "places", you would
build pretty standard stuff such as address, phone number, etc. in the
database. Then, if you wanted to build a database of restaurants on
top of the places, instead of repeating yourself and replicating those
fields in the Restaurant model, you could make Restaurant have
a OneToOneField to Place (because a
restaurant "is a" place; in fact, to handle this you'd typically use
inheritance, which involves an implicit
one-to-one relation).

As with ForeignKey, a
recursive relationship
can be defined and
references to as-yet undefined models
can be made; see the model field reference for details.

See also

See the One-to-one relationship model example [http://code.djangoproject.com/browser/django/trunk/tests/modeltests/one_to_one/models.py] for a full example.

OneToOneField fields also accept one optional argument
described in the model field reference.

OneToOneField classes used to automatically become
the primary key on a model. This is no longer true (although you can manually
pass in the primary_key argument if you like).
Thus, it's now possible to have multiple fields of type
OneToOneField on a single model.

Models across files

It's perfectly OK to relate a model to one from another app. To do this,
import the related model at the top of the model that holds your model. Then,
just refer to the other model class wherever needed. For example:

from geography.models import ZipCode

class Restaurant(models.Model):
 # ...
 zip_code = models.ForeignKey(ZipCode)

Field name restrictions

Django places only two restrictions on model field names:

	A field name cannot be a Python reserved word, because that would result
in a Python syntax error. For example:

class Example(models.Model):
 pass = models.IntegerField() # 'pass' is a reserved word!

	A field name cannot contain more than one underscore in a row, due to
the way Django's query lookup syntax works. For example:

class Example(models.Model):
 foo__bar = models.IntegerField() # 'foo__bar' has two underscores!

These limitations can be worked around, though, because your field name doesn't
necessarily have to match your database column name. See the
db_column option.

SQL reserved words, such as join, where or select, are allowed as
model field names, because Django escapes all database table names and column
names in every underlying SQL query. It uses the quoting syntax of your
particular database engine.

Custom field types

If one of the existing model fields cannot be used to fit your purposes, or if
you wish to take advantage of some less common database column types, you can
create your own field class. Full coverage of creating your own fields is
provided in Writing custom model fields.

Meta options

Give your model metadata by using an inner class Meta, like so:

class Ox(models.Model):
 horn_length = models.IntegerField()

 class Meta:
 ordering = ["horn_length"]
 verbose_name_plural = "oxen"

Model metadata is "anything that's not a field", such as ordering options
(ordering), database table name (db_table), or
human-readable singular and plural names (verbose_name and
verbose_name_plural). None are required, and adding class
Meta to a model is completely optional.

A complete list of all possible Meta options can be found in the model
option reference.

Model methods

Define custom methods on a model to add custom "row-level" functionality to your
objects. Whereas Manager methods are intended to do
"table-wide" things, model methods should act on a particular model instance.

This is a valuable technique for keeping business logic in one place -- the
model.

For example, this model has a few custom methods:

from django.contrib.localflavor.us.models import USStateField

class Person(models.Model):
 first_name = models.CharField(max_length=50)
 last_name = models.CharField(max_length=50)
 birth_date = models.DateField()
 address = models.CharField(max_length=100)
 city = models.CharField(max_length=50)
 state = USStateField() # Yes, this is America-centric...

 def baby_boomer_status(self):
 "Returns the person's baby-boomer status."
 import datetime
 if datetime.date(1945, 8, 1) <= self.birth_date <= datetime.date(1964, 12, 31):
 return "Baby boomer"
 if self.birth_date < datetime.date(1945, 8, 1):
 return "Pre-boomer"
 return "Post-boomer"

 def is_midwestern(self):
 "Returns True if this person is from the Midwest."
 return self.state in ('IL', 'WI', 'MI', 'IN', 'OH', 'IA', 'MO')

 def _get_full_name(self):
 "Returns the person's full name."
 return '%s %s' % (self.first_name, self.last_name)
 full_name = property(_get_full_name)

The last method in this example is a property. Read more about
properties [http://www.python.org/download/releases/2.2/descrintro/#property].

The model instance reference has a complete list
of methods automatically given to each model.
You can override most of these -- see overriding predefined model methods,
below -- but there are a couple that you'll almost always want to define:

	__unicode__()

	A Python "magic method" that returns a unicode "representation" of any
object. This is what Python and Django will use whenever a model
instance needs to be coerced and displayed as a plain string. Most
notably, this happens when you display an object in an interactive
console or in the admin.

You'll always want to define this method; the default isn't very helpful
at all.

	get_absolute_url()

	This tells Django how to calculate the URL for an object. Django uses
this in its admin interface, and any time it needs to figure out a URL
for an object.

Any object that has a URL that uniquely identifies it should define this
method.

Overriding predefined model methods

There's another set of model methods that
encapsulate a bunch of database behavior that you'll want to customize. In
particular you'll often want to change the way save() and
delete() work.

You're free to override these methods (and any other model method) to alter
behavior.

A classic use-case for overriding the built-in methods is if you want something
to happen whenever you save an object. For example (see
save() for documentation of the parameters it accepts):

class Blog(models.Model):
 name = models.CharField(max_length=100)
 tagline = models.TextField()

 def save(self, *args, **kwargs):
 do_something()
 super(Blog, self).save(*args, **kwargs) # Call the "real" save() method.
 do_something_else()

You can also prevent saving:

class Blog(models.Model):
 name = models.CharField(max_length=100)
 tagline = models.TextField()

 def save(self, *args, **kwargs):
 if self.name == "Yoko Ono's blog":
 return # Yoko shall never have her own blog!
 else:
 super(Blog, self).save(*args, **kwargs) # Call the "real" save() method.

It's important to remember to call the superclass method -- that's
that super(Blog, self).save(*args, **kwargs) business -- to ensure
that the object still gets saved into the database. If you forget to
call the superclass method, the default behavior won't happen and the
database won't get touched.

It's also important that you pass through the arguments that can be
passed to the model method -- that's what the *args, **kwargs bit
does. Django will, from time to time, extend the capabilities of
built-in model methods, adding new arguments. If you use *args,
**kwargs in your method definitions, you are guaranteed that your
code will automatically support those arguments when they are added.

Overriding Delete

Note that the delete() method for an object is not
necessarily called when deleting objects in bulk using a
QuerySet. To ensure customized delete logic
gets executed, you can use pre_delete
and/or post_delete signals.

Executing custom SQL

Another common pattern is writing custom SQL statements in model methods and
module-level methods. For more details on using raw SQL, see the documentation
on using raw SQL.

Model inheritance

Model inheritance in Django works almost identically to the way normal
class inheritance works in Python. The only decision you have to make
is whether you want the parent models to be models in their own right
(with their own database tables), or if the parents are just holders
of common information that will only be visible through the child
models.

There are three styles of inheritance that are possible in Django.

	Often, you will just want to use the parent class to hold information that
you don't want to have to type out for each child model. This class isn't
going to ever be used in isolation, so Abstract base classes are
what you're after.

	If you're subclassing an existing model (perhaps something from another
application entirely) and want each model to have its own database table,
Multi-table inheritance is the way to go.

	Finally, if you only want to modify the Python-level behaviour of a model,
without changing the models fields in any way, you can use
Proxy models.

Abstract base classes

Abstract base classes are useful when you want to put some common
information into a number of other models. You write your base class
and put abstract=True in the Meta
class. This model will then not be used to create any database
table. Instead, when it is used as a base class for other models, its
fields will be added to those of the child class. It is an error to
have fields in the abstract base class with the same name as those in
the child (and Django will raise an exception).

An example:

class CommonInfo(models.Model):
 name = models.CharField(max_length=100)
 age = models.PositiveIntegerField()

 class Meta:
 abstract = True

class Student(CommonInfo):
 home_group = models.CharField(max_length=5)

The Student model will have three fields: name, age and
home_group. The CommonInfo model cannot be used as a normal Django
model, since it is an abstract base class. It does not generate a database
table or have a manager, and cannot be instantiated or saved directly.

For many uses, this type of model inheritance will be exactly what you want.
It provides a way to factor out common information at the Python level, whilst
still only creating one database table per child model at the database level.

Meta inheritance

When an abstract base class is created, Django makes any Meta
inner class you declared in the base class available as an
attribute. If a child class does not declare its own Meta
class, it will inherit the parent's Meta. If the child wants to
extend the parent's Meta class, it can subclass it. For example:

class CommonInfo(models.Model):
 ...
 class Meta:
 abstract = True
 ordering = ['name']

class Student(CommonInfo):
 ...
 class Meta(CommonInfo.Meta):
 db_table = 'student_info'

Django does make one adjustment to the Meta class of an abstract base
class: before installing the Meta attribute, it sets abstract=False.
This means that children of abstract base classes don't automatically become
abstract classes themselves. Of course, you can make an abstract base class
that inherits from another abstract base class. You just need to remember to
explicitly set abstract=True each time.

Some attributes won't make sense to include in the Meta class of an
abstract base class. For example, including db_table would mean that all
the child classes (the ones that don't specify their own Meta) would use
the same database table, which is almost certainly not what you want.

Be careful with related_name

If you are using the related_name attribute on a ForeignKey or
ManyToManyField, you must always specify a unique reverse name for the
field. This would normally cause a problem in abstract base classes, since the
fields on this class are included into each of the child classes, with exactly
the same values for the attributes (including related_name) each time.

Changed in Django 1.2: Please, see the release notes

To work around this problem, when you are using related_name in an
abstract base class (only), part of the name should contain
'%(app_label)s' and '%(class)s'.

	'%(class)s' is replaced by the lower-cased name of the child class
that the field is used in.

	'%(app_label)s' is replaced by the lower-cased name of the app the child
class is contained within. Each installed application name must be unique
and the model class names within each app must also be unique, therefore the
resulting name will end up being different.

For example, given an app common/models.py:

class Base(models.Model):
 m2m = models.ManyToManyField(OtherModel, related_name="%(app_label)s_%(class)s_related")

 class Meta:
 abstract = True

class ChildA(Base):
 pass

class ChildB(Base):
 pass

Along with another app rare/models.py:

from common.models import Base

class ChildB(Base):
 pass

The reverse name of the commmon.ChildA.m2m field will be
common_childa_related, whilst the reverse name of the
common.ChildB.m2m field will be common_childb_related, and finally the
reverse name of the rare.ChildB.m2m field will be rare_childb_related.
It is up to you how you use the '%(class)s' and '%(app_label)s portion
to construct your related name, but if you forget to use it, Django will raise
errors when you validate your models (or run syncdb).

If you don't specify a related_name
attribute for a field in an abstract base class, the default reverse name will
be the name of the child class followed by '_set', just as it normally
would be if you'd declared the field directly on the child class. For example,
in the above code, if the related_name
attribute was omitted, the reverse name for the m2m field would be
childa_set in the ChildA case and childb_set for the ChildB
field.

Multi-table inheritance

The second type of model inheritance supported by Django is when each model in
the hierarchy is a model all by itself. Each model corresponds to its own
database table and can be queried and created individually. The inheritance
relationship introduces links between the child model and each of its parents
(via an automatically-created OneToOneField).
For example:

class Place(models.Model):
 name = models.CharField(max_length=50)
 address = models.CharField(max_length=80)

class Restaurant(Place):
 serves_hot_dogs = models.BooleanField()
 serves_pizza = models.BooleanField()

All of the fields of Place will also be available in Restaurant,
although the data will reside in a different database table. So these are both
possible:

>>> Place.objects.filter(name="Bob's Cafe")
>>> Restaurant.objects.filter(name="Bob's Cafe")

If you have a Place that is also a Restaurant, you can get from the
Place object to the Restaurant object by using the lower-case version
of the model name:

>>> p = Place.objects.get(id=12)
If p is a Restaurant object, this will give the child class:
>>> p.restaurant
<Restaurant: ...>

However, if p in the above example was not a Restaurant (it had been
created directly as a Place object or was the parent of some other class),
referring to p.restaurant would raise a Restaurant.DoesNotExist exception.

Meta and multi-table inheritance

In the multi-table inheritance situation, it doesn't make sense for a child
class to inherit from its parent's Meta class. All the Meta options
have already been applied to the parent class and applying them again would
normally only lead to contradictory behavior (this is in contrast with the
abstract base class case, where the base class doesn't exist in its own
right).

So a child model does not have access to its parent's Meta class. However, there are a few limited cases where the child
inherits behavior from the parent: if the child does not specify an
ordering attribute or a
get_latest_by attribute, it will inherit
these from its parent.

If the parent has an ordering and you don't want the child to have any natural
ordering, you can explicitly disable it:

class ChildModel(ParentModel):
 ...
 class Meta:
 # Remove parent's ordering effect
 ordering = []

Inheritance and reverse relations

Because multi-table inheritance uses an implicit
OneToOneField to link the child and
the parent, it's possible to move from the parent down to the child,
as in the above example. However, this uses up the name that is the
default related_name value for
ForeignKey and
ManyToManyField relations. If you
are putting those types of relations on a subclass of another model,
you must specify the
related_name attribute on each
such field. If you forget, Django will raise an error when you run
validate or syncdb.

For example, using the above Place class again, let's create another
subclass with a ManyToManyField:

class Supplier(Place):
 # Must specify related_name on all relations.
 customers = models.ManyToManyField(Restaurant, related_name='provider')

Specifying the parent link field

As mentioned, Django will automatically create a
OneToOneField linking your child
class back any non-abstract parent models. If you want to control the
name of the attribute linking back to the parent, you can create your
own OneToOneField and set
parent_link=True
to indicate that your field is the link back to the parent class.

Proxy models

New in Django 1.1: Please, see the release notes

When using multi-table inheritance, a new
database table is created for each subclass of a model. This is usually the
desired behavior, since the subclass needs a place to store any additional
data fields that are not present on the base class. Sometimes, however, you
only want to change the Python behavior of a model -- perhaps to change the
default manager, or add a new method.

This is what proxy model inheritance is for: creating a proxy for the
original model. You can create, delete and update instances of the proxy model
and all the data will be saved as if you were using the original (non-proxied)
model. The difference is that you can change things like the default model
ordering or the default manager in the proxy, without having to alter the
original.

 Aggregation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

 	Models and databases

Aggregation

New in Django 1.1: Please, see the release notes

The topic guide on Django’s database-abstraction API
described the way that you can use Django queries that create,
retrieve, update and delete individual objects. However, sometimes you will
need to retrieve values that are derived by summarizing or aggregating a
collection of objects. This topic guide describes the ways that aggregate values
can be generated and returned using Django queries.

Throughout this guide, we’ll refer to the following models. These models are
used to track the inventory for a series of online bookstores:

class Author(models.Model):
 name = models.CharField(max_length=100)
 age = models.IntegerField()
 friends = models.ManyToManyField('self', blank=True)

class Publisher(models.Model):
 name = models.CharField(max_length=300)
 num_awards = models.IntegerField()

class Book(models.Model):
 isbn = models.CharField(max_length=9)
 name = models.CharField(max_length=300)
 pages = models.IntegerField()
 price = models.DecimalField(max_digits=10, decimal_places=2)
 rating = models.FloatField()
 authors = models.ManyToManyField(Author)
 publisher = models.ForeignKey(Publisher)
 pubdate = models.DateField()

class Store(models.Model):
 name = models.CharField(max_length=300)
 books = models.ManyToManyField(Book)

Generating aggregates over a QuerySet

Django provides two ways to generate aggregates. The first way is to generate
summary values over an entire QuerySet. For example, say you wanted to
calculate the average price of all books available for sale. Django's query
syntax provides a means for describing the set of all books:

>>> Book.objects.all()

What we need is a way to calculate summary values over the objects that
belong to this QuerySet. This is done by appending an aggregate()
clause onto the QuerySet:

>>> from django.db.models import Avg
>>> Book.objects.all().aggregate(Avg('price'))
{'price__avg': 34.35}

The all() is redundant in this example, so this could be simplified to:

>>> Book.objects.aggregate(Avg('price'))
{'price__avg': 34.35}

The argument to the aggregate() clause describes the aggregate value that
we want to compute - in this case, the average of the price field on the
Book model. A list of the aggregate functions that are available can be
found in the QuerySet reference.

aggregate() is a terminal clause for a QuerySet that, when invoked,
returns a dictionary of name-value pairs. The name is an identifier for the
aggregate value; the value is the computed aggregate. The name is
automatically generated from the name of the field and the aggregate function.
If you want to manually specify a name for the aggregate value, you can do so
by providing that name when you specify the aggregate clause:

>>> Book.objects.aggregate(average_price=Avg('price'))
{'average_price': 34.35}

If you want to generate more than one aggregate, you just add another
argument to the aggregate() clause. So, if we also wanted to know
the maximum and minimum price of all books, we would issue the query:

>>> from django.db.models import Avg, Max, Min, Count
>>> Book.objects.aggregate(Avg('price'), Max('price'), Min('price'))
{'price__avg': 34.35, 'price__max': Decimal('81.20'), 'price__min': Decimal('12.99')}

Generating aggregates for each item in a QuerySet

The second way to generate summary values is to generate an independent
summary for each object in a QuerySet. For example, if you are retrieving
a list of books, you may want to know how many authors contributed to
each book. Each Book has a many-to-many relationship with the Author; we
want to summarize this relationship for each book in the QuerySet.

Per-object summaries can be generated using the annotate() clause.
When an annotate() clause is specified, each object in the QuerySet
will be annotated with the specified values.

The syntax for these annotations is identical to that used for the
aggregate() clause. Each argument to annotate() describes an
aggregate that is to be calculated. For example, to annotate Books with
the number of authors:

Build an annotated queryset
>>> q = Book.objects.annotate(Count('authors'))
Interrogate the first object in the queryset
>>> q[0]
<Book: The Definitive Guide to Django>
>>> q[0].authors__count
2
Interrogate the second object in the queryset
>>> q[1]
<Book: Practical Django Projects>
>>> q[1].authors__count
1

As with aggregate(), the name for the annotation is automatically derived
from the name of the aggregate function and the name of the field being
aggregated. You can override this default name by providing an alias when you
specify the annotation:

>>> q = Book.objects.annotate(num_authors=Count('authors'))
>>> q[0].num_authors
2
>>> q[1].num_authors
1

Unlike aggregate(), annotate() is not a terminal clause. The output
of the annotate() clause is a QuerySet; this QuerySet can be
modified using any other QuerySet operation, including filter(),
order_by, or even additional calls to annotate().

Joins and aggregates

So far, we have dealt with aggregates over fields that belong to the
model being queried. However, sometimes the value you want to aggregate
will belong to a model that is related to the model you are querying.

When specifying the field to be aggregated in an aggregate function, Django
will allow you to use the same double underscore notation that is used when referring to related fields in
filters. Django will then handle any table joins that are required to retrieve
and aggregate the related value.

For example, to find the price range of books offered in each store,
you could use the annotation:

>>> Store.objects.annotate(min_price=Min('books__price'), max_price=Max('books__price'))

This tells Django to retrieve the Store model, join (through the
many-to-many relationship) with the Book model, and aggregate on the
price field of the book model to produce a minimum and maximum value.

The same rules apply to the aggregate() clause. If you wanted to
know the lowest and highest price of any book that is available for sale
in a store, you could use the aggregate:

>>> Store.objects.aggregate(min_price=Min('books__price'), max_price=Max('books__price'))

Join chains can be as deep as you require. For example, to extract the
age of the youngest author of any book available for sale, you could
issue the query:

>>> Store.objects.aggregate(youngest_age=Min('books__authors__age'))

Aggregations and other QuerySet clauses

filter() and exclude()

Aggregates can also participate in filters. Any filter() (or
exclude()) applied to normal model fields will have the effect of
constraining the objects that are considered for aggregation.

When used with an annotate() clause, a filter has the effect of
constraining the objects for which an annotation is calculated. For example,
you can generate an annotated list of all books that have a title starting
with "Django" using the query:

>>> Book.objects.filter(name__startswith="Django").annotate(num_authors=Count('authors'))

When used with an aggregate() clause, a filter has the effect of
constraining the objects over which the aggregate is calculated.
For example, you can generate the average price of all books with a
title that starts with "Django" using the query:

>>> Book.objects.filter(name__startswith="Django").aggregate(Avg('price'))

Filtering on annotations

Annotated values can also be filtered. The alias for the annotation can be
used in filter() and exclude() clauses in the same way as any other
model field.

For example, to generate a list of books that have more than one author,
you can issue the query:

>>> Book.objects.annotate(num_authors=Count('authors')).filter(num_authors__gt=1)

This query generates an annotated result set, and then generates a filter
based upon that annotation.

Order of annotate() and filter() clauses

When developing a complex query that involves both annotate() and
filter() clauses, particular attention should be paid to the order
in which the clauses are applied to the QuerySet.

When an annotate() clause is applied to a query, the annotation is
computed over the state of the query up to the point where the annotation
is requested. The practical implication of this is that filter() and
annotate() are not commutative operations -- that is, there is a
difference between the query:

>>> Publisher.objects.annotate(num_books=Count('book')).filter(book__rating__gt=3.0)

and the query:

>>> Publisher.objects.filter(book__rating__gt=3.0).annotate(num_books=Count('book'))

Both queries will return a list of Publishers that have at least one good
book (i.e., a book with a rating exceeding 3.0). However, the annotation in
the first query will provide the total number of all books published by the
publisher; the second query will only include good books in the annotated
count. In the first query, the annotation precedes the filter, so the
filter has no effect on the annotation. In the second query, the filter
preceeds the annotation, and as a result, the filter constrains the objects
considered when calculating the annotation.

order_by()

Annotations can be used as a basis for ordering. When you
define an order_by() clause, the aggregates you provide can reference
any alias defined as part of an annotate() clause in the query.

For example, to order a QuerySet of books by the number of authors
that have contributed to the book, you could use the following query:

>>> Book.objects.annotate(num_authors=Count('authors')).order_by('num_authors')

values()

Ordinarily, annotations are generated on a per-object basis - an annotated
QuerySet will return one result for each object in the original
QuerySet. However, when a values() clause is used to constrain the
columns that are returned in the result set, the method for evaluating
annotations is slightly different. Instead of returning an annotated result
for each result in the original QuerySet, the original results are
grouped according to the unique combinations of the fields specified in the
values() clause. An annotation is then provided for each unique group;
the annotation is computed over all members of the group.

For example, consider an author query that attempts to find out the average
rating of books written by each author:

>>> Author.objects.annotate(average_rating=Avg('book__rating'))

This will return one result for each author in the database, annotated with
their average book rating.

However, the result will be slightly different if you use a values() clause:

>>> Author.objects.values('name').annotate(average_rating=Avg('book__rating'))

In this example, the authors will be grouped by name, so you will only get
an annotated result for each unique author name. This means if you have
two authors with the same name, their results will be merged into a single
result in the output of the query; the average will be computed as the
average over the books written by both authors.

Order of annotate() and values() clauses

As with the filter() clause, the order in which annotate() and
values() clauses are applied to a query is significant. If the
values() clause precedes the annotate(), the annotation will be
computed using the grouping described by the values() clause.

However, if the annotate() clause precedes the values() clause,
the annotations will be generated over the entire query set. In this case,
the values() clause only constrains the fields that are generated on
output.

For example, if we reverse the order of the values() and annotate()
clause from our previous example:

>>> Author.objects.annotate(average_rating=Avg('book__rating')).values('name', 'average_rating')

This will now yield one unique result for each author; however, only
the author's name and the average_rating annotation will be returned
in the output data.

You should also note that average_rating has been explicitly included
in the list of values to be returned. This is required because of the
ordering of the values() and annotate() clause.

If the values() clause precedes the annotate() clause, any annotations
will be automatically added to the result set. However, if the values()
clause is applied after the annotate() clause, you need to explicitly
include the aggregate column.

Interaction with default ordering or order_by()

Fields that are mentioned in the order_by() part of a queryset (or which
are used in the default ordering on a model) are used when selecting the
output data, even if they are not otherwise specified in the values()
call. These extra fields are used to group "like" results together and they
can make otherwise identical result rows appear to be separate. This shows up,
particularly, when counting things.

By way of example, suppose you have a model like this:

class Item(models.Model):
 name = models.CharField(max_length=10)
 data = models.IntegerField()

 class Meta:
 ordering = ["name"]

The important part here is the default ordering on the name field. If you
want to count how many times each distinct data value appears, you might
try this:

Warning: not quite correct!
Item.objects.values("data").annotate(Count("id"))

...which will group the Item objects by their common data values and
then count the number of id values in each group. Except that it won't
quite work. The default ordering by name will also play a part in the
grouping, so this query will group by distinct (data, name) pairs, which
isn't what you want. Instead, you should construct this queryset:

Item.objects.values("data").annotate(Count("id")).order_by()

...clearing any ordering in the query. You could also order by, say, data
without any harmful effects, since that is already playing a role in the
query.

This behavior is the same as that noted in the queryset documentation for
distinct() and the general rule is the same:
normally you won't want extra columns playing a part in the result, so clear
out the ordering, or at least make sure it's restricted only to those fields
you also select in a values() call.

Note

You might reasonably ask why Django doesn't remove the extraneous columns
for you. The main reason is consistency with distinct() and other
places: Django never removes ordering constraints that you have
specified (and we can't change those other methods' behavior, as that
would violate our API stability policy).

Aggregating annotations

You can also generate an aggregate on the result of an annotation. When you
define an aggregate() clause, the aggregates you provide can reference
any alias defined as part of an annotate() clause in the query.

For example, if you wanted to calculate the average number of authors per
book you first annotate the set of books with the author count, then
aggregate that author count, referencing the annotation field:

>>> Book.objects.annotate(num_authors=Count('authors')).aggregate(Avg('num_authors'))
{'num_authors__avg': 1.66}

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Working with forms

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

Working with forms

About this document

This document provides an introduction to Django’s form handling features.
For a more detailed look at specific areas of the forms API, see
The Forms API, Form fields, and
Form and field validation.

django.forms is Django’s form-handling library.

While it is possible to process form submissions just using Django’s
HttpRequest class, using the form library takes care of a
number of common form-related tasks. Using it, you can:

	Display an HTML form with automatically generated form widgets.

	Check submitted data against a set of validation rules.

	Redisplay a form in the case of validation errors.

	Convert submitted form data to the relevant Python data types.

Overview

The library deals with these concepts:

	Widget

	A class that corresponds to an HTML form widget, e.g.
<input type="text"> or <textarea>. This handles rendering of the
widget as HTML.

	Field

	A class that is responsible for doing validation, e.g.
an EmailField that makes sure its data is a valid e-mail address.

	Form

	A collection of fields that knows how to validate itself and
display itself as HTML.

	Form Media

	The CSS and JavaScript resources that are required to render a form.

The library is decoupled from the other Django components, such as the database
layer, views and templates. It relies only on Django settings, a couple of
django.utils helper functions and Django’s internationalization hooks (but
you’re not required to be using internationalization features to use this
library).

Form objects

A Form object encapsulates a sequence of form fields and a collection of
validation rules that must be fulfilled in order for the form to be accepted.
Form classes are created as subclasses of django.forms.Form and
make use of a declarative style that you’ll be familiar with if you’ve used
Django’s database models.

For example, consider a form used to implement “contact me” functionality on a
personal Web site:

from django import forms

class ContactForm(forms.Form):
 subject = forms.CharField(max_length=100)
 message = forms.CharField()
 sender = forms.EmailField()
 cc_myself = forms.BooleanField(required=False)

A form is composed of Field objects. In this case, our form has four
fields: subject, message, sender and cc_myself. CharField,
EmailField and BooleanField are just three of the available field types;
a full list can be found in Form fields.

If your form is going to be used to directly add or edit a Django model, you can
use a ModelForm to avoid duplicating your model
description.

Using a form in a view

The standard pattern for processing a form in a view looks like this:

def contact(request):
 if request.method == 'POST': # If the form has been submitted...
 form = ContactForm(request.POST) # A form bound to the POST data
 if form.is_valid(): # All validation rules pass
 # Process the data in form.cleaned_data
 # ...
 return HttpResponseRedirect('/thanks/') # Redirect after POST
 else:
 form = ContactForm() # An unbound form

 return render_to_response('contact.html', {
 'form': form,
 })

There are three code paths here:

	If the form has not been submitted, an unbound instance of ContactForm is
created and passed to the template.

	If the form has been submitted, a bound instance of the form is created
using request.POST. If the submitted data is valid, it is processed
and the user is re-directed to a "thanks" page.

	If the form has been submitted but is invalid, the bound form instance is
passed on to the template.

The distinction between bound and unbound forms is important. An unbound
form does not have any data associated with it; when rendered to the user, it
will be empty or will contain default values. A bound form does have submitted
data, and hence can be used to tell if that data is valid. If an invalid bound
form is rendered it can include inline error messages telling the user where
they went wrong.

See Bound and unbound forms for further information on the
differences between bound and unbound forms.

Handling file uploads with a form

To see how to handle file uploads with your form see
Binding uploaded files to a form for more information.

Processing the data from a form

Once is_valid() returns True, you can process the form submission safe
in the knowledge that it conforms to the validation rules defined by your form.
While you could access request.POST directly at this point, it is better to
access form.cleaned_data. This data has not only been validated but will
also be converted in to the relevant Python types for you. In the above example,
cc_myself will be a boolean value. Likewise, fields such as IntegerField
and FloatField convert values to a Python int and float respectively. Note
that read-only fields are not available in form.cleaned_data (and setting
a value in a custom clean() method won't have any effect) because these
fields are displayed as text rather than as input elements, and thus are not
posted back to the server.

Extending the above example, here's how the form data could be processed:

if form.is_valid():
 subject = form.cleaned_data['subject']
 message = form.cleaned_data['message']
 sender = form.cleaned_data['sender']
 cc_myself = form.cleaned_data['cc_myself']

 recipients = ['info@example.com']
 if cc_myself:
 recipients.append(sender)

 from django.core.mail import send_mail
 send_mail(subject, message, sender, recipients)
 return HttpResponseRedirect('/thanks/') # Redirect after POST

For more on sending e-mail from Django, see Sending e-mail.

Displaying a form using a template

Forms are designed to work with the Django template language. In the above
example, we passed our ContactForm instance to the template using the
context variable form. Here's a simple example template:

<form action="/contact/" method="post">{% csrf_token %}
{{ form.as_p }}
<input type="submit" value="Submit" />
</form>

The form only outputs its own fields; it is up to you to provide the surrounding
<form> tags and the submit button.

Forms and Cross Site Request Forgery protection

Django ships with an easy-to-use protection against Cross Site Request
Forgeries. When submitting a form via POST with
CSRF protection enabled you must use the csrf_token template tag
as in the preceding example. However, since CSRF protection is not
directly tied to forms in templates, this tag is omitted from the
following examples in this document.

form.as_p will output the form with each form field and accompanying label
wrapped in a paragraph. Here's the output for our example template:

<form action="/contact/" method="post">
<p><label for="id_subject">Subject:</label>
 <input id="id_subject" type="text" name="subject" maxlength="100" /></p>
<p><label for="id_message">Message:</label>
 <input type="text" name="message" id="id_message" /></p>
<p><label for="id_sender">Sender:</label>
 <input type="text" name="sender" id="id_sender" /></p>
<p><label for="id_cc_myself">Cc myself:</label>
 <input type="checkbox" name="cc_myself" id="id_cc_myself" /></p>
<input type="submit" value="Submit" />
</form>

Note that each form field has an ID attribute set to id_<field-name>, which
is referenced by the accompanying label tag. This is important for ensuring
forms are accessible to assistive technology such as screen reader software. You
can also customize the way in which labels and ids are generated.

You can also use form.as_table to output table rows (you'll need to provide
your own <table> tags) and form.as_ul to output list items.

Customizing the form template

If the default generated HTML is not to your taste, you can completely customize
the way a form is presented using the Django template language. Extending the
above example:

<form action="/contact/" method="post">
 {{ form.non_field_errors }}
 <div class="fieldWrapper">
 {{ form.subject.errors }}
 <label for="id_subject">E-mail subject:</label>
 {{ form.subject }}
 </div>
 <div class="fieldWrapper">
 {{ form.message.errors }}
 <label for="id_message">Your message:</label>
 {{ form.message }}
 </div>
 <div class="fieldWrapper">
 {{ form.sender.errors }}
 <label for="id_sender">Your email address:</label>
 {{ form.sender }}
 </div>
 <div class="fieldWrapper">
 {{ form.cc_myself.errors }}
 <label for="id_cc_myself">CC yourself?</label>
 {{ form.cc_myself }}
 </div>
 <p><input type="submit" value="Send message" /></p>
</form>

Each named form-field can be output to the template using
{{ form.name_of_field }}, which will produce the HTML needed to display the
form widget. Using {{ form.name_of_field.errors }} displays a list of form
errors, rendered as an unordered list. This might look like:

<ul class="errorlist">
 Sender is required.

The list has a CSS class of errorlist to allow you to style its appearance.
If you wish to further customize the display of errors you can do so by looping
over them:

{% if form.subject.errors %}

 {% for error in form.subject.errors %}
 {{ error|escape }}
 {% endfor %}

{% endif %}

Looping over the form's fields

If you're using the same HTML for each of your form fields, you can reduce
duplicate code by looping through each field in turn using a {% for %}
loop:

<form action="/contact/" method="post">
 {% for field in form %}
 <div class="fieldWrapper">
 {{ field.errors }}
 {{ field.label_tag }}: {{ field }}
 </div>
 {% endfor %}
 <p><input type="submit" value="Send message" /></p>
</form>

Within this loop, {{ field }} is an instance of BoundField.
BoundField also has the following attributes, which can be useful in your
templates:

	{{ field.label }}

	The label of the field, e.g. E-mail address.

	{{ field.label_tag }}

	The field's label wrapped in the appropriate HTML <label> tag,
e.g. <label for="id_email">E-mail address</label>

	{{ field.html_name }}

	The name of the field that will be used in the input element's name
field. This takes the form prefix into account, if it has been set.

	{{ field.help_text }}

	Any help text that has been associated with the field.

	{{ field.errors }}

	Outputs a <ul class="errorlist"> containing any validation errors
corresponding to this field. You can customize the presentation of
the errors with a {% for error in field.errors %} loop. In this
case, each object in the loop is a simple string containing the error
message.

	field.is_hidden

	This attribute is True if the form field is a hidden field and
False otherwise. It's not particularly useful as a template
variable, but could be useful in conditional tests such as:

{% if field.is_hidden %}
 {# Do something special #}
{% endif %}

Looping over hidden and visible fields

If you're manually laying out a form in a template, as opposed to relying on
Django's default form layout, you might want to treat <input type="hidden">
fields differently than non-hidden fields. For example, because hidden fields
don't display anything, putting error messages "next to" the field could cause
confusion for your users -- so errors for those fields should be handled
differently.

Django provides two methods on a form that allow you to loop over the hidden
and visible fields independently: hidden_fields() and
visible_fields(). Here's a modification of an earlier example that uses
these two methods:

<form action="/contact/" method="post">
 {% for field in form.visible_fields %}
 <div class="fieldWrapper">

 {# Include the hidden fields in the form #}
 {% if forloop.first %}
 {% for hidden in form.hidden_fields %}
 {{ hidden }}
 {% endfor %}
 {% endif %}

 {{ field.errors }}
 {{ field.label_tag }}: {{ field }}
 </div>
 {% endfor %}
 <p><input type="submit" value="Send message" /></p>
</form>

This example does not handle any errors in the hidden fields. Usually, an
error in a hidden field is a sign of form tampering, since normal form
interaction won't alter them. However, you could easily insert some error
displays for those form errors, as well.

New in Django 1.1: The hidden_fields and visible_fields methods are new in Django
1.1.

Reusable form templates

If your site uses the same rendering logic for forms in multiple places, you
can reduce duplication by saving the form's loop in a standalone template and
using the include tag to reuse it in other templates:

<form action="/contact/" method="post">
 {% include "form_snippet.html" %}
 <p><input type="submit" value="Send message" /></p>
</form>

In form_snippet.html:

{% for field in form %}
 <div class="fieldWrapper">
 {{ field.errors }}
 {{ field.label_tag }}: {{ field }}
 </div>
{% endfor %}

If the form object passed to a template has a different name within the
context, you can alias it using the with tag:

<form action="/comments/add/" method="post">
 {% with comment_form as form %}
 {% include "form_snippet.html" %}
 {% endwith %}
 <p><input type="submit" value="Submit comment" /></p>
</form>

If you find yourself doing this often, you might consider creating a custom
inclusion tag.

Further topics

This covers the basics, but forms can do a whole lot more:

	Creating forms from models
	ModelForm

	Model formsets

	Inline formsets

	Formsets
	Using initial data with a formset

	Limiting the maximum number of forms

	Formset validation

	Dealing with ordering and deletion of forms

	Adding additional fields to a formset

	Using a formset in views and templates

	Form Media
	Media as a static definition

	Media as a dynamic property

	Paths in media definitions

	Media objects

	Media on Forms

See also

	The Forms Reference

	Covers the full API reference, including form fields, form widgets,
and form and field validation.

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Creating forms from models

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

 	Working with forms

Creating forms from models

ModelForm

	
class ModelForm

	

If you’re building a database-driven app, chances are you’ll have forms that
map closely to Django models. For instance, you might have a BlogComment
model, and you want to create a form that lets people submit comments. In this
case, it would be redundant to define the field types in your form, because
you’ve already defined the fields in your model.

For this reason, Django provides a helper class that let you create a Form
class from a Django model.

For example:

>>> from django.forms import ModelForm

Create the form class.
>>> class ArticleForm(ModelForm):
... class Meta:
... model = Article

Creating a form to add an article.
>>> form = ArticleForm()

Creating a form to change an existing article.
>>> article = Article.objects.get(pk=1)
>>> form = ArticleForm(instance=article)

Field types

The generated Form class will have a form field for every model field. Each
model field has a corresponding default form field. For example, a
CharField on a model is represented as a CharField on a form. A
model ManyToManyField is represented as a MultipleChoiceField. Here is
the full list of conversions:

	Model field
	Form field

	AutoField
	Not represented in the form

	BigIntegerField
	IntegerField with min_value set
to -9223372036854775808 and max_value
set to 9223372036854775807.

	BooleanField
	BooleanField

	CharField
	CharField with max_length set to
the model field's max_length

	CommaSeparatedIntegerField
	CharField

	DateField
	DateField

	DateTimeField
	DateTimeField

	DecimalField
	DecimalField

	EmailField
	EmailField

	FileField
	FileField

	FilePathField
	CharField

	FloatField
	FloatField

	ForeignKey
	ModelChoiceField (see below)

	ImageField
	ImageField

	IntegerField
	IntegerField

	IPAddressField
	IPAddressField

	ManyToManyField
	ModelMultipleChoiceField (see
below)

	NullBooleanField
	CharField

	PhoneNumberField
	USPhoneNumberField
(from django.contrib.localflavor.us)

	PositiveIntegerField
	IntegerField

	PositiveSmallIntegerField
	IntegerField

	SlugField
	SlugField

	SmallIntegerField
	IntegerField

	TextField
	CharField with
widget=forms.Textarea

	TimeField
	TimeField

	URLField
	URLField with verify_exists set
to the model field's verify_exists

	XMLField
	CharField with
widget=forms.Textarea

New in Django 1.2: The BigIntegerField is new in Django 1.2.

As you might expect, the ForeignKey and ManyToManyField model field
types are special cases:

	ForeignKey is represented by django.forms.ModelChoiceField,
which is a ChoiceField whose choices are a model QuerySet.

	ManyToManyField is represented by
django.forms.ModelMultipleChoiceField, which is a
MultipleChoiceField whose choices are a model QuerySet.

In addition, each generated form field has attributes set as follows:

	If the model field has blank=True, then required is set to
False on the form field. Otherwise, required=True.

	The form field's label is set to the verbose_name of the model
field, with the first character capitalized.

	The form field's help_text is set to the help_text of the model
field.

	If the model field has choices set, then the form field's widget
will be set to Select, with choices coming from the model field's
choices. The choices will normally include the blank choice which is
selected by default. If the field is required, this forces the user to
make a selection. The blank choice will not be included if the model
field has blank=False and an explicit default value (the
default value will be initially selected instead).

Finally, note that you can override the form field used for a given model
field. See Overriding the default field types or widgets below.

A full example

Consider this set of models:

from django.db import models
from django.forms import ModelForm

TITLE_CHOICES = (
 ('MR', 'Mr.'),
 ('MRS', 'Mrs.'),
 ('MS', 'Ms.'),
)

class Author(models.Model):
 name = models.CharField(max_length=100)
 title = models.CharField(max_length=3, choices=TITLE_CHOICES)
 birth_date = models.DateField(blank=True, null=True)

 def __unicode__(self):
 return self.name

class Book(models.Model):
 name = models.CharField(max_length=100)
 authors = models.ManyToManyField(Author)

class AuthorForm(ModelForm):
 class Meta:
 model = Author

class BookForm(ModelForm):
 class Meta:
 model = Book

With these models, the ModelForm subclasses above would be roughly
equivalent to this (the only difference being the save() method, which
we'll discuss in a moment.):

class AuthorForm(forms.Form):
 name = forms.CharField(max_length=100)
 title = forms.CharField(max_length=3,
 widget=forms.Select(choices=TITLE_CHOICES))
 birth_date = forms.DateField(required=False)

class BookForm(forms.Form):
 name = forms.CharField(max_length=100)
 authors = forms.ModelMultipleChoiceField(queryset=Author.objects.all())

The is_valid() method and errors

Changed in Django 1.2: Please, see the release notes

The first time you call is_valid() or access the errors attribute of a
ModelForm has always triggered form validation, but as of Django 1.2, it
will also trigger model validation. This has the
side-effect of cleaning the model you pass to the ModelForm constructor.
For instance, calling is_valid() on your form will convert any date fields
on your model to actual date objects.

The save() method

Every form produced by ModelForm also has a save()
method. This method creates and saves a database object from the data
bound to the form. A subclass of ModelForm can accept an existing
model instance as the keyword argument instance; if this is
supplied, save() will update that instance. If it's not supplied,
save() will create a new instance of the specified model:

Create a form instance from POST data.
>>> f = ArticleForm(request.POST)

Save a new Article object from the form's data.
>>> new_article = f.save()

Create a form to edit an existing Article.
>>> a = Article.objects.get(pk=1)
>>> f = ArticleForm(instance=a)
>>> f.save()

Create a form to edit an existing Article, but use
POST data to populate the form.
>>> a = Article.objects.get(pk=1)
>>> f = ArticleForm(request.POST, instance=a)
>>> f.save()

Note that save() will raise a ValueError if the data in the form
doesn't validate -- i.e., if form.errors evaluates to True.

This save() method accepts an optional commit keyword argument, which
accepts either True or False. If you call save() with
commit=False, then it will return an object that hasn't yet been saved to
the database. In this case, it's up to you to call save() on the resulting
model instance. This is useful if you want to do custom processing on the
object before saving it, or if you want to use one of the specialized
model saving options. commit is True
by default.

Another side effect of using commit=False is seen when your model has
a many-to-many relation with another model. If your model has a many-to-many
relation and you specify commit=False when you save a form, Django cannot
immediately save the form data for the many-to-many relation. This is because
it isn't possible to save many-to-many data for an instance until the instance
exists in the database.

To work around this problem, every time you save a form using commit=False,
Django adds a save_m2m() method to your ModelForm subclass. After
you've manually saved the instance produced by the form, you can invoke
save_m2m() to save the many-to-many form data. For example:

Create a form instance with POST data.
>>> f = AuthorForm(request.POST)

Create, but don't save the new author instance.
>>> new_author = f.save(commit=False)

Modify the author in some way.
>>> new_author.some_field = 'some_value'

Save the new instance.
>>> new_author.save()

Now, save the many-to-many data for the form.
>>> f.save_m2m()

Calling save_m2m() is only required if you use save(commit=False).
When you use a simple save() on a form, all data -- including
many-to-many data -- is saved without the need for any additional method calls.
For example:

Create a form instance with POST data.
>>> a = Author()
>>> f = AuthorForm(request.POST, instance=a)

Create and save the new author instance. There's no need to do anything else.
>>> new_author = f.save()

Other than the save() and save_m2m() methods, a ModelForm works
exactly the same way as any other forms form. For example, the
is_valid() method is used to check for validity, the is_multipart()
method is used to determine whether a form requires multipart file upload (and
hence whether request.FILES must be passed to the form), etc. See
Binding uploaded files to a form for more information.

Using a subset of fields on the form

In some cases, you may not want all the model fields to appear on the generated
form. There are three ways of telling ModelForm to use only a subset of the
model fields:

	Set editable=False on the model field. As a result, any form
created from the model via ModelForm will not include that
field.

	Use the fields attribute of the ModelForm's inner Meta
class. This attribute, if given, should be a list of field names
to include in the form.

Changed in Django 1.1: Please, see the release notes

The form will render the fields in the same order they are specified in the
fields attribute.

	Use the exclude attribute of the ModelForm's inner Meta
class. This attribute, if given, should be a list of field names
to exclude from the form.

For example, if you want a form for the Author model (defined
above) that includes only the name and title fields, you would
specify fields or exclude like this:

class PartialAuthorForm(ModelForm):
 class Meta:
 model = Author
 fields = ('name', 'title')

class PartialAuthorForm(ModelForm):
 class Meta:
 model = Author
 exclude = ('birth_date',)

Since the Author model has only 3 fields, 'name', 'title', and
'birth_date', the forms above will contain exactly the same fields.

Note

If you specify fields or exclude when creating a form with
ModelForm, then the fields that are not in the resulting form will not
be set by the form's save() method. Django will prevent any attempt to
save an incomplete model, so if the model does not allow the missing fields
to be empty, and does not provide a default value for the missing fields,
any attempt to save() a ModelForm with missing fields will fail.
To avoid this failure, you must instantiate your model with initial values
for the missing, but required fields:

author = Author(title='Mr')
form = PartialAuthorForm(request.POST, instance=author)
form.save()

Alternatively, you can use save(commit=False) and manually set
any extra required fields:

form = PartialAuthorForm(request.POST)
author = form.save(commit=False)
author.title = 'Mr'
author.save()

See the section on saving forms for more details on using
save(commit=False).

Overriding the default field types or widgets

New in Django 1.2: The widgets attribute is new in Django 1.2.

The default field types, as described in the Field types table above, are
sensible defaults. If you have a DateField in your model, chances are you'd
want that to be represented as a DateField in your form. But
ModelForm gives you the flexibility of changing the form field type and
widget for a given model field.

To specify a custom widget for a field, use the widgets attribute of the
inner Meta class. This should be a dictionary mapping field names to widget
classes or instances.

For example, if you want the a CharField for the name
attribute of Author to be represented by a <textarea> instead
of its default <input type="text">, you can override the field's
widget:

from django.forms import ModelForm, Textarea

class AuthorForm(ModelForm):
 class Meta:
 model = Author
 fields = ('name', 'title', 'birth_date')
 widgets = {
 'name': Textarea(attrs={'cols': 80, 'rows': 20}),
 }

The widgets dictionary accepts either widget instances (e.g.,
Textarea(...)) or classes (e.g., Textarea).

If you want to further customize a field -- including its type, label, etc. --
you can do this by declaratively specifying fields like you would in a regular
Form. Declared fields will override the default ones generated by using the
model attribute.

For example, if you wanted to use MyDateFormField for the pub_date
field, you could do the following:

class ArticleForm(ModelForm):
 pub_date = MyDateFormField()

 class Meta:
 model = Article

If you want to override a field's default label, then specify the label
parameter when declaring the form field:

>>> class ArticleForm(ModelForm):
... pub_date = DateField(label='Publication date')
...
... class Meta:
... model = Article

Note

If you explicitly instantiate a form field like this, Django assumes that you
want to completely define its behavior; therefore, default attributes (such as
max_length or required) are not drawn from the corresponding model. If
you want to maintain the behavior specified in the model, you must set the
relevant arguments explicitly when declaring the form field.

For example, if the Article model looks like this:

class Article(models.Model):
 headline = models.CharField(max_length=200, null=True, blank=True,
 help_text="Use puns liberally")
 content = models.TextField()

and you want to do some custom validation for headline, while keeping
the blank and help_text values as specified, you might define
ArticleForm like this:

class ArticleForm(ModelForm):
 headline = MyFormField(max_length=200, required=False,
 help_text="Use puns liberally")

 class Meta:
 model = Article

See the form field documentation for more information
on fields and their arguments.

Changing the order of fields

New in Django 1.1: Please, see the release notes

By default, a ModelForm will render fields in the same order that they are
defined on the model, with ManyToManyField instances appearing last. If
you want to change the order in which fields are rendered, you can use the
fields attribute on the Meta class.

The fields attribute defines the subset of model fields that will be
rendered, and the order in which they will be rendered. For example given this
model:

class Book(models.Model):
 author = models.ForeignKey(Author)
 title = models.CharField(max_length=100)

the author field would be rendered first. If we wanted the title field
to be rendered first, we could specify the following ModelForm:

>>> class BookForm(ModelForm):
... class Meta:
... model = Book
... fields = ('title', 'author')

Overriding the clean() method

You can override the clean() method on a model form to provide additional
validation in the same way you can on a normal form.

In this regard, model forms have two specific characteristics when compared to
forms:

By default the clean() method validates the uniqueness of fields that are
marked as unique, unique_together or unique_for_date|month|year on
the model. Therefore, if you would like to override the clean() method and
maintain the default validation, you must call the parent class's clean()
method.

Also, a model form instance bound to a model object will contain a
self.instance attribute that gives model form methods access to that
specific model instance.

Form inheritance

As with basic forms, you can extend and reuse ModelForms by inheriting
them. This is useful if you need to declare extra fields or extra methods on a
parent class for use in a number of forms derived from models. For example,
using the previous ArticleForm class:

>>> class EnhancedArticleForm(ArticleForm):
... def clean_pub_date(self):
... ...

This creates a form that behaves identically to ArticleForm, except there's
some extra validation and cleaning for the pub_date field.

You can also subclass the parent's Meta inner class if you want to change
the Meta.fields or Meta.excludes lists:

>>> class RestrictedArticleForm(EnhancedArticleForm):
... class Meta(ArticleForm.Meta):
... exclude = ('body',)

This adds the extra method from the EnhancedArticleForm and modifies
the original ArticleForm.Meta to remove one field.

There are a couple of things to note, however.

	Normal Python name resolution rules apply. If you have multiple base
classes that declare a Meta inner class, only the first one will be
used. This means the child's Meta, if it exists, otherwise the
Meta of the first parent, etc.

	For technical reasons, a subclass cannot inherit from both a ModelForm
and a Form simultaneously.

Chances are these notes won't affect you unless you're trying to do something
tricky with subclassing.

Interaction with model validation

As part of its validation process, ModelForm will call the clean()
method of each field on your model that has a corresponding field on your form.
If you have excluded any model fields, validation will not be run on those
fields. See the form validation documentation
for more on how field cleaning and validation work. Also, your model's
clean() method will be called before any uniqueness checks are made. See
Validating objects for more information on the
model's clean() hook.

Model formsets

Like regular formsets, Django provides a couple
of enhanced formset classes that make it easy to work with Django models. Let's
reuse the Author model from above:

>>> from django.forms.models import modelformset_factory
>>> AuthorFormSet = modelformset_factory(Author)

This will create a formset that is capable of working with the data associated
with the Author model. It works just like a regular formset:

>>> formset = AuthorFormSet()
>>> print formset
<input type="hidden" name="form-TOTAL_FORMS" value="1" id="id_form-TOTAL_FORMS" /><input type="hidden" name="form-INITIAL_FORMS" value="0" id="id_form-INITIAL_FORMS" /><input type="hidden" name="form-MAX_NUM_FORMS" id="id_form-MAX_NUM_FORMS" />
<tr><th><label for="id_form-0-name">Name:</label></th><td><input id="id_form-0-name" type="text" name="form-0-name" maxlength="100" /></td></tr>
<tr><th><label for="id_form-0-title">Title:</label></th><td><select name="form-0-title" id="id_form-0-title">
<option value="" selected="selected">---------</option>
<option value="MR">Mr.</option>
<option value="MRS">Mrs.</option>
<option value="MS">Ms.</option>
</select></td></tr>
<tr><th><label for="id_form-0-birth_date">Birth date:</label></th><td><input type="text" name="form-0-birth_date" id="id_form-0-birth_date" /><input type="hidden" name="form-0-id" id="id_form-0-id" /></td></tr>

Note

modelformset_factory uses formset_factory to generate formsets.
This means that a model formset is just an extension of a basic formset
that knows how to interact with a particular model.

Changing the queryset

By default, when you create a formset from a model, the formset will use a
queryset that includes all objects in the model (e.g.,
Author.objects.all()). You can override this behavior by using the
queryset argument:

>>> formset = AuthorFormSet(queryset=Author.objects.filter(name__startswith='O'))

Alternatively, you can create a subclass that sets self.queryset in
__init__:

from django.forms.models import BaseModelFormSet

class BaseAuthorFormSet(BaseModelFormSet):
 def __init__(self, *args, **kwargs):
 super(BaseAuthorFormSet, self).__init__(*args, **kwargs)
 self.queryset = Author.objects.filter(name__startswith='O')

Then, pass your BaseAuthorFormSet class to the factory function:

>>> AuthorFormSet = modelformset_factory(Author, formset=BaseAuthorFormSet)

If you want to return a formset that doesn't include any pre-existing
instances of the model, you can specify an empty QuerySet:

>>> AuthorFormSet(queryset=Author.objects.none())

Controlling which fields are used with fields and exclude

By default, a model formset uses all fields in the model that are not marked
with editable=False. However, this can be overridden at the formset level:

>>> AuthorFormSet = modelformset_factory(Author, fields=('name', 'title'))

Using fields restricts the formset to use only the given fields.
Alternatively, you can take an "opt-out" approach, specifying which fields to
exclude:

>>> AuthorFormSet = modelformset_factory(Author, exclude=('birth_date',))

Saving objects in the formset

As with a ModelForm, you can save the data as a model object. This is done
with the formset's save() method:

Create a formset instance with POST data.
>>> formset = AuthorFormSet(request.POST)

Assuming all is valid, save the data.
>>> instances = formset.save()

The save() method returns the instances that have been saved to the
database. If a given instance's data didn't change in the bound data, the
instance won't be saved to the database and won't be included in the return
value (instances, in the above example).

Pass commit=False to return the unsaved model instances:

don't save to the database
>>> instances = formset.save(commit=False)
>>> for instance in instances:
... # do something with instance
... instance.save()

This gives you the ability to attach data to the instances before saving them
to the database. If your formset contains a ManyToManyField, you'll also
need to call formset.save_m2m() to ensure the many-to-many relationships
are saved properly.

Limiting the number of editable objects

Changed in Django 1.2: Please, see the release notes

As with regular formsets, you can use the max_num and extra parameters
to modelformset_factory to limit the number of extra forms displayed.

max_num does not prevent existing objects from being displayed:

>>> Author.objects.order_by('name')
[<Author: Charles Baudelaire>, <Author: Paul Verlaine>, <Author: Walt Whitman>]

>>> AuthorFormSet = modelformset_factory(Author, max_num=1)
>>> formset = AuthorFormSet(queryset=Author.objects.order_by('name'))
>>> [x.name for x in formset.get_queryset()]
[u'Charles Baudelaire', u'Paul Verlaine', u'Walt Whitman']

If the value of max_num is greater than the number of existing related
objects, up to extra additional blank forms will be added to the formset,
so long as the total number of forms does not exceed max_num:

>>> AuthorFormSet = modelformset_factory(Author, max_num=4, extra=2)
>>> formset = AuthorFormSet(queryset=Author.objects.order_by('name'))
>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-name">Name:</label></th><td><input id="id_form-0-name" type="text" name="form-0-name" value="Charles Baudelaire" maxlength="100" /><input type="hidden" name="form-0-id" value="1" id="id_form-0-id" /></td></tr>
<tr><th><label for="id_form-1-name">Name:</label></th><td><input id="id_form-1-name" type="text" name="form-1-name" value="Paul Verlaine" maxlength="100" /><input type="hidden" name="form-1-id" value="3" id="id_form-1-id" /></td></tr>
<tr><th><label for="id_form-2-name">Name:</label></th><td><input id="id_form-2-name" type="text" name="form-2-name" value="Walt Whitman" maxlength="100" /><input type="hidden" name="form-2-id" value="2" id="id_form-2-id" /></td></tr>
<tr><th><label for="id_form-3-name">Name:</label></th><td><input id="id_form-3-name" type="text" name="form-3-name" maxlength="100" /><input type="hidden" name="form-3-id" id="id_form-3-id" /></td></tr>

Changed in Django 1.2: Please, see the release notes

A max_num value of None (the default) puts no limit on the number of
forms displayed.

Using a model formset in a view

Model formsets are very similar to formsets. Let's say we want to present a
formset to edit Author model instances:

def manage_authors(request):
 AuthorFormSet = modelformset_factory(Author)
 if request.method == 'POST':
 formset = AuthorFormSet(request.POST, request.FILES)
 if formset.is_valid():
 formset.save()
 # do something.
 else:
 formset = AuthorFormSet()
 return render_to_response("manage_authors.html", {
 "formset": formset,
 })

As you can see, the view logic of a model formset isn't drastically different
than that of a "normal" formset. The only difference is that we call
formset.save() to save the data into the database. (This was described
above, in Saving objects in the formset.)

Overiding clean() on a model_formset

Just like with ModelForms, by default the clean() method of a
model_formset will validate that none of the items in the formset violate
the unique constraints on your model (either unique, unique_together or
unique_for_date|month|year). If you want to overide the clean() method
on a model_formset and maintain this validation, you must call the parent
class's clean method:

class MyModelFormSet(BaseModelFormSet):
 def clean(self):
 super(MyModelFormSet, self).clean()
 # example custom validation across forms in the formset:
 for form in self.forms:
 # your custom formset validation

Using a custom queryset

As stated earlier, you can override the default queryset used by the model
formset:

def manage_authors(request):
 AuthorFormSet = modelformset_factory(Author)
 if request.method == "POST":
 formset = AuthorFormSet(request.POST, request.FILES,
 queryset=Author.objects.filter(name__startswith='O'))
 if formset.is_valid():
 formset.save()
 # Do something.
 else:
 formset = AuthorFormSet(queryset=Author.objects.filter(name__startswith='O'))
 return render_to_response("manage_authors.html", {
 "formset": formset,
 })

Note that we pass the queryset argument in both the POST and GET
cases in this example.

Using the formset in the template

There are three ways to render a formset in a Django template.

First, you can let the formset do most of the work:

<form method="post" action="">
 {{ formset }}
</form>

Second, you can manually render the formset, but let the form deal with
itself:

<form method="post" action="">
 {{ formset.management_form }}
 {% for form in formset.forms %}
 {{ form }}
 {% endfor %}
</form>

When you manually render the forms yourself, be sure to render the management
form as shown above. See the management form documentation.

Third, you can manually render each field:

<form method="post" action="">
 {{ formset.management_form }}
 {% for form in formset.forms %}
 {% for field in form %}
 {{ field.label_tag }}: {{ field }}
 {% endfor %}
 {% endfor %}
</form>

If you opt to use this third method and you don't iterate over the fields with
a {% for %} loop, you'll need to render the primary key field. For example,
if you were rendering the name and age fields of a model:

<form method="post" action="">
 {{ formset.management_form }}
 {% for form in formset.forms %}
 {{ form.id }}

 {{ form.name }}
 {{ form.age }}

 {% endfor %}
</form>

Notice how we need to explicitly render {{ form.id }}. This ensures that
the model formset, in the POST case, will work correctly. (This example
assumes a primary key named id. If you've explicitly defined your own
primary key that isn't called id, make sure it gets rendered.)

Inline formsets

Inline formsets is a small abstraction layer on top of model formsets. These
simplify the case of working with related objects via a foreign key. Suppose
you have these two models:

class Author(models.Model):
 name = models.CharField(max_length=100)

class Book(models.Model):
 author = models.ForeignKey(Author)
 title = models.CharField(max_length=100)

If you want to create a formset that allows you to edit books belonging to
a particular author, you could do this:

>>> from django.forms.models import inlineformset_factory
>>> BookFormSet = inlineformset_factory(Author, Book)
>>> author = Author.objects.get(name=u'Mike Royko')
>>> formset = BookFormSet(instance=author)

Note

inlineformset_factory uses modelformset_factory and marks
can_delete=True.

More than one foreign key to the same model

If your model contains more than one foreign key to the same model, you'll
need to resolve the ambiguity manually using fk_name. For example, consider
the following model:

class Friendship(models.Model):
 from_friend = models.ForeignKey(Friend)
 to_friend = models.ForeignKey(Friend)
 length_in_months = models.IntegerField()

To resolve this, you can use fk_name to inlineformset_factory:

>>> FriendshipFormSet = inlineformset_factory(Friend, Friendship, fk_name="from_friend")

Using an inline formset in a view

You may want to provide a view that allows a user to edit the related objects
of a model. Here's how you can do that:

def manage_books(request, author_id):
 author = Author.objects.get(pk=author_id)
 BookInlineFormSet = inlineformset_factory(Author, Book)
 if request.method == "POST":
 formset = BookInlineFormSet(request.POST, request.FILES, instance=author)
 if formset.is_valid():
 formset.save()
 # Do something.
 else:
 formset = BookInlineFormSet(instance=author)
 return render_to_response("manage_books.html", {
 "formset": formset,
 })

Notice how we pass instance in both the POST and GET cases.

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Formsets

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

 	Working with forms

Formsets

A formset is a layer of abstraction to working with multiple forms on the same
page. It can be best compared to a data grid. Let’s say you have the following
form:

>>> from django import forms
>>> class ArticleForm(forms.Form):
... title = forms.CharField()
... pub_date = forms.DateField()

You might want to allow the user to create several articles at once. To create
a formset out of an ArticleForm you would do:

>>> from django.forms.formsets import formset_factory
>>> ArticleFormSet = formset_factory(ArticleForm)

You now have created a formset named ArticleFormSet. The formset gives you
the ability to iterate over the forms in the formset and display them as you
would with a regular form:

>>> formset = ArticleFormSet()
>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" id="id_form-0-pub_date" /></td></tr>

As you can see it only displayed one empty form. The number of empty forms
that is displayed is controlled by the extra parameter. By default,
formset_factory defines one extra form; the following example will
display two blank forms:

>>> ArticleFormSet = formset_factory(ArticleForm, extra=2)

Using initial data with a formset

Initial data is what drives the main usability of a formset. As shown above
you can define the number of extra forms. What this means is that you are
telling the formset how many additional forms to show in addition to the
number of forms it generates from the initial data. Lets take a look at an
example:

>>> ArticleFormSet = formset_factory(ArticleForm, extra=2)
>>> formset = ArticleFormSet(initial=[
... {'title': u'Django is now open source',
... 'pub_date': datetime.date.today()},
...])

>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" value="Django is now open source" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" value="2008-05-12" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name="form-1-title" id="id_form-1-title" /></td></tr>
<tr><th><label for="id_form-1-pub_date">Pub date:</label></th><td><input type="text" name="form-1-pub_date" id="id_form-1-pub_date" /></td></tr>
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name="form-2-title" id="id_form-2-title" /></td></tr>
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text" name="form-2-pub_date" id="id_form-2-pub_date" /></td></tr>

There are now a total of three forms showing above. One for the initial data
that was passed in and two extra forms. Also note that we are passing in a
list of dictionaries as the initial data.

See also

Creating formsets from models with model formsets.

Limiting the maximum number of forms

The max_num parameter to formset_factory gives you the ability to
limit the maximum number of empty forms the formset will display:

>>> ArticleFormSet = formset_factory(ArticleForm, extra=2, max_num=1)
>>> formset = ArticleFormset()
>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" id="id_form-0-pub_date" /></td></tr>

Changed in Django 1.2: Please, see the release notes

If the value of max_num is greater than the number of existing
objects, up to extra additional blank forms will be added to the formset,
so long as the total number of forms does not exceed max_num.

A max_num value of None (the default) puts no limit on the number of
forms displayed. Please note that the default value of max_num was changed
from 0 to None in version 1.2 to allow 0 as a valid value.

Formset validation

Validation with a formset is almost identical to a regular Form. There is
an is_valid method on the formset to provide a convenient way to validate
all forms in the formset:

>>> ArticleFormSet = formset_factory(ArticleForm)
>>> formset = ArticleFormSet({})
>>> formset.is_valid()
True

We passed in no data to the formset which is resulting in a valid form. The
formset is smart enough to ignore extra forms that were not changed. If we
provide an invalid article:

>>> data = {
... 'form-TOTAL_FORMS': u'2',
... 'form-INITIAL_FORMS': u'0',
... 'form-MAX_NUM_FORMS': u'',
... 'form-0-title': u'Test',
... 'form-0-pub_date': u'16 June 1904',
... 'form-1-title': u'Test',
... 'form-1-pub_date': u'', # <-- this date is missing but required
... }
>>> formset = ArticleFormSet(data)
>>> formset.is_valid()
False
>>> formset.errors
[{}, {'pub_date': [u'This field is required.']}]

As we can see, formset.errors is a list whose entries correspond to the
forms in the formset. Validation was performed for each of the two forms, and
the expected error message appears for the second item.

Understanding the ManagementForm

You may have noticed the additional data (form-TOTAL_FORMS,
form-INITIAL_FORMS and form-MAX_NUM_FORMS) that was required
in the formset's data above. This data is required for the
ManagementForm. This form is used by the formset to manage the
collection of forms contained in the formset. If you don't provide
this management data, an exception will be raised:

>>> data = {
... 'form-0-title': u'Test',
... 'form-0-pub_date': u'',
... }
>>> formset = ArticleFormSet(data)
Traceback (most recent call last):
...
django.forms.util.ValidationError: [u'ManagementForm data is missing or has been tampered with']

It is used to keep track of how many form instances are being displayed. If
you are adding new forms via JavaScript, you should increment the count fields
in this form as well.

The management form is available as an attribute of the formset
itself. When rendering a formset in a template, you can include all
the management data by rendering {{ my_formset.management_form }}
(substituting the name of your formset as appropriate).

New in Django 1.1: Please, see the release notes

total_form_count and initial_form_count

BaseFormSet has a couple of methods that are closely related to the
ManagementForm, total_form_count and initial_form_count.

total_form_count returns the total number of forms in this formset.
initial_form_count returns the number of forms in the formset that were
pre-filled, and is also used to determine how many forms are required. You
will probably never need to override either of these methods, so please be
sure you understand what they do before doing so.

New in Django 1.2: Please, see the release notes

empty_form

BaseFormSet provides an additional attribute empty_form which returns
a form instance with a prefix of __prefix__ for easier use in dynamic
forms with JavaScript.

Custom formset validation

A formset has a clean method similar to the one on a Form class. This
is where you define your own validation that works at the formset level:

>>> from django.forms.formsets import BaseFormSet

>>> class BaseArticleFormSet(BaseFormSet):
... def clean(self):
... """Checks that no two articles have the same title."""
... if any(self.errors):
... # Don't bother validating the formset unless each form is valid on its own
... return
... titles = []
... for i in range(0, self.total_form_count()):
... form = self.forms[i]
... title = form.cleaned_data['title']
... if title in titles:
... raise forms.ValidationError, "Articles in a set must have distinct titles."
... titles.append(title)

>>> ArticleFormSet = formset_factory(ArticleForm, formset=BaseArticleFormSet)
>>> data = {
... 'form-TOTAL_FORMS': u'2',
... 'form-INITIAL_FORMS': u'0',
... 'form-MAX_NUM_FORMS': u'',
... 'form-0-title': u'Test',
... 'form-0-pub_date': u'16 June 1904',
... 'form-1-title': u'Test',
... 'form-1-pub_date': u'23 June 1912',
... }
>>> formset = ArticleFormSet(data)
>>> formset.is_valid()
False
>>> formset.errors
[{}, {}]
>>> formset.non_form_errors()
[u'Articles in a set must have distinct titles.']

The formset clean method is called after all the Form.clean methods
have been called. The errors will be found using the non_form_errors()
method on the formset.

Dealing with ordering and deletion of forms

Common use cases with a formset is dealing with ordering and deletion of the
form instances. This has been dealt with for you. The formset_factory
provides two optional parameters can_order and can_delete that will do
the extra work of adding the extra fields and providing simpler ways of
getting to that data.

can_order

Default: False

Lets create a formset with the ability to order:

>>> ArticleFormSet = formset_factory(ArticleForm, can_order=True)
>>> formset = ArticleFormSet(initial=[
... {'title': u'Article #1', 'pub_date': datetime.date(2008, 5, 10)},
... {'title': u'Article #2', 'pub_date': datetime.date(2008, 5, 11)},
...])
>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" value="Article #1" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" value="2008-05-10" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-0-ORDER">Order:</label></th><td><input type="text" name="form-0-ORDER" value="1" id="id_form-0-ORDER" /></td></tr>
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name="form-1-title" value="Article #2" id="id_form-1-title" /></td></tr>
<tr><th><label for="id_form-1-pub_date">Pub date:</label></th><td><input type="text" name="form-1-pub_date" value="2008-05-11" id="id_form-1-pub_date" /></td></tr>
<tr><th><label for="id_form-1-ORDER">Order:</label></th><td><input type="text" name="form-1-ORDER" value="2" id="id_form-1-ORDER" /></td></tr>
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name="form-2-title" id="id_form-2-title" /></td></tr>
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text" name="form-2-pub_date" id="id_form-2-pub_date" /></td></tr>
<tr><th><label for="id_form-2-ORDER">Order:</label></th><td><input type="text" name="form-2-ORDER" id="id_form-2-ORDER" /></td></tr>

This adds an additional field to each form. This new field is named ORDER
and is an forms.IntegerField. For the forms that came from the initial
data it automatically assigned them a numeric value. Lets look at what will
happen when the user changes these values:

>>> data = {
... 'form-TOTAL_FORMS': u'3',
... 'form-INITIAL_FORMS': u'2',
... 'form-MAX_NUM_FORMS': u'',
... 'form-0-title': u'Article #1',
... 'form-0-pub_date': u'2008-05-10',
... 'form-0-ORDER': u'2',
... 'form-1-title': u'Article #2',
... 'form-1-pub_date': u'2008-05-11',
... 'form-1-ORDER': u'1',
... 'form-2-title': u'Article #3',
... 'form-2-pub_date': u'2008-05-01',
... 'form-2-ORDER': u'0',
... }

>>> formset = ArticleFormSet(data, initial=[
... {'title': u'Article #1', 'pub_date': datetime.date(2008, 5, 10)},
... {'title': u'Article #2', 'pub_date': datetime.date(2008, 5, 11)},
...])
>>> formset.is_valid()
True
>>> for form in formset.ordered_forms:
... print form.cleaned_data
{'pub_date': datetime.date(2008, 5, 1), 'ORDER': 0, 'title': u'Article #3'}
{'pub_date': datetime.date(2008, 5, 11), 'ORDER': 1, 'title': u'Article #2'}
{'pub_date': datetime.date(2008, 5, 10), 'ORDER': 2, 'title': u'Article #1'}

can_delete

Default: False

Lets create a formset with the ability to delete:

>>> ArticleFormSet = formset_factory(ArticleForm, can_delete=True)
>>> formset = ArticleFormSet(initial=[
... {'title': u'Article #1', 'pub_date': datetime.date(2008, 5, 10)},
... {'title': u'Article #2', 'pub_date': datetime.date(2008, 5, 11)},
...])
>>> for form in formset.forms:
.... print form.as_table()
<input type="hidden" name="form-TOTAL_FORMS" value="3" id="id_form-TOTAL_FORMS" /><input type="hidden" name="form-INITIAL_FORMS" value="2" id="id_form-INITIAL_FORMS" /><input type="hidden" name="form-MAX_NUM_FORMS" id="id_form-MAX_NUM_FORMS" />
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" value="Article #1" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" value="2008-05-10" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-0-DELETE">Delete:</label></th><td><input type="checkbox" name="form-0-DELETE" id="id_form-0-DELETE" /></td></tr>
<tr><th><label for="id_form-1-title">Title:</label></th><td><input type="text" name="form-1-title" value="Article #2" id="id_form-1-title" /></td></tr>
<tr><th><label for="id_form-1-pub_date">Pub date:</label></th><td><input type="text" name="form-1-pub_date" value="2008-05-11" id="id_form-1-pub_date" /></td></tr>
<tr><th><label for="id_form-1-DELETE">Delete:</label></th><td><input type="checkbox" name="form-1-DELETE" id="id_form-1-DELETE" /></td></tr>
<tr><th><label for="id_form-2-title">Title:</label></th><td><input type="text" name="form-2-title" id="id_form-2-title" /></td></tr>
<tr><th><label for="id_form-2-pub_date">Pub date:</label></th><td><input type="text" name="form-2-pub_date" id="id_form-2-pub_date" /></td></tr>
<tr><th><label for="id_form-2-DELETE">Delete:</label></th><td><input type="checkbox" name="form-2-DELETE" id="id_form-2-DELETE" /></td></tr>

Similar to can_order this adds a new field to each form named DELETE
and is a forms.BooleanField. When data comes through marking any of the
delete fields you can access them with deleted_forms:

>>> data = {
... 'form-TOTAL_FORMS': u'3',
... 'form-INITIAL_FORMS': u'2',
... 'form-MAX_NUM_FORMS': u'',
... 'form-0-title': u'Article #1',
... 'form-0-pub_date': u'2008-05-10',
... 'form-0-DELETE': u'on',
... 'form-1-title': u'Article #2',
... 'form-1-pub_date': u'2008-05-11',
... 'form-1-DELETE': u'',
... 'form-2-title': u'',
... 'form-2-pub_date': u'',
... 'form-2-DELETE': u'',
... }

>>> formset = ArticleFormSet(data, initial=[
... {'title': u'Article #1', 'pub_date': datetime.date(2008, 5, 10)},
... {'title': u'Article #2', 'pub_date': datetime.date(2008, 5, 11)},
...])
>>> [form.cleaned_data for form in formset.deleted_forms]
[{'DELETE': True, 'pub_date': datetime.date(2008, 5, 10), 'title': u'Article #1'}]

Adding additional fields to a formset

If you need to add additional fields to the formset this can be easily
accomplished. The formset base class provides an add_fields method. You
can simply override this method to add your own fields or even redefine the
default fields/attributes of the order and deletion fields:

>>> class BaseArticleFormSet(BaseFormSet):
... def add_fields(self, form, index):
... super(BaseArticleFormSet, self).add_fields(form, index)
... form.fields["my_field"] = forms.CharField()

>>> ArticleFormSet = formset_factory(ArticleForm, formset=BaseArticleFormSet)
>>> formset = ArticleFormSet()
>>> for form in formset.forms:
... print form.as_table()
<tr><th><label for="id_form-0-title">Title:</label></th><td><input type="text" name="form-0-title" id="id_form-0-title" /></td></tr>
<tr><th><label for="id_form-0-pub_date">Pub date:</label></th><td><input type="text" name="form-0-pub_date" id="id_form-0-pub_date" /></td></tr>
<tr><th><label for="id_form-0-my_field">My field:</label></th><td><input type="text" name="form-0-my_field" id="id_form-0-my_field" /></td></tr>

Using a formset in views and templates

Using a formset inside a view is as easy as using a regular Form class.
The only thing you will want to be aware of is making sure to use the
management form inside the template. Let's look at a sample view:

def manage_articles(request):
 ArticleFormSet = formset_factory(ArticleForm)
 if request.method == 'POST':
 formset = ArticleFormSet(request.POST, request.FILES)
 if formset.is_valid():
 # do something with the formset.cleaned_data
 pass
 else:
 formset = ArticleFormSet()
 return render_to_response('manage_articles.html', {'formset': formset})

The manage_articles.html template might look like this:

<form method="post" action="">
 {{ formset.management_form }}
 <table>
 {% for form in formset.forms %}
 {{ form }}
 {% endfor %}
 </table>
</form>

However the above can be slightly shortcutted and let the formset itself deal
with the management form:

<form method="post" action="">
 <table>
 {{ formset }}
 </table>
</form>

The above ends up calling the as_table method on the formset class.

Using more than one formset in a view

You are able to use more than one formset in a view if you like. Formsets
borrow much of its behavior from forms. With that said you are able to use
prefix to prefix formset form field names with a given value to allow
more than one formset to be sent to a view without name clashing. Lets take
a look at how this might be accomplished:

def manage_articles(request):
 ArticleFormSet = formset_factory(ArticleForm)
 BookFormSet = formset_factory(BookForm)
 if request.method == 'POST':
 article_formset = ArticleFormSet(request.POST, request.FILES, prefix='articles')
 book_formset = BookFormSet(request.POST, request.FILES, prefix='books')
 if article_formset.is_valid() and book_formset.is_valid():
 # do something with the cleaned_data on the formsets.
 pass
 else:
 article_formset = ArticleFormSet(prefix='articles')
 book_formset = BookFormSet(prefix='books')
 return render_to_response('manage_articles.html', {
 'article_formset': article_formset,
 'book_formset': book_formset,
 })

You would then render the formsets as normal. It is important to point out
that you need to pass prefix on both the POST and non-POST cases so that
it is rendered and processed correctly.

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Form Media

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

 	Working with forms

Form Media

Rendering an attractive and easy-to-use Web form requires more than just
HTML - it also requires CSS stylesheets, and if you want to use fancy
“Web2.0” widgets, you may also need to include some JavaScript on each
page. The exact combination of CSS and JavaScript that is required for
any given page will depend upon the widgets that are in use on that page.

This is where Django media definitions come in. Django allows you to
associate different media files with the forms and widgets that require
that media. For example, if you want to use a calendar to render DateFields,
you can define a custom Calendar widget. This widget can then be associated
with the CSS and JavaScript that is required to render the calendar. When
the Calendar widget is used on a form, Django is able to identify the CSS and
JavaScript files that are required, and provide the list of file names
in a form suitable for easy inclusion on your Web page.

Media and Django Admin

The Django Admin application defines a number of customized widgets
for calendars, filtered selections, and so on. These widgets define
media requirements, and the Django Admin uses the custom widgets
in place of the Django defaults. The Admin templates will only include
those media files that are required to render the widgets on any
given page.

If you like the widgets that the Django Admin application uses,
feel free to use them in your own application! They’re all stored
in django.contrib.admin.widgets.

Which JavaScript toolkit?

Many JavaScript toolkits exist, and many of them include widgets (such
as calendar widgets) that can be used to enhance your application.
Django has deliberately avoided blessing any one JavaScript toolkit.
Each toolkit has its own relative strengths and weaknesses - use
whichever toolkit suits your requirements. Django is able to integrate
with any JavaScript toolkit.

Media as a static definition

The easiest way to define media is as a static definition. Using this method,
the media declaration is an inner class. The properties of the inner class
define the media requirements.

Here’s a simple example:

class CalendarWidget(forms.TextInput):
 class Media:
 css = {
 'all': ('pretty.css',)
 }
 js = ('animations.js', 'actions.js')

This code defines a CalendarWidget, which will be based on TextInput.
Every time the CalendarWidget is used on a form, that form will be directed
to include the CSS file pretty.css, and the JavaScript files
animations.js and actions.js.

This static media definition is converted at runtime into a widget property
named media. The media for a CalendarWidget instance can be retrieved
through this property:

>>> w = CalendarWidget()
>>> print w.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>

Here's a list of all possible Media options. There are no required options.

css

A dictionary describing the CSS files required for various forms of output
media.

The values in the dictionary should be a tuple/list of file names. See
the section on media paths for details of how to specify paths to media
files.

The keys in the dictionary are the output media types. These are the same
types accepted by CSS files in media declarations: 'all', 'aural', 'braille',
'embossed', 'handheld', 'print', 'projection', 'screen', 'tty' and 'tv'. If
you need to have different stylesheets for different media types, provide
a list of CSS files for each output medium. The following example would
provide two CSS options -- one for the screen, and one for print:

class Media:
 css = {
 'screen': ('pretty.css',),
 'print': ('newspaper.css',)
 }

If a group of CSS files are appropriate for multiple output media types,
the dictionary key can be a comma separated list of output media types.
In the following example, TV's and projectors will have the same media
requirements:

class Media:
 css = {
 'screen': ('pretty.css',),
 'tv,projector': ('lo_res.css',),
 'print': ('newspaper.css',)
 }

If this last CSS definition were to be rendered, it would become the following HTML:

<link href="http://media.example.com/pretty.css" type="text/css" media="screen" rel="stylesheet" />
<link href="http://media.example.com/lo_res.css" type="text/css" media="tv,projector" rel="stylesheet" />
<link href="http://media.example.com/newspaper.css" type="text/css" media="print" rel="stylesheet" />

js

A tuple describing the required JavaScript files. See
the section on media paths for details of how to specify paths to media
files.

extend

A boolean defining inheritance behavior for media declarations.

By default, any object using a static media definition will inherit all the
media associated with the parent widget. This occurs regardless of how the
parent defines its media requirements. For example, if we were to extend our
basic Calendar widget from the example above:

>>> class FancyCalendarWidget(CalendarWidget):
... class Media:
... css = {
... 'all': ('fancy.css',)
... }
... js = ('whizbang.js',)

>>> w = FancyCalendarWidget()
>>> print w.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<link href="http://media.example.com/fancy.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>
<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

The FancyCalendar widget inherits all the media from it's parent widget. If
you don't want media to be inherited in this way, add an extend=False
declaration to the media declaration:

>>> class FancyCalendarWidget(CalendarWidget):
... class Media:
... extend = False
... css = {
... 'all': ('fancy.css',)
... }
... js = ('whizbang.js',)

>>> w = FancyCalendarWidget()
>>> print w.media
<link href="http://media.example.com/fancy.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

If you require even more control over media inheritance, define your media
using a dynamic property. Dynamic properties give you complete control over
which media files are inherited, and which are not.

Media as a dynamic property

If you need to perform some more sophisticated manipulation of media
requirements, you can define the media property directly. This is done
by defining a widget property that returns an instance of forms.Media.
The constructor for forms.Media accepts css and js keyword
arguments in the same format as that used in a static media definition.

For example, the static media definition for our Calendar Widget could
also be defined in a dynamic fashion:

class CalendarWidget(forms.TextInput):
 def _media(self):
 return forms.Media(css={'all': ('pretty.css',)},
 js=('animations.js', 'actions.js'))
 media = property(_media)

See the section on Media objects for more details on how to construct
return values for dynamic media properties.

Paths in media definitions

Paths used to specify media can be either relative or absolute. If a path
starts with '/', 'http://' or 'https://', it will be interpreted as an absolute
path, and left as-is. All other paths will be prepended with the value of
settings.MEDIA_URL. For example, if the MEDIA_URL for your site was
http://media.example.com/:

class CalendarWidget(forms.TextInput):
 class Media:
 css = {
 'all': ('/css/pretty.css',),
 }
 js = ('animations.js', 'http://othersite.com/actions.js')

>>> w = CalendarWidget()
>>> print w.media
<link href="/css/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://othersite.com/actions.js"></script>

Media objects

When you interrogate the media attribute of a widget or form, the value that
is returned is a forms.Media object. As we have already seen, the string
representation of a Media object is the HTML required to include media
in the <head> block of your HTML page.

However, Media objects have some other interesting properties.

Media subsets

If you only want media of a particular type, you can use the subscript operator
to filter out a medium of interest. For example:

>>> w = CalendarWidget()
>>> print w.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>

>>> print w.media['css']
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />

When you use the subscript operator, the value that is returned is a new
Media object -- but one that only contains the media of interest.

Combining media objects

Media objects can also be added together. When two media objects are added,
the resulting Media object contains the union of the media from both files:

>>> class CalendarWidget(forms.TextInput):
... class Media:
... css = {
... 'all': ('pretty.css',)
... }
... js = ('animations.js', 'actions.js')

>>> class OtherWidget(forms.TextInput):
... class Media:
... js = ('whizbang.js',)

>>> w1 = CalendarWidget()
>>> w2 = OtherWidget()
>>> print w1.media + w2.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>
<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

Media on Forms

Widgets aren't the only objects that can have media definitions -- forms
can also define media. The rules for media definitions on forms are the
same as the rules for widgets: declarations can be static or dynamic;
path and inheritance rules for those declarations are exactly the same.

Regardless of whether you define a media declaration, all Form objects
have a media property. The default value for this property is the result
of adding the media definitions for all widgets that are part of the form:

>>> class ContactForm(forms.Form):
... date = DateField(widget=CalendarWidget)
... name = CharField(max_length=40, widget=OtherWidget)

>>> f = ContactForm()
>>> f.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>
<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

If you want to associate additional media with a form -- for example, CSS for form
layout -- simply add a media declaration to the form:

>>> class ContactForm(forms.Form):
... date = DateField(widget=CalendarWidget)
... name = CharField(max_length=40, widget=OtherWidget)
...
... class Media:
... css = {
... 'all': ('layout.css',)
... }

>>> f = ContactForm()
>>> f.media
<link href="http://media.example.com/pretty.css" type="text/css" media="all" rel="stylesheet" />
<link href="http://media.example.com/layout.css" type="text/css" media="all" rel="stylesheet" />
<script type="text/javascript" src="http://media.example.com/animations.js"></script>
<script type="text/javascript" src="http://media.example.com/actions.js"></script>
<script type="text/javascript" src="http://media.example.com/whizbang.js"></script>

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 The Django template language

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

The Django template language

About this document

This document explains the language syntax of the Django template system. If
you’re looking for a more technical perspective on how it works and how to
extend it, see The Django template language: For Python programmers.

Django’s template language is designed to strike a balance between power and
ease. It’s designed to feel comfortable to those used to working with HTML. If
you have any exposure to other text-based template languages, such as Smarty [http://smarty.php.net/]
or CheetahTemplate [http://www.cheetahtemplate.org/], you should feel right at home with Django’s templates.

Philosophy

If you have a background in programming, or if you’re used to languages
like PHP which mix programming code directly into HTML, you’ll want to
bear in mind that the Django template system is not simply Python embedded
into HTML. This is by design: the template system is meant to express
presentation, not program logic.

The Django template system provides tags which function similarly to some
programming constructs – an if tag for boolean tests, a for
tag for looping, etc. – but these are not simply executed as the
corresponding Python code, and the template system will not execute
arbitrary Python expressions. Only the tags, filters and syntax listed below
are supported by default (although you can add your own extensions to the template language as needed).

Templates

A template is simply a text file. It can generate any text-based format (HTML,
XML, CSV, etc.).

A template contains variables, which get replaced with values when the
template is evaluated, and tags, which control the logic of the template.

Below is a minimal template that illustrates a few basics. Each element will be
explained later in this document.:

{% extends "base_generic.html" %}

{% block title %}{{ section.title }}{% endblock %}

{% block content %}
<h1>{{ section.title }}</h1>

{% for story in story_list %}
<h2>

 {{ story.headline|upper }}

</h2>
<p>{{ story.tease|truncatewords:"100" }}</p>
{% endfor %}
{% endblock %}

Philosophy

Why use a text-based template instead of an XML-based one (like Zope's
TAL)? We wanted Django's template language to be usable for more than
just XML/HTML templates. At World Online, we use it for e-mails,
JavaScript and CSV. You can use the template language for any text-based
format.

Oh, and one more thing: Making humans edit XML is sadistic!

Variables

Variables look like this: {{ variable }}. When the template engine
encounters a variable, it evaluates that variable and replaces it with the
result.

Use a dot (.) to access attributes of a variable.

Behind the scenes

Technically, when the template system encounters a dot, it tries the
following lookups, in this order:

	Dictionary lookup

	Attribute lookup

	Method call

	List-index lookup

In the above example, {{ section.title }} will be replaced with the
title attribute of the section object.

If you use a variable that doesn't exist, the template system will insert
the value of the TEMPLATE_STRING_IF_INVALID setting, which is set to ''
(the empty string) by default.

Filters

You can modify variables for display by using filters.

Filters look like this: {{ name|lower }}. This displays the value of the
{{ name }} variable after being filtered through the lower filter,
which converts text to lowercase. Use a pipe (|) to apply a filter.

Filters can be "chained." The output of one filter is applied to the next.
{{ text|escape|linebreaks }} is a common idiom for escaping text contents,
then converting line breaks to <p> tags.

Some filters take arguments. A filter argument looks like this: {{
bio|truncatewords:30 }}. This will display the first 30 words of the bio
variable.

Filter arguments that contain spaces must be quoted; for example, to join a list
with commas and spaced you'd use {{ list|join:", " }}.

Django provides about thirty built-in template filters. You can read all about
them in the built-in filter reference.
To give you a taste of what's available, here are some of the more commonly used
template filters:

	default

	If a variable is false or empty, use given default. Otherwise, use the
value of the variable

For example:

{{ value|default:"nothing" }}

If value isn't provided or is empty, the above will display
"nothing".

	length

	Returns the length of the value. This works for both strings and lists;
for example:

{{ value|length }}

If value is ['a', 'b', 'c', 'd'], the output will be 4.

	striptags

	Strips all [X]HTML tags. For example:

{{ value|striptags }}

If value is "Joel <button>is</button> a
slug", the output will be "Joel is a slug".

Again, these are just a few examples; see the built-in filter reference for the complete list.

You can also create your own custom template filters; see
Custom template tags and filters.

See also

Django's admin interface can include a complete reference of all template
tags and filters available for a given site. See
The Django admin documentation generator.

Tags

Tags look like this: {% tag %}. Tags are more complex than variables: Some
create text in the output, some control flow by performing loops or logic, and
some load external information into the template to be used by later variables.

Some tags require beginning and ending tags (i.e. {% tag %} ... tag contents
... {% endtag %}).

Django ships with about two dozen built-in template tags. You can read all about
them in the built-in tag reference. To give
you a taste of what's available, here are some of the more commonly used
tags:

	for

	Loop over each item in an array. For example, to display a list of athletes
provided in athlete_list:

{% for athlete in athlete_list %}
 {{ athlete.name }}
{% endfor %}

	if and else

	Evaluates a variable, and if that variable is "true" the contents of the
block are displayed:

{% if athlete_list %}
 Number of athletes: {{ athlete_list|length }}
{% else %}
 No athletes.
{% endif %}

In the above, if athlete_list is not empty, the number of athletes
will be displayed by the {{ athlete_list|length }} variable.

You can also use filters and various operators in the if tag:

{% if athlete_list|length > 1 %}
 Team: {% for athlete in athlete_list %} ... {% endfor %}
{% else %}
 Athlete: {{ athlete_list.0.name }}
{% endif %}

	block and extends

	Set up template inheritance (see below), a powerful way
of cutting down on "boilerplate" in templates.

Again, the above is only a selection of the whole list; see the built-in
tag reference for the complete list.

You can also create your own custom template tags; see
Custom template tags and filters.

See also

Django's admin interface can include a complete reference of all template
tags and filters available for a given site. See
The Django admin documentation generator.

Comments

To comment-out part of a line in a template, use the comment syntax: {# #}.

For example, this template would render as 'hello':

{# greeting #}hello

A comment can contain any template code, invalid or not. For example:

{# {% if foo %}bar{% else %} #}

This syntax can only be used for single-line comments (no newlines are permitted
between the {# and #} delimiters). If you need to comment out a
multiline portion of the template, see the comment tag.

Template inheritance

The most powerful -- and thus the most complex -- part of Django's template
engine is template inheritance. Template inheritance allows you to build a base
"skeleton" template that contains all the common elements of your site and
defines blocks that child templates can override.

It's easiest to understand template inheritance by starting with an example:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <link rel="stylesheet" href="style.css" />
 <title>{% block title %}My amazing site{% endblock %}</title>
</head>

<body>
 <div id="sidebar">
 {% block sidebar %}

 Home
 Blog

 {% endblock %}
 </div>

 <div id="content">
 {% block content %}{% endblock %}
 </div>
</body>
</html>

This template, which we'll call base.html, defines a simple HTML skeleton
document that you might use for a simple two-column page. It's the job of
"child" templates to fill the empty blocks with content.

In this example, the {% block %} tag defines three blocks that child
templates can fill in. All the block tag does is to tell the template
engine that a child template may override those portions of the template.

A child template might look like this:

{% extends "base.html" %}

{% block title %}My amazing blog{% endblock %}

{% block content %}
{% for entry in blog_entries %}
 <h2>{{ entry.title }}</h2>
 <p>{{ entry.body }}</p>
{% endfor %}
{% endblock %}

The {% extends %} tag is the key here. It tells the template engine that
this template "extends" another template. When the template system evaluates
this template, first it locates the parent -- in this case, "base.html".

At that point, the template engine will notice the three {% block %} tags
in base.html and replace those blocks with the contents of the child
template. Depending on the value of blog_entries, the output might look
like:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <link rel="stylesheet" href="style.css" />
 <title>My amazing blog</title>
</head>

<body>
 <div id="sidebar">

 Home
 Blog

 </div>

 <div id="content">
 <h2>Entry one</h2>
 <p>This is my first entry.</p>

 <h2>Entry two</h2>
 <p>This is my second entry.</p>
 </div>
</body>
</html>

Note that since the child template didn't define the sidebar block, the
value from the parent template is used instead. Content within a {% block %}
tag in a parent template is always used as a fallback.

You can use as many levels of inheritance as needed. One common way of using
inheritance is the following three-level approach:

	Create a base.html template that holds the main look-and-feel of your
site.

	Create a base_SECTIONNAME.html template for each "section" of your
site. For example, base_news.html, base_sports.html. These
templates all extend base.html and include section-specific
styles/design.

	Create individual templates for each type of page, such as a news
article or blog entry. These templates extend the appropriate section
template.

This approach maximizes code reuse and makes it easy to add items to shared
content areas, such as section-wide navigation.

Here are some tips for working with inheritance:

	If you use {% extends %} in a template, it must be the first template
tag in that template. Template inheritance won't work, otherwise.

	More {% block %} tags in your base templates are better. Remember,
child templates don't have to define all parent blocks, so you can fill
in reasonable defaults in a number of blocks, then only define the ones
you need later. It's better to have more hooks than fewer hooks.

	If you find yourself duplicating content in a number of templates, it
probably means you should move that content to a {% block %} in a
parent template.

	If you need to get the content of the block from the parent template,
the {{ block.super }} variable will do the trick. This is useful
if you want to add to the contents of a parent block instead of
completely overriding it. Data inserted using {{ block.super }} will
not be automatically escaped (see the next section), since it was
already escaped, if necessary, in the parent template.

	For extra readability, you can optionally give a name to your
{% endblock %} tag. For example:

{% block content %}
...
{% endblock content %}

In larger templates, this technique helps you see which {% block %}
tags are being closed.

Finally, note that you can't define multiple {% block %} tags with the same
name in the same template. This limitation exists because a block tag works in
"both" directions. That is, a block tag doesn't just provide a hole to fill --
it also defines the content that fills the hole in the parent. If there were
two similarly-named {% block %} tags in a template, that template's parent
wouldn't know which one of the blocks' content to use.

Automatic HTML escaping

When generating HTML from templates, there's always a risk that a variable will
include characters that affect the resulting HTML. For example, consider this
template fragment:

Hello, {{ name }}.

At first, this seems like a harmless way to display a user's name, but consider
what would happen if the user entered his name as this:

<script>alert('hello')</script>

With this name value, the template would be rendered as:

Hello, <script>alert('hello')</script>

...which means the browser would pop-up a JavaScript alert box!

Similarly, what if the name contained a '<' symbol, like this?

username

That would result in a rendered template like this:

Hello, username

...which, in turn, would result in the remainder of the Web page being bolded!

Clearly, user-submitted data shouldn't be trusted blindly and inserted directly
into your Web pages, because a malicious user could use this kind of hole to
do potentially bad things. This type of security exploit is called a
Cross Site Scripting [http://en.wikipedia.org/wiki/Cross-site_scripting] (XSS) attack.

To avoid this problem, you have two options:

	One, you can make sure to run each untrusted variable through the
escape filter (documented below), which converts potentially harmful
HTML characters to unharmful ones. This was the default solution
in Django for its first few years, but the problem is that it puts the
onus on you, the developer / template author, to ensure you're escaping
everything. It's easy to forget to escape data.

	Two, you can take advantage of Django's automatic HTML escaping. The
remainder of this section describes how auto-escaping works.

By default in Django, every template automatically escapes the output
of every variable tag. Specifically, these five characters are
escaped:

	< is converted to <

	> is converted to >

	' (single quote) is converted to '

	" (double quote) is converted to "

	& is converted to &

Again, we stress that this behavior is on by default. If you're using Django's
template system, you're protected.

How to turn it off

If you don't want data to be auto-escaped, on a per-site, per-template level or
per-variable level, you can turn it off in several ways.

Why would you want to turn it off? Because sometimes, template variables
contain data that you intend to be rendered as raw HTML, in which case you
don't want their contents to be escaped. For example, you might store a blob of
HTML in your database and want to embed that directly into your template. Or,
you might be using Django's template system to produce text that is not HTML
-- like an e-mail message, for instance.

For individual variables

To disable auto-escaping for an individual variable, use the safe filter:

This will be escaped: {{ data }}
This will not be escaped: {{ data|safe }}

Think of safe as shorthand for safe from further escaping or can be
safely interpreted as HTML. In this example, if data contains '',
the output will be:

This will be escaped:
This will not be escaped:

For template blocks

To control auto-escaping for a template, wrap the template (or just a
particular section of the template) in the autoescape tag, like so:

{% autoescape off %}
 Hello {{ name }}
{% endautoescape %}

The autoescape tag takes either on or off as its argument. At
times, you might want to force auto-escaping when it would otherwise be
disabled. Here is an example template:

Auto-escaping is on by default. Hello {{ name }}

{% autoescape off %}
 This will not be auto-escaped: {{ data }}.

 Nor this: {{ other_data }}
 {% autoescape on %}
 Auto-escaping applies again: {{ name }}
 {% endautoescape %}
{% endautoescape %}

The auto-escaping tag passes its effect onto templates that extend the
current one as well as templates included via the include tag, just like
all block tags. For example:

base.html

{% autoescape off %}
<h1>{% block title %}{% endblock %}</h1>
{% block content %}
{% endblock %}
{% endautoescape %}

child.html

{% extends "base.html" %}
{% block title %}This & that{% endblock %}
{% block content %}{{ greeting }}{% endblock %}

Because auto-escaping is turned off in the base template, it will also be
turned off in the child template, resulting in the following rendered
HTML when the greeting variable contains the string Hello!:

<h1>This & that</h1>
Hello!

Notes

Generally, template authors don't need to worry about auto-escaping very much.
Developers on the Python side (people writing views and custom filters) need to
think about the cases in which data shouldn't be escaped, and mark data
appropriately, so things Just Work in the template.

If you're creating a template that might be used in situations where you're
not sure whether auto-escaping is enabled, then add an escape filter to any
variable that needs escaping. When auto-escaping is on, there's no danger of
the escape filter double-escaping data -- the escape filter does not
affect auto-escaped variables.

String literals and automatic escaping

As we mentioned earlier, filter arguments can be strings:

{{ data|default:"This is a string literal." }}

All string literals are inserted without any automatic escaping into the
template -- they act as if they were all passed through the safe filter.
The reasoning behind this is that the template author is in control of what
goes into the string literal, so they can make sure the text is correctly
escaped when the template is written.

This means you would write

{{ data|default:"3 < 2" }}

...rather than

{{ data|default:"3 < 2" }} <-- Bad! Don't do this.

This doesn't affect what happens to data coming from the variable itself.
The variable's contents are still automatically escaped, if necessary, because
they're beyond the control of the template author.

Custom tag and filter libraries

Certain applications provide custom tag and filter libraries. To access them in
a template, use the {% load %} tag:

{% load comments %}

{% comment_form for blogs.entries entry.id with is_public yes %}

In the above, the load tag loads the comments tag library, which then
makes the comment_form tag available for use. Consult the documentation
area in your admin to find the list of custom libraries in your installation.

The {% load %} tag can take multiple library names, separated by spaces.
Example:

{% load comments i18n %}

See Custom template tags and filters for information on writing your own custom
template libraries.

Custom libraries and template inheritance

When you load a custom tag or filter library, the tags/filters are only made
available to the current template -- not any parent or child templates along
the template-inheritance path.

For example, if a template foo.html has {% load comments %}, a child
template (e.g., one that has {% extends "foo.html" %}) will not have
access to the comments template tags and filters. The child template is
responsible for its own {% load comments %}.

This is a feature for the sake of maintainability and sanity.

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Generic views

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

Generic views

Writing Web applications can be monotonous, because we repeat certain patterns
again and again. Django tries to take away some of that monotony at the model
and template layers, but Web developers also experience this boredom at the view
level.

Django’s generic views were developed to ease that pain. They take certain
common idioms and patterns found in view development and abstract them so that
you can quickly write common views of data without having to write too much
code.

We can recognize certain common tasks, like displaying a list of objects, and
write code that displays a list of any object. Then the model in question can
be passed as an extra argument to the URLconf.

Django ships with generic views to do the following:

	Perform common “simple” tasks: redirect to a different page and
render a given template.

	Display list and detail pages for a single object. If we were creating an
application to manage conferences then a talk_list view and a
registered_user_list view would be examples of list views. A single
talk page is an example of what we call a “detail” view.

	Present date-based objects in year/month/day archive pages,
associated detail, and “latest” pages. The Django Weblog’s
(http://www.djangoproject.com/weblog/) year, month, and
day archives are built with these, as would be a typical
newspaper’s archives.

	Allow users to create, update, and delete objects – with or
without authorization.

Taken together, these views provide easy interfaces to perform the most common
tasks developers encounter.

Using generic views

All of these views are used by creating configuration dictionaries in
your URLconf files and passing those dictionaries as the third member of the
URLconf tuple for a given pattern.

For example, here’s a simple URLconf you could use to present a static “about”
page:

from django.conf.urls.defaults import *
from django.views.generic.simple import direct_to_template

urlpatterns = patterns('',
 ('^about/$', direct_to_template, {
 'template': 'about.html'
 })
)

Though this might seem a bit "magical" at first glance -- look, a view with no
code! --, actually the direct_to_template view simply grabs information from
the extra-parameters dictionary and uses that information when rendering the
view.

Because this generic view -- and all the others -- is a regular view function
like any other, we can reuse it inside our own views. As an example, let's
extend our "about" example to map URLs of the form /about/<whatever>/ to
statically rendered about/<whatever>.html. We'll do this by first modifying
the URLconf to point to a view function:

from django.conf.urls.defaults import *
from django.views.generic.simple import direct_to_template
from books.views import about_pages

urlpatterns = patterns('',
 ('^about/$', direct_to_template, {
 'template': 'about.html'
 }),
 ('^about/(\w+)/$', about_pages),
)

Next, we'll write the about_pages view:

from django.http import Http404
from django.template import TemplateDoesNotExist
from django.views.generic.simple import direct_to_template

def about_pages(request, page):
 try:
 return direct_to_template(request, template="about/%s.html" % page)
 except TemplateDoesNotExist:
 raise Http404()

Here we're treating direct_to_template like any other function. Since it
returns an HttpResponse, we can simply return it as-is. The only slightly
tricky business here is dealing with missing templates. We don't want a
nonexistent template to cause a server error, so we catch
TemplateDoesNotExist exceptions and return 404 errors instead.

Is there a security vulnerability here?

Sharp-eyed readers may have noticed a possible security hole: we're
constructing the template name using interpolated content from the browser
(template="about/%s.html" % page). At first glance, this looks like a
classic directory traversal vulnerability. But is it really?

Not exactly. Yes, a maliciously crafted value of page could cause
directory traversal, but although page is taken from the request URL,
not every value will be accepted. The key is in the URLconf: we're using
the regular expression \w+ to match the page part of the URL, and
\w only accepts letters and numbers. Thus, any malicious characters
(dots and slashes, here) will be rejected by the URL resolver before they
reach the view itself.

Generic views of objects

The direct_to_template certainly is useful, but Django's generic views
really shine when it comes to presenting views on your database content. Because
it's such a common task, Django comes with a handful of built-in generic views
that make generating list and detail views of objects incredibly easy.

Let's take a look at one of these generic views: the "object list" view. We'll
be using these models:

models.py
from django.db import models

class Publisher(models.Model):
 name = models.CharField(max_length=30)
 address = models.CharField(max_length=50)
 city = models.CharField(max_length=60)
 state_province = models.CharField(max_length=30)
 country = models.CharField(max_length=50)
 website = models.URLField()

 def __unicode__(self):
 return self.name

 class Meta:
 ordering = ["-name"]

class Book(models.Model):
 title = models.CharField(max_length=100)
 authors = models.ManyToManyField('Author')
 publisher = models.ForeignKey(Publisher)
 publication_date = models.DateField()

To build a list page of all publishers, we'd use a URLconf along these lines:

from django.conf.urls.defaults import *
from django.views.generic import list_detail
from books.models import Publisher

publisher_info = {
 "queryset" : Publisher.objects.all(),
}

urlpatterns = patterns('',
 (r'^publishers/$', list_detail.object_list, publisher_info)
)

That's all the Python code we need to write. We still need to write a template,
however. We could explicitly tell the object_list view which template to use
by including a template_name key in the extra arguments dictionary, but in
the absence of an explicit template Django will infer one from the object's
name. In this case, the inferred template will be
"books/publisher_list.html" -- the "books" part comes from the name of the
app that defines the model, while the "publisher" bit is just the lowercased
version of the model's name.

This template will be rendered against a context containing a variable called
object_list that contains all the publisher objects. A very simple template
might look like the following:

{% extends "base.html" %}

{% block content %}
 <h2>Publishers</h2>

 {% for publisher in object_list %}
 {{ publisher.name }}
 {% endfor %}

{% endblock %}

That's really all there is to it. All the cool features of generic views come
from changing the "info" dictionary passed to the generic view. The
generic views reference documents all the generic
views and all their options in detail; the rest of this document will consider
some of the common ways you might customize and extend generic views.

Extending generic views

There's no question that using generic views can speed up development
substantially. In most projects, however, there comes a moment when the
generic views no longer suffice. Indeed, the most common question asked by new
Django developers is how to make generic views handle a wider array of
situations.

Luckily, in nearly every one of these cases, there are ways to simply extend
generic views to handle a larger array of use cases. These situations usually
fall into a handful of patterns dealt with in the sections that follow.

Making "friendly" template contexts

You might have noticed that our sample publisher list template stores all the
books in a variable named object_list. While this works just fine, it isn't
all that "friendly" to template authors: they have to "just know" that they're
dealing with publishers here. A better name for that variable would be
publisher_list; that variable's content is pretty obvious.

We can change the name of that variable easily with the template_object_name
argument:

publisher_info = {
 "queryset" : Publisher.objects.all(),
 "template_object_name" : "publisher",
}

urlpatterns = patterns('',
 (r'^publishers/$', list_detail.object_list, publisher_info)
)

Providing a useful template_object_name is always a good idea. Your
coworkers who design templates will thank you.

Adding extra context

Often you simply need to present some extra information beyond that provided by
the generic view. For example, think of showing a list of all the books on each
publisher detail page. The object_detail generic view provides the
publisher to the context, but it seems there's no way to get additional
information in that template.

But there is: all generic views take an extra optional parameter,
extra_context. This is a dictionary of extra objects that will be added to
the template's context. So, to provide the list of all books on the detail
detail view, we'd use an info dict like this:

from books.models import Publisher, Book

publisher_info = {
 "queryset" : Publisher.objects.all(),
 "template_object_name" : "publisher",
 "extra_context" : {"book_list" : Book.objects.all()}
}

This would populate a {{ book_list }} variable in the template context.
This pattern can be used to pass any information down into the template for the
generic view. It's very handy.

However, there's actually a subtle bug here -- can you spot it?

The problem has to do with when the queries in extra_context are evaluated.
Because this example puts Book.objects.all() in the URLconf, it will
be evaluated only once (when the URLconf is first loaded). Once you add or
remove books, you'll notice that the generic view doesn't reflect those
changes until you reload the Web server (see Caching and QuerySets
for more information about when QuerySets are cached and evaluated).

Note

This problem doesn't apply to the queryset generic view argument. Since
Django knows that particular QuerySet should never be cached, the generic
view takes care of clearing the cache when each view is rendered.

The solution is to use a callback in extra_context instead of a value. Any
callable (i.e., a function) that's passed to extra_context will be evaluated
when the view is rendered (instead of only once). You could do this with an
explicitly defined function:

def get_books():
 return Book.objects.all()

publisher_info = {
 "queryset" : Publisher.objects.all(),
 "template_object_name" : "publisher",
 "extra_context" : {"book_list" : get_books}
}

or you could use a less obvious but shorter version that relies on the fact that
Book.objects.all is itself a callable:

publisher_info = {
 "queryset" : Publisher.objects.all(),
 "template_object_name" : "publisher",
 "extra_context" : {"book_list" : Book.objects.all}
}

Notice the lack of parentheses after Book.objects.all; this references
the function without actually calling it (which the generic view will do later).

Viewing subsets of objects

Now let's take a closer look at this queryset key we've been using all
along. Most generic views take one of these queryset arguments -- it's how
the view knows which set of objects to display (see Making queries for
more information about QuerySet objects, and see the
generic views reference for the complete details).

To pick a simple example, we might want to order a list of books by
publication date, with the most recent first:

book_info = {
 "queryset" : Book.objects.all().order_by("-publication_date"),
}

urlpatterns = patterns('',
 (r'^publishers/$', list_detail.object_list, publisher_info),
 (r'^books/$', list_detail.object_list, book_info),
)

That's a pretty simple example, but it illustrates the idea nicely. Of course,
you'll usually want to do more than just reorder objects. If you want to
present a list of books by a particular publisher, you can use the same
technique:

acme_books = {
 "queryset": Book.objects.filter(publisher__name="Acme Publishing"),
 "template_name" : "books/acme_list.html"
}

urlpatterns = patterns('',
 (r'^publishers/$', list_detail.object_list, publisher_info),
 (r'^books/acme/$', list_detail.object_list, acme_books),
)

Notice that along with a filtered queryset, we're also using a custom
template name. If we didn't, the generic view would use the same template as the
"vanilla" object list, which might not be what we want.

Also notice that this isn't a very elegant way of doing publisher-specific
books. If we want to add another publisher page, we'd need another handful of
lines in the URLconf, and more than a few publishers would get unreasonable.
We'll deal with this problem in the next section.

Note

If you get a 404 when requesting /books/acme/, check to ensure you
actually have a Publisher with the name 'ACME Publishing'. Generic
views have an allow_empty parameter for this case. See the
generic views reference for more details.

Complex filtering with wrapper functions

Another common need is to filter down the objects given in a list page by some
key in the URL. Earlier we hard-coded the publisher's name in the URLconf, but
what if we wanted to write a view that displayed all the books by some arbitrary
publisher? We can "wrap" the object_list generic view to avoid writing a lot
of code by hand. As usual, we'll start by writing a URLconf:

from books.views import books_by_publisher

urlpatterns = patterns('',
 (r'^publishers/$', list_detail.object_list, publisher_info),
 (r'^books/(\w+)/$', books_by_publisher),
)

Next, we'll write the books_by_publisher view itself:

from django.http import Http404
from django.views.generic import list_detail
from books.models import Book, Publisher

def books_by_publisher(request, name):

 # Look up the publisher (and raise a 404 if it can't be found).
 try:
 publisher = Publisher.objects.get(name__iexact=name)
 except Publisher.DoesNotExist:
 raise Http404

 # Use the object_list view for the heavy lifting.
 return list_detail.object_list(
 request,
 queryset = Book.objects.filter(publisher=publisher),
 template_name = "books/books_by_publisher.html",
 template_object_name = "books",
 extra_context = {"publisher" : publisher}
)

This works because there's really nothing special about generic views -- they're
just Python functions. Like any view function, generic views expect a certain
set of arguments and return HttpResponse objects. Thus, it's incredibly easy
to wrap a small function around a generic view that does additional work before
(or after; see the next section) handing things off to the generic view.

Note

Notice that in the preceding example we passed the current publisher being
displayed in the extra_context. This is usually a good idea in wrappers
of this nature; it lets the template know which "parent" object is currently
being browsed.

Performing extra work

The last common pattern we'll look at involves doing some extra work before
or after calling the generic view.

Imagine we had a last_accessed field on our Author object that we were
using to keep track of the last time anybody looked at that author:

models.py

class Author(models.Model):
 salutation = models.CharField(max_length=10)
 first_name = models.CharField(max_length=30)
 last_name = models.CharField(max_length=40)
 email = models.EmailField()
 headshot = models.ImageField(upload_to='/tmp')
 last_accessed = models.DateTimeField()

The generic object_detail view, of course, wouldn't know anything about this
field, but once again we could easily write a custom view to keep that field
updated.

First, we'd need to add an author detail bit in the URLconf to point to a
custom view:

from books.views import author_detail

urlpatterns = patterns('',
 #...
 (r'^authors/(?P<author_id>\d+)/$', author_detail),
)

Then we'd write our wrapper function:

import datetime
from books.models import Author
from django.views.generic import list_detail
from django.shortcuts import get_object_or_404

def author_detail(request, author_id):
 # Look up the Author (and raise a 404 if she's not found)
 author = get_object_or_404(Author, pk=author_id)

 # Record the last accessed date
 author.last_accessed = datetime.datetime.now()
 author.save()

 # Show the detail page
 return list_detail.object_detail(
 request,
 queryset = Author.objects.all(),
 object_id = author_id,
)

Note

This code won't actually work unless you create a
books/author_detail.html template.

We can use a similar idiom to alter the response returned by the generic view.
If we wanted to provide a downloadable plain-text version of the list of
authors, we could use a view like this:

def author_list_plaintext(request):
 response = list_detail.object_list(
 request,
 queryset = Author.objects.all(),
 mimetype = "text/plain",
 template_name = "books/author_list.txt"
)
 response["Content-Disposition"] = "attachment; filename=authors.txt"
 return response

This works because the generic views return simple HttpResponse objects
that can be treated like dictionaries to set HTTP headers. This
Content-Disposition business, by the way, instructs the browser to
download and save the page instead of displaying it in the browser.

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Managing files

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

Managing files

This document describes Django’s file access APIs.

By default, Django stores files locally, using the MEDIA_ROOT and
MEDIA_URL settings. The examples below assume that you’re using these
defaults.

However, Django provides ways to write custom file storage systems that
allow you to completely customize where and how Django stores files. The
second half of this document describes how these storage systems work.

Using files in models

When you use a FileField or
ImageField, Django provides a set of APIs you can use
to deal with that file.

Consider the following model, using an ImageField to
store a photo:

class Car(models.Model):
 name = models.CharField(max_length=255)
 price = models.DecimalField(max_digits=5, decimal_places=2)
 photo = models.ImageField(upload_to='cars')

Any Car instance will have a photo attribute that you can use to get at
the details of the attached photo:

>>> car = Car.objects.get(name="57 Chevy")
>>> car.photo
<ImageFieldFile: chevy.jpg>
>>> car.photo.name
u'cars/chevy.jpg'
>>> car.photo.path
u'/media/cars/chevy.jpg'
>>> car.photo.url
u'http://media.example.com/cars/chevy.jpg'

This object -- car.photo in the example -- is a File object, which means
it has all the methods and attributes described below.

The File object

Internally, Django uses a django.core.files.File instance any time it
needs to represent a file. This object is a thin wrapper around Python's
built-in file object [http://docs.python.org/library/stdtypes.html#bltin-file-objects] with some Django-specific additions.

Most of the time you'll simply use a File that Django's given you (i.e. a
file attached to a model as above, or perhaps an uploaded file).

If you need to construct a File yourself, the easiest way is to create one
using a Python built-in file object:

>>> from django.core.files import File

Create a Python file object using open()
>>> f = open('/tmp/hello.world', 'w')
>>> myfile = File(f)

Now you can use any of the documented attributes and methods
of the File class.

File storage

Behind the scenes, Django delegates decisions about how and where to store files
to a file storage system. This is the object that actually understands things
like file systems, opening and reading files, etc.

Django's default file storage is given by the DEFAULT_FILE_STORAGE
setting; if you don't explicitly provide a storage system, this is the one that
will be used.

See below for details of the built-in default file storage system, and see
Writing a custom storage system for information on writing your own file
storage system.

Storage objects

Though most of the time you'll want to use a File object (which delegates to
the proper storage for that file), you can use file storage systems directly.
You can create an instance of some custom file storage class, or -- often more
useful -- you can use the global default storage system:

>>> from django.core.files.storage import default_storage
>>> from django.core.files.base import ContentFile

>>> path = default_storage.save('/path/to/file', ContentFile('new content'))
>>> path
u'/path/to/file'

>>> default_storage.size(path)
11
>>> default_storage.open(path).read()
'new content'

>>> default_storage.delete(path)
>>> default_storage.exists(path)
False

See File storage API for the file storage API.

The built-in filesystem storage class

Django ships with a built-in FileSystemStorage class (defined in
django.core.files.storage) which implements basic local filesystem file
storage. Its initializer takes two arguments:

	Argument
	Description

	location
	Optional. Absolute path to the directory that will
hold the files. If omitted, it will be set to the
value of your MEDIA_ROOT setting.

	base_url
	Optional. URL that serves the files stored at this
location. If omitted, it will default to the value
of your MEDIA_URL setting.

For example, the following code will store uploaded files under
/media/photos regardless of what your MEDIA_ROOT setting is:

from django.db import models
from django.core.files.storage import FileSystemStorage

fs = FileSystemStorage(location='/media/photos')

class Car(models.Model):
 ...
 photo = models.ImageField(storage=fs)

Custom storage systems work the same way:
you can pass them in as the storage argument to a
FileField.

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Testing Django applications

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

Testing Django applications

Automated testing is an extremely useful bug-killing tool for the modern
Web developer. You can use a collection of tests – a test suite – to
solve, or avoid, a number of problems:

	When you’re writing new code, you can use tests to validate your code
works as expected.

	When you’re refactoring or modifying old code, you can use tests to
ensure your changes haven’t affected your application’s behavior
unexpectedly.

Testing a Web application is a complex task, because a Web application is made
of several layers of logic – from HTTP-level request handling, to form
validation and processing, to template rendering. With Django’s test-execution
framework and assorted utilities, you can simulate requests, insert test data,
inspect your application’s output and generally verify your code is doing what
it should be doing.

The best part is, it’s really easy.

This document is split into two primary sections. First, we explain how to
write tests with Django. Then, we explain how to run them.

Writing tests

There are two primary ways to write tests with Django, corresponding to the
two test frameworks that ship in the Python standard library. The two
frameworks are:

	Unit tests – tests that are expressed as methods on a Python class
that subclasses unittest.TestCase. For example:

import unittest

class MyFuncTestCase(unittest.TestCase):
 def testBasic(self):
 a = ['larry', 'curly', 'moe']
 self.assertEqual(my_func(a, 0), 'larry')
 self.assertEqual(my_func(a, 1), 'curly')

	Doctests -- tests that are embedded in your functions' docstrings and
are written in a way that emulates a session of the Python interactive
interpreter. For example:

def my_func(a_list, idx):
 """
 >>> a = ['larry', 'curly', 'moe']
 >>> my_func(a, 0)
 'larry'
 >>> my_func(a, 1)
 'curly'
 """
 return a_list[idx]

We'll discuss choosing the appropriate test framework later, however, most
experienced developers prefer unit tests. You can also use any other Python
test framework, as we'll explain in a bit.

Writing unit tests

Django's unit tests use a Python standard library module: unittest [http://docs.python.org/library/unittest.html]. This
module defines tests in class-based approach.

For a given Django application, the test runner looks for unit tests in two
places:

	The models.py file. The test runner looks for any subclass of
unittest.TestCase in this module.

	A file called tests.py in the application directory -- i.e., the
directory that holds models.py. Again, the test runner looks for any
subclass of unittest.TestCase in this module.

Here is an example unittest.TestCase subclass:

import unittest
from myapp.models import Animal

class AnimalTestCase(unittest.TestCase):
 def setUp(self):
 self.lion = Animal.objects.create(name="lion", sound="roar")
 self.cat = Animal.objects.create(name="cat", sound="meow")

 def testSpeaking(self):
 self.assertEqual(self.lion.speak(), 'The lion says "roar"')
 self.assertEqual(self.cat.speak(), 'The cat says "meow"')

When you run your tests, the default behavior of the
test utility is to find all the test cases (that is, subclasses of
unittest.TestCase) in models.py and tests.py, automatically build a
test suite out of those test cases, and run that suite.

There is a second way to define the test suite for a module: if you define a
function called suite() in either models.py or tests.py, the
Django test runner will use that function to construct the test suite for that
module. This follows the suggested organization [http://docs.python.org/library/unittest.html#organizing-tests] for unit tests. See the
Python documentation for more details on how to construct a complex test
suite.

For more details about unittest, see the standard library unittest
documentation [http://docs.python.org/library/unittest.html].

Writing doctests

Doctests use Python's standard doctest [http://docs.python.org/library/doctest.html] module, which searches your docstrings
for statements that resemble a session of the Python interactive interpreter.
A full explanation of how doctest works is out of the scope of this document;
read Python's official documentation for the details.

What's a docstring?

A good explanation of docstrings (and some guidelines for using them
effectively) can be found in PEP 257 [http://www.python.org/dev/peps/pep-0257]:

A docstring is a string literal that occurs as the first statement in
a module, function, class, or method definition. Such a docstring
becomes the __doc__ special attribute of that object.

For example, this function has a docstring that describes what it does:

def add_two(num):
 "Return the result of adding two to the provided number."
 return num + 2

Because tests often make great documentation, putting tests directly in
your docstrings is an effective way to document and test your code.

As with unit tests, for a given Django application, the test runner looks for
doctests in two places:

	The models.py file. You can define module-level doctests and/or a
doctest for individual models. It's common practice to put
application-level doctests in the module docstring and model-level
doctests in the model docstrings.

	A file called tests.py in the application directory -- i.e., the
directory that holds models.py. This file is a hook for any and all
doctests you want to write that aren't necessarily related to models.

This example doctest is equivalent to the example given in the unittest section
above:

models.py

from django.db import models

class Animal(models.Model):
 """
 An animal that knows how to make noise

 # Create some animals
 >>> lion = Animal.objects.create(name="lion", sound="roar")
 >>> cat = Animal.objects.create(name="cat", sound="meow")

 # Make 'em speak
 >>> lion.speak()
 'The lion says "roar"'
 >>> cat.speak()
 'The cat says "meow"'
 """
 name = models.CharField(max_length=20)
 sound = models.CharField(max_length=20)

 def speak(self):
 return 'The %s says "%s"' % (self.name, self.sound)

When you run your tests, the test runner will find this
docstring, notice that portions of it look like an interactive Python session,
and execute those lines while checking that the results match.

In the case of model tests, note that the test runner takes care of creating
its own test database. That is, any test that accesses a database -- by
creating and saving model instances, for example -- will not affect your
production database. However, the database is not refreshed between doctests,
so if your doctest requires a certain state you should consider flushing the
database or loading a fixture. (See the section on fixtures, below, for more
on this.) Note that to use this feature, the database user Django is connecting
as must have CREATE DATABASE rights.

For more details about how doctest works, see the standard library
documentation for doctest [http://docs.python.org/library/doctest.html].

Which should I use?

Because Django supports both of the standard Python test frameworks, it's up to
you and your tastes to decide which one to use. You can even decide to use
both.

For developers new to testing, however, this choice can seem confusing. Here,
then, are a few key differences to help you decide which approach is right for
you:

	If you've been using Python for a while, doctest will probably feel
more "pythonic". It's designed to make writing tests as easy as possible,
so it requires no overhead of writing classes or methods. You simply put
tests in docstrings. This has the added advantage of serving as
documentation (and correct documentation, at that!). However, while
doctests are good for some simple example code, they are not very good if
you want to produce either high quality, comprehensive tests or high
quality documentation. Test failures are often difficult to debug
as it can be unclear exactly why the test failed. Thus, doctests should
generally be avoided and used primarily for documentation examples only.

	The unittest framework will probably feel very familiar to developers
coming from Java. unittest is inspired by Java's JUnit, so you'll
feel at home with this method if you've used JUnit or any test framework
inspired by JUnit.

	If you need to write a bunch of tests that share similar code, then
you'll appreciate the unittest framework's organization around
classes and methods. This makes it easy to abstract common tasks into
common methods. The framework also supports explicit setup and/or cleanup
routines, which give you a high level of control over the environment
in which your test cases are run.

	If you're writing tests for Django itself, you should use unittest.

Running tests

Once you've written tests, run them using the test command of
your project's manage.py utility:

$./manage.py test

By default, this will run every test in every application in
INSTALLED_APPS. If you only want to run tests for a particular
application, add the application name to the command line. For example, if your
INSTALLED_APPS contains 'myproject.polls' and
'myproject.animals', you can run the myproject.animals unit tests alone
with this command:

$./manage.py test animals

Note that we used animals, not myproject.animals.

You can be even more specific by naming an individual test case. To
run a single test case in an application (for example, the
AnimalTestCase described in the "Writing unit tests" section), add
the name of the test case to the label on the command line:

$./manage.py test animals.AnimalTestCase

And it gets even more granular than that! To run a single test
method inside a test case, add the name of the test method to the
label:

$./manage.py test animals.AnimalTestCase.testFluffyAnimals

New in Django 1.2: The ability to select individual doctests was added.

You can use the same rules if you're using doctests. Django will use the
test label as a path to the test method or class that you want to run.
If your models.py or tests.py has a function with a doctest, or
class with a class-level doctest, you can invoke that test by appending the
name of the test method or class to the label:

$./manage.py test animals.classify

If you want to run the doctest for a specific method in a class, add the
name of the method to the label:

$./manage.py test animals.Classifier.run

If you're using a __test__ dictionary to specify doctests for a
module, Django will use the label as a key in the __test__ dictionary
for defined in models.py and tests.py.

New in Django 1.2: You can now trigger a graceful exit from a test run by pressing Ctrl-C.

If you press Ctrl-C while the tests are running, the test runner will
wait for the currently running test to complete and then exit gracefully.
During a graceful exit the test runner will output details of any test
failures, report on how many tests were run and how many errors and failures
were encountered, and destroy any test databases as usual. Thus pressing
Ctrl-C can be very useful if you forget to pass the --failfast
option, notice that some tests are unexpectedly failing, and want to get details
on the failures without waiting for the full test run to complete.

If you do not want to wait for the currently running test to finish, you
can press Ctrl-C a second time and the test run will halt immediately,
but not gracefully. No details of the tests run before the interruption will
be reported, and any test databases created by the run will not be destroyed.

Test with warnings enabled

It is a good idea to run your tests with python -Wall manage.py
test. This will allow you to catch any deprecation warnings that
might be in your code. Django (as well as many other libraries) use
warnings to flag when features are deprecated. It can also flag
areas in your code that are not strictly wrong, but may benefit
from a better implementation.

Running tests outside the test runner

If you want to run tests outside of ./manage.py test -- for example,
from a shell prompt -- you will need to set up the test
environment first. Django provides a convenience method to do this:

>>> from django.test.utils import setup_test_environment
>>> setup_test_environment()

This convenience method sets up the test database, and puts other
Django features into modes that allow for repeatable testing.

The call to setup_test_environment() is made
automatically as part of the setup of ./manage.py test. You only
need to manually invoke this method if you're not using running your
tests via Django's test runner.

The test database

Tests that require a database (namely, model tests) will not use your "real"
(production) database. Separate, blank databases are created for the tests.

Regardless of whether the tests pass or fail, the test databases are destroyed
when all the tests have been executed.

By default the test databases get their names by prepending test_
to the value of the NAME settings for the databases
defined in DATABASES. When using the SQLite database engine
the tests will by default use an in-memory database (i.e., the
database will be created in memory, bypassing the filesystem
entirely!). If you want to use a different database name, specify
TEST_NAME in the dictionary for any given database in
DATABASES.

Aside from using a separate database, the test runner will otherwise
use all of the same database settings you have in your settings file:
ENGINE, USER, HOST, etc. The test
database is created by the user specified by USER, so you'll need
to make sure that the given user account has sufficient privileges to
create a new database on the system.

For fine-grained control over the character encoding of your test
database, use the TEST_CHARSET option. If you're using
MySQL, you can also use the TEST_COLLATION option to
control the particular collation used by the test database. See the
settings documentation for details of these
advanced settings.

Testing master/slave configurations

New in Django 1.2: Please, see the release notes

If you're testing a multiple database configuration with master/slave
replication, this strategy of creating test databases poses a problem.
When the test databases are created, there won't be any replication,
and as a result, data created on the master won't be seen on the
slave.

To compensate for this, Django allows you to define that a database is
a test mirror. Consider the following (simplified) example database
configuration:

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'myproject',
 'HOST': 'dbmaster',
 # ... plus some other settings
 },
 'slave': {
 'ENGINE': 'django.db.backends.mysql',
 'NAME': 'myproject',
 'HOST': 'dbslave',
 'TEST_MIRROR': 'default'
 # ... plus some other settings
 }
}

In this setup, we have two database servers: dbmaster, described
by the database alias default, and dbslave described by the
alias slave. As you might expect, dbslave has been configured
by the database administrator as a read slave of dbmaster, so in
normal activity, any write to default will appear on slave.

If Django created two independent test databases, this would break any
tests that expected replication to occur. However, the slave
database has been configured as a test mirror (using the
TEST_MIRROR setting), indicating that under testing,
slave should be treated as a mirror of default.

When the test environment is configured, a test version of slave
will not be created. Instead the connection to slave
will be redirected to point at default. As a result, writes to
default will appear on slave -- but because they are actually
the same database, not because there is data replication between the
two databases.

Controlling creation order for test databases

New in Django 1.2.4: Please, see the release notes

By default, Django will always create the default database first.
However, no guarantees are made on the creation order of any other
databases in your test setup.

If your database configuration requires a specific creation order, you
can specify the dependencies that exist using the
TEST_DEPENDENCIES setting. Consider the following
(simplified) example database configuration:

DATABASES = {
 'default': {
 # ... db settings
 'TEST_DEPENDENCIES': ['diamonds']
 },
 'diamonds': {
 # ... db settings
 },
 'clubs': {
 # ... db settings
 'TEST_DEPENDENCIES': ['diamonds']
 },
 'spades': {
 # ... db settings
 'TEST_DEPENDENCIES': ['diamonds','hearts']
 },
 'hearts': {
 # ... db settings
 'TEST_DEPENDENCIES': ['diamonds','clubs']
 }
}

Under this configuration, the diamonds database will be created first,
as it is the only database alias without dependencies. The default` and
clubs alias will be created next (although the order of creation of this
pair is not guaranteed); then hearts; and finally spades.

If there are any circular dependencies in the
TEST_DEPENDENCIES definition, an ImproperlyConfigured
exception will be raised.

Other test conditions

Regardless of the value of the DEBUG setting in your configuration
file, all Django tests run with DEBUG=False. This is to ensure that
the observed output of your code matches what will be seen in a production
setting.

Understanding the test output

When you run your tests, you'll see a number of messages as the test runner
prepares itself. You can control the level of detail of these messages with the
verbosity option on the command line:

Creating test database...
Creating table myapp_animal
Creating table myapp_mineral
Loading 'initial_data' fixtures...
No fixtures found.

This tells you that the test runner is creating a test database, as described
in the previous section.

Once the test database has been created, Django will run your tests.
If everything goes well, you'll see something like this:

--
Ran 22 tests in 0.221s

OK

If there are test failures, however, you'll see full details about which tests
failed:

==
FAIL: Doctest: ellington.core.throttle.models
--
Traceback (most recent call last):
 File "/dev/django/test/doctest.py", line 2153, in runTest
 raise self.failureException(self.format_failure(new.getvalue()))
AssertionError: Failed doctest test for myapp.models
 File "/dev/myapp/models.py", line 0, in models

--
File "/dev/myapp/models.py", line 14, in myapp.models
Failed example:
 throttle.check("actor A", "action one", limit=2, hours=1)
Expected:
 True
Got:
 False

--
Ran 2 tests in 0.048s

FAILED (failures=1)

A full explanation of this error output is beyond the scope of this document,
but it's pretty intuitive. You can consult the documentation of Python's
unittest library for details.

Note that the return code for the test-runner script is the total number of
failed and erroneous tests. If all the tests pass, the return code is 0. This
feature is useful if you're using the test-runner script in a shell script and
need to test for success or failure at that level.

Testing tools

Django provides a small set of tools that come in handy when writing tests.

The test client

The test client is a Python class that acts as a dummy Web browser, allowing
you to test your views and interact with your Django-powered application
programmatically.

Some of the things you can do with the test client are:

	Simulate GET and POST requests on a URL and observe the response --
everything from low-level HTTP (result headers and status codes) to
page content.

	Test that the correct view is executed for a given URL.

	Test that a given request is rendered by a given Django template, with
a template context that contains certain values.

Note that the test client is not intended to be a replacement for Twill [http://twill.idyll.org/],
Selenium [http://seleniumhq.org/], or other "in-browser" frameworks. Django's test client has
a different focus. In short:

	Use Django's test client to establish that the correct view is being
called and that the view is collecting the correct context data.

	Use in-browser frameworks such as Twill and Selenium to test rendered
HTML and the behavior of Web pages, namely JavaScript functionality.

A comprehensive test suite should use a combination of both test types.

Overview and a quick example

To use the test client, instantiate django.test.client.Client and retrieve
Web pages:

>>> from django.test.client import Client
>>> c = Client()
>>> response = c.post('/login/', {'username': 'john', 'password': 'smith'})
>>> response.status_code
200
>>> response = c.get('/customer/details/')
>>> response.content
'<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 ...'

As this example suggests, you can instantiate Client from within a session
of the Python interactive interpreter.

Note a few important things about how the test client works:

	The test client does not require the Web server to be running. In fact,
it will run just fine with no Web server running at all! That's because
it avoids the overhead of HTTP and deals directly with the Django
framework. This helps make the unit tests run quickly.

	When retrieving pages, remember to specify the path of the URL, not the
whole domain. For example, this is correct:

>>> c.get('/login/')

This is incorrect:

>>> c.get('http://www.example.com/login/')

The test client is not capable of retrieving Web pages that are not
powered by your Django project. If you need to retrieve other Web pages,
use a Python standard library module such as urllib [http://docs.python.org/library/urllib.html] or urllib2 [http://docs.python.org/library/urllib2.html].

	To resolve URLs, the test client uses whatever URLconf is pointed-to by
your ROOT_URLCONF setting.

	Although the above example would work in the Python interactive
interpreter, some of the test client's functionality, notably the
template-related functionality, is only available while tests are
running.

The reason for this is that Django's test runner performs a bit of black
magic in order to determine which template was loaded by a given view.
This black magic (essentially a patching of Django's template system in
memory) only happens during test running.

	By default, the test client will disable any CSRF checks
performed by your site.

New in Django 1.2.2: Please, see the release notes

If, for some reason, you want the test client to perform CSRF
checks, you can create an instance of the test client that
enforces CSRF checks. To do this, pass in the
enforce_csrf_checks argument when you construct your
client:

>>> from django.test import Client
>>> csrf_client = Client(enforce_csrf_checks=True)

Making requests

Use the django.test.client.Client class to make requests. It requires no
arguments at time of construction:

	
class Client

	Once you have a Client instance, you can call any of the following
methods:

	
get(pathdata={}follow=False**extra)

	Makes a GET request on the provided path and returns a Response
object, which is documented below.

The key-value pairs in the data dictionary are used to create a GET
data payload. For example:

>>> c = Client()
>>> c.get('/customers/details/', {'name': 'fred', 'age': 7})

...will result in the evaluation of a GET request equivalent to:

/customers/details/?name=fred&age=7

The extra keyword arguments parameter can be used to specify
headers to be sent in the request. For example:

>>> c = Client()
>>> c.get('/customers/details/', {'name': 'fred', 'age': 7},
... HTTP_X_REQUESTED_WITH='XMLHttpRequest')

...will send the HTTP header HTTP_X_REQUESTED_WITH to the
details view, which is a good way to test code paths that use the
django.http.HttpRequest.is_ajax() method.

New in Django 1.1: Please, see the release notes

If you already have the GET arguments in URL-encoded form, you can
use that encoding instead of using the data argument. For example,
the previous GET request could also be posed as:

>>> c = Client()
>>> c.get('/customers/details/?name=fred&age=7')

If you provide a URL with both an encoded GET data and a data argument,
the data argument will take precedence.

If you set follow to True the client will follow any redirects
and a redirect_chain attribute will be set in the response object
containing tuples of the intermediate urls and status codes.

If you had an url /redirect_me/ that redirected to /next/, that
redirected to /final/, this is what you'd see:

>>> response = c.get('/redirect_me/', follow=True)
>>> response.redirect_chain
[(u'http://testserver/next/', 302), (u'http://testserver/final/', 302)]

	
post(pathdata={}content_type=MULTIPART_CONTENTfollow=False**extra)

	Makes a POST request on the provided path and returns a
Response object, which is documented below.

The key-value pairs in the data dictionary are used to submit POST
data. For example:

>>> c = Client()
>>> c.post('/login/', {'name': 'fred', 'passwd': 'secret'})

...will result in the evaluation of a POST request to this URL:

/login/

...with this POST data:

name=fred&passwd=secret

If you provide content_type (e.g., text/xml for an XML
payload), the contents of data will be sent as-is in the POST
request, using content_type in the HTTP Content-Type header.

If you don't provide a value for content_type, the values in
data will be transmitted with a content type of
multipart/form-data. In this case, the key-value pairs in data
will be encoded as a multipart message and used to create the POST data
payload.

To submit multiple values for a given key -- for example, to specify
the selections for a <select multiple> -- provide the values as a
list or tuple for the required key. For example, this value of data
would submit three selected values for the field named choices:

{'choices': ('a', 'b', 'd')}

Submitting files is a special case. To POST a file, you need only
provide the file field name as a key, and a file handle to the file you
wish to upload as a value. For example:

>>> c = Client()
>>> f = open('wishlist.doc')
>>> c.post('/customers/wishes/', {'name': 'fred', 'attachment': f})
>>> f.close()

(The name attachment here is not relevant; use whatever name your
file-processing code expects.)

Note that if you wish to use the same file handle for multiple
post() calls then you will need to manually reset the file
pointer between posts. The easiest way to do this is to
manually close the file after it has been provided to
post(), as demonstrated above.

You should also ensure that the file is opened in a way that
allows the data to be read. If your file contains binary data
such as an image, this means you will need to open the file in
rb (read binary) mode.

The extra argument acts the same as for Client.get().

Changed in Django 1.1: Please, see the release notes

If the URL you request with a POST contains encoded parameters, these
parameters will be made available in the request.GET data. For example,
if you were to make the request:

>>> c.post('/login/?visitor=true', {'name': 'fred', 'passwd': 'secret'})

... the view handling this request could interrogate request.POST
to retrieve the username and password, and could interrogate request.GET
to determine if the user was a visitor.

If you set follow to True the client will follow any redirects
and a redirect_chain attribute will be set in the response object
containing tuples of the intermediate urls and status codes.

	
head(pathdata={}follow=False**extra)

	
New in Django 1.1: Please, see the release notes

Makes a HEAD request on the provided path and returns a Response
object. Useful for testing RESTful interfaces. Acts just like
Client.get() except it does not return a message body.

If you set follow to True the client will follow any redirects
and a redirect_chain attribute will be set in the response object
containing tuples of the intermediate urls and status codes.

	
options(pathdata={}follow=False**extra)

	
New in Django 1.1: Please, see the release notes

Makes an OPTIONS request on the provided path and returns a
Response object. Useful for testing RESTful interfaces.

If you set follow to True the client will follow any redirects
and a redirect_chain attribute will be set in the response object
containing tuples of the intermediate urls and status codes.

The extra argument acts the same as for Client.get().

	
put(pathdata={}content_type=MULTIPART_CONTENTfollow=False**extra)

	
New in Django 1.1: Please, see the release notes

Makes a PUT request on the provided path and returns a
Response object. Useful for testing RESTful interfaces. Acts just
like Client.post() except with the PUT request method.

If you set follow to True the client will follow any redirects
and a redirect_chain attribute will be set in the response object
containing tuples of the intermediate urls and status codes.

	
delete(pathfollow=False**extra)

	
New in Django 1.1: Please, see the release notes

Makes an DELETE request on the provided path and returns a
Response object. Useful for testing RESTful interfaces.

If you set follow to True the client will follow any redirects
and a redirect_chain attribute will be set in the response object
containing tuples of the intermediate urls and status codes.

The extra argument acts the same as for Client.get().

	
login(**credentials)

	If your site uses Django's authentication system
and you deal with logging in users, you can use the test client's
login() method to simulate the effect of a user logging into the
site.

After you call this method, the test client will have all the cookies
and session data required to pass any login-based tests that may form
part of a view.

The format of the credentials argument depends on which
authentication backend you're using
(which is configured by your AUTHENTICATION_BACKENDS
setting). If you're using the standard authentication backend provided
by Django (ModelBackend), credentials should be the user's
username and password, provided as keyword arguments:

>>> c = Client()
>>> c.login(username='fred', password='secret')

Now you can access a view that's only available to logged-in users.

If you're using a different authentication backend, this method may
require different credentials. It requires whichever credentials are
required by your backend's authenticate() method.

login() returns True if it the credentials were accepted and
login was successful.

Finally, you'll need to remember to create user accounts before you can
use this method. As we explained above, the test runner is executed
using a test database, which contains no users by default. As a result,
user accounts that are valid on your production site will not work
under test conditions. You'll need to create users as part of the test
suite -- either manually (using the Django model API) or with a test
fixture. Remember that if you want your test user to have a password,
you can't set the user's password by setting the password attribute
directly -- you must use the
set_password() function to
store a correctly hashed password. Alternatively, you can use the
create_user() helper
method to create a new user with a correctly hashed password.

	
logout()

	If your site uses Django's authentication system,
the logout() method can be used to simulate the effect of a user
logging out of your site.

After you call this method, the test client will have all the cookies
and session data cleared to defaults. Subsequent requests will appear
to come from an AnonymousUser.

Testing responses

The get() and post() methods both return a Response object. This
Response object is not the same as the HttpResponse object returned
Django views; the test response object has some additional data useful for
test code to verify.

Specifically, a Response object has the following attributes:

	
class Response

	
	
client

	The test client that was used to make the request that resulted in the
response.

	
content

	The body of the response, as a string. This is the final page content as
rendered by the view, or any error message.

	
context

	The template Context instance that was used to render the template that
produced the response content.

If the rendered page used multiple templates, then context will be a
list of Context objects, in the order in which they were rendered.

New in Django 1.1: Please, see the release notes

Regardless of the number of templates used during rendering, you can
retrieve context values using the [] operator. For example, the
context variable name could be retrieved using:

>>> response = client.get('/foo/')
>>> response.context['name']
'Arthur'

	
request

	The request data that stimulated the response.

	
status_code

	The HTTP status of the response, as an integer. See RFC2616 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html] for a full
list of HTTP status codes.

	
template

	The Template instance that was used to render the final content. Use
template.name to get the template's file name, if the template was
loaded from a file. (The name is a string such as 'admin/index.html'.)

If the rendered page used multiple templates -- e.g., using template
inheritance -- then template will be a list of
Template instances, in the order in which they were rendered.

You can also use dictionary syntax on the response object to query the value
of any settings in the HTTP headers. For example, you could determine the
content type of a response using response['Content-Type'].

Exceptions

If you point the test client at a view that raises an exception, that exception
will be visible in the test case. You can then use a standard try...except
block or unittest.TestCase.assertRaises() to test for exceptions.

The only exceptions that are not visible to the test client are Http404,
PermissionDenied and SystemExit. Django catches these exceptions
internally and converts them into the appropriate HTTP response codes. In these
cases, you can check response.status_code in your test.

Persistent state

The test client is stateful. If a response returns a cookie, then that cookie
will be stored in the test client and sent with all subsequent get() and
post() requests.

Expiration policies for these cookies are not followed. If you want a cookie
to expire, either delete it manually or create a new Client instance (which
will effectively delete all cookies).

A test client has two attributes that store persistent state information. You
can access these properties as part of a test condition.

	
Client.cookies

	A Python SimpleCookie object, containing the current values of all the
client cookies. See the Cookie module documentation [http://docs.python.org/library/cookie.html] for more.

	
Client.session

	A dictionary-like object containing session information. See the
session documentation for full details.

To modify the session and then save it, it must be stored in a variable
first (because a new SessionStore is created every time this property
is accessed):

def test_something(self):
 session = self.client.session
 session['somekey'] = 'test'
 session.save()

Example

The following is a simple unit test using the test client:

import unittest
from django.test.client import Client

class SimpleTest(unittest.TestCase):
 def setUp(self):
 # Every test needs a client.
 self.client = Client()

 def test_details(self):
 # Issue a GET request.
 response = self.client.get('/customer/details/')

 # Check that the response is 200 OK.
 self.failUnlessEqual(response.status_code, 200)

 # Check that the rendered context contains 5 customers.
 self.failUnlessEqual(len(response.context['customers']), 5)

TestCase

Normal Python unit test classes extend a base class of unittest.TestCase.
Django provides an extension of this base class:

	
class TestCase

	

This class provides some additional capabilities that can be useful for testing
Web sites.

Converting a normal unittest.TestCase to a Django TestCase is easy:
just change the base class of your test from unittest.TestCase to
django.test.TestCase. All of the standard Python unit test functionality
will continue to be available, but it will be augmented with some useful
additions.

New in Django 1.1: Please, see the release notes

	
class TransactionTestCase

	

Django TestCase classes make use of database transaction facilities, if
available, to speed up the process of resetting the database to a known state
at the beginning of each test. A consequence of this, however, is that the
effects of transaction commit and rollback cannot be tested by a Django
TestCase class. If your test requires testing of such transactional
behavior, you should use a Django TransactionTestCase.

TransactionTestCase and TestCase are identical except for the manner
in which the database is reset to a known state and the ability for test code
to test the effects of commit and rollback. A TransactionTestCase resets
the database before the test runs by truncating all tables and reloading
initial data. A TransactionTestCase may call commit and rollback and
observe the effects of these calls on the database.

A TestCase, on the other hand, does not truncate tables and reload initial
data at the beginning of a test. Instead, it encloses the test code in a
database transaction that is rolled back at the end of the test. It also
prevents the code under test from issuing any commit or rollback operations
on the database, to ensure that the rollback at the end of the test restores
the database to its initial state. In order to guarantee that all TestCase
code starts with a clean database, the Django test runner runs all TestCase
tests first, before any other tests (e.g. doctests) that may alter the
database without restoring it to its original state.

When running on a database that does not support rollback (e.g. MySQL with the
MyISAM storage engine), TestCase falls back to initializing the database
by truncating tables and reloading initial data.

Note

The TestCase use of rollback to un-do the effects of the test code
may reveal previously-undetected errors in test code. For example,
test code that assumes primary keys values will be assigned starting at
one may find that assumption no longer holds true when rollbacks instead
of table truncation are being used to reset the database. Similarly,
the reordering of tests so that all TestCase classes run first may
reveal unexpected dependencies on test case ordering. In such cases a
quick fix is to switch the TestCase to a TransactionTestCase.
A better long-term fix, that allows the test to take advantage of the
speed benefit of TestCase, is to fix the underlying test problem.

Default test client

	
TestCase.client

	

Every test case in a django.test.TestCase instance has access to an
instance of a Django test client. This client can be accessed as
self.client. This client is recreated for each test, so you don't have to
worry about state (such as cookies) carrying over from one test to another.

This means, instead of instantiating a Client in each test:

import unittest
from django.test.client import Client

class SimpleTest(unittest.TestCase):
 def test_details(self):
 client = Client()
 response = client.get('/customer/details/')
 self.failUnlessEqual(response.status_code, 200)

 def test_index(self):
 client = Client()
 response = client.get('/customer/index/')
 self.failUnlessEqual(response.status_code, 200)

...you can just refer to self.client, like so:

from django.test import TestCase

class SimpleTest(TestCase):
 def test_details(self):
 response = self.client.get('/customer/details/')
 self.failUnlessEqual(response.status_code, 200)

 def test_index(self):
 response = self.client.get('/customer/index/')
 self.failUnlessEqual(response.status_code, 200)

Fixture loading

	
TestCase.fixtures

	

A test case for a database-backed Web site isn't much use if there isn't any
data in the database. To make it easy to put test data into the database,
Django's custom TestCase class provides a way of loading fixtures.

A fixture is a collection of data that Django knows how to import into a
database. For example, if your site has user accounts, you might set up a
fixture of fake user accounts in order to populate your database during tests.

The most straightforward way of creating a fixture is to use the
manage.py dumpdata command. This assumes you
already have some data in your database. See the dumpdata
documentation for more details.

Note

If you've ever run manage.py syncdb, you've
already used a fixture without even knowing it! When you call
syncdb in the database for the first time, Django
installs a fixture called initial_data. This gives you a way
of populating a new database with any initial data, such as a
default set of categories.

Fixtures with other names can always be installed manually using
the manage.py loaddata command.

Initial SQL data and testing

Django provides a second way to insert initial data into models --
the custom SQL hook. However, this technique
cannot be used to provide initial data for testing purposes.
Django's test framework flushes the contents of the test database
after each test; as a result, any data added using the custom SQL
hook will be lost.

Once you've created a fixture and placed it in a fixtures directory in one
of your INSTALLED_APPS, you can use it in your unit tests by
specifying a fixtures class attribute on your django.test.TestCase
subclass:

from django.test import TestCase
from myapp.models import Animal

class AnimalTestCase(TestCase):
 fixtures = ['mammals.json', 'birds']

 def setUp(self):
 # Test definitions as before.
 call_setup_methods()

 def testFluffyAnimals(self):
 # A test that uses the fixtures.
 call_some_test_code()

Here's specifically what will happen:

	At the start of each test case, before setUp() is run, Django will
flush the database, returning the database to the state it was in
directly after syncdb was called.

	Then, all the named fixtures are installed. In this example, Django will
install any JSON fixture named mammals, followed by any fixture named
birds. See the loaddata documentation for more
details on defining and installing fixtures.

This flush/load procedure is repeated for each test in the test case, so you
can be certain that the outcome of a test will not be affected by another test,
or by the order of test execution.

URLconf configuration

	
TestCase.urls

	

If your application provides views, you may want to include tests that use the
test client to exercise those views. However, an end user is free to deploy the
views in your application at any URL of their choosing. This means that your
tests can't rely upon the fact that your views will be available at a
particular URL.

In order to provide a reliable URL space for your test,
django.test.TestCase provides the ability to customize the URLconf
configuration for the duration of the execution of a test suite. If your
TestCase instance defines an urls attribute, the TestCase will use
the value of that attribute as the ROOT_URLCONF for the duration of that
test.

For example:

from django.test import TestCase

class TestMyViews(TestCase):
 urls = 'myapp.test_urls'

 def testIndexPageView(self):
 # Here you'd test your view using ``Client``.
 call_some_test_code()

This test case will use the contents of myapp.test_urls as the
URLconf for the duration of the test case.

Multi-database support

	
TestCase.multi_db

	

New in Django 1.2: Please, see the release notes

Django sets up a test database corresponding to every database that is
defined in the DATABASES definition in your settings
file. However, a big part of the time taken to run a Django TestCase
is consumed by the call to flush that ensures that you have a
clean database at the start of each test run. If you have multiple
databases, multiple flushes are required (one for each database),
which can be a time consuming activity -- especially if your tests
don't need to test multi-database activity.

As an optimization, Django only flushes the default database at
the start of each test run. If your setup contains multiple databases,
and you have a test that requires every database to be clean, you can
use the multi_db attribute on the test suite to request a full
flush.

For example:

class TestMyViews(TestCase):
 multi_db = True

 def testIndexPageView(self):
 call_some_test_code()

This test case will flush all the test databases before running
testIndexPageView.

Emptying the test outbox

If you use Django's custom TestCase class, the test runner will clear the
contents of the test e-mail outbox at the start of each test case.

For more detail on e-mail services during tests, see E-mail services.

Assertions

Changed in Django 1.2: Addded msg_prefix argument.

As Python's normal unittest.TestCase class implements assertion methods
such as assertTrue and assertEquals, Django's custom TestCase class
provides a number of custom assertion methods that are useful for testing Web
applications:

The failure messages given by the assertion methods can be customized
with the msg_prefix argument. This string will be prefixed to any
failure message generated by the assertion. This allows you to provide
additional details that may help you to identify the location and
cause of an failure in your test suite.

	
TestCase.assertContains(responsetextcount=Nonestatus_code=200msg_prefix='')

	Asserts that a Response instance produced the given status_code and
that text appears in the content of the response. If count is
provided, text must occur exactly count times in the response.

	
TestCase.assertNotContains(responsetextstatus_code=200msg_prefix='')

	Asserts that a Response instance produced the given status_code and
that text does not appears in the content of the response.

	
TestCase.assertFormError(responseformfielderrorsmsg_prefix='')

	Asserts that a field on a form raises the provided list of errors when
rendered on the form.

form is the name the Form instance was given in the template
context.

field is the name of the field on the form to check. If field
has a value of None, non-field errors (errors you can access via
form.non_field_errors()) will be checked.

errors is an error string, or a list of error strings, that are
expected as a result of form validation.

	
TestCase.assertTemplateUsed(responsetemplate_namemsg_prefix='')

	Asserts that the template with the given name was used in rendering the
response.

The name is a string such as 'admin/index.html'.

	
TestCase.assertTemplateNotUsed(responsetemplate_namemsg_prefix='')

	Asserts that the template with the given name was not used in rendering
the response.

	
TestCase.assertRedirects(responseexpected_urlstatus_code=302target_status_code=200msg_prefix='')

	Asserts that the response return a status_code redirect status, it
redirected to expected_url (including any GET data), and the final
page was received with target_status_code.

New in Django 1.1: Please, see the release notes

If your request used the follow argument, the expected_url and
target_status_code will be the url and status code for the final
point of the redirect chain.

E-mail services

If any of your Django views send e-mail using Django's e-mail
functionality, you probably don't want to send e-mail each time
you run a test using that view. For this reason, Django's test runner
automatically redirects all Django-sent e-mail to a dummy outbox. This lets you
test every aspect of sending e-mail -- from the number of messages sent to the
contents of each message -- without actually sending the messages.

The test runner accomplishes this by transparently replacing the normal
email backend with a testing backend.
(Don't worry -- this has no effect on any other e-mail senders outside of
Django, such as your machine's mail server, if you're running one.)

	
django.core.mail.outbox

	

During test running, each outgoing e-mail is saved in
django.core.mail.outbox. This is a simple list of all
EmailMessage instances that have been sent.
The outbox attribute is a special attribute that is created only when
the locmem e-mail backend is used. It doesn't normally exist as part of the
django.core.mail module and you can't import it directly. The code
below shows how to access this attribute correctly.

Here's an example test that examines django.core.mail.outbox for length
and contents:

from django.core import mail
from django.test import TestCase

class EmailTest(TestCase):
 def test_send_email(self):
 # Send message.
 mail.send_mail('Subject here', 'Here is the message.',
 'from@example.com', ['to@example.com'],
 fail_silently=False)

 # Test that one message has been sent.
 self.assertEquals(len(mail.outbox), 1)

 # Verify that the subject of the first message is correct.
 self.assertEquals(mail.outbox[0].subject, 'Subject here')

As noted previously, the test outbox is emptied
at the start of every test in a Django TestCase. To empty the outbox
manually, assign the empty list to mail.outbox:

from django.core import mail

Empty the test outbox
mail.outbox = []

Using different testing frameworks

Clearly, doctest and unittest are not the only Python testing
frameworks. While Django doesn't provide explicit support for alternative
frameworks, it does provide a way to invoke tests constructed for an
alternative framework as if they were normal Django tests.

When you run ./manage.py test, Django looks at the TEST_RUNNER
setting to determine what to do. By default, TEST_RUNNER points to
'django.test.simple.DjangoTestSuiteRunner'. This class defines the default Django
testing behavior. This behavior involves:

	Performing global pre-test setup.

	Looking for unit tests and doctests in the models.py and
tests.py files in each installed application.

	Creating the test databases.

	Running syncdb to install models and initial data into the test
databases.

	Running the unit tests and doctests that are found.

	Destroying the test databases.

	Performing global post-test teardown.

If you define your own test runner class and point TEST_RUNNER at
that class, Django will execute your test runner whenever you run
./manage.py test. In this way, it is possible to use any test framework
that can be executed from Python code, or to modify the Django test execution
process to satisfy whatever testing requirements you may have.

Defining a test runner

Changed in Django 1.2: Prior to 1.2, test runners were a single function, not a class.

A test runner is a class defining a run_tests() method. Django ships
with a DjangoTestSuiteRunner class that defines the default Django
testing behavior. This class defines the run_tests() entry point,
plus a selection of other methods that are used to by run_tests() to
set up, execute and tear down the test suite.

	
class DjangoTestSuiteRunner(verbosity=1interactive=Truefailfast=True**kwargs)

	verbosity determines the amount of notification and debug information
that will be printed to the console; 0 is no output, 1 is normal
output, and 2 is verbose output.

If interactive is True, the test suite has permission to ask the
user for instructions when the test suite is executed. An example of this
behavior would be asking for permission to delete an existing test
database. If interactive is False, the test suite must be able to
run without any manual intervention.

If failfast is True, the test suite will stop running after the
first test failure is detected.

Django will, from time to time, extend the capabilities of
the test runner by adding new arguments. The **kwargs declaration
allows for this expansion. If you subclass DjangoTestSuiteRunner or
write your own test runner, ensure accept and handle the **kwargs
parameter.

	
DjangoTestSuiteRunner.run_tests(test_labelsextra_tests=None**kwargs)

	Run the test suite.

test_labels is a list of strings describing the tests to be run. A test
label can take one of three forms:

	app.TestCase.test_method -- Run a single test method in a test
case.

	app.TestCase -- Run all the test methods in a test case.

	app -- Search for and run all tests in the named application.

If test_labels has a value of None, the test runner should run
search for tests in all the applications in INSTALLED_APPS.

extra_tests is a list of extra TestCase instances to add to the
suite that is executed by the test runner. These extra tests are run
in addition to those discovered in the modules listed in test_labels.

This method should return the number of tests that failed.

	
DjangoTestSuiteRunner.setup_test_environment(**kwargs)

	Sets up the test environment ready for testing.

	
DjangoTestSuiteRunner.build_suite(test_labelsextra_tests=None**kwargs)

	Constructs a test suite that matches the test labels provided.

test_labels is a list of strings describing the tests to be run. A test
label can take one of three forms:

	app.TestCase.test_method -- Run a single test method in a test
case.

	app.TestCase -- Run all the test methods in a test case.

	app -- Search for and run all tests in the named application.

If test_labels has a value of None, the test runner should run
search for tests in all the applications in INSTALLED_APPS.

extra_tests is a list of extra TestCase instances to add to the
suite that is executed by the test runner. These extra tests are run
in addition to those discovered in the modules listed in test_labels.

Returns a TestSuite instance ready to be run.

	
DjangoTestSuiteRunner.setup_databases(**kwargs)

	Creates the test databases.

Returns a data structure that provides enough detail to undo the changes
that have been made. This data will be provided to the teardown_databases()
function at the conclusion of testing.

	
DjangoTestSuiteRunner.run_suite(suite**kwargs)

	Runs the test suite.

Returns the result produced by the running the test suite.

	
DjangoTestSuiteRunner.teardown_databases(old_config**kwargs)

	Destroys the test databases, restoring pre-test conditions.

old_config is a data structure defining the changes in the
database configuration that need to be reversed. It is the return
value of the setup_databases() method.

	
DjangoTestSuiteRunner.teardown_test_environment(**kwargs)

	Restores the pre-test environment.

	
DjangoTestSuiteRunner.suite_result(suiteresult**kwargs)

	Computes and returns a return code based on a test suite, and the result
from that test suite.

Testing utilities

To assist in the creation of your own test runner, Django provides a number of
utility methods in the django.test.utils module.

	
setup_test_environment()

	Performs any global pre-test setup, such as the installing the
instrumentation of the template rendering system and setting up
the dummy SMTPConnection.

	
teardown_test_environment()

	Performs any global post-test teardown, such as removing the black
magic hooks into the template system and restoring normal e-mail
services.

The creation module of the database backend (connection.creation)
also provides some utilities that can be useful during testing.

	
create_test_db(verbosity=1autoclobber=False)

	Creates a new test database and runs syncdb against it.

verbosity has the same behavior as in run_tests().

autoclobber describes the behavior that will occur if a
database with the same name as the test database is discovered:

	If autoclobber is False, the user will be asked to
approve destroying the existing database. sys.exit is
called if the user does not approve.

	If autoclobber is True, the database will be destroyed
without consulting the user.

Returns the name of the test database that it created.

create_test_db() has the side effect of modifying the value of
NAME in DATABASES to match the name of the test
database.

	
destroy_test_db(old_database_nameverbosity=1)

	Destroys the database whose name is in stored in NAME in the
DATABASES, and sets NAME to use the
provided name.

verbosity has the same behavior as in run_tests().

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 User authentication in Django

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

User authentication in Django

Django comes with a user authentication system. It handles user accounts,
groups, permissions and cookie-based user sessions. This document explains how
things work.

Overview

The auth system consists of:

	Users

	Permissions: Binary (yes/no) flags designating whether a user may perform
a certain task.

	Groups: A generic way of applying labels and permissions to more than one
user.

	Messages: A simple way to queue messages for given users.

Deprecated in Django 1.2: The Messages component of the auth system will be removed in Django 1.4.

Installation

Authentication support is bundled as a Django application in
django.contrib.auth. To install it, do the following:

	Put 'django.contrib.auth' and 'django.contrib.contenttypes' in
your INSTALLED_APPS setting.
(The Permission model in
django.contrib.auth depends on django.contrib.contenttypes.)

	Run the command manage.py syncdb.

Note that the default settings.py file created by
django-admin.py startproject includes
'django.contrib.auth' and 'django.contrib.contenttypes' in
INSTALLED_APPS for convenience. If your INSTALLED_APPS
already contains these apps, feel free to run manage.py syncdb again; you can run that command as many times as you’d like, and each
time it’ll only install what’s needed.

The syncdb command creates the necessary database tables, creates
permission objects for all installed apps that need ‘em, and prompts you to
create a superuser account the first time you run it.

Once you’ve taken those steps, that’s it.

Users

	
class models.User

	

API reference

Fields

	
class models.User

	User objects have the following
fields:

	
username

	Required. 30 characters or fewer. Alphanumeric characters only
(letters, digits and underscores).

Changed in Django 1.2: Usernames may now contain @, +, . and - characters.

	
first_name

	Optional. 30 characters or fewer.

	
last_name

	Optional. 30 characters or fewer.

	
email

	Optional. E-mail address.

	
password

	Required. A hash of, and metadata about, the password. (Django doesn’t
store the raw password.) Raw passwords can be arbitrarily long and can
contain any character. See the “Passwords” section below.

	
is_staff

	Boolean. Designates whether this user can access the admin site.

	
is_active

	Boolean. Designates whether this user account should be considered
active. We recommend that you set this flag to False instead of
deleting accounts; that way, if your applications have any foreign keys
to users, the foreign keys won’t break.

This doesn’t necessarily control whether or not the user can log in.
Authentication backends aren’t required to check for the is_active
flag, so if you want to reject a login based on is_active being
False, it’s up to you to check that in your own login view.
However, the AuthenticationForm
used by the login() view does
perform this check, as do the permission-checking methods such as
has_perm() and the authentication in the Django
admin. All of those functions/methods will return False for
inactive users.

	
is_superuser

	Boolean. Designates that this user has all permissions without
explicitly assigning them.

	
last_login

	A datetime of the user’s last login. Is set to the current date/time by
default.

	
date_joined

	A datetime designating when the account was created. Is set to the
current date/time by default when the account is created.

Methods

	
class models.User

	User objects have two many-to-many
fields: models.User. groups and user_permissions.
User objects can access their related
objects in the same way as any other Django model:

myuser.groups = [group_list]
myuser.groups.add(group, group, ...)
myuser.groups.remove(group, group, ...)
myuser.groups.clear()
myuser.user_permissions = [permission_list]
myuser.user_permissions.add(permission, permission, ...)
myuser.user_permissions.remove(permission, permission, ...)
myuser.user_permissions.clear()

In addition to those automatic API methods,
User objects have the following custom
methods:

	
is_anonymous()

	Always returns False. This is a way of differentiating
User and
AnonymousUser objects.
Generally, you should prefer using
is_authenticated() to this
method.

	
is_authenticated()

	Always returns True. This is a way to tell if the user has been
authenticated. This does not imply any permissions, and doesn't check
if the user is active - it only indicates that the user has provided a
valid username and password.

	
get_full_name()

	Returns the first_name plus
the last_name, with a space in
between.

	
set_password(raw_password)

	Sets the user's password to the given raw string, taking care of the
password hashing. Doesn't save the
User object.

	
check_password(raw_password)

	Returns True if the given raw string is the correct password for
the user. (This takes care of the password hashing in making the
comparison.)

	
set_unusable_password()

	Marks the user as having no password set. This isn't the same as
having a blank string for a password.
check_password() for this user
will never return True. Doesn't save the
User object.

You may need this if authentication for your application takes place
against an existing external source such as an LDAP directory.

	
has_usable_password()

	Returns False if
set_unusable_password() has
been called for this user.

	
get_group_permissions(obj=None)

	Returns a set of permission strings that the user has, through his/her
groups.

New in Django 1.2: Please, see the release notes

If obj is passed in, only returns the group permissions for
this specific object.

	
get_all_permissions(obj=None)

	Returns a set of permission strings that the user has, both through
group and user permissions.

New in Django 1.2: Please, see the release notes

If obj is passed in, only returns the permissions for this
specific object.

	
has_perm(permobj=None)

	Returns True if the user has the specified permission, where perm is
in the format "<app label>.<permission codename>". (see
permissions section below). If the user is inactive, this method will
always return False.

New in Django 1.2: Please, see the release notes

If obj is passed in, this method won't check for a permission for
the model, but for this specific object.

	
has_perms(perm_listobj=None)

	Returns True if the user has each of the specified permissions,
where each perm is in the format
"<app label>.<permission codename>". If the user is inactive,
this method will always return False.

New in Django 1.2: Please, see the release notes

If obj is passed in, this method won't check for permissions for
the model, but for the specific object.

	
has_module_perms(package_name)

	Returns True if the user has any permissions in the given package
(the Django app label). If the user is inactive, this method will
always return False.

	
get_and_delete_messages()

	Returns a list of Message objects
in the user's queue and deletes the messages from the queue.

	
email_user(subjectmessagefrom_email=None)

	Sends an e-mail to the user. If
from_email is None, Django
uses the DEFAULT_FROM_EMAIL.

	
get_profile()

	Returns a site-specific profile for this user. Raises
django.contrib.auth.models.SiteProfileNotAvailable if the
current site doesn't allow profiles. For information on how to define a
site-specific user profile, see the section on storing additional user
information below.

Manager functions

	
class models.UserManager

	The User model has a custom manager
that has the following helper functions:

	
create_user(usernameemailpassword=None)

	Creates, saves and returns a User.

The username and
password are set as given. The
domain portion of email is
automatically convered to lowercase, and the returned
User object will have
is_active set to True.

If no password is provided,
set_unusable_password() will
be called.

See Creating users for example usage.

	
make_random_password(length=10allowed_chars='abcdefghjkmnpqrstuvwxyzABCDEFGHJKLMNPQRSTUVWXYZ23456789')

	Returns a random password with the given length and given string of
allowed characters. (Note that the default value of allowed_chars
doesn't contain letters that can cause user confusion, including:

	i, l, I, and 1 (lowercase letter i, lowercase
letter L, uppercase letter i, and the number one)

	o, O, and 0 (uppercase letter o, lowercase letter o,
and zero)

Basic usage

Creating users

The most basic way to create users is to use the
create_user() helper function
that comes with Django:

>>> from django.contrib.auth.models import User
>>> user = User.objects.create_user('john', 'lennon@thebeatles.com', 'johnpassword')

At this point, user is a User object that has already been saved
to the database. You can continue to change its attributes
if you want to change other fields.
>>> user.is_staff = True
>>> user.save()

You can also create users using the Django admin site. Assuming you've enabled
the admin site and hooked it to the URL /admin/, the "Add user" page is at
/admin/auth/user/add/. You should also see a link to "Users" in the "Auth"
section of the main admin index page. The "Add user" admin page is different
than standard admin pages in that it requires you to choose a username and
password before allowing you to edit the rest of the user's fields.

Also note: if you want your own user account to be able to create users using
the Django admin site, you'll need to give yourself permission to add users
and change users (i.e., the "Add user" and "Change user" permissions). If
your account has permission to add users but not to change them, you won't be
able to add users. Why? Because if you have permission to add users, you have
the power to create superusers, which can then, in turn, change other users. So
Django requires add and change permissions as a slight security measure.

Changing passwords

New in Django 1.2: The manage.py changepassword command was added.

manage.py changepassword *username* offers a method
of changing a User's password from the command line. It prompts you to
change the password of a given user which you must enter twice. If
they both match, the new password will be changed immediately. If you
do not supply a user, the command will attempt to change the password
whose username matches the current user.

You can also change a password programmatically, using
set_password():

>>> from django.contrib.auth.models import User
>>> u = User.objects.get(username__exact='john')
>>> u.set_password('new password')
>>> u.save()

Don't set the password attribute
directly unless you know what you're doing. This is explained in the next
section.

Passwords

The password attribute of a
User object is a string in this format:

hashtype$salt$hash

That's hashtype, salt and hash, separated by the dollar-sign character.

Hashtype is either sha1 (default), md5 or crypt -- the algorithm
used to perform a one-way hash of the password. Salt is a random string used
to salt the raw password to create the hash. Note that the crypt method is
only supported on platforms that have the standard Python crypt module
available.

For example:

sha1$a1976$a36cc8cbf81742a8fb52e221aaeab48ed7f58ab4

The set_password() and
check_password() functions handle the
setting and checking of these values behind the scenes.

Previous Django versions, such as 0.90, used simple MD5 hashes without password
salts. For backwards compatibility, those are still supported; they'll be
converted automatically to the new style the first time
check_password() works correctly for
a given user.

Anonymous users

	
class models.AnonymousUser

	django.contrib.auth.models.AnonymousUser is a class that
implements the django.contrib.auth.models.User interface, with
these differences:

	id is always None.

	is_staff and
is_superuser are always
False.

	is_active is always False.

	groups and
user_permissions are always
empty.

	is_anonymous() returns True
instead of False.

	is_authenticated() returns
False instead of True.

	set_password(),
check_password(),
save(),
delete(),
set_groups() and
set_permissions() raise
NotImplementedError.

In practice, you probably won't need to use
AnonymousUser objects on your own, but
they're used by Web requests, as explained in the next section.

Creating superusers

manage.py syncdb prompts you to create a superuser the
first time you run it after adding 'django.contrib.auth' to your
INSTALLED_APPS. If you need to create a superuser at a later date,
you can use a command line utility:

manage.py createsuperuser --username=joe --email=joe@example.com

You will be prompted for a password. After you enter one, the user will be
created immediately. If you leave off the --username or the
--email options, it will prompt you for those values.

If you're using an older release of Django, the old way of creating a superuser
on the command line still works:

python /path/to/django/contrib/auth/create_superuser.py

...where /path/to is the path to the Django codebase on your
filesystem. The manage.py command is preferred because it figures out the
correct path and environment for you.

Storing additional information about users

If you'd like to store additional information related to your users, Django
provides a method to specify a site-specific related model -- termed a "user
profile" -- for this purpose.

To make use of this feature, define a model with fields for the
additional information you'd like to store, or additional methods
you'd like to have available, and also add a
OneToOneField from your model to the
User model. This will ensure only
one instance of your model can be created for each
User.

To indicate that this model is the user profile model for a given site, fill in
the setting AUTH_PROFILE_MODULE with a string consisting of the
following items, separated by a dot:

	The name of the application (case sensitive) in which the user
profile model is defined (in other words, the
name which was passed to manage.py startapp to create
the application).

	The name of the model (not case sensitive) class.

For example, if the profile model was a class named UserProfile and was
defined inside an application named accounts, the appropriate setting would
be:

AUTH_PROFILE_MODULE = 'accounts.UserProfile'

When a user profile model has been defined and specified in this manner, each
User object will have a method --
get_profile() -- which returns the
instance of the user profile model associated with that
User.

The method get_profile()
does not create the profile, if it does not exist. You need to
register a handler for the signal
django.db.models.signals.post_save on the User model, and, in
the handler, if created=True, create the associated user profile.

For more information, see Chapter 12 of the Django book [http://www.djangobook.com/en/1.0/chapter12/#cn222].

Authentication in Web requests

Until now, this document has dealt with the low-level APIs for manipulating
authentication-related objects. On a higher level, Django can hook this
authentication framework into its system of
request objects.

First, install the
SessionMiddleware and
AuthenticationMiddleware
middlewares by adding them to your MIDDLEWARE_CLASSES setting. See
the session documentation for more information.

Once you have those middlewares installed, you'll be able to access
request.user in views.
request.user will give you a
User object representing the currently
logged-in user. If a user isn't currently logged in,
request.user will be set to an instance
of AnonymousUser (see the previous
section). You can tell them apart with
is_authenticated(), like so:

if request.user.is_authenticated():
 # Do something for authenticated users.
else:
 # Do something for anonymous users.

How to log a user in

Django provides two functions in django.contrib.auth:
authenticate() and
login().

	
authenticate()

	To authenticate a given username and password, use
authenticate(). It takes two keyword
arguments, username and password, and it returns a
User object if the password is valid
for the given username. If the password is invalid,
authenticate() returns None. Example:

from django.contrib.auth import authenticate
user = authenticate(username='john', password='secret')
if user is not None:
 if user.is_active:
 print "You provided a correct username and password!"
 else:
 print "Your account has been disabled!"
else:
 print "Your username and password were incorrect."

	
login()

	To log a user in, in a view, use login(). It
takes an HttpRequest object and a
User object.
login() saves the user's ID in the session,
using Django's session framework, so, as mentioned above, you'll need to
make sure to have the session middleware installed.

This example shows how you might use both
authenticate() and
login():

from django.contrib.auth import authenticate, login

def my_view(request):
 username = request.POST['username']
 password = request.POST['password']
 user = authenticate(username=username, password=password)
 if user is not None:
 if user.is_active:
 login(request, user)
 # Redirect to a success page.
 else:
 # Return a 'disabled account' error message
 else:
 # Return an 'invalid login' error message.

Calling authenticate() first

When you're manually logging a user in, you must call
authenticate() before you call
login().
authenticate()
sets an attribute on the User noting
which authentication backend successfully authenticated that user (see the
backends documentation for details), and this information is needed
later during the login process.

Manually checking a user's password

	
check_password()

	If you'd like to manually authenticate a user by comparing a plain-text
password to the hashed password in the database, use the convenience
function django.contrib.auth.models.check_password(). It takes two
arguments: the plain-text password to check, and the full value of a user's
password field in the database to check against, and returns True
if they match, False otherwise.

How to log a user out

	
logout()

	To log out a user who has been logged in via
django.contrib.auth.login(), use
django.contrib.auth.logout() within your view. It takes an
HttpRequest object and has no return value.
Example:

from django.contrib.auth import logout

def logout_view(request):
 logout(request)
 # Redirect to a success page.

Note that logout() doesn't throw any errors if
the user wasn't logged in.

When you call logout(), the session data for
the current request is completely cleaned out. All existing data is
removed. This is to prevent another person from using the same Web browser
to log in and have access to the previous user's session data. If you want
to put anything into the session that will be available to the user
immediately after logging out, do that after calling
django.contrib.auth.logout().

Limiting access to logged-in users

The raw way

The simple, raw way to limit access to pages is to check
request.user.is_authenticated() and either redirect to a
login page:

from django.http import HttpResponseRedirect

def my_view(request):
 if not request.user.is_authenticated():
 return HttpResponseRedirect('/login/?next=%s' % request.path)
 # ...

...or display an error message:

def my_view(request):
 if not request.user.is_authenticated():
 return render_to_response('myapp/login_error.html')
 # ...

The login_required decorator

	
decorators.login_required([redirect_field_name=REDIRECT_FIELD_NAME])

	As a shortcut, you can use the convenient
login_required() decorator:

from django.contrib.auth.decorators import login_required

@login_required
def my_view(request):
 ...

login_required() does the following:

	If the user isn't logged in, redirect to
settings.LOGIN_URL, passing the current absolute
path in the query string. Example: /accounts/login/?next=/polls/3/.

	If the user is logged in, execute the view normally. The view code is
free to assume the user is logged in.

By default, the path that the user should be redirected to upon
successful authentication is stored in a query string parameter called
"next". If you would prefer to use a different name for this parameter,
login_required() takes an
optional redirect_field_name parameter:

from django.contrib.auth.decorators import login_required

@login_required(redirect_field_name='my_redirect_field')
def my_view(request):
 ...

If you provide a value to redirect_field_name, you will most
likely need to customize your login template as well, since the template
context variable which stores the redirect path will use the value of
redirect_field_name as it's key rather than "next" (the default).

Note that you'll need to map the appropriate Django view to
settings.LOGIN_URL. For example, using the defaults,
add the following line to your URLconf:

(r'^accounts/login/$', 'django.contrib.auth.views.login'),

	
views.login(request[template_nameredirect_field_nameauthentication_form])

	Here's what django.contrib.auth.views.login does:

	If called via GET, it displays a login form that POSTs to the
same URL. More on this in a bit.

	If called via POST, it tries to log the user in. If login is
successful, the view redirects to the URL specified in next. If
next isn't provided, it redirects to
settings.LOGIN_REDIRECT_URL (which
defaults to /accounts/profile/). If login isn't successful, it
redisplays the login form.

It's your responsibility to provide the login form in a template called
registration/login.html by default. This template gets passed four
template context variables:

	form: A Form object representing the login
form. See the forms documentation for
more on Form objects.

	next: The URL to redirect to after successful login. This may
contain a query string, too.

	site: The current Site,
according to the SITE_ID setting. If you don't have the
site framework installed, this will be set to an instance of
RequestSite, which derives the
site name and domain from the current
HttpRequest.

	site_name: An alias for site.name. If you don't have the site
framework installed, this will be set to the value of
request.META['SERVER_NAME'].
For more on sites, see The "sites" framework.

If you'd prefer not to call the template registration/login.html,
you can pass the template_name parameter via the extra arguments to
the view in your URLconf. For example, this URLconf line would use
myapp/login.html instead:

(r'^accounts/login/$', 'django.contrib.auth.views.login', {'template_name': 'myapp/login.html'}),

You can also specify the name of the GET field which contains the URL
to redirect to after login by passing redirect_field_name to the view.
By default, the field is called next.

Here's a sample registration/login.html template you can use as a
starting point. It assumes you have a base.html template that
defines a content block:

{% extends "base.html" %}

{% block content %}

{% if form.errors %}
<p>Your username and password didn't match. Please try again.</p>
{% endif %}

<form method="post" action="{% url django.contrib.auth.views.login %}">
{% csrf_token %}
<table>
<tr>
 <td>{{ form.username.label_tag }}</td>
 <td>{{ form.username }}</td>
</tr>
<tr>
 <td>{{ form.password.label_tag }}</td>
 <td>{{ form.password }}</td>
</tr>
</table>

<input type="submit" value="login" />
<input type="hidden" name="next" value="{{ next }}" />
</form>

{% endblock %}

New in Django 1.2: Please, see the release notes

If you are using alternate authentication (see
Other authentication sources) you can pass a custom authentication form
to the login view via the authentication_form parameter. This form must
accept a request keyword argument in its __init__ method, and
provide a get_user method which returns the authenticated user object
(this method is only ever called after successful form validation).

Other built-in views

In addition to the login() view, the authentication system
includes a few other useful built-in views located in
django.contrib.auth.views:

	
views.logout(request[next_pagetemplate_nameredirect_field_name])

	Logs a user out.

Optional arguments:

	next_page: The URL to redirect to after logout.

	template_name: The full name of a template to display after
logging the user out. This will default to
registration/logged_out.html if no argument is supplied.

	redirect_field_name: The name of a GET field containing the
URL to redirect to after log out. Overrides next_page if the given
GET parameter is passed.

Template context:

	title: The string "Logged out", localized.

	
views.logout_then_login(request[login_url])

	Logs a user out, then redirects to the login page.

Optional arguments:

	login_url: The URL of the login page to redirect to. This will
default to settings.LOGIN_URL if not supplied.

	
views.password_change(request[template_namepost_change_redirectpassword_change_form])

	Allows a user to change their password.

Optional arguments:

	template_name: The full name of a template to use for
displaying the password change form. This will default to
registration/password_change_form.html if not supplied.

	post_change_redirect: The URL to redirect to after a successful
password change.

	
New in Django 1.2: Please, see the release notes

password_change_form: A custom "change password" form which must
accept a user keyword argument. The form is responsible for
actually changing the user's password.

Template context:

	form: The password change form.

	
views.password_change_done(request[template_name])

	The page shown after a user has changed their password.

Optional arguments:

	template_name: The full name of a template to use. This will
default to registration/password_change_done.html if not
supplied.

	
views.password_reset(request[is_admin_sitetemplate_nameemail_template_namepassword_reset_formtoken_generatorpost_reset_redirect])

	Allows a user to reset their password by generating a one-time use link
that can be used to reset the password, and sending that link to the
user's registered e-mail address.

Optional arguments:

	template_name: The full name of a template to use for
displaying the password reset form. This will default to
registration/password_reset_form.html if not supplied.

	email_template_name: The full name of a template to use for
generating the e-mail with the new password. This will default to
registration/password_reset_email.html if not supplied.

	password_reset_form: Form that will be used to set the password.
Defaults to PasswordResetForm.

	token_generator: Instance of the class to check the password. This
will default to default_token_generator, it's an instance of
django.contrib.auth.tokens.PasswordResetTokenGenerator.

	post_reset_redirect: The URL to redirect to after a successful
password change.

Template context:

	form: The form for resetting the user's password.

	
views.password_reset_done(request[template_name])

	The page shown after a user has reset their password.

Optional arguments:

	template_name: The full name of a template to use. This will
default to registration/password_reset_done.html if not
supplied.

	
views.redirect_to_login(next[login_urlredirect_field_name])

	Redirects to the login page, and then back to another URL after a
successful login.

Required arguments:

	next: The URL to redirect to after a successful login.

Optional arguments:

	login_url: The URL of the login page to redirect to. This will
default to settings.LOGIN_URL if not supplied.

	redirect_field_name: The name of a GET field containing the
URL to redirect to after log out. Overrides next if the given
GET parameter is passed.

	
password_reset_confirm(request[uidb36tokentemplate_nametoken_generatorset_password_formpost_reset_redirect])

	Presents a form for entering a new password.

Optional arguments:

	uidb36: The user's id encoded in base 36. This will default to
None.

	token: Token to check that the password is valid. This will default to None.

	template_name: The full name of a template to display the confirm
password view. Default value is registration/password_reset_confirm.html.

	token_generator: Instance of the class to check the password. This
will default to default_token_generator, it's an instance of
django.contrib.auth.tokens.PasswordResetTokenGenerator.

	set_password_form: Form that will be used to set the password.
This will default to SetPasswordForm.

	post_reset_redirect: URL to redirect after the password reset
done. This will default to None.

	
password_reset_complete(request[template_name])

	Presents a view which informs the user that the password has been
successfully changed.

Optional arguments:

	template_name: The full name of a template to display the view.
This will default to registration/password_reset_complete.html.

Built-in forms

If you don't want to use the built-in views, but want the convenience of not
having to write forms for this functionality, the authentication system
provides several built-in forms located in django.contrib.auth.forms:

	
class AdminPasswordChangeForm

	A form used in the admin interface to change a user's password.

	
class AuthenticationForm

	A form for logging a user in.

	
class PasswordChangeForm

	A form for allowing a user to change their password.

	
class PasswordResetForm

	A form for generating and e-mailing a one-time use link to reset a
user's password.

	
class SetPasswordForm

	A form that lets a user change his/her password without entering the old
password.

	
class UserChangeForm

	A form used in the admin interface to change a user's information and
permissions.

	
class UserCreationForm

	A form for creating a new user.

Limiting access to logged-in users that pass a test

To limit access based on certain permissions or some other test, you'd do
essentially the same thing as described in the previous section.

The simple way is to run your test on request.user in the view directly. For example, this view
checks to make sure the user is logged in and has the permission
polls.can_vote:

def my_view(request):
 if not request.user.has_perm('polls.can_vote'):
 return HttpResponse("You can't vote in this poll.")
 # ...

	
decorators.user_passes_test()

	As a shortcut, you can use the convenient user_passes_test decorator:

from django.contrib.auth.decorators import user_passes_test

@user_passes_test(lambda u: u.has_perm('polls.can_vote'))
def my_view(request):
 ...

We're using this particular test as a relatively simple example. However,
if you just want to test whether a permission is available to a user, you
can use the permission_required()
decorator, described later in this document.

user_passes_test() takes a required
argument: a callable that takes a
User object and returns True if
the user is allowed to view the page. Note that
user_passes_test() does not
automatically check that the User is
not anonymous.

user_passes_test() takes an
optional login_url argument, which lets you specify the URL for your
login page (settings.LOGIN_URL by default).

For example:

from django.contrib.auth.decorators import user_passes_test

@user_passes_test(lambda u: u.has_perm('polls.can_vote'), login_url='/login/')
def my_view(request):
 ...

The permission_required decorator

	
decorators.permission_required()

	It's a relatively common task to check whether a user has a particular
permission. For that reason, Django provides a shortcut for that case: the
permission_required() decorator.
Using this decorator, the earlier example can be written as:

from django.contrib.auth.decorators import permission_required

@permission_required('polls.can_vote')
def my_view(request):
 ...

As for the User.has_perm() method, permission names take the form
"<app label>.<permission codename>" (i.e. polls.can_vote for a
permission on a model in the polls application).

Note that permission_required()
also takes an optional login_url parameter. Example:

from django.contrib.auth.decorators import permission_required

@permission_required('polls.can_vote', login_url='/loginpage/')
def my_view(request):
 ...

As in the login_required() decorator, login_url
defaults to settings.LOGIN_URL.

Limiting access to generic views

To limit access to a generic view, write a thin
wrapper around the view, and point your URLconf to your wrapper instead of the
generic view itself. For example:

from django.views.generic.date_based import object_detail

@login_required
def limited_object_detail(*args, **kwargs):
 return object_detail(*args, **kwargs)

Permissions

Django comes with a simple permissions system. It provides a way to assign
permissions to specific users and groups of users.

It's used by the Django admin site, but you're welcome to use it in your own
code.

The Django admin site uses permissions as follows:

	Access to view the "add" form and add an object is limited to users with
the "add" permission for that type of object.

	Access to view the change list, view the "change" form and change an
object is limited to users with the "change" permission for that type of
object.

	Access to delete an object is limited to users with the "delete"
permission for that type of object.

Permissions are set globally per type of object, not per specific object
instance. For example, it's possible to say "Mary may change news stories," but
it's not currently possible to say "Mary may change news stories, but only the
ones she created herself" or "Mary may only change news stories that have a
certain status, publication date or ID." The latter functionality is something
Django developers are currently discussing.

Default permissions

When django.contrib.auth is listed in your INSTALLED_APPS
setting, it will ensure that three default permissions -- add, change and
delete -- are created for each Django model defined in one of your installed
applications.

These permissions will be created when you run manage.py syncdb; the first time you run syncdb after adding
django.contrib.auth to INSTALLED_APPS, the default permissions
will be created for all previously-installed models, as well as for any new
models being installed at that time. Afterward, it will create default
permissions for new models each time you run manage.py syncdb.

Assuming you have an application with an
app_label foo and a model named Bar,
to test for basic permissions you should use:

	add: user.has_perm('foo.add_bar')

	change: user.has_perm('foo.change_bar')

	delete: user.has_perm('foo.delete_bar')

Custom permissions

To create custom permissions for a given model object, use the permissions
model Meta attribute.

This example Task model creates three custom permissions, i.e., actions users
can or cannot do with Task instances, specific to your appication:

class Task(models.Model):
 ...
 class Meta:
 permissions = (
 ("can_view", "Can see available tasks"),
 ("can_change_status", "Can change the status of tasks"),
 ("can_close", "Can remove a task by setting its status as closed"),
)

The only thing this does is create those extra permissions when you run
manage.py syncdb. Your code is in charge of checking the
value of these permissions when an user is trying to access the functionality
provided by the application (viewing tasks, changing the status of tasks,
closing tasks.)

API reference

	
class models.Permission

	Just like users, permissions are implemented in a Django model that lives
in django/contrib/auth/models.py [http://code.djangoproject.com/browser/django/trunk/django/contrib/auth/models.py].

Fields

Permission objects have the following
fields:

	
models.Permission.name

	Required. 50 characters or fewer. Example: 'Can vote'.

	
models.Permission.content_type

	Required. A reference to the django_content_type database table, which
contains a record for each installed Django model.

	
models.Permission.codename

	Required. 100 characters or fewer. Example: 'can_vote'.

Methods

Permission objects have the standard
data-access methods like any other Django model.

Authentication data in templates

The currently logged-in user and his/her permissions are made available in the
template context when you use
RequestContext.

Technicality

Technically, these variables are only made available in the template context
if you use RequestContext and your
TEMPLATE_CONTEXT_PROCESSORS setting contains
"django.contrib.auth.context_processors.auth", which is default. For
more, see the RequestContext docs.

Users

When rendering a template RequestContext, the
currently logged-in user, either a User
instance or an AnonymousUser instance, is
stored in the template variable {{ user }}:

{% if user.is_authenticated %}
 <p>Welcome, {{ user.username }}. Thanks for logging in.</p>
{% else %}
 <p>Welcome, new user. Please log in.</p>
{% endif %}

This template context variable is not available if a RequestContext is not
being used.

Permissions

The currently logged-in user's permissions are stored in the template variable
{{ perms }}. This is an instance of
django.core.context_processors.PermWrapper, which is a
template-friendly proxy of permissions.

In the {{ perms }} object, single-attribute lookup is a proxy to
User.has_module_perms.
This example would display True if the logged-in user had any permissions
in the foo app:

{{ perms.foo }}

Two-level-attribute lookup is a proxy to
User.has_perm. This example
would display True if the logged-in user had the permission
foo.can_vote:

{{ perms.foo.can_vote }}

Thus, you can check permissions in template {% if %} statements:

{% if perms.foo %}
 <p>You have permission to do something in the foo app.</p>
 {% if perms.foo.can_vote %}
 <p>You can vote!</p>
 {% endif %}
 {% if perms.foo.can_drive %}
 <p>You can drive!</p>
 {% endif %}
{% else %}
 <p>You don't have permission to do anything in the foo app.</p>
{% endif %}

Groups

Groups are a generic way of categorizing users so you can apply permissions, or
some other label, to those users. A user can belong to any number of groups.

A user in a group automatically has the permissions granted to that group. For
example, if the group Site editors has the permission
can_edit_home_page, any user in that group will have that permission.

Beyond permissions, groups are a convenient way to categorize users to give
them some label, or extended functionality. For example, you could create a
group 'Special users', and you could write code that could, say, give them
access to a members-only portion of your site, or send them members-only e-mail
messages.

Messages

Deprecated in Django 1.2: This functionality will be removed in Django 1.4. You should use the
messages framework for all new projects and
begin to update your existing code immediately.

The message system is a lightweight way to queue messages for given users.

A message is associated with a User.
There's no concept of expiration or timestamps.

Messages are used by the Django admin after successful actions. For example,
"The poll Foo was created successfully." is a message.

The API is simple:

	
models.User.message_set.create(message)

	To create a new message, use
user_obj.message_set.create(message='message_text').

To retrieve/delete messages, use
user_obj.get_and_delete_messages(),
which returns a list of Message objects in the user's queue (if any)
and deletes the messages from the queue.

In this example view, the system saves a message for the user after creating
a playlist:

def create_playlist(request, songs):
 # Create the playlist with the given songs.
 # ...
 request.user.message_set.create(message="Your playlist was added successfully.")
 return render_to_response("playlists/create.html",
 context_instance=RequestContext(request))

When you use RequestContext, the currently
logged-in user and his/her messages are made available in the
template context as the template variable
{{ messages }}. Here's an example of template code that displays messages:

{% if messages %}

 {% for message in messages %}
 {{ message }}
 {% endfor %}

{% endif %}

Changed in Django 1.2: The messages template variable uses a backwards compatible method in the
messages framework to retrieve messages from
both the user Message model and from the new framework. Unlike in
previous revisions, the messages will not be erased unless they are actually
displayed.

Finally, note that this messages framework only works with users in the user
database. To send messages to anonymous users, use the
messages framework.

Other authentication sources

The authentication that comes with Django is good enough for most common cases,
but you may have the need to hook into another authentication source -- that
is, another source of usernames and passwords or authentication methods.

For example, your company may already have an LDAP setup that stores a username
and password for every employee. It'd be a hassle for both the network
administrator and the users themselves if users had separate accounts in LDAP
and the Django-based applications.

So, to handle situations like this, the Django authentication system lets you
plug in other authentication sources. You can override Django's default
database-based scheme, or you can use the default system in tandem with other
systems.

See the authentication backend reference
for information on the authentication backends included with Django.

Specifying authentication backends

Behind the scenes, Django maintains a list of "authentication backends" that it
checks for authentication. When somebody calls
django.contrib.auth.authenticate() -- as described in How to log
a user in above -- Django tries authenticating across
all of its authentication backends. If the first authentication method fails,
Django tries the second one, and so on, until all backends have been attempted.

The list of authentication backends to use is specified in the
AUTHENTICATION_BACKENDS setting. This should be a tuple of Python
path names that point to Python classes that know how to authenticate. These
classes can be anywhere on your Python path.

By default, AUTHENTICATION_BACKENDS is set to:

('django.contrib.auth.backends.ModelBackend',)

That's the basic authentication scheme that checks the Django users database.

The order of AUTHENTICATION_BACKENDS matters, so if the same
username and password is valid in multiple backends, Django will stop
processing at the first positive match.

Note

Once a user has authenticated, Django stores which backend was used to
authenticate the user in the user's session, and re-uses the same backend
for subsequent authentication attempts for that user. This effectively means
that authentication sources are cached, so if you change
AUTHENTICATION_BACKENDS, you'll need to clear out session data if
you need to force users to re-authenticate using different methods. A simple
way to do that is simply to execute Session.objects.all().delete().

Writing an authentication backend

An authentication backend is a class that implements two methods:
get_user(user_id) and authenticate(**credentials).

The get_user method takes a user_id -- which could be a username,
database ID or whatever -- and returns a User object.

The authenticate method takes credentials as keyword arguments. Most of
the time, it'll just look like this:

class MyBackend:
 def authenticate(self, username=None, password=None):
 # Check the username/password and return a User.

But it could also authenticate a token, like so:

class MyBackend:
 def authenticate(self, token=None):
 # Check the token and return a User.

Either way, authenticate should check the credentials it gets, and it
should return a User object that matches those credentials, if the
credentials are valid. If they're not valid, it should return None.

The Django admin system is tightly coupled to the Django User object
described at the beginning of this document. For now, the best way to deal with
this is to create a Django User object for each user that exists for your
backend (e.g., in your LDAP directory, your external SQL database, etc.) You
can either write a script to do this in advance, or your authenticate
method can do it the first time a user logs in.

Here's an example backend that authenticates against a username and password
variable defined in your settings.py file and creates a Django User
object the first time a user authenticates:

from django.conf import settings
from django.contrib.auth.models import User, check_password

class SettingsBackend:
 """
 Authenticate against the settings ADMIN_LOGIN and ADMIN_PASSWORD.

 Use the login name, and a hash of the password. For example:

 ADMIN_LOGIN = 'admin'
 ADMIN_PASSWORD = 'sha1$4e987$afbcf42e21bd417fb71db8c66b321e9fc33051de'
 """
 def authenticate(self, username=None, password=None):
 login_valid = (settings.ADMIN_LOGIN == username)
 pwd_valid = check_password(password, settings.ADMIN_PASSWORD)
 if login_valid and pwd_valid:
 try:
 user = User.objects.get(username=username)
 except User.DoesNotExist:
 # Create a new user. Note that we can set password
 # to anything, because it won't be checked; the password
 # from settings.py will.
 user = User(username=username, password='get from settings.py')
 user.is_staff = True
 user.is_superuser = True
 user.save()
 return user
 return None

 def get_user(self, user_id):
 try:
 return User.objects.get(pk=user_id)
 except User.DoesNotExist:
 return None

Handling authorization in custom backends

Custom auth backends can provide their own permissions.

The user model will delegate permission lookup functions
(get_group_permissions(),
get_all_permissions(),
has_perm(), and
has_module_perms()) to any
authentication backend that implements these functions.

The permissions given to the user will be the superset of all permissions
returned by all backends. That is, Django grants a permission to a user that
any one backend grants.

The simple backend above could implement permissions for the magic admin
fairly simply:

class SettingsBackend:

 # ...

 def has_perm(self, user_obj, perm):
 if user_obj.username == settings.ADMIN_LOGIN:
 return True
 else:
 return False

This gives full permissions to the user granted access in the above example.
Notice that the backend auth functions all take the user object as an argument,
and they also accept the same arguments given to the associated
django.contrib.auth.models.User functions.

A full authorization implementation can be found in
django/contrib/auth/backends.py [http://code.djangoproject.com/browser/django/trunk/django/contrib/auth/backends.py], which is the default backend and queries
the auth_permission table most of the time.

Authorization for anonymous users

Changed in Django 1.2: Please, see the release notes

An anonymous user is one that is not authenticated i.e. they have provided no
valid authentication details. However, that does not necessarily mean they are
not authorized to do anything. At the most basic level, most Web sites
authorize anonymous users to browse most of the site, and many allow anonymous
posting of comments etc.

Django's permission framework does not have a place to store permissions for
anonymous users. However, it has a foundation that allows custom authentication
backends to specify authorization for anonymous users. This is especially useful
for the authors of re-usable apps, who can delegate all questions of authorization
to the auth backend, rather than needing settings, for example, to control
anonymous access.

To enable this in your own backend, you must set the class attribute
supports_anonymous_user to True. (This precaution is to maintain
compatibility with backends that assume that all user objects are actual
instances of the django.contrib.auth.models.User class). With this
in place, django.contrib.auth.models.AnonymousUser will delegate all
the relevant permission methods to the authentication backends.

A nonexistent supports_anonymous_user attribute will raise a hidden
PendingDeprecationWarning if used in Django 1.2. In Django 1.3, this
warning will be upgraded to a DeprecationWarning, which will be displayed
loudly. Additionally supports_anonymous_user will be set to False.
Django 1.4 will assume that every backend supports anonymous users being
passed to the authorization methods.

Handling object permissions

Django's permission framework has a foundation for object permissions, though
there is no implementation for it in the core. That means that checking for
object permissions will always return False or an empty list (depending on
the check performed).

To enable object permissions in your own
authentication backend you'll just have
to allow passing an obj parameter to the permission methods and set the
supports_object_permissions class attribute to True.

A nonexistent supports_object_permissions will raise a hidden
PendingDeprecationWarning if used in Django 1.2. In Django 1.3, this
warning will be upgraded to a DeprecationWarning, which will be displayed
loudly. Additionally supports_object_permissions will be set to False.
Django 1.4 will assume that every backend supports object permissions and
won't check for the existence of supports_object_permissions, which
means not supporting obj as a parameter will raise a TypeError.

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Django’s cache framework

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

Django’s cache framework

A fundamental trade-off in dynamic Web sites is, well, they’re dynamic. Each
time a user requests a page, the Web server makes all sorts of calculations –
from database queries to template rendering to business logic – to create the
page that your site’s visitor sees. This is a lot more expensive, from a
processing-overhead perspective, than your standard
read-a-file-off-the-filesystem server arrangement.

For most Web applications, this overhead isn’t a big deal. Most Web
applications aren’t washingtonpost.com or slashdot.org; they’re simply small-
to medium-sized sites with so-so traffic. But for medium- to high-traffic
sites, it’s essential to cut as much overhead as possible.

That’s where caching comes in.

To cache something is to save the result of an expensive calculation so that
you don’t have to perform the calculation next time. Here’s some pseudocode
explaining how this would work for a dynamically generated Web page:

given a URL, try finding that page in the cache
if the page is in the cache:
 return the cached page
else:
 generate the page
 save the generated page in the cache (for next time)
 return the generated page

Django comes with a robust cache system that lets you save dynamic pages so
they don't have to be calculated for each request. For convenience, Django
offers different levels of cache granularity: You can cache the output of
specific views, you can cache only the pieces that are difficult to produce, or
you can cache your entire site.

Django also works well with "upstream" caches, such as Squid [http://www.squid-cache.org] and browser-based caches. These are the types of
caches that you don't directly control but to which you can provide hints (via
HTTP headers) about which parts of your site should be cached, and how.

Setting up the cache

The cache system requires a small amount of setup. Namely, you have to tell it
where your cached data should live -- whether in a database, on the filesystem
or directly in memory. This is an important decision that affects your cache's
performance; yes, some cache types are faster than others.

Your cache preference goes in the CACHE_BACKEND setting in your settings
file. Here's an explanation of all available values for CACHE_BACKEND.

Memcached

By far the fastest, most efficient type of cache available to Django, Memcached
is an entirely memory-based cache framework originally developed to handle high
loads at LiveJournal.com and subsequently open-sourced by Danga Interactive.
It's used by sites such as Facebook and Wikipedia to reduce database access and
dramatically increase site performance.

Memcached is available for free at http://memcached.org/. It runs as a
daemon and is allotted a specified amount of RAM. All it does is provide a
fast interface for adding, retrieving and deleting arbitrary data in the cache.
All data is stored directly in memory, so there's no overhead of database or
filesystem usage.

After installing Memcached itself, you'll need to install
python-memcached, which provides Python bindings to Memcached.
This is available at ftp://ftp.tummy.com/pub/python-memcached/

Changed in Django 1.2: In Django 1.0 and 1.1, you could also use cmemcache as a binding.
However, support for this library was deprecated in 1.2 due to
a lack of maintenance on the cmemcache library itself. Support for
cmemcache will be removed completely in Django 1.4.

To use Memcached with Django, set CACHE_BACKEND to
memcached://ip:port/, where ip is the IP address of the Memcached
daemon and port is the port on which Memcached is running.

In this example, Memcached is running on localhost (127.0.0.1) port 11211:

CACHE_BACKEND = 'memcached://127.0.0.1:11211/'

One excellent feature of Memcached is its ability to share cache over multiple
servers. This means you can run Memcached daemons on multiple machines, and the
program will treat the group of machines as a single cache, without the need
to duplicate cache values on each machine. To take advantage of this feature,
include all server addresses in CACHE_BACKEND, separated by semicolons.

In this example, the cache is shared over Memcached instances running on IP
address 172.19.26.240 and 172.19.26.242, both on port 11211:

CACHE_BACKEND = 'memcached://172.19.26.240:11211;172.19.26.242:11211/'

In the following example, the cache is shared over Memcached instances running
on the IP addresses 172.19.26.240 (port 11211), 172.19.26.242 (port 11212), and
172.19.26.244 (port 11213):

CACHE_BACKEND = 'memcached://172.19.26.240:11211;172.19.26.242:11212;172.19.26.244:11213/'

A final point about Memcached is that memory-based caching has one
disadvantage: Because the cached data is stored in memory, the data will be
lost if your server crashes. Clearly, memory isn't intended for permanent data
storage, so don't rely on memory-based caching as your only data storage.
Without a doubt, none of the Django caching backends should be used for
permanent storage -- they're all intended to be solutions for caching, not
storage -- but we point this out here because memory-based caching is
particularly temporary.

Database caching

To use a database table as your cache backend, first create a cache table in
your database by running this command:

python manage.py createcachetable [cache_table_name]

...where [cache_table_name] is the name of the database table to create.
(This name can be whatever you want, as long as it's a valid table name that's
not already being used in your database.) This command creates a single table
in your database that is in the proper format that Django's database-cache
system expects.

Once you've created that database table, set your CACHE_BACKEND setting to
"db://tablename", where tablename is the name of the database table.
In this example, the cache table's name is my_cache_table:

CACHE_BACKEND = 'db://my_cache_table'

The database caching backend uses the same database as specified in your
settings file. You can't use a different database backend for your cache table.

Database caching works best if you've got a fast, well-indexed database server.

Database caching and multiple databases

If you use database caching with multiple databases, you'll also need
to set up routing instructions for your database cache table. For the
purposes of routing, the database cache table appears as a model named
CacheEntry, in an application named django_cache. This model
won't appear in the models cache, but the model details can be used
for routing purposes.

For example, the following router would direct all cache read
operations to cache_slave, and all write operations to
cache_master. The cache table will only be synchronized onto
cache_master:

class CacheRouter(object):
 """A router to control all database cache operations"""

 def db_for_read(self, model, **hints):
 "All cache read operations go to the slave"
 if model._meta.app_label in ('django_cache',):
 return 'cache_slave'
 return None

 def db_for_write(self, model, **hints):
 "All cache write operations go to master"
 if model._meta.app_label in ('django_cache',):
 return 'cache_master'
 return None

 def allow_syncdb(self, db, model):
 "Only synchronize the cache model on master"
 if model._meta.app_label in ('django_cache',):
 return db == 'cache_master'
 return None

If you don't specify routing directions for the database cache model,
the cache backend will use the default database.

Of course, if you don't use the database cache backend, you don't need
to worry about providing routing instructions for the database cache
model.

Filesystem caching

To store cached items on a filesystem, use the "file://" cache type for
CACHE_BACKEND. For example, to store cached data in /var/tmp/django_cache,
use this setting:

CACHE_BACKEND = 'file:///var/tmp/django_cache'

Note that there are three forward slashes toward the beginning of that example.
The first two are for file://, and the third is the first character of the
directory path, /var/tmp/django_cache. If you're on Windows, put the
drive letter after the file://, like this:

file://c:/foo/bar

The directory path should be absolute -- that is, it should start at the root
of your filesystem. It doesn't matter whether you put a slash at the end of the
setting.

Make sure the directory pointed-to by this setting exists and is readable and
writable by the system user under which your Web server runs. Continuing the
above example, if your server runs as the user apache, make sure the
directory /var/tmp/django_cache exists and is readable and writable by the
user apache.

Each cache value will be stored as a separate file whose contents are the
cache data saved in a serialized ("pickled") format, using Python's pickle
module. Each file's name is the cache key, escaped for safe filesystem use.

Local-memory caching

If you want the speed advantages of in-memory caching but don't have the
capability of running Memcached, consider the local-memory cache backend. This
cache is multi-process and thread-safe. To use it, set CACHE_BACKEND to
"locmem://". For example:

CACHE_BACKEND = 'locmem://'

Note that each process will have its own private cache instance, which means no
cross-process caching is possible. This obviously also means the local memory
cache isn't particularly memory-efficient, so it's probably not a good choice
for production environments. It's nice for development.

Dummy caching (for development)

Finally, Django comes with a "dummy" cache that doesn't actually cache -- it
just implements the cache interface without doing anything.

This is useful if you have a production site that uses heavy-duty caching in
various places but a development/test environment where you don't want to cache
and don't want to have to change your code to special-case the latter. To
activate dummy caching, set CACHE_BACKEND like so:

CACHE_BACKEND = 'dummy://'

Using a custom cache backend

While Django includes support for a number of cache backends out-of-the-box,
sometimes you might want to use a customized cache backend. To use an external
cache backend with Django, use a Python import path as the scheme portion (the
part before the initial colon) of the CACHE_BACKEND URI, like so:

CACHE_BACKEND = 'path.to.backend://'

If you're building your own backend, you can use the standard cache backends
as reference implementations. You'll find the code in the
django/core/cache/backends/ directory of the Django source.

Note: Without a really compelling reason, such as a host that doesn't support
them, you should stick to the cache backends included with Django. They've
been well-tested and are easy to use.

CACHE_BACKEND arguments

Each cache backend may take arguments. They're given in query-string style on
the CACHE_BACKEND setting. Valid arguments are as follows:

	timeout: The default timeout, in seconds, to use for the cache.
This argument defaults to 300 seconds (5 minutes).

	max_entries: For the locmem, filesystem and database
backends, the maximum number of entries allowed in the cache before old
values are deleted. This argument defaults to 300.

	cull_frequency: The fraction of entries that are culled when
max_entries is reached. The actual ratio is 1/cull_frequency, so
set cull_frequency=2 to cull half of the entries when max_entries
is reached.

A value of 0 for cull_frequency means that the entire cache will
be dumped when max_entries is reached. This makes culling much
faster at the expense of more cache misses.

In this example, timeout is set to 60:

CACHE_BACKEND = "memcached://127.0.0.1:11211/?timeout=60"

In this example, timeout is 30 and max_entries is 400:

CACHE_BACKEND = "locmem://?timeout=30&max_entries=400"

Invalid arguments are silently ignored, as are invalid values of known
arguments.

The per-site cache

Once the cache is set up, the simplest way to use caching is to cache your
entire site. You'll need to add
'django.middleware.cache.UpdateCacheMiddleware' and
'django.middleware.cache.FetchFromCacheMiddleware' to your
MIDDLEWARE_CLASSES setting, as in this example:

MIDDLEWARE_CLASSES = (
 'django.middleware.cache.UpdateCacheMiddleware',
 'django.middleware.common.CommonMiddleware',
 'django.middleware.cache.FetchFromCacheMiddleware',
)

Note

No, that's not a typo: the "update" middleware must be first in the list,
and the "fetch" middleware must be last. The details are a bit obscure, but
see Order of MIDDLEWARE_CLASSES below if you'd like the full story.

Then, add the following required settings to your Django settings file:

	CACHE_MIDDLEWARE_SECONDS -- The number of seconds each page should be
cached.

	CACHE_MIDDLEWARE_KEY_PREFIX -- If the cache is shared across multiple
sites using the same Django installation, set this to the name of the site,
or some other string that is unique to this Django instance, to prevent key
collisions. Use an empty string if you don't care.

The cache middleware caches every page that doesn't have GET or POST
parameters. Optionally, if the CACHE_MIDDLEWARE_ANONYMOUS_ONLY setting is
True, only anonymous requests (i.e., not those made by a logged-in user)
will be cached. This is a simple and effective way of disabling caching for any
user-specific pages (include Django's admin interface). Note that if you use
CACHE_MIDDLEWARE_ANONYMOUS_ONLY, you should make sure you've activated
AuthenticationMiddleware.

Additionally, the cache middleware automatically sets a few headers in each
HttpResponse:

	Sets the Last-Modified header to the current date/time when a fresh
(uncached) version of the page is requested.

	Sets the Expires header to the current date/time plus the defined
CACHE_MIDDLEWARE_SECONDS.

	Sets the Cache-Control header to give a max age for the page --
again, from the CACHE_MIDDLEWARE_SECONDS setting.

See Middleware for more on middleware.

If a view sets its own cache expiry time (i.e. it has a max-age section in
its Cache-Control header) then the page will be cached until the expiry
time, rather than CACHE_MIDDLEWARE_SECONDS. Using the decorators in
django.views.decorators.cache you can easily set a view's expiry time
(using the cache_control decorator) or disable caching for a view (using
the never_cache decorator). See the using other headers section for
more on these decorators.

New in Django 1.2: Please, see the release notes

If USE_I18N is set to True then the generated cache key will
include the name of the active language.
This allows you to easily cache multilingual sites without having to create
the cache key yourself.

See Deployment of translations for more on how Django discovers the active
language.

The per-view cache

A more granular way to use the caching framework is by caching the output of
individual views. django.views.decorators.cache defines a cache_page
decorator that will automatically cache the view's response for you. It's easy
to use:

from django.views.decorators.cache import cache_page

@cache_page(60 * 15)
def my_view(request):
 ...

cache_page takes a single argument: the cache timeout, in seconds. In the
above example, the result of the my_view() view will be cached for 15
minutes. (Note that we've written it as 60 * 15 for the purpose of
readability. 60 * 15 will be evaluated to 900 -- that is, 15 minutes
multiplied by 60 seconds per minute.)

The per-view cache, like the per-site cache, is keyed off of the URL. If
multiple URLs point at the same view, each URL will be cached separately.
Continuing the my_view example, if your URLconf looks like this:

urlpatterns = ('',
 (r'^foo/(\d{1,2})/$', my_view),
)

then requests to /foo/1/ and /foo/23/ will be cached separately, as
you may expect. But once a particular URL (e.g., /foo/23/) has been
requested, subsequent requests to that URL will use the cache.

cache_page can also take an optional keyword argument, key_prefix, which
works in the same way as the CACHE_MIDDLEWARE_KEY_PREFIX setting for the
middleware. It can be used like this:

@cache_page(60 * 15, key_prefix="site1")
def my_view(request):
 ...

Specifying per-view cache in the URLconf

The examples in the previous section have hard-coded the fact that the view is
cached, because cache_page alters the my_view function in place. This
approach couples your view to the cache system, which is not ideal for several
reasons. For instance, you might want to reuse the view functions on another,
cache-less site, or you might want to distribute the views to people who might
want to use them without being cached. The solution to these problems is to
specify the per-view cache in the URLconf rather than next to the view functions
themselves.

Doing so is easy: simply wrap the view function with cache_page when you
refer to it in the URLconf. Here's the old URLconf from earlier:

urlpatterns = ('',
 (r'^foo/(\d{1,2})/$', my_view),
)

Here's the same thing, with my_view wrapped in cache_page:

from django.views.decorators.cache import cache_page

urlpatterns = ('',
 (r'^foo/(\d{1,2})/$', cache_page(my_view, 60 * 15)),
)

If you take this approach, don't forget to import cache_page within your
URLconf.

Template fragment caching

If you're after even more control, you can also cache template fragments using
the cache template tag. To give your template access to this tag, put
{% load cache %} near the top of your template.

The {% cache %} template tag caches the contents of the block for a given
amount of time. It takes at least two arguments: the cache timeout, in seconds,
and the name to give the cache fragment. For example:

{% load cache %}
{% cache 500 sidebar %}
 .. sidebar ..
{% endcache %}

Sometimes you might want to cache multiple copies of a fragment depending on
some dynamic data that appears inside the fragment. For example, you might want a
separate cached copy of the sidebar used in the previous example for every user
of your site. Do this by passing additional arguments to the {% cache %}
template tag to uniquely identify the cache fragment:

{% load cache %}
{% cache 500 sidebar request.user.username %}
 .. sidebar for logged in user ..
{% endcache %}

It's perfectly fine to specify more than one argument to identify the fragment.
Simply pass as many arguments to {% cache %} as you need.

If USE_I18N is set to True the per-site middleware cache will
respect the active language. For the cache template
tag you could use one of the
translation-specific variables available in
templates to archieve the same result:

{% load i18n %}
{% load cache %}

{% get_current_language as LANGUAGE_CODE %}

{% cache 600 welcome LANGUAGE_CODE %}
 {% trans "Welcome to example.com" %}
{% endcache %}

The cache timeout can be a template variable, as long as the template variable
resolves to an integer value. For example, if the template variable
my_timeout is set to the value 600, then the following two examples are
equivalent:

{% cache 600 sidebar %} ... {% endcache %}
{% cache my_timeout sidebar %} ... {% endcache %}

This feature is useful in avoiding repetition in templates. You can set the
timeout in a variable, in one place, and just reuse that value.

The low-level cache API

Sometimes, caching an entire rendered page doesn't gain you very much and is,
in fact, inconvenient overkill.

Perhaps, for instance, your site includes a view whose results depend on
several expensive queries, the results of which change at different intervals.
In this case, it would not be ideal to use the full-page caching that the
per-site or per-view cache strategies offer, because you wouldn't want to
cache the entire result (since some of the data changes often), but you'd still
want to cache the results that rarely change.

For cases like this, Django exposes a simple, low-level cache API. You can use
this API to store objects in the cache with any level of granularity you like.
You can cache any Python object that can be pickled safely: strings,
dictionaries, lists of model objects, and so forth. (Most common Python objects
can be pickled; refer to the Python documentation for more information about
pickling.)

The cache module, django.core.cache, has a cache object that's
automatically created from the CACHE_BACKEND setting:

>>> from django.core.cache import cache

The basic interface is set(key, value, timeout) and get(key):

>>> cache.set('my_key', 'hello, world!', 30)
>>> cache.get('my_key')
'hello, world!'

The timeout argument is optional and defaults to the timeout
argument in the CACHE_BACKEND setting (explained above). It's the number of
seconds the value should be stored in the cache.

If the object doesn't exist in the cache, cache.get() returns None:

Wait 30 seconds for 'my_key' to expire...

>>> cache.get('my_key')
None

We advise against storing the literal value None in the cache, because you
won't be able to distinguish between your stored None value and a cache
miss signified by a return value of None.

cache.get() can take a default argument. This specifies which value to
return if the object doesn't exist in the cache:

>>> cache.get('my_key', 'has expired')
'has expired'

To add a key only if it doesn't already exist, use the add() method.
It takes the same parameters as set(), but it will not attempt to
update the cache if the key specified is already present:

>>> cache.set('add_key', 'Initial value')
>>> cache.add('add_key', 'New value')
>>> cache.get('add_key')
'Initial value'

If you need to know whether add() stored a value in the cache, you can
check the return value. It will return True if the value was stored,
False otherwise.

There's also a get_many() interface that only hits the cache once.
get_many() returns a dictionary with all the keys you asked for that
actually exist in the cache (and haven't expired):

>>> cache.set('a', 1)
>>> cache.set('b', 2)
>>> cache.set('c', 3)
>>> cache.get_many(['a', 'b', 'c'])
{'a': 1, 'b': 2, 'c': 3}

New in Django 1.2: Please, see the release notes

To set multiple values more efficiently, use set_many() to pass a dictionary
of key-value pairs:

>>> cache.set_many({'a': 1, 'b': 2, 'c': 3})
>>> cache.get_many(['a', 'b', 'c'])
{'a': 1, 'b': 2, 'c': 3}

Like cache.set(), set_many() takes an optional timeout parameter.

You can delete keys explicitly with delete(). This is an easy way of
clearing the cache for a particular object:

>>> cache.delete('a')

New in Django 1.2: Please, see the release notes

If you want to clear a bunch of keys at once, delete_many() can take a list
of keys to be cleared:

>>> cache.delete_many(['a', 'b', 'c'])

New in Django 1.2: Please, see the release notes

Finally, if you want to delete all the keys in the cache, use
cache.clear(). Be careful with this; clear() will remove everything
from the cache, not just the keys set by your application.

>>> cache.clear()

New in Django 1.1: Please, see the release notes

You can also increment or decrement a key that already exists using the
incr() or decr() methods, respectively. By default, the existing cache
value will incremented or decremented by 1. Other increment/decrement values
can be specified by providing an argument to the increment/decrement call. A
ValueError will be raised if you attempt to increment or decrement a
nonexistent cache key.:

>>> cache.set('num', 1)
>>> cache.incr('num')
2
>>> cache.incr('num', 10)
12
>>> cache.decr('num')
11
>>> cache.decr('num', 5)
6

Note

incr()/decr() methods are not guaranteed to be atomic. On those
backends that support atomic increment/decrement (most notably, the
memcached backend), increment and decrement operations will be atomic.
However, if the backend doesn't natively provide an increment/decrement
operation, it will be implemented using a two-step retrieve/update.

Cache key warnings

New in Django Development version.

Memcached, the most commonly-used production cache backend, does not allow
cache keys longer than 250 characters or containing whitespace or control
characters, and using such keys will cause an exception. To encourage
cache-portable code and minimize unpleasant surprises, the other built-in cache
backends issue a warning (django.core.cache.backends.base.CacheKeyWarning)
if a key is used that would cause an error on memcached.

If you are using a production backend that can accept a wider range of keys (a
custom backend, or one of the non-memcached built-in backends), and want to use
this wider range without warnings, you can silence CacheKeyWarning with
this code in the management module of one of your
INSTALLED_APPS:

import warnings

from django.core.cache import CacheKeyWarning

warnings.simplefilter("ignore", CacheKeyWarning)

If you want to instead provide custom key validation logic for one of the
built-in backends, you can subclass it, override just the validate_key
method, and follow the instructions for using a custom cache backend. For
instance, to do this for the locmem backend, put this code in a module:

from django.core.cache.backends.locmem import CacheClass as LocMemCacheClass

class CacheClass(LocMemCacheClass):
 def validate_key(self, key):
 """Custom validation, raising exceptions or warnings as needed."""
 # ...

...and use the dotted Python path to this module as the scheme portion of your
CACHE_BACKEND.

Upstream caches

So far, this document has focused on caching your own data. But another type
of caching is relevant to Web development, too: caching performed by "upstream"
caches. These are systems that cache pages for users even before the request
reaches your Web site.

Here are a few examples of upstream caches:

	Your ISP may cache certain pages, so if you requested a page from
http://example.com/, your ISP would send you the page without having to
access example.com directly. The maintainers of example.com have no
knowledge of this caching; the ISP sits between example.com and your Web
browser, handling all of the caching transparently.

	Your Django Web site may sit behind a proxy cache, such as Squid Web
Proxy Cache (http://www.squid-cache.org/), that caches pages for
performance. In this case, each request first would be handled by the
proxy, and it would be passed to your application only if needed.

	Your Web browser caches pages, too. If a Web page sends out the
appropriate headers, your browser will use the local cached copy for
subsequent requests to that page, without even contacting the Web page
again to see whether it has changed.

Upstream caching is a nice efficiency boost, but there's a danger to it:
Many Web pages' contents differ based on authentication and a host of other
variables, and cache systems that blindly save pages based purely on URLs could
expose incorrect or sensitive data to subsequent visitors to those pages.

For example, say you operate a Web e-mail system, and the contents of the
"inbox" page obviously depend on which user is logged in. If an ISP blindly
cached your site, then the first user who logged in through that ISP would have
his user-specific inbox page cached for subsequent visitors to the site. That's
not cool.

Fortunately, HTTP provides a solution to this problem. A number of HTTP headers
exist to instruct upstream caches to differ their cache contents depending on
designated variables, and to tell caching mechanisms not to cache particular
pages. We'll look at some of these headers in the sections that follow.

Using Vary headers

The Vary header defines which request headers a cache
mechanism should take into account when building its cache key. For example, if
the contents of a Web page depend on a user's language preference, the page is
said to "vary on language."

By default, Django's cache system creates its cache keys using the requested
path (e.g., "/stories/2005/jun/23/bank_robbed/"). This means every request
to that URL will use the same cached version, regardless of user-agent
differences such as cookies or language preferences. However, if this page
produces different content based on some difference in request headers -- such
as a cookie, or a language, or a user-agent -- you'll need to use the Vary
header to tell caching mechanisms that the page output depends on those things.

To do this in Django, use the convenient vary_on_headers view decorator,
like so:

from django.views.decorators.vary import vary_on_headers

@vary_on_headers('User-Agent')
def my_view(request):
 # ...

In this case, a caching mechanism (such as Django's own cache middleware) will
cache a separate version of the page for each unique user-agent.

The advantage to using the vary_on_headers decorator rather than manually
setting the Vary header (using something like
response['Vary'] = 'user-agent') is that the decorator adds to the
Vary header (which may already exist), rather than setting it from scratch
and potentially overriding anything that was already in there.

You can pass multiple headers to vary_on_headers():

@vary_on_headers('User-Agent', 'Cookie')
def my_view(request):
 # ...

This tells upstream caches to vary on both, which means each combination of
user-agent and cookie will get its own cache value. For example, a request with
the user-agent Mozilla and the cookie value foo=bar will be considered
different from a request with the user-agent Mozilla and the cookie value
foo=ham.

Because varying on cookie is so common, there's a vary_on_cookie
decorator. These two views are equivalent:

@vary_on_cookie
def my_view(request):
 # ...

@vary_on_headers('Cookie')
def my_view(request):
 # ...

The headers you pass to vary_on_headers are not case sensitive;
"User-Agent" is the same thing as "user-agent".

You can also use a helper function, django.utils.cache.patch_vary_headers,
directly. This function sets, or adds to, the Vary header. For example:

from django.utils.cache import patch_vary_headers

def my_view(request):
 # ...
 response = render_to_response('template_name', context)
 patch_vary_headers(response, ['Cookie'])
 return response

patch_vary_headers takes an HttpResponse instance as
its first argument and a list/tuple of case-insensitive header names as its
second argument.

For more on Vary headers, see the official Vary spec [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.44].

Controlling cache: Using other headers

Other problems with caching are the privacy of data and the question of where
data should be stored in a cascade of caches.

A user usually faces two kinds of caches: his or her own browser cache (a
private cache) and his or her provider's cache (a public cache). A public cache
is used by multiple users and controlled by someone else. This poses problems
with sensitive data--you don't want, say, your bank account number stored in a
public cache. So Web applications need a way to tell caches which data is
private and which is public.

The solution is to indicate a page's cache should be "private." To do this in
Django, use the cache_control view decorator. Example:

from django.views.decorators.cache import cache_control

@cache_control(private=True)
def my_view(request):
 # ...

This decorator takes care of sending out the appropriate HTTP header behind the
scenes.

There are a few other ways to control cache parameters. For example, HTTP
allows applications to do the following:

	Define the maximum time a page should be cached.

	Specify whether a cache should always check for newer versions, only
delivering the cached content when there are no changes. (Some caches
might deliver cached content even if the server page changed, simply
because the cache copy isn't yet expired.)

In Django, use the cache_control view decorator to specify these cache
parameters. In this example, cache_control tells caches to revalidate the
cache on every access and to store cached versions for, at most, 3,600 seconds:

from django.views.decorators.cache import cache_control

@cache_control(must_revalidate=True, max_age=3600)
def my_view(request):
 # ...

Any valid Cache-Control HTTP directive is valid in cache_control().
Here's a full list:

	public=True

	private=True

	no_cache=True

	no_transform=True

	must_revalidate=True

	proxy_revalidate=True

	max_age=num_seconds

	s_maxage=num_seconds

For explanation of Cache-Control HTTP directives, see the Cache-Control spec [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9].

(Note that the caching middleware already sets the cache header's max-age with
the value of the CACHE_MIDDLEWARE_SECONDS setting. If you use a custom
max_age in a cache_control decorator, the decorator will take
precedence, and the header values will be merged correctly.)

If you want to use headers to disable caching altogether,
django.views.decorators.cache.never_cache is a view decorator that adds
headers to ensure the response won't be cached by browsers or other caches.
Example:

from django.views.decorators.cache import never_cache

@never_cache
def myview(request):
 # ...

Other optimizations

Django comes with a few other pieces of middleware that can help optimize your
site's performance:

	django.middleware.http.ConditionalGetMiddleware adds support for
modern browsers to conditionally GET responses based on the ETag
and Last-Modified headers.

	django.middleware.gzip.GZipMiddleware compresses responses for all
moderns browsers, saving bandwidth and transfer time.

Order of MIDDLEWARE_CLASSES

If you use caching middleware, it's important to put each half in the right
place within the MIDDLEWARE_CLASSES setting. That's because the cache
middleware needs to know which headers by which to vary the cache storage.
Middleware always adds something to the Vary response header when it can.

UpdateCacheMiddleware runs during the response phase, where middleware is
run in reverse order, so an item at the top of the list runs last during the
response phase. Thus, you need to make sure that UpdateCacheMiddleware
appears before any other middleware that might add something to the Vary
header. The following middleware modules do so:

	SessionMiddleware adds Cookie

	GZipMiddleware adds Accept-Encoding

	LocaleMiddleware adds Accept-Language

FetchFromCacheMiddleware, on the other hand, runs during the request phase,
where middleware is applied first-to-last, so an item at the top of the list
runs first during the request phase. The FetchFromCacheMiddleware also
needs to run after other middleware updates the Vary header, so
FetchFromCacheMiddleware must be after any item that does so.

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Conditional View Processing

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

Conditional View Processing

New in Django 1.1: Please, see the release notes

HTTP clients can send a number of headers to tell the server about copies of a
resource that they have already seen. This is commonly used when retrieving a
Web page (using an HTTP GET request) to avoid sending all the data for
something the client has already retrieved. However, the same headers can be
used for all HTTP methods (POST, PUT, DELETE, etc).

For each page (response) that Django sends back from a view, it might provide
two HTTP headers: the ETag header and the Last-Modified header. These
headers are optional on HTTP responses. They can be set by your view function,
or you can rely on the CommonMiddleware
middleware to set the ETag header.

When the client next requests the same resource, it might send along a header
such as If-modified-since [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.25], containing the date of the last modification
time it was sent, or If-none-match [http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26], containing the ETag it was sent.
If the current version of the page matches the ETag sent by the client, or
if the resource has not been modified, a 304 status code can be sent back,
instead of a full response, telling the client that nothing has changed.

When you need more fine-grained control you may use per-view conditional
processing functions.

The condition decorator

Sometimes (in fact, quite often) you can create functions to rapidly compute the ETag [http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.11]
value or the last-modified time for a resource, without needing to do all
the computations needed to construct the full view. Django can then use these
functions to provide an “early bailout” option for the view processing.
Telling the client that the content has not been modified since the last
request, perhaps.

These two functions are passed as parameters the
django.views.decorators.http.condition decorator. This decorator uses
the two functions (you only need to supply one, if you can’t compute both
quantities easily and quickly) to work out if the headers in the HTTP request
match those on the resource. If they don’t match, a new copy of the resource
must be computed and your normal view is called.

The condition decorator’s signature looks like this:

condition(etag_func=None, last_modified_func=None)

The two functions, to compute the ETag and the last modified time, will be
passed the incoming request object and the same parameters, in the same
order, as the view function they are helping to wrap. The function passed
last_modified_func should return a standard datetime value specifying the
last time the resource was modified, or None if the resource doesn't
exist. The function passed to the etag decorator should return a string
representing the Etag [http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.11] for the resource, or None if it doesn't exist.

Using this feature usefully is probably best explained with an example.
Suppose you have this pair of models, representing a simple blog system:

import datetime
from django.db import models

class Blog(models.Model):
 ...

class Entry(models.Model):
 blog = models.ForeignKey(Blog)
 published = models.DateTimeField(default=datetime.datetime.now)
 ...

If the front page, displaying the latest blog entries, only changes when you
add a new blog entry, you can compute the last modified time very quickly. You
need the latest published date for every entry associated with that blog.
One way to do this would be:

def latest_entry(request, blog_id):
 return Entry.objects.filter(blog=blog_id).latest("published").published

You can then use this function to provide early detection of an unchanged page
for your front page view:

from django.views.decorators.http import condition

@condition(last_modified_func=latest_entry)
def front_page(request, blog_id):
 ...

Shortcuts for only computing one value

As a general rule, if you can provide functions to compute both the ETag and
the last modified time, you should do so. You don't know which headers any
given HTTP client will send you, so be prepared to handle both. However,
sometimes only one value is easy to compute and Django provides decorators
that handle only ETag or only last-modified computations.

The django.views.decorators.http.etag and
django.views.decorators.http.last_modified decorators are passed the same
type of functions as the condition decorator. Their signatures are:

etag(etag_func)
last_modified(last_modified_func)

We could write the earlier example, which only uses a last-modified function,
using one of these decorators:

@last_modified(latest_entry)
def front_page(request, blog_id):
 ...

...or:

def front_page(request, blog_id):
 ...
front_page = last_modified(latest_entry)(front_page)

Use condition when testing both conditions

It might look nicer to some people to try and chain the etag and
last_modified decorators if you want to test both preconditions. However,
this would lead to incorrect behavior.

Bad code. Don't do this!
@etag(etag_func)
@last_modified(last_modified_func)
def my_view(request):
 # ...

End of bad code.

The first decorator doesn't know anything about the second and might
answer that the response is not modified even if the second decorators would
determine otherwise. The condition decorator uses both callback functions
simultaneously to work out the right action to take.

Using the decorators with other HTTP methods

The condition decorator is useful for more than only GET and
HEAD requests (HEAD requests are the same as GET in this
situation). It can be used also to be used to provide checking for POST,
PUT and DELETE requests. In these situations, the idea isn't to return
a "not modified" response, but to tell the client that the resource they are
trying to change has been altered in the meantime.

For example, consider the following exchange between the client and server:

	Client requests /foo/.

	Server responds with some content with an ETag of "abcd1234".

	Client sends an HTTP PUT request to /foo/ to update the
resource. It also sends an If-Match: "abcd1234" header to specify
the version it is trying to update.

	Server checks to see if the resource has changed, by computing the ETag
the same way it does for a GET request (using the same function).
If the resource has changed, it will return a 412 status code code,
meaning "precondition failed".

	Client sends a GET request to /foo/, after receiving a 412
response, to retrieve an updated version of the content before updating
it.

The important thing this example shows is that the same functions can be used
to compute the ETag and last modification values in all situations. In fact,
you should use the same functions, so that the same values are returned
every time.

Comparison with middleware conditional processing

You may notice that Django already provides simple and straightforward
conditional GET handling via the
django.middleware.http.ConditionalGetMiddleware and
CommonMiddleware. Whilst certainly being
easy to use and suitable for many situations, those pieces of middleware
functionality have limitations for advanced usage:

	They are applied globally to all views in your project

	They don't save you from generating the response itself, which may be
expensive

	They are only appropriate for HTTP GET requests.

You should choose the most appropriate tool for your particular problem here.
If you have a way to compute ETags and modification times quickly and if some
view takes a while to generate the content, you should consider using the
condition decorator described in this document. If everything already runs
fairly quickly, stick to using the middleware and the amount of network
traffic sent back to the clients will still be reduced if the view hasn't
changed.

 Copyright Django Software Foundation and contributors.
 Last updated on May 09, 2012.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs
 Test

 	latest

 	1.4.X

 	1.3.X

 	1.2.X

 Sending e-mail

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Django 1.2.7 documentation

 	Using Django

Sending e-mail

Although Python makes sending e-mail relatively easy via the smtplib
library [http://docs.python.org/library/smtplib.html], Django provides a couple of light wrappers over it. These wrappers
are provided to make sending e-mail extra quick, to make it easy to test
e-mail sending during development, and to provide support for platforms that
can’t use SMTP.

The code lives in the django.core.mail module.

Quick example

In two lines:

from django.core.mail import send_mail

send_mail('Subject here', 'Here is the message.', 'from@example.com',
 ['to@example.com'], fail_silently=False)

Mail is sent using the SMTP host and port specified in the
EMAIL_HOST and EMAIL_PORT settings. The
EMAIL_HOST_USER and EMAIL_HOST_PASSWORD settings, if
set, are used to authenticate to the SMTP server, and the
EMAIL_USE_TLS setting controls whether a secure connection is used.

Note

The character set of e-mail sent with django.core.mail will be set to
the value of your DEFAULT_CHARSET setting.

send_mail()

	
send_mail(subjectmessagefrom_emailrecipient_listfail_silently=Falseauth_user=Noneauth_password=Noneconnection=None)

	

The simplest way to send e-mail is using
django.core.mail.send_mail().

The subject, message, from_email and recipient_list parameters
are required.

	subject: A string.

	message: A string.

	from_email: A string.

	recipient_list: A list of strings, each an e-mail address. Each
member of recipient_list will see the other recipients in the "To:"
field of the e-mail message.

	fail_silently: A boolean. If it's False, send_mail will raise
an smtplib.SMTPException. See the smtplib docs [http://docs.python.org/library/smtplib.html] for a list of
possible exceptions, all of which are subclasses of SMTPException.

	auth_user: The optional username to use to authenticate to the SMTP
server. If this isn't provided, Django will use the value of the
EMAIL_HOST_USER setting.

	auth_password: The optional password to use to authenticate to the
SMTP server. If this isn't provided, Django will use the value of the
EMAIL_HOST_PASSWORD setting.

	connection: The optional e-mail backend to use to send the mail.
If unspecified, an instance of the default backend will be used.
See the documentation on E-mail backends
for more details.

send_mass_mail()

	
send_mass_mail(datatuplefail_silently=Falseauth_user=Noneauth_password=Noneconnection=None)

	

django.core.mail.send_mass_mail() is intended to handle mass e-mailing.

datatuple is a tuple in which each element is in this format:

(subject, message, from_email, recipient_list)

fail_silently, auth_user and auth_password have the same functions
as in send_mail().

Each separate element of datatuple results in a separate e-mail message.
As in send_mail(), recipients in the same
recipient_list will all see the other addresses in the e-mail messages'
"To:" field.

For example, the following code would send two different messages to
two different sets of recipients; however, only one connection to the
mail server would be opened:

message1 = ('Subject here', 'Here is the message', 'from@example.com', ['first@example.com', 'other@example.com'])
message2 = ('Another Subject', 'Here is another message', 'from@example.com', ['second@test.com'])
send_mass_mail((message1, message2), fail_silently=False)

send_mass_mail() vs. send_mail()

The main difference between send_mass_mail() and
send_mail() is that
send_mail() opens a connection to the mail server
each time it's executed, while send_mass_mail() uses
a single connection for all of its messages. This makes
send_mass_mail() slightly more efficient.

mail_admins()

	
mail_admins(subjectmessagefail_silently=Falseconnection=None)

	

django.core.mail.mail_admins() is a shortcut for sending an e-mail to the
site admins, as defined in the ADMINS setting.

mail_admins() prefixes the subject with the value of the
EMAIL_SUBJECT_PREFIX setting, which is "[Django] " by default.

The "From:" header of the e-mail will be the value of the
SERVER_EMAIL setting.

This method exists for convenience and readability.

mail_managers()

	
mail_managers(subjectmessagefail_silently=Falseconnection=None)

	

django.core.mail.mail_managers() is just like mail_admins(), except it
sends an e-mail to the site managers, as defined in the MANAGERS
setting.

Examples

This sends a single e-mail to john@example.com and jane@example.com, with them
both appearing in the "To:":

send_mail('Subject', 'Message.', 'from@example.com',
 ['john@example.com', 'jane@example.com'])

This sends a message to john@example.com and jane@example.com, with them both
receiving a separate e-mail:

datatuple = (
 ('Subject', 'Message.', 'from@example.com', ['john@example.com']),
 ('Subject', 'Message.', 'from@example.com', ['jane@example.com']),
)
send_mass_mail(datatuple)

Preventing header injection

Header injection [http://www.nyphp.org/phundamentals/email_header_injection.php] is a security exploit in which an attacker inserts extra
e-mail headers to control the "To:" and "From:" in e-mail messages that your
scripts generate.

The Django e-mail functions outlined above all protect against header injection
by forbidding newlines in header values. If any subject, from_email or
recipient_list contains a newline (in either Unix, Windows or Mac style),
the e-mail function (e.g. send_mail()) will raise
django.core.mail.BadHeaderError (a subclass of ValueError) and, hence,
will not send the e-mail. It's your responsibility to validate all data before
passing it to the e-mail functions.

If a message contains headers at the start of the string, the headers will
simply be printed as the first bit of the e-mail message.

Here's an example view that takes a subject, message and from_email
from the request's POST data, sends that to admin@example.com and redirects to
"/contact/thanks/" when it's done:

from django.core.mail import send_mail, BadHeaderError

def send_email(request):
 sub