

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Buildbot 0.8.9 documentation

 This is the BuildBot documentation for Buildbot version 0.8.9.

If you are evaluating Buildbot and would like to get started quickly, start
with the Tutorial. Regular users of Buildbot should
consult the Manual, and those wishing to modify Buildbot
directly will want to be familiar with the Developer's Documentation.

Table Of Contents

	Buildbot Tutorial
	First Run

	First Buildbot run with Docker

	A Quick Tour

	Further Reading

	Buildbot Manual
	Introduction

	Installation

	Concepts

	Configuration

	Customization

	New-Style Build Steps

	Command-line Tool

	Resources

	Optimization

	Buildbot Development
	Master Organization

	Definitions

	Buildbot Coding Style

	Buildbot's Test Suite

	Configuration

	Utilities

	Database

	Build Result Codes

	File Formats

	Web Status

	Master-Slave API

	String Encodings

	Metrics

	Classes

	Release Notes for Buildbot 0.8.9
	Master

	Slave

	Details

	Older Versions

Indices and Tables

	Index

	Buildmaster Configuration Index

	Scheduler Index

	Change Source Index

	Build Step Index

	Status Target Index

	Command Line Index

	Module Index

	Search Page

Copyright

This documentation is part of Buildbot.

Buildbot is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 2.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Copyright Buildbot Team Members

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

Buildbot Tutorial

Contents:

	First Run
	Goal

	Getting the code

	Creating a master

	Creating a slave

	First Buildbot run with Docker
	Current Docker dependencies

	Building and running Buildbot

	Playing with your Buildbot container

	A Quick Tour
	Goal

	Setting Project Name and URL

	Configuration Errors

	Your First Build

	Enabling the IRC Bot

	Setting Authorized Web Users

	Debugging with Manhole

	Adding a 'try' scheduler

	Further Reading
	Buildbot in 5 minutes - a user-contributed tutorial

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Tutorial

First Run

Goal

This tutorial will take you from zero to running your first buildbot master
and slave as quickly as possible, without changing the default configuration.

This tutorial is all about instant gratification and the five minute
experience: in five minutes we want to convince you that this project Works,
and that you should seriously consider spending some more time learning
the system. In this tutorial no configuration or code changes are done.

This tutorial assumes that you are running on Unix, but might be adaptable
easily to Windows.

For the fastest way through in Linux, you
can use Docker, the linux container engine. Docker automates all the
deployment steps for you.

For a more manual approach, you should be able to cut and paste each shell
block from this tutorial directly into a terminal.

Getting the code

There are many ways to get the code on your machine.
For this tutorial, we will use easy_install to install and run buildbot.
While this isn't the preferred method to install buildbot, it is the simplest
one to use for the purposes of this tutorial because it should work on all
systems. (The preferred method would be to install buildbot via pip.)

	To make this work, you will need the following installed:

	
	Python [http://www.python.org/] and the development packages for it

	virtualenv [http://pypi.python.org/pypi/virtualenv/]

	Git [http://git-scm.com/]

Preferably, use your package installer to install these.

You will also need a working Internet connection, as virtualenv and
easy_install will need to download other projects from the Internet.

Note

Buildbot does not require root access. Run the commands in this tutorial
as a normal, unprivileged user.

Let's dive in by typing at the terminal:

cd
mkdir -p tmp/buildbot
cd tmp/buildbot
virtualenv --no-site-packages sandbox
source sandbox/bin/activate
easy_install sqlalchemy==0.7.10
easy_install buildbot

Note

The requirement to install SQLAlchemy-0.7.10 is due to a conflict between newer versions of SQLAlchemy and SQLAlchemy-Migrate.

Creating a master

At the terminal, type:

buildbot create-master master
mv master/master.cfg.sample master/master.cfg

Now start it:

buildbot start master
tail -f master/twistd.log

You will now see all of the log information from the master in this terminal.
You should see lines like this:

2011-12-04 10:04:40-0600 [-] Starting factory <buildbot.status.web.baseweb.RotateLogSite instance at 0x2e36638>
2011-12-04 10:04:40-0600 [-] Setting up http.log rotating 10 files of 10000000 bytes each
2011-12-04 10:04:40-0600 [-] WebStatus using (/home/dustin/tmp/buildbot/master/public_html)
2011-12-04 10:04:40-0600 [-] removing 0 old schedulers, updating 0, and adding 1
2011-12-04 10:04:40-0600 [-] adding 1 new changesources, removing 0
2011-12-04 10:04:40-0600 [-] gitpoller: using workdir '/home/dustin/tmp/buildbot/master/gitpoller-workdir'
2011-12-04 10:04:40-0600 [-] gitpoller: initializing working dir from git://github.com/buildbot/pyflakes.git
2011-12-04 10:04:40-0600 [-] configuration update complete
2011-12-04 10:04:41-0600 [-] gitpoller: checking out master
2011-12-04 10:04:41-0600 [-] gitpoller: finished initializing working dir from git://github.com/buildbot/pyflakes.git at rev 1a4af6ec1dbb724b884ea14f439b272f30439e4d

Creating a slave

Open a new terminal and enter the same sandbox you created before:

cd
cd tmp/buildbot
source sandbox/bin/activate

Install the buildslave command:

easy_install buildbot-slave

Now, create the slave:

buildslave create-slave slave localhost:9989 example-slave pass

The user:host pair, username, and password should be the same as the ones in
master.cfg; verify this is the case by looking at the section for c['slaves']
and c['slavePortnum']:

cat master/master.cfg

Now, start the slave:

buildslave start slave

Check the slave's log:

tail -f slave/twistd.log

You should see lines like the following at the end of the worker log:

2009-07-29 20:59:18+0200 [Broker,client] message from master: attached
2009-07-29 20:59:18+0200 [Broker,client] SlaveBuilder.remote_print(buildbot-full): message from master: attached
2009-07-29 20:59:18+0200 [Broker,client] sending application-level keepalives every 600 seconds

Meanwhile, in the other terminal, in the master log, if you tail the log you should see lines like this:

2011-03-13 18:46:58-0700 [Broker,1,127.0.0.1] slave 'example-slave' attaching from IPv4Address(TCP, '127.0.0.1', 41306)
2011-03-13 18:46:58-0700 [Broker,1,127.0.0.1] Got slaveinfo from 'example-slave'
2011-03-13 18:46:58-0700 [Broker,1,127.0.0.1] bot attached
2011-03-13 18:46:58-0700 [Broker,1,127.0.0.1] Buildslave example-slave attached to runtests

You should now be able to go to http://localhost:8010, where you will see
a web page similar to:

[image: index page]
Click on the
Waterfall Display link [http://localhost:8010/waterfall]
and you get this:

[image: empty waterfall.]
That's the end of the first tutorial. A bit underwhelming, you say? Well, that
was the point! We just wanted to get you to dip your toes in the water. It's
easy to take your first steps, but this is about as far as we can go without
touching the configuration.

You've got a taste now, but you're probably curious for more. Let's step it
up a little in the second tutorial by changing the configuration and doing
an actual build. Continue on to A Quick Tour.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Tutorial

First Buildbot run with Docker

Docker [http://www.docker.io] is an tool that makes building and deploying custom environments a breeze.
It uses lightweight linux containers (LXC) and performs quickly, making it a great instrument for the testing community.
The next section includes a Docker pre-flight check.
If it takes more that 3 minutes to get the 'Success' message for you, try the Buildbot pip-based first run instead.

Current Docker dependencies

	Linux system, with at least kernel 3.8 and AUFS support.
For example, Standard Ubuntu, Debian and Arch systems.

	Packages: lxc, iptables, ca-certificates, and bzip2 packages

	Local clock on time or slightly in the future for proper SSL communication

	Download, launch and test docker is happy in your linux enviroment:

mkdir tmp; cd tmp
wget -O docker http://get.docker.io/builds/Linux/x86_64/docker-latest
chmod 755 docker; sudo ./docker -d &
sudo ./docker run -i busybox /bin/echo Success

Building and running Buildbot

Download Buildbot Dockerfile.
wget https://raw.github.com/buildbot/buildbot/master/master/contrib/Dockerfile

Build the Buildbot container (it will take a few minutes to download packages)
sudo ./docker build -t buildbot - < Dockerfile

Run buildbot
CONTAINER_ID=$(sudo ./docker run -d buildbot)

You should now be able to go to http://localhost:8010 and see a web page
similar to:

[image: index page]
Click on the
Waterfall Display link [http://localhost:8010/waterfall]
and you get this:

[image: empty waterfall.]

Playing with your Buildbot container

If you've come this far, you have a Buildbot environment that you can freely experiment with.
You can access your container using ssh (username: admin, password: admin):

ssh -p $(sudo ./docker port $CONTAINER_ID 22) admin@localhost

You've got a taste now, but you're probably curious for more.
Let's step it up a little in the second tutorial by changing the configuration and doing an actual build.
Continue on to A Quick Tour

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Tutorial

A Quick Tour

Goal

This tutorial will expand on the First Run tutorial by taking a
quick tour around some of the features of buildbot that are hinted at in the
comments in the sample configuration. We will simply change parts of the
default configuration and explain the activated features.

As a part of this tutorial, we will make buildbot do a few actual builds.

	This section will teach you how to:

	
	make simple configuration changes and activate them

	deal with configuration errors

	force builds

	enable and control the IRC bot

	enable ssh debugging

	add a 'try' scheduler

Setting Project Name and URL

Let's start simple by looking at where you would customize the buildbot's project name and URL.

We continue where we left off in the First Run tutorial.

Open a new terminal, and first enter the same sandbox you created before (where $EDITOR is your editor of choice like vim, gedit, or emacs):

cd
cd tmp/buildbot
source sandbox/bin/activate
$EDITOR master/master.cfg

Now, look for the section marked PROJECT IDENTITY which reads:

####### PROJECT IDENTITY

the 'title' string will appear at the top of this buildbot
installation's html.WebStatus home page (linked to the
'titleURL') and is embedded in the title of the waterfall HTML page.

c['title'] = "Pyflakes"
c['titleURL'] = "http://divmod.org/trac/wiki/DivmodPyflakes"

If you want, you can change either of these links to anything you want to see what happens when you change them.

After making a change go into the terminal and type:

buildbot reconfig master

You will see a handful of lines of output from the master log, much like this:

2011-12-04 10:11:09-0600 [-] loading configuration from /home/dustin/tmp/buildbot/master/master.cfg
2011-12-04 10:11:09-0600 [-] configuration update started
2011-12-04 10:11:09-0600 [-] builder runtests is unchanged
2011-12-04 10:11:09-0600 [-] removing IStatusReceiver <WebStatus on port tcp:8010 at 0x2aee368>
2011-12-04 10:11:09-0600 [-] (TCP Port 8010 Closed)
2011-12-04 10:11:09-0600 [-] Stopping factory <buildbot.status.web.baseweb.RotateLogSite instance at 0x2e36638>
2011-12-04 10:11:09-0600 [-] adding IStatusReceiver <WebStatus on port tcp:8010 at 0x2c2d950>
2011-12-04 10:11:09-0600 [-] RotateLogSite starting on 8010
2011-12-04 10:11:09-0600 [-] Starting factory <buildbot.status.web.baseweb.RotateLogSite instance at 0x2e36e18>
2011-12-04 10:11:09-0600 [-] Setting up http.log rotating 10 files of 10000000 bytes each
2011-12-04 10:11:09-0600 [-] WebStatus using (/home/dustin/tmp/buildbot/master/public_html)
2011-12-04 10:11:09-0600 [-] removing 0 old schedulers, updating 0, and adding 0
2011-12-04 10:11:09-0600 [-] adding 1 new changesources, removing 1
2011-12-04 10:11:09-0600 [-] gitpoller: using workdir '/home/dustin/tmp/buildbot/master/gitpoller-workdir'
2011-12-04 10:11:09-0600 [-] GitPoller repository already exists
2011-12-04 10:11:09-0600 [-] configuration update complete

Reconfiguration appears to have completed successfully.

The important lines are the ones telling you that it is loading the new
configuration at the top, and the one at the bottom saying that the update
is complete.

Now, if you go back to
the waterfall page [http://localhost:8010/waterfall],
you will see that the project's name is whatever you may have changed it to and when you click on the
URL of the project name at the bottom of the page it should take you to the link you put in the configuration.

Configuration Errors

It is very common to make a mistake when configuring buildbot, so you might
as well see now what happens in that case and what you can do to fix
the error.

Open up the config again and introduce a syntax error by removing the first
single quote in the two lines you changed, so they read:

c['title'] = "Pyflakes"
c['titleURL'] = "http://divmod.org/trac/wiki/DivmodPyflakes"

This creates a Python SyntaxError. Now go ahead and reconfig the buildmaster:

buildbot reconfig master

This time, the output looks like:

2011-12-04 10:12:28-0600 [-] loading configuration from /home/dustin/tmp/buildbot/master/master.cfg
2011-12-04 10:12:28-0600 [-] configuration update started
2011-12-04 10:12:28-0600 [-] error while parsing config file
2011-12-04 10:12:28-0600 [-] Unhandled Error
 Traceback (most recent call last):
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/buildbot-0.8.5-py2.7.egg/buildbot/master.py", line 197, in loadTheConfigFile
 d = self.loadConfig(f)
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/buildbot-0.8.5-py2.7.egg/buildbot/master.py", line 579, in loadConfig
 d.addCallback(do_load)
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/Twisted-11.1.0-py2.7-linux-x86_64.egg/twisted/internet/defer.py", line 298, in addCallback
 callbackKeywords=kw)
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/Twisted-11.1.0-py2.7-linux-x86_64.egg/twisted/internet/defer.py", line 287, in addCallbacks
 self._runCallbacks()
 --- <exception caught here> ---
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/Twisted-11.1.0-py2.7-linux-x86_64.egg/twisted/internet/defer.py", line 545, in _runCallbacks
 current.result = callback(current.result, *args, **kw)
 File "/home/dustin/tmp/buildbot/sandbox/lib/python2.7/site-packages/buildbot-0.8.5-py2.7.egg/buildbot/master.py", line 226, in do_load
 exec f in localDict
 exceptions.SyntaxError: EOL while scanning string literal (master.cfg, line 17)

Never saw reconfiguration finish.

This time, it's clear that there was a mistake. in the configuration.
Luckily, the buildbot master will ignore the wrong configuration and keep
running with the previous configuration.

The message is clear enough, so open the configuration again, fix the error,
and reconfig the master.

Your First Build

By now you're probably thinking: "All this time spent and still not done a
single build? What was the name of this project again?"

On the waterfall [http://localhost:8010/waterfall]. page, click on the
runtests link. You'll see a builder page, and in the upper-right corner is a
box where you can login. The default username and password are both
"pyflakes". Once you've logged in, you will see some new options that allow
you to force a build:

[image: force a build.]
Click Force Build - there's no need to fill in any of the fields in this
case. Next, click on view in waterfall [http://localhost:8010/waterfall?show=runtests].

You will now see:

[image: an successful test run happened.]

Enabling the IRC Bot

Buildbot includes an IRC bot that you can tell to join a channel and control
to report on the status of buildbot.

First, start an IRC client of your choice, connect to irc.freenode.org and
join an empty channel. In this example we will use #buildbot-test, so go
join that channel. (Note: please do not join the main buildbot channel!)

Edit the config and look for the STATUS TARGETS section. Enter these lines
below the WebStatus line in master.cfg:

c['status'].append(html.WebStatus(http_port=8010, authz=authz_cfg))

from buildbot.status import words
c['status'].append(words.IRC(host="irc.freenode.org", nick="bbtest",
 channels=["#buildbot-test"]))

Reconfigure the build master then do:

grep -i irc master/twistd.log

The log output should contain a line like this:

2009-08-01 15:35:20+0200 [-] adding IStatusReceiver <buildbot.status.words.IRC instance at 0x300d290>

You should see the bot now joining in your IRC client.
In your IRC channel, type:

bbtest: commands

to get a list of the commands the bot supports.

Let's tell the bot to notify certain events, to learn which EVENTS we can notify on:

bbtest: help notify

Now let's set some event notifications:

bbtest: notify on started
bbtest: notify on finished
bbtest: notify on failure

The bot should have responded to each of the commands:

<@lsblakk> bbtest: notify on started
<bbtest> The following events are being notified: ['started']
<@lsblakk> bbtest: notify on finished
<bbtest> The following events are being notified: ['started', 'finished']
<@lsblakk> bbtest: notify on failure
<bbtest> The following events are being notified: ['started', 'failure', 'finished']

Now, go back to the web interface and force another build.

Notice how the bot tells you about the start and finish of this build:

< bbtest> build #1 of runtests started, including []
< bbtest> build #1 of runtests is complete: Success [build successful] Build details are at http://localhost:8010/builders/runtests/builds/1

You can also use the bot to force a build:

bbtest: force build runtests test build

But to allow this, you'll need to have allowForce in the IRC
configuration:

c['status'].append(words.IRC(host="irc.freenode.org", nick="bbtest",
 allowForce=True,
 channels=["#buildbot-test"]))

This time, the bot is giving you more output, as it's specifically responding
to your direct request to force a build, and explicitly tells you when the
build finishes:

<@lsblakk> bbtest: force build runtests test build
< bbtest> build #2 of runtests started, including []
< bbtest> build forced [ETA 0 seconds]
< bbtest> I'll give a shout when the build finishes
< bbtest> build #2 of runtests is complete: Success [build successful] Build details are at http://localhost:8010/builders/runtests/builds/2

You can also see the new builds in the web interface.

[image: a successful test run from IRC happened.]

Setting Authorized Web Users

Further down, look for the WebStatus configuration:

c['status'] = []

from buildbot.status import html
from buildbot.status.web import authz, auth

authz_cfg=authz.Authz(
 # change any of these to True to enable; see the manual for more
 # options
 auth=auth.BasicAuth([("pyflakes","pyflakes")]),
 gracefulShutdown = False,
 forceBuild = 'auth', # use this to test your slave once it is set up
 forceAllBuilds = False,
 pingBuilder = False,
 stopBuild = False,
 stopAllBuilds = False,
 cancelPendingBuild = False,
)
c['status'].append(html.WebStatus(http_port=8010, authz=authz_cfg))

The auth.BasicAuth() define authorized users and their passwords. You can
change these or add new ones. See WebStatus for more about the
WebStatus configuration.

Debugging with Manhole

You can do some debugging by using manhole, an interactive Python shell. It
exposes full access to the buildmaster's account (including the ability to
modify and delete files), so it should not be enabled with a weak or easily
guessable password.

To use this you will need to install an additional package or two to your virtualenv:

cd
cd tmp/buildbot
source sandbox/bin/activate
easy_install pycrypto
easy_install pyasn1

In your master.cfg find:

c = BuildmasterConfig = {}

Insert the following to enable debugging mode with manhole:

####### DEBUGGING
from buildbot import manhole
c['manhole'] = manhole.PasswordManhole("tcp:1234:interface=127.0.0.1","admin","passwd")

After restarting the master, you can ssh into the master and get an interactive Python shell:

ssh -p1234 admin@127.0.0.1
enter passwd at prompt

Note

The pyasn1-0.1.1 release has a bug which results in an exception similar to
this on startup:

exceptions.TypeError: argument 2 must be long, not int

If you see this, the temporary solution is to install the previous version
of pyasn1:

pip install pyasn1-0.0.13b

If you wanted to check which slaves are connected and what builders those slaves are assigned to you could do:

>>> master.botmaster.slaves
{'example-slave': <BuildSlave 'example-slave', current builders: runtests>}

Objects can be explored in more depth using dir(x) or the helper function
show(x).

Adding a 'try' scheduler

Buildbot includes a way for developers to submit patches for testing without
committing them to the source code control system. (This is really handy for
projects that support several operating systems or architectures.)

To set this up, add the following lines to master.cfg:

from buildbot.scheduler import Try_Userpass
c['schedulers'].append(Try_Userpass(
 name='try',
 builderNames=['runtests'],
 port=5555,
 userpass=[('sampleuser','samplepass')]))

Then you can submit changes using the try command.

Let's try this out by making a one-line change to pyflakes, say,
to make it trace the tree by default:

git clone git://github.com/buildbot/pyflakes.git pyflakes-git
cd pyflakes-git/pyflakes
$EDITOR checker.py
change "traceTree = False" on line 185 to "traceTree = True"

Then run buildbot's try command as follows:

source ~/tmp/buildbot/sandbox/bin/activate
buildbot try --connect=pb --master=127.0.0.1:5555 --username=sampleuser --passwd=samplepass --vc=git

This will do git diff for you and send the resulting patch to
the server for build and test against the latest sources from Git.

Now go back to the waterfall [http://localhost:8010/waterfall]
page, click on the runtests link, and scroll down. You should see that
another build has been started with your change (and stdout for the tests
should be chock-full of parse trees as a result). The "Reason" for the
job will be listed as "'try' job", and the blamelist will be empty.

To make yourself show up as the author of the change, use the --who=emailaddr
option on buildbot try to pass your email address.

To make a description of the change show up, use the
--properties=comment="this is a comment" option on buildbot try.

To use ssh instead of a private username/password database, see
Try_Jobdir.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Tutorial

Further Reading

See the following user-contributed tutorials for other highlights and ideas:

	Buildbot in 5 minutes - a user-contributed tutorial
	Installation

	Builders: the workhorses

	Schedulers

	Change sources

	Status targets

	Conclusion

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Tutorial

 	Further Reading

Buildbot in 5 minutes - a user-contributed tutorial

(Ok, maybe 10.)

Buildbot is really an excellent piece of software, however it can be
a bit confusing for a newcomer (like me when I first started looking
at it). Typically, at first sight it looks like a bunch of complicated
concepts that make no sense and whose relationships with each other are
unclear. After some time and some reread, it all slowly starts to be more
and more meaningful, until you finally say "oh!" and things start to make
sense. Once you get there, you realize that the documentation is great,
but only if you already know what it's about.

This is what happened to me, at least. Here I'm going to (try to) explain
things in a way that would have helped me more as a newcomer. The approach
I'm taking is more or less the reverse of that used by the documentation,
that is, I'm going to start from the components that do the actual work
(the builders) and go up the chain from there up to change sources. I
hope purists will forgive this unorthodoxy. Here I'm trying to clarify
the concepts only, and will not go into the details of each object or
property; the documentation explains those quite well.

Installation

I won't cover the installation; both buildbot master and slave are
available as packages for the major distributions, and in any case the
instructions in the official documentation are fine. This document will
refer to buildbot 0.8.5 which was current at the time of writing, but
hopefully the concepts are not too different in other versions.
All the code shown is of course python code, and has to be included in
the master.cfg master configuration file.

We won't cover the basic things such as how to define the slaves, project
names, or other administrative information that is contained in that file;
for that, again the official documentation is fine.

Builders: the workhorses

Since buildbot is a tool whose goal is the automation of software builds,
it makes sense to me to start from where we tell buildbot how to build
our software: the builder (or builders, since there can be more than one).

Simply put, a builder is an element that is in charge of performing some
action or sequence of actions, normally something related to building
software (for example, checking out the source, or make all), but it
can also run arbitrary commands.

A builder is configured with a list of slaves that it can use to carry out
its task. The other fundamental piece of information that a builder needs
is, of course, the list of things it has to do (which will normally run
on the chosen slave). In buildbot, this list of things is represented
as a BuildFactory object, which is essentially a sequence of steps,
each one defining a certain operation or command.

Enough talk, let's see an example. For this example, we are going to
assume that our super software project can be built using a simple
make all, and there is another target make packages that creates
rpm, deb and tgz packages of the binaries. In the real world things
are usually more complex (for example there may be a configure step,
or multiple targets), but the concepts are the same; it will just be a
matter of adding more steps to a builder, or creating multiple builders,
although sometimes the resulting builders can be quite complex.

So to perform a manual build of our project we would type this from
the command line (assuming we are at the root of the local copy of
the repository):

$ make clean # clean remnants of previous builds
...
$ svn update
...
$ make all
...
$ make packages
...
optional but included in the example: copy packages to some central machine
$ scp packages/*.rpm packages/*.deb packages/*.tgz someuser@somehost:/repository
...

Here we're assuming the repository is SVN, but again the concepts are
the same with git, mercurial or any other VCS.

Now, to automate this, we create a builder where each step is one of
the commands we typed above. A step can be a shell command object, or
a dedicated object that checks out the source code (there are various
types for different repositories, see the docs for more info), or yet
something else:

from buildbot.process.factory import BuildFactory
from buildbot.steps.source import SVN
from buildbot.steps.shell import ShellCommand

first, let's create the individual step objects

step 1: make clean; this fails if the slave has no local copy, but
is harmless and will only happen the first time
makeclean = ShellCommand(name = "make clean",
 command = ["make", "clean"],
 description = "make clean")

step 2: svn update (here updates trunk, see the docs for more
on how to update a branch, or make it more generic).
checkout = SVN(baseURL = 'svn://myrepo/projects/coolproject/trunk',
 mode = "update",
 username = "foo",
 password = "bar",
 haltOnFailure = True)

step 3: make all
makeall = ShellCommand(name = "make all",
 command = ["make", "all"],
 haltOnFailure = True,
 description = "make all")

step 4: make packages
makepackages = ShellCommand(name = "make packages",
 command = ["make", "packages"],
 haltOnFailure = True,
 description = "make packages")

step 5: upload packages to central server. This needs passwordless ssh
from the slave to the server (set it up in advance as part of slave setup)
uploadpackages = ShellCommand(name = "upload packages",
 description = "upload packages",
 command = "scp packages/*.rpm packages/*.deb packages/*.tgz someuser@somehost:/repository",
 haltOnFailure = True)

create the build factory and add the steps to it
f_simplebuild = BuildFactory()
f_simplebuild.addStep(makeclean)
f_simplebuild.addStep(checkout)
f_simplebuild.addStep(makeall)
f_simplebuild.addStep(makepackages)
f_simplebuild.addStep(uploadpackages)

finally, declare the list of builders. In this case, we only have one builder
c['builders'] = [
 BuilderConfig(name = "simplebuild", slavenames = ['slave1', 'slave2', 'slave3'], factory = f_simplebuild)
]

So our builder is called simplebuild and can run on either of slave1,
slave2 and slave3.
If our repository has other branches besides trunk, we could create
another one or more builders to build them; in the example, only the
checkout step would be different, in that it would need to check out
the specific branch. Depending on how exactly those branches have to be
built, the shell commands may be recycled, or new ones would have to
be created if they are different in the branch. You get the idea. The
important thing is that all the builders be named differently and all
be added to the c['builders'] value (as can be seen above, it is a list
of BuilderConfig objects).

Of course the type and number of steps will vary depending on the goal;
for example, to just check that a commit doesn't break the build,
we could include just up to the make all step. Or we could have a
builder that performs a more thorough test by also doing make test
or other targets. You get the idea. Note that at each step except the
very first we use haltOnFailure = True because it would not make sense
to execute a step if the previous one failed (ok, it wouldn't be needed
for the last step, but it's harmless and protects us if one day we add
another step after it).

Schedulers

Now this is all nice and dandy, but who tells the builder (or builders)
to run, and when? This is the job of the scheduler, which is a fancy name
for an element that waits for some event to happen, and when it does,
based on that information decides whether and when to run a builder
(and which one or ones). There can be more than one scheduler.
I'm being purposely vague here because the possibilities are almost
endless and highly dependent on the actual setup, build purposes, source
repository layout and other elements.

So a scheduler needs to be configured with two main pieces of information:
on one hand, which events to react to, and on the other hand, which
builder or builders to trigger when those events are detected. (It's more
complex than that, but if you understand this, you can get the rest of
the details from the docs).

A simple type of scheduler may be a periodic scheduler: when a
configurable amount of time has passed, run a certain builder (or
builders). In our example, that's how we would trigger a build every hour:

from buildbot.schedulers.timed import Periodic

define the periodic scheduler
hourlyscheduler = Periodic(name = "hourly",
 builderNames = ["simplebuild"],
 periodicBuildTimer = 3600)

define the available schedulers
c['schedulers'] = [hourlyscheduler]

That's it. Every hour this hourly scheduler will run the simplebuild
builder. If we have more than one builder that we want to run every hour,
we can just add them to the builderNames list when defining the scheduler
and they will all be run.
Or since multiple scheduler are allowed, other schedulers can be defined
and added to c['schedulers'] in the same way.

Other types of schedulers exist; in particular, there are schedulers
that can be more dynamic than the periodic one. The typical dynamic
scheduler is one that learns about changes in a source repository
(generally because some developer checks in some change), and triggers
one or more builders in response to those changes. Let's assume for now
that the scheduler "magically" learns about changes in the repository
(more about this later); here's how we would define it:

from buildbot.schedulers.basic import SingleBranchScheduler
from buildbot.changes import filter

define the dynamic scheduler
trunkchanged = SingleBranchScheduler(name = "trunkchanged",
 change_filter = filter.ChangeFilter(branch = None),
 treeStableTimer = 300,
 builderNames = ["simplebuild"])

define the available schedulers
c['schedulers'] = [trunkchanged]

This scheduler receives changes happening to the repository, and among
all of them, pays attention to those happening in "trunk" (that's what
branch = None means). In other words, it filters the changes to react
only to those it's interested in. When such changes are detected,
and the tree has been quiet for 5 minutes (300 seconds), it runs the
simplebuild builder. The treeStableTimer helps in those situations
where commits tend to happen in bursts, which would otherwise result in
multiple build requests queuing up.

What if we want to act on two branches (say, trunk and 7.2)? First we
create two builders, one for each branch (see the builders paragraph
above), then we create two dynamic schedulers:

from buildbot.schedulers.basic import SingleBranchScheduler
from buildbot.changes import filter

define the dynamic scheduler for trunk
trunkchanged = SingleBranchScheduler(name = "trunkchanged",
 change_filter = filter.ChangeFilter(branch = None),
 treeStableTimer = 300,
 builderNames = ["simplebuild-trunk"])

define the dynamic scheduler for the 7.2 branch
branch72changed = SingleBranchScheduler(name = "branch72changed",
 change_filter = filter.ChangeFilter(branch = 'branches/7.2'),
 treeStableTimer = 300,
 builderNames = ["simplebuild-72"])

define the available schedulers
c['schedulers'] = [trunkchanged, branch72changed]

The syntax of the change filter is VCS-dependent (above is for SVN),
but again once the idea is clear, the documentation has all the
details. Another feature of the scheduler is that is can be told which
changes, within those it's paying attention to, are important and which
are not. For example, there may be a documentation directory in the branch
the scheduler is watching, but changes under that directory should not
trigger a build of the binary. This finer filtering is implemented by
means of the fileIsImportant argument to the scheduler (full details in
the docs and - alas - in the sources).

Change sources

Earlier we said that a dynamic scheduler "magically" learns about changes;
the final piece of the puzzle are change sources, which are precisely the
elements in buildbot whose task is to detect changes in the repository
and communicate them to the schedulers. Note that periodic schedulers
don't need a change source, since they only depend on elapsed time;
dynamic schedulers, on the other hand, do need a change source.

A change source is generally configured with information about a source
repository (which is where changes happen); a change source can watch
changes at different levels in the hierarchy of the repository, so for
example it is possible to watch the whole repository or a subset of it,
or just a single branch. This determines the extent of the information
that is passed down to the schedulers.

There are many ways a change source can learn about changes; it can
periodically poll the repository for changes, or the VCS can be configured
(for example through hook scripts triggered by commits) to push changes
into the change source. While these two methods are probably the most
common, they are not the only possibilities; it is possible for example
to have a change source detect changes by parsing some email sent to
a mailing list when a commit happen, and yet other methods exist. The
manual again has the details.

To complete our example, here's a change source that polls a SVN
repository every 2 minutes:

from buildbot.changes.svnpoller import SVNPoller, split_file_branches

svnpoller = SVNPoller(svnurl = "svn://myrepo/projects/coolproject",
 svnuser = "foo",
 svnpasswd = "bar",
 pollinterval = 120,
 split_file = split_file_branches)

c['change_source'] = svnpoller

This poller watches the whole "coolproject" section of the repository,
so it will detect changes in all the branches. We could have said

svnurl = "svn://myrepo/projects/coolproject/trunk"

or

svnurl = "svn://myrepo/projects/coolproject/branches/7.2"

to watch only a specific branch.

To watch another project, you need to create another change source --
and you need to filter changes by project. For instance, when you
add a change source watching project 'superproject' to the above
example, you need to change:

trunkchanged = SingleBranchScheduler(name = "trunkchanged",
 change_filter = filter.ChangeFilter(branch = None),
 # ...
)

to e.g.:

trunkchanged = SingleBranchScheduler(name = "trunkchanged",
 change_filter = filter.ChangeFilter(project = "coolproject", branch = None),
 # ...
)

else coolproject will be built when there's a change in superproject.

Since we're watching more than one branch, we need a method to tell
in which branch the change occurred when we detect one. This is what
the split_file argument does, it takes a callable that buildbot will
call to do the job. The split_file_branches function, which comes with
buildbot, is designed for exactly this purpose so that's what the example
above uses.

And of course this is all SVN-specific, but there are pollers for all the
popular VCSs.

But note: if you have many projects, branches, and builders it probably pays
to not hardcode all the schedulers and builders in the configuration, but
generate them dynamically starting from list of all projects, branches,
targets etc. and using loops to generate all possible combinations (or
only the needed ones, depending on the specific setup), as explained in
the documentation chapter about Customization.

Status targets

Now that the basics are in place, let's go back to the builders, which is
where the real work happens. Status targets are simply the means buildbot
uses to inform the world about what's happening, that is, how builders
are doing. There are many status target: a web interface, a mail notifier,
an IRC notifier, and others. They are described fairly well in the manual.

One thing I've found useful is the ability to pass a domain name as the
lookup argument to a mailNotifier, which allows to take an unqualified
username as it appears in the SVN change and create a valid email address
by appending the given domain name to it:

from buildbot.status import mail

if jsmith commits a change, mail for the build is sent to jsmith@example.org
notifier = mail.MailNotifier(fromaddr = "buildbot@example.org",
 sendToInterestedUsers = True,
 lookup = "example.org")
c['status'].append(notifier)

The mail notifier can be customized at will by means of the
messageFormatter argument, which is a function that buildbot calls to
format the body of the email, and to which it makes available lots of
information about the build. Here all the details.

Conclusion

Please note that this article has just scratched the surface; given the
complexity of the task of build automation, the possibilities are almost
endless. So there's much, much more to say about buildbot. However,
hopefully this is a preparation step before reading the official
manual. Had I found an explanation as the one above when I was approaching
buildbot, I'd have had to read the manual just once, rather than multiple
times. Hope this can help someone else.

(Thanks to Davide Brini for permission to include this tutorial,
derived from one he originally posted at http://backreference.org .)

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 This is the BuildBot manual for Buildbot version 0.8.9.

Buildbot Manual

	Introduction
	History and Philosophy

	System Architecture

	Control Flow

	Installation
	Buildbot Components

	Requirements

	Installing the code

	Running Buildbot's Tests (optional)

	Creating a buildmaster

	Upgrading an Existing Buildmaster

	Creating a buildslave

	Upgrading an Existing Buildslave

	Launching the daemons

	Logfiles

	Shutdown

	Maintenance

	Troubleshooting

	Concepts
	Source Stamps

	Version Control Systems

	Changes

	Scheduling Builds

	BuildSets

	BuildRequests

	Builders

	Build Factories

	Build Slaves

	Builds

	Users

	Build Properties

	Multiple-Codebase Builds

	Configuration
	Configuring Buildbot

	Global Configuration

	Change Sources

	Schedulers

	Buildslaves

	Builder Configuration

	Build Factories

	Properties

	Build Steps

	Interlocks

	Status Targets

	Customization
	Programmatic Configuration Generation

	Merge Request Functions

	Builder Priority Functions

	Build Priority Functions

	Customizing SVNPoller

	Writing Change Sources

	Writing a New Latent Buildslave Implementation

	Custom Build Classes

	Factory Workdir Functions

	Writing New BuildSteps

	Writing New Status Plugins

	New-Style Build Steps
	Summary of Changes

	Rewriting start

	Newly Asynchronous Methods

	Properties

	Log Objects

	Status Strings

	Statistics

	Command-line Tool
	buildbot

	buildslave

	Resources

	Optimization
	Properties load speedup

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

Introduction

BuildBot is a system to automate the compile/test cycle required by most
software projects to validate code changes. By automatically rebuilding and
testing the tree each time something has changed, build problems are
pinpointed quickly, before other developers are inconvenienced by the
failure. The guilty developer can be identified and harassed without human
intervention. By running the builds on a variety of platforms, developers
who do not have the facilities to test their changes everywhere before
checkin will at least know shortly afterwards whether they have broken the
build or not. Warning counts, lint checks, image size, compile time, and
other build parameters can be tracked over time, are more visible, and
are therefore easier to improve.

The overall goal is to reduce tree breakage and provide a platform to
run tests or code-quality checks that are too annoying or pedantic for
any human to waste their time with. Developers get immediate (and
potentially public) feedback about their changes, encouraging them to
be more careful about testing before checkin.

Features:

	run builds on a variety of slave platforms

	arbitrary build process: handles projects using C, Python, whatever

	minimal host requirements: Python and Twisted

	slaves can be behind a firewall if they can still do checkout

	status delivery through web page, email, IRC, other protocols

	track builds in progress, provide estimated completion time

	flexible configuration by subclassing generic build process classes

	debug tools to force a new build, submit fake Changes,
query slave status

	released under the GPL [http://opensource.org/licenses/gpl-2.0.php]

History and Philosophy

The Buildbot was inspired by a similar project built for a development
team writing a cross-platform embedded system. The various components
of the project were supposed to compile and run on several flavors of
unix (linux, solaris, BSD), but individual developers had their own
preferences and tended to stick to a single platform. From time to
time, incompatibilities would sneak in (some unix platforms want to
use string.h, some prefer strings.h), and then the tree
would compile for some developers but not others. The buildbot was
written to automate the human process of walking into the office,
updating a tree, compiling (and discovering the breakage), finding the
developer at fault, and complaining to them about the problem they had
introduced. With multiple platforms it was difficult for developers to
do the right thing (compile their potential change on all platforms);
the buildbot offered a way to help.

Another problem was when programmers would change the behavior of a
library without warning its users, or change internal aspects that
other code was (unfortunately) depending upon. Adding unit tests to
the codebase helps here: if an application's unit tests pass despite
changes in the libraries it uses, you can have more confidence that
the library changes haven't broken anything. Many developers
complained that the unit tests were inconvenient or took too long to
run: having the buildbot run them reduces the developer's workload to
a minimum.

In general, having more visibility into the project is always good,
and automation makes it easier for developers to do the right thing.
When everyone can see the status of the project, developers are
encouraged to keep the tree in good working order. Unit tests that
aren't run on a regular basis tend to suffer from bitrot just like
code does: exercising them on a regular basis helps to keep them
functioning and useful.

The current version of the Buildbot is additionally targeted at
distributed free-software projects, where resources and platforms are
only available when provided by interested volunteers. The buildslaves
are designed to require an absolute minimum of configuration, reducing
the effort a potential volunteer needs to expend to be able to
contribute a new test environment to the project. The goal is for
anyone who wishes that a given project would run on their favorite
platform should be able to offer that project a buildslave, running on
that platform, where they can verify that their portability code
works, and keeps working.

System Architecture

The Buildbot consists of a single buildmaster and one or more
buildslaves, connected in a star topology. The buildmaster
makes all decisions about what, when, and how to build. It sends
commands to be run on the build slaves, which simply execute the
commands and return the results. (certain steps involve more local
decision making, where the overhead of sending a lot of commands back
and forth would be inappropriate, but in general the buildmaster is
responsible for everything).

The buildmaster is usually fed Changes by some sort of version control
system (Change Sources), which may cause builds to be run. As the
builds are performed, various status messages are produced, which are then sent
to any registered Status Targets.

[image: Overview Diagram]The buildmaster is configured and maintained by the buildmaster
admin, who is generally the project team member responsible for
build process issues. Each buildslave is maintained by a buildslave
admin, who do not need to be quite as involved. Generally slaves are
run by anyone who has an interest in seeing the project work well on
their favorite platform.

BuildSlave Connections

The buildslaves are typically run on a variety of separate machines,
at least one per platform of interest. These machines connect to the
buildmaster over a TCP connection to a publically-visible port. As a
result, the buildslaves can live behind a NAT box or similar
firewalls, as long as they can get to buildmaster. The TCP connections
are initiated by the buildslave and accepted by the buildmaster, but
commands and results travel both ways within this connection. The
buildmaster is always in charge, so all commands travel exclusively
from the buildmaster to the buildslave.

To perform builds, the buildslaves must typically obtain source code
from a CVS/SVN/etc repository. Therefore they must also be able to
reach the repository. The buildmaster provides instructions for
performing builds, but does not provide the source code itself.

[image: BuildSlave Connections]

Buildmaster Architecture

The buildmaster consists of several pieces:

[image: Buildmaster Architecture]
	Change Sources

	Which create a Change object each time something is
modified in the VC repository. Most ChangeSources listen for messages
from a hook script of some sort. Some sources actively poll the
repository on a regular basis. All Changes are fed to the
Schedulers.

	Schedulers

	Which decide when builds should be performed. They collect
Changes into BuildRequests, which are then queued for delivery to
Builders until a buildslave is available.

	Builders

	Which control exactly how each build is performed
(with a series of BuildSteps, configured in a BuildFactory). Each
Build is run on a single buildslave.

	Status plugins

	Which deliver information about the build results
through protocols like HTTP, mail, and IRC.

Each Builder is configured with a list of BuildSlaves that it will use
for its builds. These buildslaves are expected to behave identically:
the only reason to use multiple BuildSlaves for a single Builder is to
provide a measure of load-balancing.

Within a single BuildSlave, each Builder creates its own SlaveBuilder
instance. These SlaveBuilders operate independently from each other.
Each gets its own base directory to work in. It is quite common to
have many Builders sharing the same buildslave. For example, there
might be two buildslaves: one for i386, and a second for PowerPC.
There may then be a pair of Builders that do a full compile/test run,
one for each architecture, and a lone Builder that creates snapshot
source tarballs if the full builders complete successfully. The full
builders would each run on a single buildslave, whereas the tarball
creation step might run on either buildslave (since the platform
doesn't matter when creating source tarballs). In this case, the
mapping would look like:

Builder(full-i386) -> BuildSlaves(slave-i386)
Builder(full-ppc) -> BuildSlaves(slave-ppc)
Builder(source-tarball) -> BuildSlaves(slave-i386, slave-ppc)

and each BuildSlave would have two SlaveBuilders inside it, one for a
full builder, and a second for the source-tarball builder.

Once a SlaveBuilder is available, the Builder pulls one or more
BuildRequests off its incoming queue. (It may pull more than one if it
determines that it can merge the requests together; for example, there
may be multiple requests to build the current HEAD revision). These
requests are merged into a single Build instance, which includes the
SourceStamp that describes what exact version of the source code
should be used for the build. The Build is then randomly assigned to a
free SlaveBuilder and the build begins.

The behaviour when BuildRequests are merged can be customized,
Merging Build Requests.

Status Delivery Architecture

The buildmaster maintains a central Status object, to which various
status plugins are connected. Through this Status object, a full
hierarchy of build status objects can be obtained.

[image: Status Delivery]The configuration file controls which status plugins are active. Each
status plugin gets a reference to the top-level Status object. From
there they can request information on each Builder, Build, Step, and
LogFile. This query-on-demand interface is used by the html.Waterfall
plugin to create the main status page each time a web browser hits the
main URL.

The status plugins can also subscribe to hear about new Builds as they
occur: this is used by the MailNotifier to create new email messages
for each recently-completed Build.

The Status object records the status of old builds on disk in the
buildmaster's base directory. This allows it to return information
about historical builds.

There are also status objects that correspond to Schedulers and
BuildSlaves. These allow status plugins to report information about
upcoming builds, and the online/offline status of each buildslave.

Control Flow

A day in the life of the buildbot:

	A developer commits some source code changes to the repository. A hook
script or commit trigger of some sort sends information about this
change to the buildmaster through one of its configured Change
Sources. This notification might arrive via email, or over a network
connection (either initiated by the buildmaster as it subscribes
to changes, or by the commit trigger as it pushes Changes towards the
buildmaster). The Change contains information about who made the
change, what files were modified, which revision contains the change,
and any checkin comments.

	The buildmaster distributes this change to all of its configured
Schedulers. Any important changes cause the tree-stable-timer
to be started, and the Change is added to a list of those that will go
into a new Build. When the timer expires, a Build is started on each
of a set of configured Builders, all compiling/testing the same source
code. Unless configured otherwise, all Builds run in parallel on the
various buildslaves.

	The Build consists of a series of Steps. Each Step causes some number
of commands to be invoked on the remote buildslave associated with
that Builder. The first step is almost always to perform a checkout of
the appropriate revision from the same VC system that produced the
Change. The rest generally perform a compile and run unit tests. As
each Step runs, the buildslave reports back command output and return
status to the buildmaster.

	As the Build runs, status messages like "Build Started", "Step
Started", "Build Finished", etc, are published to a collection of
Status Targets. One of these targets is usually the HTML Waterfall
display, which shows a chronological list of events, and summarizes
the results of the most recent build at the top of each column.
Developers can periodically check this page to see how their changes
have fared. If they see red, they know that they've made a mistake and
need to fix it. If they see green, they know that they've done their
duty and don't need to worry about their change breaking anything.

	If a MailNotifier status target is active, the completion of a build
will cause email to be sent to any developers whose Changes were
incorporated into this Build. The MailNotifier can be configured to
only send mail upon failing builds, or for builds which have just
transitioned from passing to failing. Other status targets can provide
similar real-time notification via different communication channels,
like IRC.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

Installation

Buildbot Components

Buildbot is shipped in two components: the buildmaster (called buildbot
for legacy reasons) and the buildslave. The buildslave component has far fewer
requirements, and is more broadly compatible than the buildmaster. You will
need to carefully pick the environment in which to run your buildmaster, but
the buildslave should be able to run just about anywhere.

It is possible to install the buildmaster and buildslave on the same system,
although for anything but the smallest installation this arrangement will not
be very efficient.

Requirements

Common Requirements

At a bare minimum, you'll need the following for both the buildmaster and a
buildslave:

Python: http://www.python.org

Buildbot requires Python-2.5 or later on the master, although Python-2.7 is
recommended. The slave run on Python-2.4.

Twisted: http://twistedmatrix.com

Buildbot requires Twisted-11.0.0 or later on the master, and Twisted-8.1.0 on the slave.
In upcoming versions of Buildbot, a newer Twisted will also be required on the slave.
As always, the most recent version is recommended.

In some cases, Twisted is delivered as a collection of subpackages. You'll
need at least "Twisted" (the core package), and you'll also want
TwistedMail [http://twistedmatrix.com/trac/wiki/TwistedMail], TwistedWeb [http://twistedmatrix.com/trac/wiki/TwistedWeb], and TwistedWords [http://twistedmatrix.com/trac/wiki/TwistedWords] (for sending email,
serving a web status page, and delivering build status via IRC,
respectively). You might also want TwistedConch [http://twistedmatrix.com/trac/wiki/TwistedConch] (for the encrypted Manhole
debug port). Note that Twisted requires ZopeInterface to be installed as
well.

Of course, your project's build process will impose additional
requirements on the buildslaves. These hosts must have all the tools
necessary to compile and test your project's source code.

Windows Support

Buildbot - both master and slave - runs well natively on Windows. The slave runs
well on Cygwin, but because of problems with SQLite on Cygwin, the master does
not.

Buildbot's windows testing is limited to the most recent Twisted and Python
versions. For best results, use the most recent available versions of these
libraries on Windows.

Pywin32: http://sourceforge.net/projects/pywin32/

Twisted requires PyWin32 in order to spawn processes on Windows.

Buildmaster Requirements

sqlite3: http://www.sqlite.org

Buildbot requires SQLite to store its state. Version 3.7.0 or higher is
recommended, although Buildbot will run against earlier versions -- at the
risk of "Database is locked" errors. The minimum version is 3.4.0, below
which parallel database queries and schema introspection fail.

pysqlite: http://pypi.python.org/pypi/pysqlite

The SQLite Python package is required for Python-2.5 and earlier (it is already
included in Python-2.5 and later, but the version in Python-2.5 has nasty bugs)

simplejson: http://pypi.python.org/pypi/simplejson

The simplejson package is required for Python-2.5 and earlier (it is already
included as json in Python-2.6 and later)

Jinja2: http://jinja.pocoo.org/

Buildbot requires Jinja version 2.1 or higher.

Jinja2 is a general purpose templating language and is used by Buildbot
to generate the HTML output.

SQLAlchemy: http://www.sqlalchemy.org/

Buildbot requires SQLAlchemy 0.6.0 or higher. SQLAlchemy allows Buildbot to
build database schemas and queries for a wide variety of database systems.

SQLAlchemy-Migrate: http://code.google.com/p/sqlalchemy-migrate/

Buildbot requires one of the following SQLAlchemy-Migrate versions:
0.6.1, 0.7.0, and 0.7.1. Sadly, Migrate's inter-version compatibility is not
good, so other versions - newer or older - are unlikely to work correctly.
Buildbot uses SQLAlchemy-Migrate to manage schema upgrades from version to
version.

Python-Dateutil: http://labix.org/python-dateutil

The Nightly scheduler requires Python-Dateutil version 1.5 (the last version
to support Python-2.x). This is a small, pure-python library. Buildbot will
function properly without it if the Nightlys scheduler is not used.

Installing the code

The Distribution Package

Buildbot comes in two parts: buildbot (the master) and
buildbot-slave (the slave). The two can be installed individually or
together.

Installation From PyPI

The preferred way to install Buildbot is using pip. For the master:

pip install buildbot

and for the slave:

pip install buildbot-slave

When using pip to install instead of distribution specific package manangers,
e.g. via apt-get or ports, it is simpler to choose exactly which version one wants
to use. It may however be easier to install via distribution specific package mangers
but note that they may provide an earlier version than what is available via pip.

Installation From Tarballs

Buildbot and Buildslave are installed using the standard Python
distutils [http://docs.python.org/library/distutils.html] process. For either
component, after unpacking the tarball, the process is:

python setup.py build
python setup.py install

where the install step may need to be done as root. This will put the bulk of
the code in somewhere like /usr/lib/pythonx.y/site-packages/buildbot. It
will also install the buildbot command-line tool in
/usr/bin/buildbot.

If the environment variable $NO_INSTALL_REQS is set to 1, then
setup.py will not try to install Buildbot's requirements. This is
usually only useful when building a Buildbot package.

To test this, shift to a different directory (like /tmp), and run:

buildbot --version
or
buildslave --version

If it shows you the versions of Buildbot and Twisted, the install went
ok. If it says "no such command" or it gets an ImportError
when it tries to load the libraries, then something went wrong.
pydoc buildbot is another useful diagnostic tool.

Windows users will find these files in other places. You will need to
make sure that Python can find the libraries, and will probably find
it convenient to have buildbot on your PATH.

Installation in a Virtualenv

If you cannot or do not wish to install the buildbot into a site-wide
location like /usr or /usr/local, you can also install
it into the account's home directory or any other location using a tool like
virtualenv [http://pypi.python.org/pypi/virtualenv].

Running Buildbot's Tests (optional)

If you wish, you can run the buildbot unit test suite. First, ensure you have
the mock [http://pypi.python.org/pypi/mock] Python module installed from
PyPi. This module is not required for ordinary Buildbot operation - only to
run the tests. Note that this is not the same as the Fedora mock
package! You can check with

python -mmock

Then, run the tests:

PYTHONPATH=. trial buildbot.test
or
PYTHONPATH=. trial buildslave.test

Nothing should fail, although a few might be skipped.

If any of the tests fail for reasons other than a missing mock, you
should stop and investigate the cause before continuing the installation
process, as it will probably be easier to track down the bug early. In most
cases, the problem is incorrectly installed Python modules or a badly
configured PYTHONPATH. This may be a good time to contact the Buildbot
developers for help.

Creating a buildmaster

As you learned earlier (System Architecture), the buildmaster
runs on a central host (usually one that is publicly visible, so
everybody can check on the status of the project), and controls all
aspects of the buildbot system

You will probably wish to create a separate user account for the buildmaster,
perhaps named buildmaster. Do not run the buildmaster as root!

You need to choose a directory for the buildmaster, called the
basedir. This directory will be owned by the buildmaster. It will
contain configuration, the database, and status information - including
logfiles. On a large buildmaster this directory will see a lot of activity, so
it should be on a disk with adequate space and speed.

Once you've picked a directory, use the buildbot
create-master command to create the directory and populate it with
startup files:

buildbot create-master -r basedir

You will need to create a configuration file
before starting the buildmaster. Most of the rest of this manual is
dedicated to explaining how to do this. A sample configuration file is
placed in the working directory, named master.cfg.sample, which
can be copied to master.cfg and edited to suit your purposes.

(Internal details: This command creates a file named
buildbot.tac that contains all the state necessary to create
the buildmaster. Twisted has a tool called twistd which can use
this .tac file to create and launch a buildmaster instance. twistd
takes care of logging and daemonization (running the program in the
background). /usr/bin/buildbot is a front end which runs twistd
for you.)

Using A Database Server

If you want to use a database server (e.g., MySQL or Postgres) as the database
backend for your Buildbot, add the --db option to the create-master
invocation to specify the connection string for
the database, and make sure that the same URL appears in the db_url of the
db parameter in your configuration file.

Additional Requirements

Depending on the selected database, further Python packages will be required.
Consult the SQLAlchemy dialect list for a full description. The most common
choice for MySQL is

MySQL-python: http://mysql-python.sourceforge.net/

To communicate with MySQL, SQLAlchemy requires MySQL-python. Any reasonably
recent version of MySQL-python should suffice.

The most common choice for Postgres is

Psycopg: http://initd.org/psycopg/

SQLAlchemy uses Psycopg to communicate with Postgres. Any reasonably
recent version should suffice.

Buildmaster Options

This section lists options to the create-master command.
You can also type buildbot create-master --help for an up-to-the-moment summary.

--force

With this option, @command{create-master} will re-use an existing master
directory.

--no-logrotate

This disables internal buildslave log management mechanism. With this option
buildslave does not override the default logfile name and its behaviour giving
a possibility to control those with command-line options of twistd daemon.

--relocatable

This creates a "relocatable" buildbot.tac, which uses relative paths instead
of absolute paths, so that the buildmaster directory can be moved about.

--config

The name of the configuration file to use. This configuration file need not
reside in the buildmaster directory.

--log-size

This is the size in bytes when to rotate the Twisted log files. The default is
10MiB.

--log-count

This is the number of log rotations to keep around. You can either
specify a number or None to keep all @file{twistd.log} files
around. The default is 10.

--db

The database that the Buildmaster should use. Note that the same value must be
added to the configuration file.

Upgrading an Existing Buildmaster

If you have just installed a new version of the Buildbot code, and you
have buildmasters that were created using an older version, you'll
need to upgrade these buildmasters before you can use them. The
upgrade process adds and modifies files in the buildmaster's base
directory to make it compatible with the new code.

buildbot upgrade-master basedir

This command will also scan your master.cfg file for
incompatibilities (by loading it and printing any errors or deprecation
warnings that occur). Each buildbot release tries to be compatible
with configurations that worked cleanly (i.e. without deprecation
warnings) on the previous release: any functions or classes that are
to be removed will first be deprecated in a release, to give you a
chance to start using the replacement.

The upgrade-master command is idempotent. It is safe to run it
multiple times. After each upgrade of the buildbot code, you should
use upgrade-master on all your buildmasters.

In general, Buildbot slaves and masters can be upgraded independently, although
some new features will not be available, depending on the master and slave
versions.

Beyond this general information, read all of the sections below that apply to
versions through which you are upgrading.

Version-specific Notes

Upgrading a Buildmaster to Buildbot-0.7.6

The 0.7.6 release introduced the public_html/ directory, which
contains index.html and other files served by the
WebStatus and Waterfall status displays. The
upgrade-master command will create these files if they do not
already exist. It will not modify existing copies, but it will write a
new copy in e.g. index.html.new if the new version differs from
the version that already exists.

Upgrading a Buildmaster to Buildbot-0.8.0

Buildbot-0.8.0 introduces a database backend, which is SQLite by default. The
upgrade-master command will automatically create and populate this
database with the changes the buildmaster has seen. Note that, as of this
release, build history is not contained in the database, and is thus not
migrated.

The upgrade process renames the Changes pickle ($basedir/changes.pck) to
changes.pck.old once the upgrade is complete. To reverse the upgrade,
simply downgrade Buildbot and move this file back to its original name. You
may also wish to delete the state database (state.sqlite).

Upgrading into a non-SQLite database

If you are not using sqlite, you will need to add an entry into your
master.cfg to reflect the database version you are using. The upgrade
process does not edit your master.cfg for you. So something like:

for using mysql:
c['db_url'] = 'mysql://bbuser:<password>@localhost/buildbot'

Once the parameter has been added, invoke upgrade-master.
This will extract the DB url from your configuration file.

buildbot upgrade-master

See Database Specification for more options to specify a database.

Change Encoding Issues

The upgrade process assumes that strings in your Changes pickle are encoded in
UTF-8 (or plain ASCII). If this is not the case, and if there are non-UTF-8
characters in the pickle, the upgrade will fail with a suitable error message.
If this occurs, you have two options. If the change history is not important
to your purpose, you can simply delete changes.pck.

If you would like to keep the change history, then you will need to figure out
which encoding is in use, and use
contrib/fix_changes_pickle_encoding.py (Contrib Scripts)
to rewrite the changes pickle into Unicode before upgrading the master. A
typical invocation (with Mac-Roman encoding) might look like:

$ python $buildbot/contrib/fix_changes_pickle_encoding.py changes.pck macroman
decoding bytestrings in changes.pck using macroman
converted 11392 strings
backing up changes.pck to changes.pck.old

If your Changes pickle uses multiple encodings, you're on your own, but the
script in contrib may provide a good starting point for the fix.

Upgrading a Buildmaster to Later Versions

Up to Buildbot version 0.8.9, no further steps beyond those described
above are required.

Creating a buildslave

Typically, you will be adding a buildslave to an existing buildmaster,
to provide additional architecture coverage. The buildbot
administrator will give you several pieces of information necessary to
connect to the buildmaster. You should also be somewhat familiar with
the project being tested, so you can troubleshoot build problems
locally.

The buildbot exists to make sure that the project's stated how to
build it process actually works. To this end, the buildslave should
run in an environment just like that of your regular developers.
Typically the project build process is documented somewhere
(README, INSTALL, etc), in a document that should
mention all library dependencies and contain a basic set of build
instructions. This document will be useful as you configure the host
and account in which the buildslave runs.

Here's a good checklist for setting up a buildslave:

	Set up the account

It is recommended (although not mandatory) to set up a separate user
account for the buildslave. This account is frequently named
buildbot or buildslave. This serves to isolate your
personal working environment from that of the slave's, and helps to
minimize the security threat posed by letting possibly-unknown
contributors run arbitrary code on your system. The account should
have a minimum of fancy init scripts.

	Install the buildbot code

Follow the instructions given earlier (Installing the code).
If you use a separate buildslave account, and you didn't install the
buildbot code to a shared location, then you will need to install it
with --home=~ for each account that needs it.

	Set up the host

Make sure the host can actually reach the buildmaster. Usually the
buildmaster is running a status webserver on the same machine, so
simply point your web browser at it and see if you can get there.
Install whatever additional packages or libraries the project's
INSTALL document advises. (or not: if your buildslave is supposed to
make sure that building without optional libraries still works, then
don't install those libraries).

Again, these libraries don't necessarily have to be installed to a
site-wide shared location, but they must be available to your build
process. Accomplishing this is usually very specific to the build
process, so installing them to /usr or /usr/local is
usually the best approach.

	Test the build process

Follow the instructions in the INSTALL document, in the buildslave's
account. Perform a full CVS (or whatever) checkout, configure, make,
run tests, etc. Confirm that the build works without manual fussing.
If it doesn't work when you do it by hand, it will be unlikely to work
when the buildbot attempts to do it in an automated fashion.

	Choose a base directory

This should be somewhere in the buildslave's account, typically named
after the project which is being tested. The buildslave will not touch
any file outside of this directory. Something like ~/Buildbot
or ~/Buildslaves/fooproject is appropriate.

	Get the buildmaster host/port, botname, and password

When the buildbot admin configures the buildmaster to accept and use
your buildslave, they will provide you with the following pieces of
information:

	your buildslave's name

	the password assigned to your buildslave

	the hostname and port number of the buildmaster, i.e. buildbot.example.org:8007

	Create the buildslave

Now run the 'buildslave' command as follows:

buildslave create-slave BASEDIR MASTERHOST:PORT SLAVENAME PASSWORD

This will create the base directory and a collection of files inside,
including the buildbot.tac file that contains all the
information you passed to the buildbot command.

	Fill in the hostinfo files

When it first connects, the buildslave will send a few files up to the
buildmaster which describe the host that it is running on. These files
are presented on the web status display so that developers have more
information to reproduce any test failures that are witnessed by the
buildbot. There are sample files in the info subdirectory of
the buildbot's base directory. You should edit these to correctly
describe you and your host.

BASEDIR/info/admin should contain your name and email address.
This is the buildslave admin address, and will be visible from the
build status page (so you may wish to munge it a bit if
address-harvesting spambots are a concern).

BASEDIR/info/host should be filled with a brief description of
the host: OS, version, memory size, CPU speed, versions of relevant
libraries installed, and finally the version of the buildbot code
which is running the buildslave.

The optional BASEDIR/info/access_uri can specify a URI which will
connect a user to the machine. Many systems accept ssh://hostname URIs
for this purpose.

If you run many buildslaves, you may want to create a single
~buildslave/info file and share it among all the buildslaves
with symlinks.

Buildslave Options

There are a handful of options you might want to use when creating the
buildslave with the buildslave create-slave <options> DIR <params>
command. You can type buildslave create-slave --help for a summary.
To use these, just include them on the buildslave create-slave
command line, like this

buildslave create-slave --umask=022 ~/buildslave buildmaster.example.org:42012 {myslavename} {mypasswd}

	
--no-logrotate

	This disables internal buildslave log management mechanism. With this option
buildslave does not override the default logfile name and its behaviour giving
a possibility to control those with command-line options of twistd
daemon.

	
--usepty

	This is a boolean flag that tells the buildslave whether to launch child
processes in a PTY or with regular pipes (the default) when the master does not
specify. This option is deprecated, as this particular parameter is better
specified on the master.

	
--umask

	This is a string (generally an octal representation of an integer)
which will cause the buildslave process' umask value to be set
shortly after initialization. The twistd daemonization utility
forces the umask to 077 at startup (which means that all files created
by the buildslave or its child processes will be unreadable by any
user other than the buildslave account). If you want build products to
be readable by other accounts, you can add --umask=022 to tell
the buildslave to fix the umask after twistd clobbers it. If you want
build products to be writable by other accounts too, use
--umask=000, but this is likely to be a security problem.

	
--keepalive

	This is a number that indicates how frequently keepalive messages
should be sent from the buildslave to the buildmaster, expressed in
seconds. The default (600) causes a message to be sent to the
buildmaster at least once every 10 minutes. To set this to a lower
value, use e.g. --keepalive=120.

If the buildslave is behind a NAT box or stateful firewall, these
messages may help to keep the connection alive: some NAT boxes tend to
forget about a connection if it has not been used in a while. When
this happens, the buildmaster will think that the buildslave has
disappeared, and builds will time out. Meanwhile the buildslave will
not realize than anything is wrong.

	
--maxdelay

	This is a number that indicates the maximum amount of time the
buildslave will wait between connection attempts, expressed in
seconds. The default (300) causes the buildslave to wait at most 5
minutes before trying to connect to the buildmaster again.

	
--log-size

	This is the size in bytes when to rotate the Twisted log files.

	
--log-count

	This is the number of log rotations to keep around. You can either
specify a number or None to keep all twistd.log files
around. The default is 10.

	
--allow-shutdown

	Can also be passed directly to the BuildSlave constructor in buildbot.tac. If
set, it allows the buildslave to initiate a graceful shutdown, meaning that it
will ask the master to shut down the slave when the current build, if any, is
complete.

Setting allow_shutdown to file will cause the buildslave to watch
shutdown.stamp in basedir for updates to its mtime. When the mtime changes,
the slave will request a graceful shutdown from the master. The file does not
need to exist prior to starting the slave.

Setting allow_shutdown to signal will set up a SIGHUP handler to start a
graceful shutdown. When the signal is received, the slave will request a
graceful shutdown from the master.

The default value is None, in which case this feature will be disabled.

Both master and slave must be at least version 0.8.3 for this feature to work.

Other Buildslave Configuration

	unicode_encoding

	This represents the encoding that buildbot should use when converting unicode
commandline arguments into byte strings in order to pass to the operating
system when spawning new processes.

The default value is what Python's sys.getfilesystemencoding returns, which
on Windows is 'mbcs', on Mac OSX is 'utf-8', and on Unix depends on your locale
settings.

If you need a different encoding, this can be changed in your build slave's
buildbot.tac file by adding a unicode_encoding
argument to the BuildSlave constructor.

s = BuildSlave(buildmaster_host, port, slavename, passwd, basedir,
 keepalive, usepty, umask=umask, maxdelay=maxdelay,
 unicode_encoding='utf-8', allow_shutdown='signal')

Upgrading an Existing Buildslave

If you have just installed a new version of Buildbot-slave, you may need to
take some steps to upgrade it. If you are upgrading to version 0.8.2 or later,
you can run

buildslave upgrade-slave /path/to/buildslave/dir

Version-specific Notes

Upgrading a Buildslave to Buildbot-slave-0.8.1

Before Buildbot version 0.8.1, the Buildbot master and slave were part of the
same distribution. As of version 0.8.1, the buildslave is a separate
distribution.

As of this release, you will need to install buildbot-slave to run a slave.

Any automatic startup scripts that had run buildbot start for previous versions
should be changed to run buildslave start instead.

If you are running a version later than 0.8.1, then you can skip the remainder
of this section: the `upgrade-slave command will take care of this. If
you are upgrading directly to 0.8.1, read on.

The existing buildbot.tac for any buildslaves running older versions
will need to be edited or replaced. If the loss of cached buildslave state
(e.g., for Source steps in copy mode) is not problematic, the easiest solution
is to simply delete the slave directory and re-run buildslave
create-slave.

If deleting the slave directory is problematic, the change to
buildbot.tac is simple. On line 3, replace

from buildbot.slave.bot import BuildSlave

with

from buildslave.bot import BuildSlave

After this change, the buildslave should start as usual.

Launching the daemons

Both the buildmaster and the buildslave run as daemon programs. To
launch them, pass the working directory to the buildbot
and buildslave commands, as appropriate:

start a master
buildbot start [BASEDIR]
start a slave
buildslave start [SLAVE_BASEDIR]

The BASEDIR is option and can be omitted if the current directory
contains the buildbot configuration (the buildbot.tac file).

buildbot start

This command will start the daemon and then return, so normally it
will not produce any output. To verify that the programs are indeed
running, look for a pair of files named twistd.log and
twistd.pid that should be created in the working directory.
twistd.pid contains the process ID of the newly-spawned daemon.

When the buildslave connects to the buildmaster, new directories will
start appearing in its base directory. The buildmaster tells the slave
to create a directory for each Builder which will be using that slave.
All build operations are performed within these directories: CVS
checkouts, compiles, and tests.

Once you get everything running, you will want to arrange for the
buildbot daemons to be started at boot time. One way is to use
cron, by putting them in a @reboot crontab entry [1]

@reboot buildbot start [BASEDIR]

When you run crontab to set this up, remember to do it as
the buildmaster or buildslave account! If you add this to your crontab
when running as your regular account (or worse yet, root), then the
daemon will run as the wrong user, quite possibly as one with more
authority than you intended to provide.

It is important to remember that the environment provided to cron jobs
and init scripts can be quite different that your normal runtime.
There may be fewer environment variables specified, and the PATH may
be shorter than usual. It is a good idea to test out this method of
launching the buildslave by using a cron job with a time in the near
future, with the same command, and then check twistd.log to
make sure the slave actually started correctly. Common problems here
are for /usr/local or ~/bin to not be on your
PATH, or for PYTHONPATH to not be set correctly.
Sometimes HOME is messed up too.

Some distributions may include conveniences to make starting buildbot
at boot time easy. For instance, with the default buildbot package in
Debian-based distributions, you may only need to modify
/etc/default/buildbot (see also /etc/init.d/buildbot, which
reads the configuration in /etc/default/buildbot).

Buildbot also comes with its own init scripts that provide support for
controlling multi-slave and multi-master setups (mostly because they are based
on the init script from the Debian package). With a little modification these
scripts can be used both on Debian and RHEL-based distributions and may thus
prove helpful to package maintainers who are working on buildbot (or those that
haven't yet split buildbot into master and slave packages).

install as /etc/default/buildslave
or /etc/sysconfig/buildslave
master/contrib/init-scripts/buildslave.default

install as /etc/default/buildmaster
or /etc/sysconfig/buildmaster
master/contrib/init-scripts/buildmaster.default

install as /etc/init.d/buildslave
slave/contrib/init-scripts/buildslave.init.sh

install as /etc/init.d/buildmaster
slave/contrib/init-scripts/buildmaster.init.sh

... and tell sysvinit about them
chkconfig buildmaster reset
... or
update-rc.d buildmaster defaults

Logfiles

While a buildbot daemon runs, it emits text to a logfile, named
twistd.log. A command like tail -f twistd.log is useful
to watch the command output as it runs.

The buildmaster will announce any errors with its configuration file
in the logfile, so it is a good idea to look at the log at startup
time to check for any problems. Most buildmaster activities will cause
lines to be added to the log.

Shutdown

To stop a buildmaster or buildslave manually, use:

buildbot stop [BASEDIR]
or
buildslave stop [SLAVE_BASEDIR]

This simply looks for the twistd.pid file and kills whatever
process is identified within.

At system shutdown, all processes are sent a SIGKILL. The
buildmaster and buildslave will respond to this by shutting down
normally.

The buildmaster will respond to a SIGHUP by re-reading its
config file. Of course, this only works on Unix-like systems with
signal support, and won't work on Windows. The following shortcut is
available:

buildbot reconfig [BASEDIR]

When you update the Buildbot code to a new release, you will need to
restart the buildmaster and/or buildslave before it can take advantage
of the new code. You can do a buildbot stop BASEDIR and
buildbot start BASEDIR in quick succession, or you can
use the restart shortcut, which does both steps for you:

buildbot restart [BASEDIR]

Buildslaves can similarly be restarted with:

buildslave restart [BASEDIR]

There are certain configuration changes that are not handled cleanly
by buildbot reconfig. If this occurs, buildbot restart
is a more robust tool to fully switch over to the new configuration.

buildbot restart may also be used to start a stopped Buildbot
instance. This behaviour is useful when writing scripts that stop, start
and restart Buildbot.

A buildslave may also be gracefully shutdown from the
WebStatus status plugin. This is useful to shutdown a
buildslave without interrupting any current builds. The buildmaster
will wait until the buildslave is finished all its current builds, and
will then tell the buildslave to shutdown.

Maintenance

The buildmaster can be configured to send out email notifications when a
slave has been offline for a while. Be sure to configure the buildmaster
with a contact email address for each slave so these notifications are sent
to someone who can bring it back online.

If you find you can no longer provide a buildslave to the project, please
let the project admins know, so they can put out a call for a
replacement.

The Buildbot records status and logs output continually, each time a
build is performed. The status tends to be small, but the build logs
can become quite large. Each build and log are recorded in a separate
file, arranged hierarchically under the buildmaster's base directory.
To prevent these files from growing without bound, you should
periodically delete old build logs. A simple cron job to delete
anything older than, say, two weeks should do the job. The only trick
is to leave the buildbot.tac and other support files alone, for
which find's -mindepth argument helps skip everything in the
top directory. You can use something like the following:

@weekly cd BASEDIR && find . -mindepth 2 i-path './public_html/*' \
 -prune -o -type f -mtime +14 -exec rm {} \;
@weekly cd BASEDIR && find twistd.log* -mtime +14 -exec rm {} \;

Alternatively, you can configure a maximum number of old logs to be kept
using the --log-count command line option when running buildslave
create-slave or buildbot create-master.

Troubleshooting

Here are a few hints on diagnosing common problems.

Starting the buildslave

Cron jobs are typically run with a minimal shell (/bin/sh, not
/bin/bash), and tilde expansion is not always performed in such
commands. You may want to use explicit paths, because the PATH
is usually quite short and doesn't include anything set by your
shell's startup scripts (.profile, .bashrc, etc). If
you've installed buildbot (or other Python libraries) to an unusual
location, you may need to add a PYTHONPATH specification (note
that Python will do tilde-expansion on PYTHONPATH elements by
itself). Sometimes it is safer to fully-specify everything:

@reboot PYTHONPATH=~/lib/python /usr/local/bin/buildbot \
 start /usr/home/buildbot/basedir

Take the time to get the @reboot job set up. Otherwise, things will work
fine for a while, but the first power outage or system reboot you have will
stop the buildslave with nothing but the cries of sorrowful developers to
remind you that it has gone away.

Connecting to the buildmaster

If the buildslave cannot connect to the buildmaster, the reason should
be described in the twistd.log logfile. Some common problems
are an incorrect master hostname or port number, or a mistyped bot
name or password. If the buildslave loses the connection to the
master, it is supposed to attempt to reconnect with an
exponentially-increasing backoff. Each attempt (and the time of the
next attempt) will be logged. If you get impatient, just manually stop
and re-start the buildslave.

When the buildmaster is restarted, all slaves will be disconnected, and will
attempt to reconnect as usual. The reconnect time will depend upon how long the
buildmaster is offline (i.e. how far up the exponential backoff curve the
slaves have travelled). Again, buildslave restart BASEDIR will
speed up the process.

	[1]	This @reboot syntax is understood by Vixie cron, which is the flavor
usually provided with Linux systems. Other unices may have a cron that
doesn't understand @reboot:

Contrib Scripts

While some features of Buildbot are included in the distribution, others are
only available in contrib/ in the source directory. The latest versions
of such scripts are available at
http://github.com/buildbot/buildbot/tree/master/master/contrib.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

Concepts

This chapter defines some of the basic concepts that the Buildbot
uses. You'll need to understand how the Buildbot sees the world to
configure it properly.

Source Stamps

Source code comes from repositories, provided by version control systems.
Repositories are generally identified by URLs, e.g., git://github.com/buildbot/buildbot.git.

In these days of distributed version control systems, the same codebase may appear in multiple repositories.
For example, https://github.com/mozilla/mozilla-central and http://hg.mozilla.org/mozilla-release both contain the Firefox codebase, although not exactly the same code.

Many projects are built from multiple codebases.
For example, a company may build several applications based on the same core library.
The "app" codebase and the "core" codebase are in separate repositories, but are compiled together and constitute a single project.
Changes to either codebase should cause a rebuild of the application.

Most version control systems define some sort of revision that can be used (sometimes in combination with a branch) to uniquely specify a particular version of the source code.

To build a project, Buildbot needs to know exactly which version of each codebase it should build.
It uses a source stamp to do so for each codebase; the collection of sourcestamps required for a project is called a source stamp set.

Version Control Systems

Buildbot supports a significant number of version control systems, so it treats them abstractly.

For purposes of deciding when to perform builds, Buildbot's change sources monitor repositories, and represent any updates to those repositories as changes.
These change sources fall broadly into two categories: pollers which periodically check the repository for updates; and hooks, where the repository is configured to notify Buildbot whenever an update occurs.

This concept does not map perfectly to every version control system.
For example, for CVS Buildbot must guess that version updates made to multiple files within a short time represent a single change; for DVCS's like Git, Buildbot records a change when a commit is pushed to the monitored repository, not when it is initially committed.
We assume that the Changes arrive at the master in the same order in which they are committed to the repository.

When it comes time to actually perform a build, a scheduler prepares a source stamp set, as described above, based on its configuration.
When the build begins, one or more source steps use the information in the source stamp set to actually check out the source code, using the normal VCS commands.

Tree Stability

Changes tend to arrive at a buildmaster in bursts.
In many cases, these bursts of changes are meant to be taken together.
For example, a developer may have pushed multiple commits to a DVCS that comprise the same new feature or bugfix.
To avoid trying to build every change, Buildbot supports the notion of tree stability, by waiting for a burst of changes to finish before starting to schedule builds.
This is implemented as a timer, with builds not scheduled until no changes have occurred for the duration of the timer.

How Different VC Systems Specify Sources

For CVS, the static specifications are repository and
module. In addition to those, each build uses a timestamp (or
omits the timestamp to mean the latest) and branch tag
(which defaults to HEAD). These parameters collectively specify a set
of sources from which a build may be performed.

Subversion [http://subversion.tigris.org], combines the
repository, module, and branch into a single Subversion URL
parameter. Within that scope, source checkouts can be specified by a
numeric revision number (a repository-wide
monotonically-increasing marker, such that each transaction that
changes the repository is indexed by a different revision number), or
a revision timestamp. When branches are used, the repository and
module form a static baseURL, while each build has a
revision number and a branch (which defaults to a
statically-specified defaultBranch). The baseURL and
branch are simply concatenated together to derive the
svnurl to use for the checkout.

Perforce [http://www.perforce.com/] is similar. The server
is specified through a P4PORT parameter. Module and branch
are specified in a single depot path, and revisions are
depot-wide. When branches are used, the p4base and
defaultBranch are concatenated together to produce the depot
path.

Bzr [http://bazaar-vcs.org] (which is a descendant of
Arch/Bazaar, and is frequently referred to as "Bazaar") has the same
sort of repository-vs-workspace model as Arch, but the repository data
can either be stored inside the working directory or kept elsewhere
(either on the same machine or on an entirely different machine). For
the purposes of Buildbot (which never commits changes), the repository
is specified with a URL and a revision number.

The most common way to obtain read-only access to a bzr tree is via
HTTP, simply by making the repository visible through a web server
like Apache. Bzr can also use FTP and SFTP servers, if the buildslave
process has sufficient privileges to access them. Higher performance
can be obtained by running a special Bazaar-specific server. None of
these matter to the buildbot: the repository URL just has to match the
kind of server being used. The repoURL argument provides the
location of the repository.

Branches are expressed as subdirectories of the main central
repository, which means that if branches are being used, the BZR step
is given a baseURL and defaultBranch instead of getting
the repoURL argument.

Darcs [http://darcs.net/] doesn't really have the
notion of a single master repository. Nor does it really have
branches. In Darcs, each working directory is also a repository, and
there are operations to push and pull patches from one of these
repositories to another. For the Buildbot's purposes, all you
need to do is specify the URL of a repository that you want to build
from. The build slave will then pull the latest patches from that
repository and build them. Multiple branches are implemented by using
multiple repositories (possibly living on the same server).

Builders which use Darcs therefore have a static repourl which
specifies the location of the repository. If branches are being used,
the source Step is instead configured with a baseURL and a
defaultBranch, and the two strings are simply concatenated
together to obtain the repository's URL. Each build then has a
specific branch which replaces defaultBranch, or just uses the
default one. Instead of a revision number, each build can have a
context, which is a string that records all the patches that are
present in a given tree (this is the output of darcs changes
--context, and is considerably less concise than, e.g. Subversion's
revision number, but the patch-reordering flexibility of Darcs makes
it impossible to provide a shorter useful specification).

Mercurial [http://selenic.com/mercurial] is like Darcs, in that
each branch is stored in a separate repository. The repourl,
baseURL, and defaultBranch arguments are all handled the
same way as with Darcs. The revision, however, is the hash
identifier returned by hg identify.

Git [http://git.or.cz/] also follows a decentralized model, and
each repository can have several branches and tags. The source Step is
configured with a static repourl which specifies the location
of the repository. In addition, an optional branch parameter
can be specified to check out code from a specific branch instead of
the default master branch. The revision is specified as a SHA1
hash as returned by e.g. git rev-parse. No attempt is made
to ensure that the specified revision is actually a subset of the
specified branch.

Monotone [http://www.monotone.ca/] is another that follows a
decentralized model where each repository can have several branches and
tags. The source Step is configured with static repourl and
branch parameters, which specifies the location of the
repository and the branch to use. The revision is specified as a
SHA1 hash as returned by e.g. mtn automate select w:. No
attempt is made to ensure that the specified revision is actually a
subset of the specified branch.

Changes

Who

Each Change has a who attribute, which specifies which developer is
responsible for the change. This is a string which comes from a namespace
controlled by the VC repository. Frequently this means it is a username on the
host which runs the repository, but not all VC systems require this. Each
StatusNotifier will map the who attribute into something appropriate for
their particular means of communication: an email address, an IRC handle, etc.

This who attribute is also parsed and stored into Buildbot's database (see
User Objects). Currently, only who attributes in Changes from
git repositories are translated into user objects, but in the future all
incoming Changes will have their who parsed and stored.

Files

It also has a list of files, which are just the tree-relative
filenames of any files that were added, deleted, or modified for this
Change. These filenames are used by the fileIsImportant
function (in the Scheduler) to decide whether it is worth triggering a
new build or not, e.g. the function could use the following function
to only run a build if a C file were checked in:

def has_C_files(change):
 for name in change.files:
 if name.endswith(".c"):
 return True
 return False

Certain BuildSteps can also use the list of changed files
to run a more targeted series of tests, e.g. the
python_twisted.Trial step can run just the unit tests that
provide coverage for the modified .py files instead of running the
full test suite.

Comments

The Change also has a comments attribute, which is a string containing any checkin comments.

Project

The project attribute of a change or source stamp describes the project to which it corresponds, as a short human-readable string.
This is useful in cases where multiple independent projects are built on the same buildmaster.
In such cases, it can be used to control which builds are scheduled for a given commit, and to limit status displays to only one project.

Repository

This attribute specifies the repository in which this change occurred.
In the case of DVCS's, this information may be required to check out the committed source code.
However, using the repository from a change has security risks: if Buildbot is configured to blindly trust this information, then it may easily be tricked into building arbitrary source code, potentially compromising the buildslaves and the integrity of subsequent builds.

Codebase

This attribute specifies the codebase to which this change was made.
As described above, multiple repositories may contain the same codebase.
A change's codebase is usually determined by the codebaseGenerator configuration.
By default the codebase is ''; this value is used automatically for single-codebase configurations.

Revision

Each Change can have a revision attribute, which describes how
to get a tree with a specific state: a tree which includes this Change
(and all that came before it) but none that come after it. If this
information is unavailable, the revision attribute will be
None. These revisions are provided by the ChangeSource.

Revisions are always strings.

	CVS

	revision is the seconds since the epoch as an integer.

	SVN

	revision is the revision number

	Darcs

	revision is a large string, the output of darcs changes --context

	Mercurial

	revision is a short string (a hash ID), the output of hg identify

	P4

	revision is the transaction number

	Git

	revision is a short string (a SHA1 hash), the output of e.g.
git rev-parse

Branches

The Change might also have a branch attribute. This indicates
that all of the Change's files are in the same named branch. The
Schedulers get to decide whether the branch should be built or not.

For VC systems like CVS, Git and Monotone the branch
name is unrelated to the filename. (that is, the branch name and the
filename inhabit unrelated namespaces). For SVN, branches are
expressed as subdirectories of the repository, so the file's
svnurl is a combination of some base URL, the branch name, and the
filename within the branch. (In a sense, the branch name and the
filename inhabit the same namespace). Darcs branches are
subdirectories of a base URL just like SVN. Mercurial branches are the
same as Darcs.

	CVS

	branch='warner-newfeature', files=['src/foo.c']

	SVN

	branch='branches/warner-newfeature', files=['src/foo.c']

	Darcs

	branch='warner-newfeature', files=['src/foo.c']

	Mercurial

	branch='warner-newfeature', files=['src/foo.c']

	Git

	branch='warner-newfeature', files=['src/foo.c']

	Monotone

	branch='warner-newfeature', files=['src/foo.c']

Change Properties

A Change may have one or more properties attached to it, usually specified
through the Force Build form or sendchange. Properties are discussed
in detail in the Build Properties section.

Scheduling Builds

Each Buildmaster has a set of Scheduler objects, each of which
gets a copy of every incoming Change. The Schedulers are responsible
for deciding when Builds should be run. Some Buildbot installations
might have a single Scheduler, while others may have several, each for
a different purpose.

For example, a quick scheduler might exist to give immediate
feedback to developers, hoping to catch obvious problems in the code
that can be detected quickly. These typically do not run the full test
suite, nor do they run on a wide variety of platforms. They also
usually do a VC update rather than performing a brand-new checkout
each time.

A separate full scheduler might run more comprehensive tests, to
catch more subtle problems. configured to run after the quick scheduler, to give
developers time to commit fixes to bugs caught by the quick scheduler before
running the comprehensive tests. This scheduler would also feed multiple
Builders.

Many schedulers can be configured to wait a while after seeing a source-code
change - this is the tree stable timer. The timer allows multiple commits to
be "batched" together. This is particularly useful in distributed version
control systems, where a developer may push a long sequence of changes all at
once. To save resources, it's often desirable only to test the most recent
change.

Schedulers can also filter out the changes they are interested in, based on a
number of criteria. For example, a scheduler that only builds documentation
might skip any changes that do not affect the documentation. Schedulers can
also filter on the branch to which a commit was made.

There is some support for configuring dependencies between builds - for
example, you may want to build packages only for revisions which pass all of
the unit tests. This support is under active development in Buildbot, and is
referred to as "build coordination".

Periodic builds (those which are run every N seconds rather than after
new Changes arrive) are triggered by a special Periodic
Scheduler subclass.

Each Scheduler creates and submits BuildSet objects to the
BuildMaster, which is then responsible for making sure the
individual BuildRequests are delivered to the target
Builders.

Scheduler instances are activated by placing them in the
c['schedulers'] list in the buildmaster config file. Each
Scheduler has a unique name.

BuildSets

A BuildSet is the name given to a set of Builds that all
compile/test the same version of the tree on multiple Builders. In
general, all these component Builds will perform the same sequence of
Steps, using the same source code, but on different platforms or
against a different set of libraries.

The BuildSet is tracked as a single unit, which fails if any of
the component Builds have failed, and therefore can succeed only if
all of the component Builds have succeeded. There are two kinds
of status notification messages that can be emitted for a BuildSet:
the firstFailure type (which fires as soon as we know the
BuildSet will fail), and the Finished type (which fires once
the BuildSet has completely finished, regardless of whether the
overall set passed or failed).

A BuildSet is created with set of one or more source stamp tuples of
(branch, revision, changes, patch), some of which may be None, and a
list of Builders on which it is to be run. They are then given to the
BuildMaster, which is responsible for creating a separate
BuildRequest for each Builder.

There are a couple of different likely values for the
SourceStamp:

	(revision=None, changes=CHANGES, patch=None)

	This is a SourceStamp used when a series of Changes have
triggered a build. The VC step will attempt to check out a tree that
contains CHANGES (and any changes that occurred before CHANGES, but
not any that occurred after them.)

	(revision=None, changes=None, patch=None)

	This builds the most recent code on the default branch. This is the
sort of SourceStamp that would be used on a Build that was
triggered by a user request, or a Periodic scheduler. It is also
possible to configure the VC Source Step to always check out the
latest sources rather than paying attention to the Changes in the
SourceStamp, which will result in same behavior as this.

	(branch=BRANCH, revision=None, changes=None, patch=None)

	This builds the most recent code on the given BRANCH. Again, this is
generally triggered by a user request or Periodic build.

	(revision=REV, changes=None, patch=(LEVEL, DIFF, SUBDIR_ROOT))

	This checks out the tree at the given revision REV, then applies a
patch (using patch -pLEVEL <DIFF) from inside the relative
directory SUBDIR_ROOT. Item SUBDIR_ROOT is optional and defaults to the
builder working directory. The try command creates this kind of
SourceStamp. If patch is None, the patching step is
bypassed.

The buildmaster is responsible for turning the BuildSet into a
set of BuildRequest objects and queueing them on the
appropriate Builders.

BuildRequests

A BuildRequest is a request to build a specific set of source
code (specified by one ore more source stamps) on a single Builder.
Each Builder runs the BuildRequest as soon as it can (i.e.
when an associated buildslave becomes free). BuildRequests are
prioritized from oldest to newest, so when a buildslave becomes free, the
Builder with the oldest BuildRequest is run.

The BuildRequest contains one SourceStamp specification per codebase.
The actual process of running the build (the series of Steps that will
be executed) is implemented by the Build object. In the future
this might be changed, to have the Build define what
gets built, and a separate BuildProcess (provided by the
Builder) to define how it gets built.

The BuildRequest may be mergeable with other compatible
BuildRequests. Builds that are triggered by incoming Changes
will generally be mergeable. Builds that are triggered by user requests are generally not,
unless they are multiple requests to build the latest sources of the same branch.
A merge of buildrequests is performed per codebase, thus on changes having the same codebase.

Builders

The Buildmaster runs a collection of Builders, each of which handles a single
type of build (e.g. full versus quick), on one or more build slaves. Builders
serve as a kind of queue for a particular type of build. Each Builder gets a
separate column in the waterfall display. In general, each Builder runs
independently (although various kinds of interlocks can cause one Builder to
have an effect on another).

Each builder is a long-lived object which controls a sequence of Builds.
Each Builder is created when the config file is first parsed, and lives forever
(or rather until it is removed from the config file). It mediates the
connections to the buildslaves that do all the work, and is responsible for
creating the Build objects - Builds.

Each builder gets a unique name, and the path name of a directory where it gets
to do all its work (there is a buildmaster-side directory for keeping status
information, as well as a buildslave-side directory where the actual
checkout/compile/test commands are executed).

Build Factories

A builder also has a BuildFactory, which is responsible for creating new Build
instances: because the Build instance is what actually performs each build,
choosing the BuildFactory is the way to specify what happens each time a build
is done (Builds).

Build Slaves

Each builder is associated with one of more BuildSlaves. A builder which is
used to perform Mac OS X builds (as opposed to Linux or Solaris builds) should
naturally be associated with a Mac buildslave.

If multiple buildslaves are available for any given builder, you will
have some measure of redundancy: in case one slave goes offline, the
others can still keep the Builder working. In addition, multiple
buildslaves will allow multiple simultaneous builds for the same
Builder, which might be useful if you have a lot of forced or try
builds taking place.

If you use this feature, it is important to make sure that the
buildslaves are all, in fact, capable of running the given build. The
slave hosts should be configured similarly, otherwise you will spend a
lot of time trying (unsuccessfully) to reproduce a failure that only
occurs on some of the buildslaves and not the others. Different
platforms, operating systems, versions of major programs or libraries,
all these things mean you should use separate Builders.

Builds

A build is a single compile or test run of a particular version of the source
code, and is comprised of a series of steps. It is ultimately up to you what
constitutes a build, but for compiled software it is generally the checkout,
configure, make, and make check sequence. For interpreted projects like Python
modules, a build is generally a checkout followed by an invocation of the
bundled test suite.

A BuildFactory describes the steps a build will perform. The builder which
starts a build uses its configured build factory to determine the build's
steps.

Users

Buildbot has a somewhat limited awareness of users. It assumes
the world consists of a set of developers, each of whom can be
described by a couple of simple attributes. These developers make
changes to the source code, causing builds which may succeed or fail.

Users also may have different levels of authorization when issuing Buildbot
commands, such as forcing a build from the web interface or from an IRC channel
(see WebStatus and IRC).

Each developer is primarily known through the source control system. Each
Change object that arrives is tagged with a who field that
typically gives the account name (on the repository machine) of the user
responsible for that change. This string is displayed on the HTML status
pages and in each Build's blamelist.

To do more with the User than just refer to them, this username needs to be
mapped into an address of some sort. The responsibility for this mapping is
left up to the status module which needs the address. In the future, the
responsibility for managing users will be transferred to User Objects.

The who fields in git Changes are used to create User Objects,
which allows for more control and flexibility in how Buildbot manages users.

User Objects

User Objects allow Buildbot to better manage users throughout its various
interactions with users (see Change Sources and Status Targets).
The User Objects are stored in the Buildbot database and correlate the various
attributes that a user might have: irc, Git, etc.

Changes

Incoming Changes all have a who attribute attached to them that specifies
which developer is responsible for that Change. When a Change is first
rendered, the who attribute is parsed and added to the database if it
doesn't exist or checked against an existing user. The who attribute is
formatted in different ways depending on the version control system that the
Change came from.

	git

	who attributes take the form Full Name <Email>.

	svn

	who attributes are of the form Username.

	hg

	who attributes are free-form strings, but usually adhere to similar
conventions as git attributes (Full Name <Email>).

	cvs

	who attributes are of the form Username.

	darcs

	who attributes contain an Email and may also include a Full Name
like git attributes.

	bzr

	who attributes are free-form strings like hg, and can include a
Username, Email, and/or Full Name.

Tools

For managing users manually, use the buildbot user command, which allows
you to add, remove, update, and show various attributes of users in the Buildbot
database (see Command-line Tool).

To show all of the users in the database in a more pretty manner, use the users page in
the WebStatus.

Uses

Correlating the various bits and pieces that Buildbot views as users also means
that one attribute of a user can be translated into another. This provides a
more complete view of users throughout Buildbot.

One such use is being able to find email addresses based on a set of Builds
to notify users through the MailNotifier. This process is explained
more clearly in Email Addresses.

Another way to utilize User Objects is through UsersAuth for web authentication
(see WebStatus). To use UsersAuth, you need to
set a bb_username and bb_password via the buildbot user command line tool
to check against. The password will be encrypted before storing in the database
along with other user attributes.

Doing Things With Users

Each change has a single user who is responsible for it. Most builds have a set
of changes: the build generally represents the first time these changes have
been built and tested by the Buildbot. The build has a blamelist that is
the union of the users responsible for all the build's changes. If the build
was created by a Try Schedulers this list will include the submitter of the try
job, if known.

The build provides a list of users who are interested in the build -- the
interested users. Usually this is equal to the blamelist, but may also be
expanded, e.g., to include the current build sherrif or a module's maintainer.

If desired, the buildbot can notify the interested users until the problem is
resolved.

Email Addresses

The MailNotifier is a status target which can send email
about the results of each build. It accepts a static list of email
addresses to which each message should be delivered, but it can also
be configured to send mail to the Build's Interested Users. To do
this, it needs a way to convert User names into email addresses.

For many VC systems, the User Name is actually an account name on the
system which hosts the repository. As such, turning the name into an
email address is a simple matter of appending
@repositoryhost.com. Some projects use other kinds of mappings
(for example the preferred email address may be at project.org
despite the repository host being named cvs.project.org), and some
VC systems have full separation between the concept of a user and that
of an account on the repository host (like Perforce). Some systems
(like Git) put a full contact email address in every change.

To convert these names to addresses, the MailNotifier uses an EmailLookup
object. This provides a getAddress method which accepts a name and
(eventually) returns an address. The default MailNotifier
module provides an EmailLookup which simply appends a static string,
configurable when the notifier is created. To create more complex behaviors
(perhaps using an LDAP lookup, or using finger on a central host to
determine a preferred address for the developer), provide a different object
as the lookup argument.

If an EmailLookup object isn't given to the MailNotifier, the MailNotifier
will try to find emails through User Objects. This will work the
same as if an EmailLookup object was used if every user in the Build's
Interested Users list has an email in the database for them. If a user
whose change led to a Build doesn't have an email attribute, that user
will not receive an email. If extraRecipients is given, those users
are still sent mail when the EmailLookup object is not specified.

In the future, when the Problem mechanism has been set up, the Buildbot
will need to send mail to arbitrary Users. It will do this by locating a
MailNotifier-like object among all the buildmaster's status targets, and
asking it to send messages to various Users. This means the User-to-address
mapping only has to be set up once, in your MailNotifier, and every email
message the buildbot emits will take advantage of it.

IRC Nicknames

Like MailNotifier, the buildbot.status.words.IRC class
provides a status target which can announce the results of each build. It
also provides an interactive interface by responding to online queries
posted in the channel or sent as private messages.

In the future, the buildbot can be configured map User names to IRC
nicknames, to watch for the recent presence of these nicknames, and to
deliver build status messages to the interested parties. Like
MailNotifier does for email addresses, the IRC object
will have an IRCLookup which is responsible for nicknames. The
mapping can be set up statically, or it can be updated by online users
themselves (by claiming a username with some kind of buildbot: i am
user warner commands).

Once the mapping is established, the rest of the buildbot can ask the
IRC object to send messages to various users. It can report on
the likelihood that the user saw the given message (based upon how long the
user has been inactive on the channel), which might prompt the Problem
Hassler logic to send them an email message instead.

These operations and authentication of commands issued by particular
nicknames will be implemented in User Objects.

Live Status Clients

The Buildbot also offers a desktop status client interface which can display
real-time build status in a GUI panel on the developer's desktop.

Build Properties

Each build has a set of Build Properties, which can be used by its
build steps to modify their actions. These properties, in the form of
key-value pairs, provide a general framework for dynamically altering
the behavior of a build based on its circumstances.

Properties form a simple kind of variable in a build. Some properties are set
when the build starts, and properties can be changed as a build progresses --
properties set or changed in one step may be accessed in subsequent steps.
Property values can be numbers, strings, lists, or dictionaries - basically,
anything that can be represented in JSON.

Properties are very flexible, and can be used to implement all manner
of functionality. Here are some examples:

Most Source steps record the revision that they checked out in
the got_revision property. A later step could use this
property to specify the name of a fully-built tarball, dropped in an
easily-accessible directory for later testing.

Note

In builds with more than one codebase, the got_revision property is a dictionary, keyed by codebase.

Some projects want to perform nightly builds as well as building in response to
committed changes. Such a project would run two schedulers, both pointing to
the same set of builders, but could provide an is_nightly property so
that steps can distinguish the nightly builds, perhaps to run more
resource-intensive tests.

Some projects have different build processes on different systems.
Rather than create a build factory for each slave, the steps can use
buildslave properties to identify the unique aspects of each slave
and adapt the build process dynamically.

Multiple-Codebase Builds

What if an end-product is composed of code from several codebases?
Changes may arrive from different repositories within the tree-stable-timer period.
Buildbot will not only use the source-trees that contain changes but also needs the remaining source-trees to build the complete product.

For this reason a Scheduler can be configured to base a build on a set of several source-trees that can (partly) be overridden by the information from incoming Changes.

As described above, the source for each codebase is identified by a source stamp, containing its repository, branch and revision.
A full build set will specify a source stamp set describing the source to use for each codebase.

Configuring all of this takes a coordinated approach. A complete multiple repository configuration consists of:

	a codebase generator

Every relevant change arriving from a VC must contain a codebase.
This is done by a codebaseGenerator that is defined in the configuration.
Most generators examine the repository of a change to determine its codebase, using project-specific rules.

	some schedulers

Each scheduler has to be configured with a set of all required codebases to build a product.
These codebases indicate the set of required source-trees.
In order for the scheduler to be able to produce a complete set for each build, the configuration can give a default repository, branch, and revision for each codebase.
When a scheduler must generate a source stamp for a codebase that has received no changes, it applies these default values.

	multiple source steps - one for each codebase

A Builders's build factory must include a source step for each codebase.
Each of the source steps has a codebase attribute which is used to select an appropriate source stamp from the source stamp set for a build.
This information comes from the arrived changes or from the scheduler's configured default values.

Note

Each source step has to have its own workdir set in order for the checkout to be done for each codebase in its own directory.

Note

Ensure you specify the codebase within your source step's Interpolate() calls (ex. http://.../svn/%(src:codebase:branch)s).
See Interpolate for details.

Warning

Defining a codebaseGenerator that returns non-empty (not '') codebases will change the behavior of all the schedulers.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

Configuration

The following sections describe the configuration of the various Buildbot
components. The information available here is sufficient to create basic
build and test configurations, and does not assume great familiarity with
Python.

In more advanced Buildbot configurations, Buildbot acts as a framework for a
continuous-integration application. The next section, Customization,
describes this approach, with frequent references into the
development documentation.

	Configuring Buildbot
	Config File Format

	Predefined Config File Symbols

	Testing the Config File

	Loading the Config File

	Global Configuration
	Database Specification

	Multi-master mode

	Site Definitions

	Log Handling

	Data Lifetime

	Merging Build Requests

	Prioritizing Builders

	Setting the PB Port for Slaves

	Defining Global Properties

	Debug Options

	Manhole

	Metrics Options

	Users Options

	Input Validation

	Revision Links

	Codebase Generator

	Change Sources
	Choosing a Change Source

	Configuring Change Sources

	Mail-parsing ChangeSources

	PBChangeSource

	P4Source

	BonsaiPoller

	SVNPoller

	Bzr Poller

	GitPoller

	HgPoller

	BitbucketPullrequestPoller

	GerritChangeSource

	Change Hooks (HTTP Notifications)

	GoogleCodeAtomPoller

	Schedulers
	Configuring Schedulers

	Change Filters

	SingleBranchScheduler

	AnyBranchScheduler

	Dependent Scheduler

	Periodic Scheduler

	Nightly Scheduler

	Try Schedulers

	Triggerable Scheduler

	NightlyTriggerable Scheduler

	ForceScheduler Scheduler

	Buildslaves
	Defining Buildslaves

	BuildSlave Options

	Latent Buildslaves

	Builder Configuration
	Merging Build Requests

	Prioritizing Builds

	Build Factories
	Defining a Build Factory

	Predefined Build Factories

	Properties
	Common Build Properties

	Source Stamp Attributes

	Using Properties in Steps

	Build Steps
	Common Parameters

	Source Checkout

	Source Checkout (Slave-Side)

	ShellCommand

	Slave Filesystem Steps

	Python BuildSteps

	Transferring Files

	Transfering Strings

	Running Commands on the Master

	Setting Properties

	Setting Buildslave Info

	Triggering Schedulers

	RPM-Related Steps

	Debian Build Steps

	Miscellaneous BuildSteps

	Interlocks
	Access Modes

	Count

	Scope

	Examples

	Status Targets
	WebStatus

	MailNotifier

	IRC Bot

	PBListener

	StatusPush

	HttpStatusPush

	GerritStatusPush

	GitHubStatus

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

 	Configuration

Configuring Buildbot

The buildbot's behavior is defined by the config file, which
normally lives in the master.cfg file in the buildmaster's base
directory (but this can be changed with an option to the
buildbot create-master command). This file completely specifies
which Builders are to be run, which slaves they should use, how
Changes should be tracked, and where the status information is to be
sent. The buildmaster's buildbot.tac file names the base
directory; everything else comes from the config file.

A sample config file was installed for you when you created the
buildmaster, but you will need to edit it before your buildbot will do
anything useful.

This chapter gives an overview of the format of this file and the
various sections in it. You will need to read the later chapters to
understand how to fill in each section properly.

Config File Format

The config file is, fundamentally, just a piece of Python code which
defines a dictionary named BuildmasterConfig, with a number of
keys that are treated specially. You don't need to know Python to do
basic configuration, though, you can just copy the syntax of the
sample file. If you are comfortable writing Python code,
however, you can use all the power of a full programming language to
achieve more complicated configurations.

The BuildmasterConfig name is the only one which matters: all
other names defined during the execution of the file are discarded.
When parsing the config file, the Buildmaster generally compares the
old configuration with the new one and performs the minimum set of
actions necessary to bring the buildbot up to date: Builders which are
not changed are left untouched, and Builders which are modified get to
keep their old event history.

The beginning of the master.cfg file
typically starts with something like:

BuildmasterConfig = c = {}

Therefore a config key like change_source will usually appear in
master.cfg as c['change_source'].

See Buildmaster Configuration Index for a full list of BuildMasterConfig keys.

Basic Python Syntax

The master configuration file is interpreted as Python, allowing the full
flexibility of the language. For the configurations described in this section,
a detailed knowledge of Python is not required, but the basic syntax is easily
described.

Python comments start with a hash character #, tuples are defined with
(parenthesis, pairs), and lists (arrays) are defined with [square,
brackets]. Tuples and lists are mostly interchangeable. Dictionaries (data
structures which map keys to values) are defined with curly braces:
{'key1': value1, 'key2': value2}. Function calls (and object
instantiation) can use named parameters, like w =
html.Waterfall(http_port=8010).

The config file starts with a series of import statements, which make
various kinds of Steps and Status targets available for
later use. The main BuildmasterConfig dictionary is created, then it is
populated with a variety of keys, described section-by-section in subsequent
chapters.

Predefined Config File Symbols

The following symbols are automatically available for use in the configuration
file.

	basedir

	the base directory for the buildmaster. This string has not been
expanded, so it may start with a tilde. It needs to be expanded before
use. The config file is located in

os.path.expanduser(os.path.join(basedir, 'master.cfg'))

	__file__

	the absolute path of the config file. The config file's directory is located in
os.path.dirname(__file__).

Testing the Config File

To verify that the config file is well-formed and contains no deprecated or
invalid elements, use the checkconfig command, passing it either a master
directory or a config file.

% buildbot checkconfig master.cfg
Config file is good!
or
% buildbot checkconfig /tmp/masterdir
Config file is good!

If the config file has deprecated features (perhaps because you've
upgraded the buildmaster and need to update the config file to match),
they will be announced by checkconfig. In this case, the config file
will work, but you should really remove the deprecated items and use
the recommended replacements instead:

% buildbot checkconfig master.cfg
/usr/lib/python2.4/site-packages/buildbot/master.py:559: DeprecationWarning: c['sources'] is
deprecated as of 0.7.6 and will be removed by 0.8.0 . Please use c['change_source'] instead.
Config file is good!

If you have errors in your configuration file, checkconfig will let you know:

% buildbot checkconfig master.cfg
Configuration Errors:
c['slaves'] must be a list of BuildSlave instances
no slaves are configured
builder 'smoketest' uses unknown slaves 'linux-002'

If the config file is simply broken, that will be caught too:

% buildbot checkconfig master.cfg
error while parsing config file:
Traceback (most recent call last):
File "/home/buildbot/master/bin/buildbot", line 4, in <module>
 runner.run()
File "/home/buildbot/master/buildbot/scripts/runner.py", line 1358, in run
 if not doCheckConfig(so):
File "/home/buildbot/master/buildbot/scripts/runner.py", line 1079, in doCheckConfig
 return cl.load(quiet=quiet)
File "/home/buildbot/master/buildbot/scripts/checkconfig.py", line 29, in load
 self.basedir, self.configFileName)
--- <exception caught here> ---
File "/home/buildbot/master/buildbot/config.py", line 147, in loadConfig
 exec f in localDict
exceptions.SyntaxError: invalid syntax (master.cfg, line 52)
Configuration Errors:
error while parsing config file: invalid syntax (master.cfg, line 52) (traceback in logfile)

Loading the Config File

The config file is only read at specific points in time. It is first
read when the buildmaster is launched.

Note

If the configuration is invalid, the master will display the errors in
the console output, but will not exit.

Reloading the Config File (reconfig)

If you are on the system hosting the buildmaster, you can send a SIGHUP
signal to it: the buildbot tool has a shortcut for this:

buildbot reconfig BASEDIR

This command will show you all of the lines from twistd.log
that relate to the reconfiguration. If there are any problems during
the config-file reload, they will be displayed in these lines.

When reloading the config file, the buildmaster will endeavor to
change as little as possible about the running system. For example,
although old status targets may be shut down and new ones started up,
any status targets that were not changed since the last time the
config file was read will be left running and untouched. Likewise any
Builders which have not been changed will be left running. If a
Builder is modified (say, the build process is changed) while a Build
is currently running, that Build will keep running with the old
process until it completes. Any previously queued Builds (or Builds
which get queued after the reconfig) will use the new process.

Warning

Buildbot's reconfiguration system is fragile for a few difficult-to-fix
reasons:

	Any modules imported by the configuration file are not automatically reloaded.
Python modules such as http://pypi.python.org/pypi/lazy-reload may help
here, but reloading modules is fraught with subtleties and difficult-to-decipher
failure cases.

	During the reconfiguration, active internal objects are divorced from the service
hierarchy, leading to tracebacks in the web interface and other components. These
are ordinarily transient, but with HTTP connection caching (either by the browser or
an intervening proxy) they can last for a long time.

	If the new configuration file is invalid, it is possible for Buildbot's
internal state to be corrupted, leading to undefined results. When this
occurs, it is best to restart the master.

	For more advanced configurations, it is impossible for Buildbot to tell if the
configuration for a Builder or Scheduler has changed, and thus the Builder or
Scheduler will always be reloaded. This occurs most commonly when a callable
is passed as a configuration parameter.

The bbproto project (at https://github.com/dabrahams/bbproto) may help to
construct large (multi-file) configurations which can be effectively reloaded
and reconfigured.

Reconfig by Debug Client

The debug tool (buildbot debugclient
--master HOST:PORT) has a Reload .cfg button which will also
trigger a reload.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

 	Configuration

Global Configuration

The keys in this section affect the operations of the buildmaster globally.

	Database Specification

	Multi-master mode

	Site Definitions

	Log Handling

	Data Lifetime

	Merging Build Requests

	Prioritizing Builders

	Setting the PB Port for Slaves

	Defining Global Properties

	Debug Options

	Manhole

	Metrics Options

	Users Options

	Input Validation

	Revision Links

	Codebase Generator

Database Specification

Buildbot requires a connection to a database to maintain certain state information, such as tracking pending build requests.
In the default configuration Buildbot uses a file-based SQLite database, stored in the state.sqlite file of the master's base directory.
Override this configuration with the db_url parameter.

Buildbot accepts a database configuration in a dictionary named db.
All keys are optional:

c['db'] = {
 'db_url' : 'sqlite:///state.sqlite',
 'db_poll_interval' : 30,
}

The db_url key indicates the database engine to use.
The format of this parameter is completely documented at http://www.sqlalchemy.org/docs/dialects/, but is generally of the form:

"driver://[username:password@]host:port/database[?args]"

The optional db_poll_interval specifies the interval, in seconds, between checks for pending tasks in the database.
This parameter is generally only useful in multi-master mode. See Multi-master mode.

These parameters can be specified directly in the configuration dictionary, as c['db_url'] and c['db_poll_interval'], although this method is deprecated.

The following sections give additional information for particular database backends:

SQLite

For sqlite databases, since there is no host and port, relative paths are specified with sqlite:/// and absolute paths with sqlite:////.
Examples:

c['db_url'] = "sqlite:///state.sqlite"

SQLite requires no special configuration.

If Buildbot produces "database is locked" exceptions, try adding serialize_access=1 to the DB URL as a workaround:

c['db_url'] = "sqlite:///state.sqlite?serialize_access=1"

and please file a bug at http://trac.buildbot.net.

MySQL

c['db_url'] = "mysql://user:pass@somehost.com/database_name?max_idle=300"

The max_idle argument for MySQL connections is unique to Buildbot, and should be set to something less than the wait_timeout configured for your server.
This controls the SQLAlchemy pool_recycle parameter, which defaults to no timeout.
Setting this parameter ensures that connections are closed and re-opened after the configured amount of idle time.
If you see errors such as _mysql_exceptions.OperationalError: (2006, 'MySQL server has gone away'), this means your max_idle setting is probably too high.
show global variables like 'wait_timeout'; will show what the currently configured wait_timeout is on your MySQL server.

Buildbot requires use_unique=True and charset=utf8, and will add them automatically, so they do not need to be specified in db_url.

MySQL defaults to the MyISAM storage engine, but this can be overridden with the storage_engine URL argument.

Note that, because of InnoDB's extremely short key length limitations, it cannot be used to run Buildbot.
See http://bugs.mysql.com/bug.php?id=4541 for more information.

Postgres

c['db_url'] = "postgresql://username@hostname/dbname"

PosgreSQL requires no special configuration.

Multi-master mode

Normally buildbot operates using a single master process that uses the configured database to save state.

It is possible to configure buildbot to have multiple master processes that share state in the same database.
This has been well tested using a MySQL database.
There are several benefits of Multi-master mode:

	You can have large numbers of build slaves handling the same queue of build requests.
A single master can only handle so many slaves (the number is based on a number of factors including type of builds, number of builds, and master and slave IO and CPU capacity--there is no fixed formula).
By adding another master which shares the queue of build requests, you can attach more slaves to this additional master, and increase your build throughput.

	You can shut one master down to do maintenance, and other masters will continue to do builds.

State that is shared in the database includes:

	List of changes

	Scheduler names and internal state

	Build requests, including the builder name

Because of this shared state, you are strongly encouraged to:

	Ensure that each named scheduler runs on only one master.
If the same scheduler runs on multiple masters, it will trigger duplicate builds and may produce other undesirable behaviors.

	Ensure builder names are unique for a given build factory implementation.
You can have the same builder name configured on many masters, but if the build factories differ, you will get different results depending on which master claims the build.

One suggested configuration is to have one buildbot master configured with just the scheduler and change sources; and then other masters configured with just the builders.

To enable multi-master mode in this configuration, you will need to set the multiMaster option so that buildbot doesn't warn about missing schedulers or builders.
You will also need to set db_poll_interval to specify the interval (in seconds) at which masters should poll the database for tasks.

Enable multiMaster mode; disables warnings about unknown builders and
schedulers
c['multiMaster'] = True
Check for new build requests every 60 seconds
c['db'] = {
 'db_url' : 'mysql://...',
 'db_poll_interval' : 30,
}

Site Definitions

Three basic settings describe the buildmaster in status reports:

c['title'] = "Buildbot"
c['titleURL'] = "http://buildbot.sourceforge.net/"
c['buildbotURL'] = "http://localhost:8010/"

title is a short string that will appear at the top of this buildbot installation's html.WebStatus home page (linked to the titleURL), and is embedded in the title of the waterfall HTML page.

titleURL is a URL string that must end with a slash (/).
HTML status displays will show title as a link to titleURL.
This URL is often used to provide a link from buildbot HTML pages to your project's home page.

The buildbotURL string should point to the location where the buildbot's internal web server is visible.
This URL must end with a slash (/).
This typically uses the port number set for the web status (WebStatus): the buildbot needs your help to figure out a suitable externally-visible host URL.

When status notices are sent to users (either by email or over IRC), buildbotURL will be used to create a URL to the specific build or problem that they are being notified about.
It will also be made available to queriers (over IRC) who want to find out where to get more information about this buildbot.

Log Handling

c['logCompressionLimit'] = 16384
c['logCompressionMethod'] = 'gz'
c['logMaxSize'] = 1024*1024 # 1M
c['logMaxTailSize'] = 32768

The logCompressionLimit enables compression of build logs on disk for logs that are bigger than the given size, or disables that completely if set to False.
The default value is 4096, which should be a reasonable default on most file systems.
This setting has no impact on status plugins, and merely affects the required disk space on the master for build logs.

The logCompressionMethod controls what type of compression is used for build logs.
The default is 'bz2', and the other valid option is 'gz'. 'bz2' offers better compression at the expense of more CPU time.

The logMaxSize parameter sets an upper limit (in bytes) to how large logs from an individual build step can be.
The default value is None, meaning no upper limit to the log size.
Any output exceeding logMaxSize will be truncated, and a message to this effect will be added to the log's HEADER channel.

If logMaxSize is set, and the output from a step exceeds the maximum, the logMaxTailSize parameter controls how much of the end of the build log will be kept.
The effect of setting this parameter is that the log will contain the first logMaxSize bytes and the last logMaxTailSize bytes of output.
Don't set this value too high, as the the tail of the log is kept in memory.

Data Lifetime

Horizons

c['changeHorizon'] = 200
c['buildHorizon'] = 100
c['eventHorizon'] = 50
c['logHorizon'] = 40
c['buildCacheSize'] = 15

Buildbot stores historical information on disk in the form of "Pickle" files and compressed logfiles.
In a large installation, these can quickly consume disk space, yet in many cases developers never consult this historical information.

The changeHorizon key determines how many changes the master will keep a record of. One place these changes are displayed is on the waterfall page.
This parameter defaults to 0, which means keep all changes indefinitely.

The buildHorizon specifies the minimum number of builds for each builder which should be kept on disk.
The eventHorizon specifies the minimum number of events to keep--events mostly describe connections and disconnections of slaves, and are seldom helpful to developers.
The logHorizon gives the minimum number of builds for which logs should be maintained; this parameter must be less than or equal to buildHorizon.
Builds older than logHorizon but not older than buildHorizon will maintain their overall status and the status of each step, but the logfiles will be deleted.

Caches

c['caches'] = {
 'Changes' : 100, # formerly c['changeCacheSize']
 'Builds' : 500, # formerly c['buildCacheSize']
 'chdicts' : 100,
 'BuildRequests' : 10,
 'SourceStamps' : 20,
 'ssdicts' : 20,
 'objectids' : 10,
 'usdicts' : 100,
}

The caches configuration key contains the configuration for Buildbot's in-memory caches.
These caches keep frequently-used objects in memory to avoid unnecessary trips to the database or to pickle files.
Caches are divided by object type, and each has a configurable maximum size.

The default size for each cache is 1, except where noted below.
A value of 1 allows Buildbot to make a number of optimizations without consuming much memory.
Larger, busier installations will likely want to increase these values.

The available caches are:

	Changes

	the number of change objects to cache in memory.
This should be larger than the number of changes that typically arrive in the span of a few minutes, otherwise your schedulers will be reloading changes from the database every time they run.
For distributed version control systems, like Git or Hg, several thousand changes may arrive at once, so setting this parameter to something like 10000 isn't unreasonable.

This parameter is the same as the deprecated global parameter changeCacheSize. Its default value is 10.

	Builds

	The buildCacheSize parameter gives the number of builds for each builder which are cached in memory.
This number should be larger than the number of builds required for commonly-used status displays (the waterfall or grid views), so that those displays do not miss the cache on a refresh.

This parameter is the same as the deprecated global parameter buildCacheSize. Its default value is 15.

	chdicts

	The number of rows from the changes table to cache in memory.
This value should be similar to the value for Changes.

	BuildRequests

	The number of BuildRequest objects kept in memory.
This number should be higher than the typical number of outstanding build requests.
If the master ordinarily finds jobs for BuildRequests immediately, you may set a lower value.

	SourceStamps

	the number of SourceStamp objects kept in memory.
This number should generally be similar to the number BuildRequesets.

	ssdicts

	The number of rows from the sourcestamps table to cache in memory.
This value should be similar to the value for SourceStamps.

	objectids

	The number of object IDs - a means to correlate an object in the Buildbot configuration with an identity in the database--to cache.
In this version, object IDs are not looked up often during runtime, so a relatively low value such as 10 is fine.

	usdicts

	The number of rows from the users table to cache in memory.
Note that for a given user there will be a row for each attribute that user has.

c['buildCacheSize'] = 15

Merging Build Requests

c['mergeRequests'] = True

This is a global default value for builders' mergeRequests parameter, and controls the merging of build requests.

This parameter can be overridden on a per-builder basis.
See Merging Build Requests for the allowed values for this parameter.

Prioritizing Builders

def prioritizeBuilders(buildmaster, builders):
 ...
c['prioritizeBuilders'] = prioritizeBuilders

By default, buildbot will attempt to start builds on builders in order, beginning with the builder with the oldest pending request.
Customize this behavior with the prioritizeBuilders configuration key, which takes a callable.
See Builder Priority Functions for details on this callable.

This parameter controls the order that the build master can start builds, and is useful in situations where there is resource contention between builders, e.g., for a test database.
It does not affect the order in which a builder processes the build requests in its queue.
For that purpose, see Prioritizing Builds.

Setting the PB Port for Slaves

c['protocols'] = {"pb": {"port": 10000}}

The buildmaster will listen on a TCP port of your choosing for connections from buildslaves.
It can also use this port for connections from remote Change Sources, status clients, and debug tools.
This port should be visible to the outside world, and you'll need to tell your buildslave admins about your choice.

It does not matter which port you pick, as long it is externally visible; however, you should probably use something larger than 1024, since most operating systems don't allow non-root processes to bind to low-numbered ports.
If your buildmaster is behind a firewall or a NAT box of some sort, you may have to configure your firewall to permit inbound connections to this port.

c['protocols']['pb']['port'] is a strports specification string, defined in the twisted.application.strports module (try pydoc twisted.application.strports to get documentation on the format).

This means that you can have the buildmaster listen on a localhost-only port by doing:

c['protocols'] = {"pb": {"port": "tcp:10000:interface=127.0.0.1"}}

This might be useful if you only run buildslaves on the same machine, and they are all configured to contact the buildmaster at localhost:10000.

Note

In Buildbot versions <=0.8.8 you might see slavePortnum option.
This option contains same value as c['protocols']['pb']['port'] but not recomended to use.

Defining Global Properties

The properties configuration key defines a dictionary of properties that will be available to all builds started by the buildmaster:

c['properties'] = {
 'Widget-version' : '1.2',
 'release-stage' : 'alpha'
}

Debug Options

If you set debugPassword, then you can connect to the buildmaster with the diagnostic tool launched by buildbot debugclient MASTER:PORT.
From this tool, you can reload the config file, manually force builds, and inject changes, which may be useful for testing your buildmaster without actually committing changes to your repository (or before you have the Change Sources configured.)

The debug tool uses the same port number as the slaves, protocols, and you may configure its authentication credentials as follows:

c['debugPassword'] = "debugpassword"

Manhole

If you set manhole to an instance of one of the classes in buildbot.manhole, you can telnet or ssh into the buildmaster and get an interactive Python shell, which may be useful for debugging buildbot internals.
It is probably only useful for buildbot developers.
It exposes full access to the buildmaster's account (including the ability to modify and delete files), so it should not be enabled with a weak or easily guessable password.

There are three separate Manhole classes.
Two of them use SSH, one uses unencrypted telnet.
Two of them use a username+password combination to grant access, one of them uses an SSH-style authorized_keys file which contains a list of ssh public keys.

Note

Using any Manhole requires that pycrypto and pyasn1 be installed.
These are not part of the normal Buildbot dependencies.

	manhole.AuthorizedKeysManhole

	You construct this with the name of a file that contains one SSH public key per line, just like ~/.ssh/authorized_keys.
If you provide a non-absolute filename, it will be interpreted relative to the buildmaster's base directory.

	manhole.PasswordManhole

	This one accepts SSH connections but asks for a username and password when authenticating.
It accepts only one such pair.

	manhole.TelnetManhole

	This accepts regular unencrypted telnet connections, and asks for a username/password pair before providing access.
Because this username/password is transmitted in the clear, and because Manhole access to the buildmaster is equivalent to granting full shell privileges to both the buildmaster and all the buildslaves (and to all accounts which then run code produced by the buildslaves), it is highly recommended that you use one of the SSH manholes instead.

some examples:
from buildbot import manhole
c['manhole'] = manhole.AuthorizedKeysManhole(1234, "authorized_keys")
c['manhole'] = manhole.PasswordManhole(1234, "alice", "mysecretpassword")
c['manhole'] = manhole.TelnetManhole(1234, "bob", "snoop_my_password_please")

The Manhole instance can be configured to listen on a specific port.
You may wish to have this listening port bind to the loopback interface (sometimes known as lo0, localhost, or 127.0.0.1) to restrict access to clients which are running on the same host.

from buildbot.manhole import PasswordManhole
c['manhole'] = PasswordManhole("tcp:9999:interface=127.0.0.1","admin","passwd")

To have the Manhole listen on all interfaces, use "tcp:9999" or simply 9999.
This port specification uses twisted.application.strports, so you can make it listen on SSL or even UNIX-domain sockets if you want.

Note that using any Manhole requires that the TwistedConch [http://twistedmatrix.com/trac/wiki/TwistedConch] package be installed.

The buildmaster's SSH server will use a different host key than the normal sshd running on a typical unix host.
This will cause the ssh client to complain about a host key mismatch, because it does not realize there are two separate servers running on the same host.
To avoid this, use a clause like the following in your .ssh/config file:

Host remotehost-buildbot
HostName remotehost
HostKeyAlias remotehost-buildbot
Port 9999
use 'user' if you use PasswordManhole and your name is not 'admin'.
if you use AuthorizedKeysManhole, this probably doesn't matter.
User admin

Using Manhole

After you have connected to a manhole instance, you will find yourself at a Python prompt.
You have access to two objects: master (the BuildMaster) and status (the master's Status object).
Most interesting objects on the master can be reached from these two objects.

To aid in navigation, the show method is defined.
It displays the non-method attributes of an object.

A manhole session might look like:

>>> show(master)
data attributes of <buildbot.master.BuildMaster instance at 0x7f7a4ab7df38>
 basedir : '/home/dustin/code/buildbot/t/buildbot/'...
 botmaster : <type 'instance'>
 buildCacheSize : None
 buildHorizon : None
 buildbotURL : http://localhost:8010/
 changeCacheSize : None
 change_svc : <type 'instance'>
 configFileName : master.cfg
 db : <class 'buildbot.db.connector.DBConnector'>
 db_poll_interval : None
 db_url : sqlite:///state.sqlite
 ...
>>> show(master.botmaster.builders['win32'])
data attributes of <Builder ''builder'' at 48963528>
 ...
>>> win32 = _
>>> win32.category = 'w32'

Metrics Options

c['metrics'] = dict(log_interval=10, periodic_interval=10)

metrics can be a dictionary that configures various aspects of the metrics subsystem.
If metrics is None, then metrics collection, logging and reporting will be disabled.

log_interval determines how often metrics should be logged to twistd.log.
It defaults to 60s.
If set to 0 or None, then logging of metrics will be disabled.
This value can be changed via a reconfig.

periodic_interval determines how often various non-event based metrics are collected, such as memory usage, uncollectable garbage, reactor delay.
This defaults to 10s.
If set to 0 or None, then periodic collection of this data is disabled.
This value can also be changed via a reconfig.

Read more about metrics in the Metrics section in the developer documentation.

Users Options

from buildbot.process.users import manual
c['user_managers'] = []
c['user_managers'].append(manual.CommandlineUserManager(username="user",
 passwd="userpw",
 port=9990))

user_managers contains a list of ways to manually manage User Objects within Buildbot (see User Objects).
Currently implemented is a commandline tool buildbot user, described at length in user.
In the future, a web client will also be able to manage User Objects and their attributes.

As shown above, to enable the buildbot user tool, you must initialize a CommandlineUserManager instance in your master.cfg.
CommandlineUserManager instances require the following arguments:

	username

	This is the username that will be registered on the PB connection and need to be used when calling buildbot user.

	passwd

	This is the passwd that will be registered on the PB connection and need to be used when calling buildbot user.

	port

	The PB connection port must be different than c['protocols']['pb']['port'] and be specified when calling buildbot user

Input Validation

import re
c['validation'] = {
 'branch' : re.compile(r'^[\w.+/~-]*$'),
 'revision' : re.compile(r'^[\w\.\-\/]*$'),
 'property_name' : re.compile(r'^[\w\.\-\/\~:]*$'),
 'property_value' : re.compile(r'^[\w\.\-\/\~:]*$'),
}

This option configures the validation applied to user inputs of various types.
This validation is important since these values are often included in command-line arguments executed on slaves.
Allowing arbitrary input from untrusted users may raise security concerns.

The keys describe the type of input validated; the values are compiled regular expressions against which the input will be matched.
The defaults for each type of input are those given in the example, above.

Revision Links

The revlink parameter is used to create links from revision IDs in the web status to a web-view of your source control system.
The parameter's value must be a callable.

By default, Buildbot is configured to generate revlinks for a number of open source hosting platforms.

The callable takes the revision id and repository argument, and should return an URL to the revision.
Note that the revision id may not always be in the form you expect, so code defensively.
In particular, a revision of "??" may be supplied when no other information is available.

Note that SourceStamps that are not created from version-control changes (e.g., those created by a Nightly or Periodic scheduler) may have an empty repository string, if the repository is not known to the scheduler.

Revision Link Helpers

Buildbot provides two helpers for generating revision links.
buildbot.revlinks.RevlinkMatcher takes a list of regular expressions, and replacement text.
The regular expressions should all have the same number of capture groups.
The replacement text should have sed-style references to that capture groups (i.e. '1' for the first capture group), and a single '%s' reference, for the revision ID.
The repository given is tried against each regular expression in turn.
The results are the substituted into the replacement text, along with the revision ID to obtain the revision link.

from buildbot import revlinks
c['revlink'] = revlinks.RevlinkMatch([r'git://notmuchmail.org/git/(.*)'],
 r'http://git.notmuchmail.org/git/\1/commit/%s')

buildbot.revlinks.RevlinkMultiplexer takes a list of revision link callables, and tries each in turn, returning the first successful match.

Codebase Generator

all_repositories = {
 r'https://hg/hg/mailsuite/mailclient': 'mailexe',
 r'https://hg/hg/mailsuite/mapilib': 'mapilib',
 r'https://hg/hg/mailsuite/imaplib': 'imaplib',
 r'https://github.com/mailinc/mailsuite/mailclient': 'mailexe',
 r'https://github.com/mailinc/mailsuite/mapilib': 'mapilib',
 r'https://github.com/mailinc/mailsuite/imaplib': 'imaplib',
}

def codebaseGenerator(chdict):
 return all_repositories[chdict['repository']]

c['codebaseGenerator'] = codebaseGenerator

For any incoming change, the codebase is set to ''.
This codebase value is sufficient if all changes come from the same repository (or clones).
If changes come from different repositories, extra processing will be needed to determine the codebase for the incoming change.
This codebase will then be a logical name for the combination of repository and or branch etc.

The codebaseGenerator accepts a change dictionary as produced by the buildbot.db.changes.ChangesConnectorComponent, with a changeid equal to None.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

 	Configuration

Change Sources

	Choosing a Change Source

	Configuring Change Sources
	Repository and Project

	Mail-parsing ChangeSources
	Subscribing the Buildmaster

	Using Maildirs

	Parsing Email Change Messages

	CVSMaildirSource

	SVNCommitEmailMaildirSource

	BzrLaunchpadEmailMaildirSource

	PBChangeSource
	Bzr Hook

	P4Source
	Example

	BonsaiPoller

	SVNPoller

	Bzr Poller

	GitPoller

	HgPoller

	BitbucketPullrequestPoller

	GerritChangeSource

	Change Hooks (HTTP Notifications)

	GoogleCodeAtomPoller

A Version Control System maintains a source tree, and tells the
buildmaster when it changes. The first step of each Build is typically
to acquire a copy of some version of this tree.

This chapter describes how the Buildbot learns about what Changes have
occurred. For more information on VC systems and Changes, see
Version Control Systems.

Changes can be provided by a variety of ChangeSource types, although any given
project will typically have only a single ChangeSource active. This section
provides a description of all available ChangeSource types and explains how to
set up each of them.

Choosing a Change Source

There are a variety of ChangeSource classes available, some of which are
meant to be used in conjunction with other tools to deliver Change
events from the VC repository to the buildmaster.

As a quick guide, here is a list of VC systems and the ChangeSources
that might be useful with them. Note that some of these modules are in
Buildbot's "contrib" directory, meaning that they have been offered by other
users in hopes they may be useful, and might require some additional work to
make them functional.

	CVS

	
	CVSMaildirSource (watching mail sent by contrib/buildbot_cvs_mail.py script)

	PBChangeSource (listening for connections from buildbot
sendchange run in a loginfo script)

	PBChangeSource (listening for connections from a long-running
contrib/viewcvspoll.py polling process which examines the ViewCVS
database directly)

	Change Hooks in WebStatus

	SVN

	
	PBChangeSource (listening for connections from
contrib/svn_buildbot.py run in a postcommit script)

	PBChangeSource (listening for connections from a long-running
contrib/svn_watcher.py or contrib/svnpoller.py polling
process

	SVNCommitEmailMaildirSource (watching for email sent by
commit-email.pl)

	SVNPoller (polling the SVN repository)

	Change Hooks in WebStatus

	GoogleCodeAtomPoller (polling the
commit feed for a GoogleCode Git repository)

	Darcs

	
	PBChangeSource (listening for connections from
contrib/darcs_buildbot.py in a commit script)

	Change Hooks in WebStatus

	Mercurial

	
	PBChangeSource (listening for connections from
contrib/hg_buildbot.py run in an 'changegroup' hook)

	Change Hooks in WebStatus

	PBChangeSource (listening for connections from

	
	BitBucket change hook (specifically designed for BitBucket notifications,

	but requiring a publicly-accessible WebStatus)

	HgPoller (polling a remote Mercurial repository)

	GoogleCodeAtomPoller (polling the
commit feed for a GoogleCode Git repository)

	BitbucketPullrequestPoller (polling Bitbucket for pull requests)

	Bzr (the newer Bazaar)

	
	PBChangeSource (listening for connections from
contrib/bzr_buildbot.py run in a post-change-branch-tip or commit hook)

	BzrPoller (polling the Bzr repository)

	Change Hooks in WebStatus

	Git

	
	PBChangeSource (listening for connections from
contrib/git_buildbot.py run in the post-receive hook)

	PBChangeSource (listening for connections from
contrib/github_buildbot.py, which listens for notifications
from GitHub)

	Change Hooks in WebStatus

	GitHub change hook (specifically designed for GitHub notifications,
but requiring a publicly-accessible WebStatus)

	BitBucket change hook (specifically designed for BitBucket notifications,
but requiring a publicly-accessible WebStatus)

	GitPoller (polling a remote Git repository)

	GoogleCodeAtomPoller (polling the
commit feed for a GoogleCode Git repository)

	BitbucketPullrequestPoller (polling Bitbucket for pull requests)

	Repo/Git

	
	GerritChangeSource connects to Gerrit
via SSH to get a live stream of changes

	Monotone

	
	PBChangeSource (listening for connections from
monotone-buildbot.lua, which is available with Monotone)

All VC systems can be driven by a PBChangeSource and the buildbot
sendchange tool run from some form of commit script. If you write an email
parsing function, they can also all be driven by a suitable mail-parsing
source. Additionally, handlers for web-based
notification (i.e. from GitHub) can be used with WebStatus' change_hook module.
The interface is simple, so adding your own handlers (and sharing!) should be a
breeze.

See Change Source Index for a full list of change sources.

Configuring Change Sources

The change_source configuration key holds all active
change sources for the configuration.

Most configurations have a single ChangeSource, watching only a single
tree, e.g.,

c['change_source'] = PBChangeSource()

For more advanced configurations, the parameter can be a list of change sources:

source1 = ...
source2 = ...
c['change_source'] = [source1, source1]

Repository and Project

ChangeSources will, in general, automatically provide the proper repository
attribute for any changes they produce. For systems which operate on URL-like
specifiers, this is a repository URL. Other ChangeSources adapt the concept as
necessary.

Many ChangeSources allow you to specify a project, as well. This attribute is
useful when building from several distinct codebases in the same buildmaster:
the project string can serve to differentiate the different codebases.
Schedulers can filter on project, so you can configure different builders to
run for each project.

Mail-parsing ChangeSources

Many projects publish information about changes to their source tree
by sending an email message out to a mailing list, frequently named
PROJECT-commits or PROJECT-changes. Each message usually contains a
description of the change (who made the change, which files were
affected) and sometimes a copy of the diff. Humans can subscribe to
this list to stay informed about what's happening to the source tree.

The Buildbot can also be subscribed to a -commits mailing list, and
can trigger builds in response to Changes that it hears about. The
buildmaster admin needs to arrange for these email messages to arrive
in a place where the buildmaster can find them, and configure the
buildmaster to parse the messages correctly. Once that is in place,
the email parser will create Change objects and deliver them to the
Schedulers (see Schedulers) just like any other ChangeSource.

There are two components to setting up an email-based ChangeSource.
The first is to route the email messages to the buildmaster, which is
done by dropping them into a maildir. The second is to actually
parse the messages, which is highly dependent upon the tool that was
used to create them. Each VC system has a collection of favorite
change-emailing tools, and each has a slightly different format, so
each has a different parsing function. There is a separate
ChangeSource variant for each parsing function.

Once you've chosen a maildir location and a parsing function, create
the change source and put it in change_source

from buildbot.changes.mail import CVSMaildirSource
c['change_source'] = CVSMaildirSource("~/maildir-buildbot",
 prefix="/trunk/")

Subscribing the Buildmaster

The recommended way to install the buildbot is to create a dedicated
account for the buildmaster. If you do this, the account will probably
have a distinct email address (perhaps
buildmaster@example.org). Then just arrange for this
account's email to be delivered to a suitable maildir (described in
the next section).

If the buildbot does not have its own account, extension addresses
can be used to distinguish between email intended for the buildmaster
and email intended for the rest of the account. In most modern MTAs,
the e.g. foo@example.org account has control over every email
address at example.org which begins with "foo", such that email
addressed to account-foo@example.org can be delivered to a
different destination than account-bar@example.org. qmail
does this by using separate .qmail files for the two destinations
(.qmail-foo and .qmail-bar, with .qmail
controlling the base address and .qmail-default controlling all
other extensions). Other MTAs have similar mechanisms.

Thus you can assign an extension address like
foo-buildmaster@example.org to the buildmaster, and retain
foo@example.org for your own use.

Using Maildirs

A maildir is a simple directory structure originally developed for
qmail that allows safe atomic update without locking. Create a base
directory with three subdirectories: new, tmp, and cur.
When messages arrive, they are put into a uniquely-named file (using
pids, timestamps, and random numbers) in tmp. When the file is
complete, it is atomically renamed into new. Eventually the
buildmaster notices the file in new, reads and parses the
contents, then moves it into cur. A cronjob can be used to delete
files in cur at leisure.

Maildirs are frequently created with the maildirmake tool,
but a simple mkdir -p ~/MAILDIR/{cur,new,tmp} is pretty much
equivalent.

Many modern MTAs can deliver directly to maildirs. The usual .forward
or .procmailrc syntax is to name the base directory with a trailing
slash, so something like ~/MAILDIR/. qmail and postfix are
maildir-capable MTAs, and procmail is a maildir-capable MDA (Mail
Delivery Agent).

Here is an example procmail config, located in ~/.procmailrc:

.procmailrc
routes incoming mail to appropriate mailboxes
PATH=/usr/bin:/usr/local/bin
MAILDIR=$HOME/Mail
LOGFILE=.procmail_log
SHELL=/bin/sh

:0
*
new

If procmail is not setup on a system wide basis, then the following one-line
.forward file will invoke it.

!/usr/bin/procmail

For MTAs which cannot put files into maildirs directly, the
safecat tool can be executed from a .forward file to accomplish
the same thing.

The Buildmaster uses the linux DNotify facility to receive immediate
notification when the maildir's new directory has changed. When
this facility is not available, it polls the directory for new
messages, every 10 seconds by default.

Parsing Email Change Messages

The second component to setting up an email-based ChangeSource is to
parse the actual notices. This is highly dependent upon the VC system
and commit script in use.

A couple of common tools used to create these change emails, along with the
buildbot tools to parse them, are:

	CVS

	
	Buildbot CVS MailNotifier

	CVSMaildirSource

	SVN

	
	svnmailer

	http://opensource.perlig.de/en/svnmailer/

	commit-email.pl

	SVNCommitEmailMaildirSource

	Bzr

	
	Launchpad

	BzrLaunchpadEmailMaildirSource

	Mercurial

	
	NotifyExtension

	http://www.selenic.com/mercurial/wiki/index.cgi/NotifyExtension

	Git

	
	post-receive-email

	http://git.kernel.org/?p=git/git.git;a=blob;f=contrib/hooks/post-receive-email;hb=HEAD

The following sections describe the parsers available for each of
these tools.

Most of these parsers accept a prefix= argument, which is used
to limit the set of files that the buildmaster pays attention to. This
is most useful for systems like CVS and SVN which put multiple
projects in a single repository (or use repository names to indicate
branches). Each filename that appears in the email is tested against
the prefix: if the filename does not start with the prefix, the file
is ignored. If the filename does start with the prefix, that
prefix is stripped from the filename before any further processing is
done. Thus the prefix usually ends with a slash.

CVSMaildirSource

	
class buildbot.changes.mail.CVSMaildirSource

	

This parser works with the buildbot_cvs_maildir.py script in the
contrib directory.

The script sends an email containing all the files submitted in
one directory. It is invoked by using the CVSROOT/loginfo facility.

The Buildbot's CVSMaildirSource knows how to parse these messages
and turn them into Change objects. It takes the directory name of the maildir
root. For example:

from buildbot.changes.mail import CVSMaildirSource
c['change_source'] = CVSMaildirSource("/home/buildbot/Mail")

Configuration of CVS and buildbot_cvs_mail.py

CVS must be configured to invoke the buildbot_cvs_mail.py script when files
are checked in. This is done via the CVS loginfo configuration file.

To update this, first do:

cvs checkout CVSROOT

cd to the CVSROOT directory and edit the file loginfo, adding a line like:

SomeModule /cvsroot/CVSROOT/buildbot_cvs_mail.py --cvsroot :ext:example.com:/cvsroot -e buildbot -P SomeModule %@{sVv@}

Note

For cvs version 1.12.x, the --path %p option is required.
Version 1.11.x and 1.12.x report the directory path differently.

The above example you put the buildbot_cvs_mail.py script under /cvsroot/CVSROOT.
It can be anywhere. Run the script with --help to see all the options.
At the very least, the
options -e (email) and -P (project) should be specified. The line must end with %{sVv}
This is expanded to the files that were modified.

Additional entries can be added to support more modules.

See buildbot_cvs_mail.py --help` for more information on the available options.

SVNCommitEmailMaildirSource

	
class buildbot.changes.mail.SVNCommitEmailMaildirSource

	

SVNCommitEmailMaildirSource parses message sent out by the
commit-email.pl script, which is included in the Subversion
distribution.

It does not currently handle branches: all of the Change objects that
it creates will be associated with the default (i.e. trunk) branch.

from buildbot.changes.mail import SVNCommitEmailMaildirSource
c['change_source'] = SVNCommitEmailMaildirSource("~/maildir-buildbot")

BzrLaunchpadEmailMaildirSource

	
class buildbot.changes.mail.BzrLaunchpadEmailMaildirSource

	

BzrLaunchpadEmailMaildirSource parses the mails that are sent to
addresses that subscribe to branch revision notifications for a bzr branch
hosted on Launchpad.

The branch name defaults to lp:Launchpad path. For example
lp:~maria-captains/maria/5.1.

If only a single branch is used, the default branch name can be changed by
setting defaultBranch.

For multiple branches, pass a dictionary as the value of the branchMap
option to map specific repository paths to specific branch names (see example
below). The leading lp: prefix of the path is optional.

The prefix option is not supported (it is silently ignored). Use the
branchMap and defaultBranch instead to assign changes to
branches (and just do not subscribe the buildbot to branches that are not of
interest).

The revision number is obtained from the email text. The bzr revision id is
not available in the mails sent by Launchpad. However, it is possible to set
the bzr append_revisions_only option for public shared repositories to
avoid new pushes of merges changing the meaning of old revision numbers.

from buildbot.changes.mail import BzrLaunchpadEmailMaildirSource
bm = { 'lp:~maria-captains/maria/5.1' : '5.1', 'lp:~maria-captains/maria/6.0' : '6.0' }
c['change_source'] = BzrLaunchpadEmailMaildirSource("~/maildir-buildbot", branchMap = bm)

PBChangeSource

	
class buildbot.changes.pb.PBChangeSource

	

PBChangeSource actually listens on a TCP port for
clients to connect and push change notices into the
Buildmaster. This is used by the built-in buildbot sendchange
notification tool, as well as several version-control hook
scripts. This change is also useful for
creating new kinds of change sources that work on a push model
instead of some kind of subscription scheme, for example a script
which is run out of an email .forward file. This ChangeSource
always runs on the same TCP port as the slaves. It shares the same
protocol, and in fact shares the same space of "usernames", so you
cannot configure a PBChangeSource with the same name as a slave.

If you have a publicly accessible slave port, and are using
PBChangeSource, you must establish a secure username and password
for the change source. If your sendchange credentials are known (e.g., the
defaults), then your buildmaster is susceptible to injection of arbitrary
changes, which (depending on the build factories) could lead to arbitrary code
execution on buildslaves.

The PBChangeSource is created with the following arguments.

	port

	which port to listen on. If None (which is the default), it
shares the port used for buildslave connections.

	user

	The user account that the client program must use to connect. Defaults to
change

	passwd

	The password for the connection - defaults to changepw. Do not use
this default on a publicly exposed port!

	prefix

	The prefix to be found and stripped from filenames delivered over the
connection, defaulting to None. Any filenames which do not start with
this prefix will be removed. If all the filenames in a given Change are
removed, the that whole Change will be dropped. This string should probably
end with a directory separator.

This is useful for changes coming from version control systems that
represent branches as parent directories within the repository (like SVN
and Perforce). Use a prefix of trunk/ or
project/branches/foobranch/ to only follow one branch and to get
correct tree-relative filenames. Without a prefix, the
PBChangeSource will probably deliver Changes with filenames
like trunk/foo.c instead of just foo.c. Of course this also
depends upon the tool sending the Changes in (like buildbot
sendchange) and what filenames it is delivering: that tool
may be filtering and stripping prefixes at the sending end.

For example:

from buildbot.changes import pb
c['change_source'] = pb.PBChangeSource(port=9999, user='laura', passwd='fpga')

The following hooks are useful for sending changes to a PBChangeSource:

Bzr Hook

Bzr is also written in Python, and the Bzr hook depends on Twisted to send the
changes.

To install, put contrib/bzr_buildbot.py in one of your plugins
locations a bzr plugins directory (e.g.,
~/.bazaar/plugins). Then, in one of your bazaar conf files (e.g.,
~/.bazaar/locations.conf), set the location you want to connect with buildbot
with these keys:

	buildbot_on
one of 'commit', 'push, or 'change'. Turns the plugin on to report changes via
commit, changes via push, or any changes to the trunk. 'change' is
recommended.

	buildbot_server
(required to send to a buildbot master) the URL of the buildbot master to
which you will connect (as of this writing, the same server and port to which
slaves connect).

	buildbot_port
(optional, defaults to 9989) the port of the buildbot master to which you will
connect (as of this writing, the same server and port to which slaves connect)

	buildbot_pqm
(optional, defaults to not pqm) Normally, the user that commits the revision
is the user that is responsible for the change. When run in a pqm (Patch Queue
Manager, see https://launchpad.net/pqm) environment, the user that commits is
the Patch Queue Manager, and the user that committed the parent revision is
responsible for the change. To turn on the pqm mode, set this value to any of
(case-insensitive) "Yes", "Y", "True", or "T".

	buildbot_dry_run
(optional, defaults to not a dry run) Normally, the post-commit hook will
attempt to communicate with the configured buildbot server and port. If this
parameter is included and any of (case-insensitive) "Yes", "Y", "True", or
"T", then the hook will simply print what it would have sent, but not attempt
to contact the buildbot master.

	buildbot_send_branch_name
(optional, defaults to not sending the branch name) If your buildbot's bzr
source build step uses a repourl, do not turn this on. If your buildbot's
bzr build step uses a baseURL, then you may set this value to any of
(case-insensitive) "Yes", "Y", "True", or "T" to have the buildbot master
append the branch name to the baseURL.

Note

The bzr smart server (as of version 2.2.2) doesn't know how
to resolve bzr:// urls into absolute paths so any paths in
locations.conf won't match, hence no change notifications
will be sent to Buildbot. Setting configuration parameters globally
or in-branch might still work. When buildbot no longer has a
hardcoded password, it will be a configuration option here as well.

Here's a simple example that you might have in your
~/.bazaar/locations.conf.

[chroot-*:///var/local/myrepo/mybranch]
buildbot_on = change
buildbot_server = localhost

P4Source

The P4Source periodically polls a Perforce [http://www.perforce.com/]
depot for changes. It accepts the following arguments:

	p4port

	The Perforce server to connect to (as host:port).

	p4user

	The Perforce user.

	p4passwd

	The Perforce password.

	p4base

	The base depot path to watch, without the trailing '/...'.

	p4bin

	An optional string parameter. Specify the location of the perforce command
line binary (p4). You only need to do this if the perforce binary is not
in the path of the buildbot user. Defaults to p4.

	split_file

	A function that maps a pathname, without the leading p4base, to a
(branch, filename) tuple. The default just returns (None, branchfile),
which effectively disables branch support. You should supply a function
which understands your repository structure.

	pollInterval

	How often to poll, in seconds. Defaults to 600 (10 minutes).

	project

	Set the name of the project to be used for the P4Source. This will then be set in any changes generated
by the P4Source, and can be used in a Change Filter for triggering particular builders.

	pollAtLaunch

	Determines when the first poll occurs. True = immediately on launch,
False = wait for one pollInterval (default).

	histmax

	The maximum number of changes to inspect at a time. If more than this
number occur since the last poll, older changes will be silently
ignored.

	encoding

	The character encoding of p4's output. This defaults to "utf8", but
if your commit messages are in another encoding, specify that here. For example,
if you're using Perforce on Windows, you may need to use "cp437" as the
encoding if "utf8" generates errors in your master log.

	server_tz

	The timezone of the Perforce server, using the usual timezone format
(e.g: Europe/Stockholm) in case it's in a different timezone than the
buildbot master.

Example

This configuration uses the P4PORT, P4USER, and P4PASSWD
specified in the buildmaster's environment. It watches a project in which the
branch name is simply the next path component, and the file is all path
components after.

from buildbot.changes import p4poller
s = p4poller.P4Source(p4base='//depot/project/',
 split_file=lambda branchfile: branchfile.split('/',1),
)
c['change_source'] = s

BonsaiPoller

The BonsaiPoller periodically polls a Bonsai server. This is a
CGI script accessed through a web server that provides information
about a CVS tree, for example the Mozilla bonsai server at
http://bonsai.mozilla.org. Bonsai servers are usable by both
humans and machines. In this case, the buildbot's change source forms
a query which asks about any files in the specified branch which have
changed since the last query.

BonsaiPoller accepts the following arguments:

	bonsaiURL

	The base URL of the Bonsai server, e.g., http://bonsai.mozilla.org

	module

	The module to look for changes in. Commonly this is all.

	branch

	The branch to look for changes in. This will appear in the
branch field of the resulting change objects.

	tree

	The tree to look for changes in. Commonly this is all.

	cvsroot

	The CVS root of the repository. Usually this is /cvsroot.

	pollInterval

	The time (in seconds) between queries for changes.

	pollAtLaunch

	Determines when the first poll occurs. True = immediately on launch,
False = wait for one pollInterval (default).

	project

	The project name to attach to all change objects produced by this
change source.

SVNPoller

	
class buildbot.changes.svnpoller.SVNPoller

	

The SVNPoller is a ChangeSource which periodically polls a
Subversion [http://subversion.tigris.org/] repository for new revisions, by
running the svn log command in a subshell. It can watch a single branch or
multiple branches.

SVNPoller accepts the following arguments:

	svnurl

	The base URL path to watch, like
svn://svn.twistedmatrix.com/svn/Twisted/trunk, or
http://divmod.org/svn/Divmo/, or even
file:///home/svn/Repository/ProjectA/branches/1.5/. This must
include the access scheme, the location of the repository (both the
hostname for remote ones, and any additional directory names necessary
to get to the repository), and the sub-path within the repository's
virtual filesystem for the project and branch of interest.

The SVNPoller will only pay attention to files inside the
subdirectory specified by the complete svnurl.

	split_file

	A function to convert pathnames into (branch, relative_pathname)
tuples. Use this to explain your repository's branch-naming policy to
SVNPoller. This function must accept a single string (the
pathname relative to the repository) and return a two-entry tuple.
Directory pathnames always end with a right slash to distinguish them from
files, like trunk/src/, or src/. There are a few utility functions
in buildbot.changes.svnpoller that can be used as a split_file
function; see below for details.

For directories, the relative pathname returned by split_file should
end with a right slash but an empty string is also accepted for the root,
like ("branches/1.5.x", "") being converted from "branches/1.5.x/".

The default value always returns (None, path), which indicates that
all files are on the trunk.

Subclasses of SVNPoller can override the split_file
method instead of using the split_file= argument.

	project

	Set the name of the project to be used for the SVNPoller. This
will then be set in any changes generated by the SVNPoller, and
can be used in a Change Filter for triggering
particular builders.

	svnuser

	An optional string parameter. If set, the --user argument will
be added to all svn commands. Use this if you have to
authenticate to the svn server before you can do svn info or
svn log commands.

	svnpasswd

	Like svnuser, this will cause a --password argument to
be passed to all svn commands.

	pollInterval

	How often to poll, in seconds. Defaults to 600 (checking once every 10
minutes). Lower this if you want the buildbot to notice changes
faster, raise it if you want to reduce the network and CPU load on
your svn server. Please be considerate of public SVN repositories by
using a large interval when polling them.

	pollAtLaunch

	Determines when the first poll occurs. True = immediately on launch,
False = wait for one pollInterval (default).

	histmax

	The maximum number of changes to inspect at a time. Every pollInterval
seconds, the SVNPoller asks for the last histmax changes and
looks through them for any revisions it does not already know about. If
more than histmax revisions have been committed since the last poll,
older changes will be silently ignored. Larger values of histmax will
cause more time and memory to be consumed on each poll attempt.
histmax defaults to 100.

	svnbin

	This controls the svn executable to use. If subversion is
installed in a weird place on your system (outside of the
buildmaster's PATH), use this to tell SVNPoller where
to find it. The default value of svn will almost always be
sufficient.

	revlinktmpl

	This parameter is deprecated in favour of specifying a global revlink option.
This parameter allows a link to be provided for each revision (for example,
to websvn or viewvc). These links appear anywhere changes are shown, such
as on build or change pages. The proper form for this parameter is an URL
with the portion that will substitute for a revision number replaced by
''%s''. For example, 'http://myserver/websvn/revision.php?rev=%s'
could be used to cause revision links to be created to a websvn repository
viewer.

	cachepath

	If specified, this is a pathname of a cache file that SVNPoller
will use to store its state between restarts of the master.

	extra_args

	If specified, the extra arguments will be added to the svn command args.

Several split file functions are available for common SVN repository layouts.
For a poller that is only monitoring trunk, the default split file function
is available explicitly as split_file_alwaystrunk:

from buildbot.changes.svnpoller import SVNPoller
from buildbot.changes.svnpoller import split_file_alwaystrunk
c['change_source'] = SVNPoller(
 svnurl="svn://svn.twistedmatrix.com/svn/Twisted/trunk",
 split_file=split_file_alwaystrunk)

For repositories with the /trunk and
/branches/{BRANCH} layout, split_file_branches will do the
job:

from buildbot.changes.svnpoller import SVNPoller
from buildbot.changes.svnpoller import split_file_branches
c['change_source'] = SVNPoller(
 svnurl="https://amanda.svn.sourceforge.net/svnroot/amanda/amanda",
 split_file=split_file_branches)

When using this splitter the poller will set the project attribute of any
changes to the project attribute of the poller.

For repositories with the {PROJECT}/trunk and
{PROJECT}/branches/{BRANCH} layout, split_file_projects_branches will do
the job:

from buildbot.changes.svnpoller import SVNPoller
from buildbot.changes.svnpoller import split_file_projects_branches
c['change_source'] = SVNPoller(
 svnurl="https://amanda.svn.sourceforge.net/svnroot/amanda/",
 split_file=split_file_projects_branches)

When using this splitter the poller will set the project attribute of any
changes to the project determined by the splitter.

The SVNPoller is highly adaptable to various Subversion layouts.
See Customizing SVNPoller for details and some common scenarios.

Bzr Poller

If you cannot insert a Bzr hook in the server, you can use the Bzr Poller. To
use, put contrib/bzr_buildbot.py somewhere that your buildbot
configuration can import it. Even putting it in the same directory as the master.cfg
should work. Install the poller in the buildbot configuration as with any
other change source. Minimally, provide a URL that you want to poll (bzr://,
bzr+ssh://, or lp:), making sure the buildbot user has necessary
privileges.

bzr_buildbot.py in the same directory as master.cfg
from bzr_buildbot import BzrPoller
c['change_source'] = BzrPoller(
 url='bzr://hostname/my_project',
 poll_interval=300)

The BzrPoller parameters are:

	url

	The URL to poll.

	poll_interval

	The number of seconds to wait between polls. Defaults to 10 minutes.

	branch_name

	Any value to be used as the branch name. Defaults to None, or specify a
string, or specify the constants from bzr_buildbot.py
SHORT or FULL to
get the short branch name or full branch address.

	blame_merge_author

	normally, the user that commits the revision is the user that is responsible
for the change. When run in a pqm (Patch Queue Manager, see
https://launchpad.net/pqm) environment, the user that commits is the Patch
Queue Manager, and the user that committed the merged, parent revision is
responsible for the change. set this value to True if this is pointed against
a PQM-managed branch.

GitPoller

If you cannot take advantage of post-receive hooks as provided by
contrib/git_buildbot.py for example, then you can use the GitPoller.

The GitPoller periodically fetches from a remote Git repository and processes any changes.
It requires its own working directory for operation.
The default should be adequate, but it can be overridden via the workdir property.

Note

There can only be a single GitPoller pointed at any given repository.

The GitPoller requires Git-1.7 and later. It accepts the following
arguments:

	repourl

	the git-url that describes the remote repository, e.g.
git@example.com:foobaz/myrepo.git
(see the git fetch help for more info on git-url formats)

	branches

	One of the following:

	a list of the branches to fetch.

	True indicating that all branches should be fetched

	a callable which takes a single argument.
It should take a remote refspec (such as 'refs/heads/master', and
return a boolean indicating whether that branch should be fetched.

	branch

	accepts a single branch name to fetch.
Exists for backwards compatibility with old configurations.

	pollInterval

	interval in seconds between polls, default is 10 minutes

	pollAtLaunch

	Determines when the first poll occurs. True = immediately on launch,
False = wait for one pollInterval (default).

	gitbin

	path to the Git binary, defaults to just 'git'

	category

	Set the category to be used for the changes produced by the
GitPoller. This will then be set in any changes generated
by the GitPoller, and can be used in a Change Filter for
triggering particular builders.

	project

	Set the name of the project to be used for the
GitPoller. This will then be set in any changes generated
by the GitPoller, and can be used in a Change Filter for
triggering particular builders.

	usetimestamps

	parse each revision's commit timestamp (default is True),
or ignore it in favor of the current time (so recently processed
commits appear together in the waterfall page)

	encoding

	Set encoding will be used to parse author's name and commit
message. Default encoding is 'utf-8'. This will not be
applied to file names since Git will translate non-ascii file
names to unreadable escape sequences.

	workdir

	the directory where the poller should keep its local repository.
The default is gitpoller_work.
If this is a relative path, it will be interpreted relative to the master's basedir.
Multiple Git pollers can share the same directory.

A configuration for the Git poller might look like this:

from buildbot.changes.gitpoller import GitPoller
c['change_source'] = GitPoller(repourl='git@example.com:foobaz/myrepo.git',
 branches=['master', 'great_new_feature'])

HgPoller

The HgPoller periodically pulls a named branch from a remote
Mercurial repository and processes any changes. It requires its own working
directory for operation, which must be specified via the workdir property.

The HgPoller requires a working hg executable, and at least a
read-only access to the repository it polls (possibly through ssh keys or by
tweaking the hgrc of the system user buildbot runs as).

The HgPoller will not transmit any change if there are several heads
on the watched named branch. This is similar (although not identical) to the
Mercurial executable behaviour. This exceptional condition is usually the result
of a developer mistake, and usually does not last for long. It is reported in
logs. If fixed by a later merge, the buildmaster administrator does not have
anything to do: that merge will be transmitted, together with the intermediate
ones.

The HgPoller accepts the following arguments:

	repourl

	the url that describes the remote repository, e.g.
http://hg.example.com/projects/myrepo.
Any url suitable for hg pull can be specified.

	branch

	the desired branch to pull, will default to 'default'

	workdir

	the directory where the poller should keep its local repository. It
is mandatory for now, although later releases may provide a meaningful
default.

It also serves to identify the poller in the buildmaster internal
database. Changing it may result in re-processing all changes so far.

Several HgPoller instances may share the same workdir for
mutualisation of the common history between two different branches, thus
easing on local and remote system resources and bandwidth.

If relative, the workdir will be interpreted from the master directory.

	pollInterval

	interval in seconds between polls, default is 10 minutes

	pollAtLaunch

	Determines when the first poll occurs. True = immediately on launch,
False = wait for one pollInterval (default).

	hgbin

	path to the Mercurial binary, defaults to just 'hg'

	category

	Set the category to be used for the changes produced by the
HgPoller. This will then be set in any changes generated
by the HgPoller, and can be used in a Change Filter for
triggering particular builders.

	project

	Set the name of the project to be used for the
HgPoller. This will then be set in any changes generated
by the HgPoller, and can be used in a Change Filter for
triggering particular builders.

	usetimestamps

	parse each revision's commit timestamp (default is True),
or ignore it in favor of the current time (so recently processed
commits appear together in the waterfall page)

	encoding

	Set encoding will be used to parse author's name and commit
message. Default encoding is 'utf-8'.

A configuration for the Mercurial poller might look like this:

from buildbot.changes.hgpoller import HgPoller
c['change_source'] = HgPoller(repourl='http://hg.example.org/projects/myrepo',
 branch='great_new_feature',
 workdir='hg-myrepo')

BitbucketPullrequestPoller

	
class buildbot.changes.bitbucket.BitbucketPullrequestPoller

	

This BitbucketPullrequestPoller periodically polls Bitbucket for new or updated pull requests.
It uses Bitbuckets powerful Pull Request REST API [https://confluence.atlassian.com/display/BITBUCKET/pullrequests+Resource] to gather the information needed.

The BitbucketPullrequestPoller accepts the following arguments:

	owner

	The owner of the Bitbucket repository. All Bitbucket Urls are of the form https://bitbucket.org/owner/slug/.

	slug

	The name of the Bitbucket repository.

	branch

	A single branch or a list of branches which should be processed.
If it is None (the default) all pull requests are used.

	pollInterval

	Interval in seconds between polls, default is 10 minutes.

	pollAtLaunch

	Determines when the first poll occurs. True = immediately on launch,
False = wait for one pollInterval (default).

	category

	Set the category to be used for the changes produced by the
BitbucketPullrequestPoller. This will then be set in any changes generated
by the BitbucketPullrequestPoller, and can be used in a Change Filter for
triggering particular builders.

	project

	Set the name of the project to be used for the
BitbucketPullrequestPoller. This will then be set in any changes generated
by the BitbucketPullrequestPoller, and can be used in a Change Filter for
triggering particular builders.

	pullrequest_filter

	A callable which takes one parameter, the decoded Python object of the pull request JSON.
If the it returns False the pull request is ignored.
It can be used to define custom filters based on the content of the pull request.
See the Bitbucket documentation for more information about the format of the response.
By default the filter always returns True.

	usetimestamps

	parse each revision's commit timestamp (default is True),
or ignore it in favor of the current time (so recently processed
commits appear together in the waterfall page)

	encoding

	Set encoding will be used to parse author's name and commit
message. Default encoding is 'utf-8'.

A minimal configuration for the Bitbucket pull request poller might look like this:

from buildbot.changes.bitbucket import BitbucketPullrequestPoller
c['change_source'] = BitbucketPullrequestPoller(
 owner='myname',
 slug='myrepo',
)

Here is a more complex configuration using a pullrequest_filter.
The pull request is only processed if at least 3 people have already approved it:

def approve_filter(pr, threshold):
 approves = 0
 for participant in pr['participants']:
 if participant['approved']:
 approves = approves + 1

 if approves < threshold:
 return False
 return True

from buildbot.changes.bitbucket import BitbucketPullrequestPoller
c['change_source'] = BitbucketPullrequestPoller(
 owner='myname',
 slug='myrepo',
 branch='mybranch',
 project='myproject',
 pullrequest_filter=lambda pr : approve_filter(pr,3),
 pollInterval=600,
)

Warning

Anyone who can create pull requests for the Bitbucket repository can initiate a change,
potentially causing the buildmaster to run arbitrary code.

GerritChangeSource

	
class buildbot.changes.gerritchangesource.GerritChangeSource

	

The GerritChangeSource class connects to a Gerrit server by its SSH
interface and uses its event source mechanism,
gerrit stream-events [http://gerrit.googlecode.com/svn/documentation/2.2.1/cmd-stream-events.html].

The GerritChangeSource accepts the following arguments:

	gerritserver

	the dns or ip that host the gerrit ssh server

	gerritport

	the port of the gerrit ssh server

	username

	the username to use to connect to gerrit

	identity_file

	ssh identity file to for authentication (optional)
pay attention to the ssh passphrase

	handled_events

	event to be handled (optional)
by default processes patchset-created and ref-updated

By default this class adds a change to the buildbot system for each of the following events:

	patchset-created

	A change is proposed for review. Automatic checks like
checkpatch.pl can be automatically triggered. Beware of
what kind of automatic task you trigger. At this point, no trusted
human has reviewed the code, and a patch could be specially
crafted by an attacker to compromise your buildslaves.

	ref-updated

	A change has been merged into the repository. Typically, this kind
of event can lead to a complete rebuild of the project, and upload
binaries to an incremental build results server.

But you can specify how to handle Events:

	Any event with change and patchSet will
be processed by universal collector by default.

	In case you've specified processing function for the given kind of events,
all events of this kind will be processed only by this function, bypassing universal collector.

An example:

from buildbot.changes.gerritchangesource import GerritChangeSource
class MyGerritChangeSource(GerritChangeSource):
 """Custom GerritChangeSource
 """
 def eventReceived_patchset_created(self, properties, event):
 """Handler events without properties
 """
 properties = {}
 self.addChangeFromEvent(properties, event)

This class will populate the property list of the triggered build with the info
received from Gerrit server in JSON format.

In case of patchset-created event, these properties will be:

	event.change.branch

	Branch of the Change

	event.change.id

	Change's ID in the Gerrit system (the ChangeId: in commit comments)

	event.change.number

	Change's number in Gerrit system

	event.change.owner.email

	Change's owner email (owner is first uploader)

	event.change.owner.name

	Change's owner name

	event.change.project

	Project of the Change

	event.change.subject

	Change's subject

	event.change.url

	URL of the Change in the Gerrit's web interface

	event.patchSet.number

	Patchset's version number

	event.patchSet.ref

	Patchset's Gerrit "virtual branch"

	event.patchSet.revision

	Patchset's Git commit ID

	event.patchSet.uploader.email

	Patchset uploader's email (owner is first uploader)

	event.patchSet.uploader.name

	Patchset uploader's name (owner is first uploader)

	event.type

	Event type (patchset-created)

	event.uploader.email

	Patchset uploader's email

	event.uploader.name

	Patchset uploader's name

In case of ref-updated event, these properties will be:

	event.refUpdate.newRev

	New Git commit ID (after merger)

	event.refUpdate.oldRev

	Previous Git commit ID (before merger)

	event.refUpdate.project

	Project that was updated

	event.refUpdate.refName

	Branch that was updated

	event.submitter.email

	Submitter's email (merger responsible)

	event.submitter.name

	Submitter's name (merger responsible)

	event.type

	Event type (ref-updated)

	event.submitter.email

	Submitter's email (merger responsible)

	event.submitter.name

	Submitter's name (merger responsible)

A configuration for this source might look like:

from buildbot.changes.gerritchangesource import GerritChangeSource
c['change_source'] = GerritChangeSource(
 "gerrit.example.com",
 "gerrit_user",
 handled_events=["patchset-created", "change-merged"])

see master/docs/examples/git_gerrit.cfg or master/docs/examples/repo_gerrit.cfg in the Buildbot distribution
for a full example setup of Git+Gerrit or Repo+Gerrit of GerritChangeSource.

Change Hooks (HTTP Notifications)

Buildbot already provides a web frontend, and that frontend can easily be used
to receive HTTP push notifications of commits from services like GitHub or
GoogleCode. See Change Hooks for more information.

GoogleCodeAtomPoller

The GoogleCodeAtomPoller periodically polls a Google Code Project's
commit feed for changes. Works on SVN, Git, and Mercurial repositories. Branches
are not understood (yet). It accepts the following arguments:

	feedurl

	The commit Atom feed URL of the GoogleCode repository (MANDATORY)

	pollinterval

	Polling frequency for the feed (in seconds). Default is 1 hour (OPTIONAL)

As an example, to poll the Ostinato project's commit feed every 3 hours, the
configuration would look like this:

from googlecode_atom import GoogleCodeAtomPoller
c['change_source'] = GoogleCodeAtomPoller(
 feedurl="http://code.google.com/feeds/p/ostinato/hgchanges/basic",
 pollinterval=10800)

(note that you will need to download googlecode_atom.py from the Buildbot
source and install it somewhere on your PYTHONPATH first)

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

 	Configuration

Schedulers

	Configuring Schedulers

	Change Filters

	SingleBranchScheduler

	AnyBranchScheduler

	Dependent Scheduler

	Periodic Scheduler

	Nightly Scheduler

	Try Schedulers

	Triggerable Scheduler

	NightlyTriggerable Scheduler

	ForceScheduler Scheduler

Schedulers are responsible for initiating builds on builders.

Some schedulers listen for changes from ChangeSources and generate build sets
in response to these changes. Others generate build sets without changes,
based on other events in the buildmaster.

Configuring Schedulers

The schedulers configuration parameter gives a list of Scheduler
instances, each of which causes builds to be started on a particular set of
Builders. The two basic Scheduler classes you are likely to start with are
SingleBranchScheduler and Periodic, but you can write a
customized subclass to implement more complicated build scheduling.

Scheduler arguments should always be specified by name (as keyword arguments),
to allow for future expansion:

sched = SingleBranchScheduler(name="quick", builderNames=['lin', 'win'])

There are several common arguments for schedulers, although not all are
available with all schedulers.

	name

	Each Scheduler must have a unique name. This is used in status
displays, and is also available in the build property scheduler.

	builderNames

	This is the set of builders which this scheduler should trigger, specified
as a list of names (strings).

	properties

	This is a dictionary specifying properties that will be transmitted to all
builds started by this scheduler. The owner property may be of
particular interest, as its contents (as a list) will be added to the list of
"interested users" (Doing Things With Users) for each triggered build.
For example

sched = Scheduler(...,
 properties = { 'owner' : ['zorro@company.com', 'silver@company.com'] })

	fileIsImportant

	A callable which takes one argument, a Change instance, and
returns True if the change is worth building, and False if
it is not. Unimportant Changes are accumulated until the build is
triggered by an important change. The default value of None means
that all Changes are important.

	change_filter

	The change filter that will determine which changes are recognized
by this scheduler; Change Filters. Note that this is
different from fileIsImportant: if the change filter filters
out a Change, then it is completely ignored by the scheduler. If
a Change is allowed by the change filter, but is deemed
unimportant, then it will not cause builds to start, but will be
remembered and shown in status displays.

	codebases

	When the scheduler processes data from more than 1 repository at the
same time then a corresponding codebase definition should be passed for each
repository. A codebase definition is a dictionary with one or more of the
following keys: repository, branch, revision. The codebase definitions have
also to be passed as dictionary.

codebases = {'codebase1': {'repository':'....',
 'branch':'default',
 'revision': None},
 'codebase2': {'repository':'....'} }

Important

codebases behaves also like a change_filter on codebase.
The scheduler will only process changes when their codebases are found
in codebases. By default codebases is set to {'':{}} which
means that only changes with codebase '' (default value for codebase)
will be accepted by the scheduler.

Buildsteps can have a reference to one of the codebases. The step will only
get information (revision, branch etc.) that is related to that codebase.
When a scheduler is triggered by new changes, these changes (having a
codebase) will be incorporated by the new build. The buildsteps referencing
to the codebases that have changes get information about those changes.
The buildstep that references to a codebase that does not have changes in
the build get the information from the codebases definition as configured in
the scheduler.

	onlyImportant

	A boolean that, when True, only adds important changes to the
buildset as specified in the fileIsImportant callable. This
means that unimportant changes are ignored the same way a
change_filter filters changes. This defaults to
False and only applies when fileIsImportant is
given.

	reason

	A string that will be used as the reason for the triggered build.

	createAbsoluteSourceStamps

	This option only has effect when using multiple codebases. When True, it
uses the last seen revision for each codebase that does not have a change.
When False, the default value, codebases without changes will use the
revision from the codebases argument.

The remaining subsections represent a catalog of the available Scheduler types.
All these Schedulers are defined in modules under buildbot.schedulers,
and the docstrings there are the best source of documentation on the arguments
taken by each one.

Change Filters

Several schedulers perform filtering on an incoming set of changes. The filter
can most generically be specified as a ChangeFilter. Set up a
ChangeFilter like this:

from buildbot.changes.filter import ChangeFilter
my_filter = ChangeFilter(
 project_re="^baseproduct/.*",
 branch="devel")

and then add it to a scheduler with the change_filter parameter:

sch = SomeSchedulerClass(...,
 change_filter=my_filter)

There are five attributes of changes on which you can filter:

	project

	the project string, as defined by the ChangeSource.

	repository

	the repository in which this change occurred.

	branch

	the branch on which this change occurred. Note that 'trunk' or 'master' is often
denoted by None.

	category

	the category, again as defined by the ChangeSource.

	codebase

	the change's codebase.

For each attribute, the filter can look for a single, specific value:

my_filter = ChangeFilter(project = 'myproject')

or accept any of a set of values:

my_filter = ChangeFilter(project = ['myproject', 'jimsproject'])

or apply a regular expression, using the attribute name with a "_re"
suffix:

my_filter = ChangeFilter(category_re = '.*deve.*')
or, to use regular expression flags:
import re
my_filter = ChangeFilter(category_re = re.compile('.*deve.*', re.I))

For anything more complicated, define a Python function to recognize the strings
you want:

def my_branch_fn(branch):
 return branch in branches_to_build and branch not in branches_to_ignore
my_filter = ChangeFilter(branch_fn = my_branch_fn)

The special argument filter_fn can be used to specify a function that is
given the entire Change object, and returns a boolean.

The entire set of allowed arguments, then, is

	project
	project_re
	project_fn

	repository
	repository_re
	repository_fn

	branch
	branch_re
	branch_fn

	category
	category_re
	category_fn

	codebase
	codebase_re
	codebase_fn

	filter_fn

A Change passes the filter only if all arguments are satisfied. If no
filter object is given to a scheduler, then all changes will be built (subject
to any other restrictions the scheduler enforces).

SingleBranchScheduler

This is the original and still most popular scheduler class. It follows
exactly one branch, and starts a configurable tree-stable-timer after
each change on that branch. When the timer expires, it starts a build
on some set of Builders. The Scheduler accepts a fileIsImportant
function which can be used to ignore some Changes if they do not
affect any important files.

If treeStableTimer is not set, then this scheduler starts a build for every Change that matches its change_filter and statsfies fileIsImportant.
If treeStableTimer is set, then a build is triggered for each set of Changes which arrive within the configured time, and match the filters.

Note

The behavior of this scheduler is undefined, if treeStableTimer is set, and changes from multiple branches, repositories or codebases are accepted by the filter.

Note

The codebases argument will filter out codebases not specified there, but won't filter based on the branches specified there.

The arguments to this scheduler are:

name

builderNames

properties

fileIsImportant

change_filter

onlyImportant

reason

	createAbsoluteSourceStamps

	See Configuring Schedulers.

	treeStableTimer

	The scheduler will wait for this many seconds before starting the
build. If new changes are made during this interval, the timer will be
restarted, so really the build will be started after a change and then
after this many seconds of inactivity.

If treeStableTimer is None, then a separate build is started
immediately for each Change.

	fileIsImportant

	A callable which takes one argument, a Change instance, and returns
True if the change is worth building, and False if
it is not. Unimportant Changes are accumulated until the build is
triggered by an important change. The default value of None means
that all Changes are important.

	categories (deprecated; use change_filter)

	A list of categories of changes that this scheduler will respond to. If this
is specified, then any non-matching changes are ignored.

	branch (deprecated; use change_filter)

	The scheduler will pay attention to this branch, ignoring Changes
that occur on other branches. Setting branch equal to the
special value of None means it should only pay attention to
the default branch.

Note

None is a keyword, not a string, so write None
and not "None".

Example:

from buildbot.schedulers.basic import SingleBranchScheduler
from buildbot.changes import filter
quick = SingleBranchScheduler(name="quick",
 change_filter=filter.ChangeFilter(branch='master'),
 treeStableTimer=60,
 builderNames=["quick-linux", "quick-netbsd"])
full = SingleBranchScheduler(name="full",
 change_filter=filter.ChangeFilter(branch='master'),
 treeStableTimer=5*60,
 builderNames=["full-linux", "full-netbsd", "full-OSX"])
c['schedulers'] = [quick, full]

In this example, the two quick builders are triggered 60 seconds
after the tree has been changed. The full builds do not run quite
so quickly (they wait 5 minutes), so hopefully if the quick builds
fail due to a missing file or really simple typo, the developer can
discover and fix the problem before the full builds are started. Both
Schedulers only pay attention to the default branch: any changes
on other branches are ignored by these schedulers. Each scheduler
triggers a different set of Builders, referenced by name.

The old names for this scheduler, buildbot.scheduler.Scheduler and
buildbot.schedulers.basic.Scheduler, are deprecated in favor of the more
accurate name buildbot.schedulers.basic.SingleBranchScheduler.

AnyBranchScheduler

This scheduler uses a tree-stable-timer like the default one, but
uses a separate timer for each branch.

If treeStableTimer is not set, then this scheduler is indistinguishable from bb:sched:SingleBranchScheduler.
If treeStableTimer is set, then a build is triggered for each set of Changes which arrive within the configured time, and match the filters.

The arguments to this scheduler are:

name

builderNames

properties

fileIsImportant

change_filter

onlyImportant

	reason

	See Configuring Schedulers.

	treeStableTimer

	The scheduler will wait for this many seconds before starting the build. If
new changes are made on the same branch during this interval, the timer
will be restarted.

	branches (deprecated; use change_filter)

	Changes on branches not specified on this list will be ignored.

	categories (deprecated; use change_filter)

	A list of categories of changes that this scheduler will respond to. If this
is specified, then any non-matching changes are ignored.

Dependent Scheduler

It is common to wind up with one kind of build which should only be
performed if the same source code was successfully handled by some
other kind of build first. An example might be a packaging step: you
might only want to produce .deb or RPM packages from a tree that was
known to compile successfully and pass all unit tests. You could put
the packaging step in the same Build as the compile and testing steps,
but there might be other reasons to not do this (in particular you
might have several Builders worth of compiles/tests, but only wish to
do the packaging once). Another example is if you want to skip the
full builds after a failing quick build of the same source
code. Or, if one Build creates a product (like a compiled library)
that is used by some other Builder, you'd want to make sure the
consuming Build is run after the producing one.

You can use Dependencies to express this relationship
to the Buildbot. There is a special kind of scheduler named
scheduler.Dependent that will watch an upstream scheduler
for builds to complete successfully (on all of its Builders). Each time
that happens, the same source code (i.e. the same SourceStamp)
will be used to start a new set of builds, on a different set of
Builders. This downstream scheduler doesn't pay attention to
Changes at all. It only pays attention to the upstream scheduler.

If the build fails on any of the Builders in the upstream set,
the downstream builds will not fire. Note that, for SourceStamps
generated by a ChangeSource, the revision is None, meaning HEAD.
If any changes are committed between the time the upstream scheduler
begins its build and the time the dependent scheduler begins its
build, then those changes will be included in the downstream build.
See the Triggerable Scheduler for a more flexible dependency
mechanism that can avoid this problem.

The keyword arguments to this scheduler are:

name

builderNames

	properties

	See Configuring Schedulers.

	upstream

	The upstream scheduler to watch. Note that this is an instance,
not the name of the scheduler.

Example:

from buildbot.schedulers import basic
tests = basic.SingleBranchScheduler(name="just-tests",
 treeStableTimer=5*60,
 builderNames=["full-linux", "full-netbsd", "full-OSX"])
package = basic.Dependent(name="build-package",
 upstream=tests, # <- no quotes!
 builderNames=["make-tarball", "make-deb", "make-rpm"])
c['schedulers'] = [tests, package]

Periodic Scheduler

This simple scheduler just triggers a build every N seconds.

The arguments to this scheduler are:

name

builderNames

properties

onlyImportant

	reason

	See Configuring Schedulers.

	periodicBuildTimer

	The time, in seconds, after which to start a build.

Example:

from buildbot.schedulers import timed
nightly = timed.Periodic(name="daily",
 builderNames=["full-solaris"],
 periodicBuildTimer=24*60*60)
c['schedulers'] = [nightly]

The scheduler in this example just runs the full solaris build once
per day. Note that this scheduler only lets you control the time
between builds, not the absolute time-of-day of each Build, so this
could easily wind up an evening or every afternoon scheduler
depending upon when it was first activated.

Nightly Scheduler

This is highly configurable periodic build scheduler, which triggers
a build at particular times of day, week, month, or year. The
configuration syntax is very similar to the well-known crontab
format, in which you provide values for minute, hour, day, and month
(some of which can be wildcards), and a build is triggered whenever
the current time matches the given constraints. This can run a build
every night, every morning, every weekend, alternate Thursdays,
on your boss's birthday, etc.

Pass some subset of minute, hour, dayOfMonth,
month, and dayOfWeek; each may be a single number or
a list of valid values. The builds will be triggered whenever the
current time matches these values. Wildcards are represented by a
'*' string. All fields default to a wildcard except 'minute', so
with no fields this defaults to a build every hour, on the hour.
The full list of parameters is:

name

builderNames

properties

fileIsImportant

change_filter

onlyImportant

reason

codebases

	createAbsoluteSourceStamps

	See Configuring Schedulers. Note that fileIsImportant,
change_filter and createAbsoluteSourceStamps are only relevant
if onlyIfChanged is True.

	onlyIfChanged

	If this is true, then builds will not be scheduled at the designated time
unless the specified branch has seen an important change since
the previous build.

	branch

	(required) The branch to build when the time comes. Remember that
a value of None here means the default branch, and will not
match other branches!

	minute

	The minute of the hour on which to start the build. This defaults
to 0, meaning an hourly build.

	hour

	The hour of the day on which to start the build, in 24-hour notation.
This defaults to *, meaning every hour.

	dayOfMonth

	The day of the month to start a build. This defaults to *, meaning
every day.

	month

	The month in which to start the build, with January = 1. This defaults
to *, meaning every month.

	dayOfWeek

	The day of the week to start a build, with Monday = 0. This defaults
to *, meaning every day of the week.

For example, the following master.cfg clause will cause a build to be
started every night at 3:00am:

from buildbot.schedulers import timed
c['schedulers'].append(
 timed.Nightly(name='nightly',
 branch='master',
 builderNames=['builder1', 'builder2'],
 hour=3,
 minute=0))

This scheduler will perform a build each Monday morning at 6:23am and
again at 8:23am, but only if someone has committed code in the interim:

c['schedulers'].append(
 timed.Nightly(name='BeforeWork',
 branch=`default`,
 builderNames=['builder1'],
 dayOfWeek=0,
 hour=[6,8],
 minute=23,
 onlyIfChanged=True))

The following runs a build every two hours, using Python's range
function:

c.schedulers.append(
 timed.Nightly(name='every2hours',
 branch=None, # default branch
 builderNames=['builder1'],
 hour=range(0, 24, 2)))

Finally, this example will run only on December 24th:

c['schedulers'].append(
 timed.Nightly(name='SleighPreflightCheck',
 branch=None, # default branch
 builderNames=['flying_circuits', 'radar'],
 month=12,
 dayOfMonth=24,
 hour=12,
 minute=0))

Try Schedulers

This scheduler allows developers to use the buildbot try
command to trigger builds of code they have not yet committed. See
try for complete details.

Two implementations are available: Try_Jobdir and
Try_Userpass. The former monitors a job directory, specified
by the jobdir parameter, while the latter listens for PB
connections on a specific port, and authenticates against
userport.

The buildmaster must have a scheduler instance in the config file's
schedulers list to receive try requests. This lets the
administrator control who may initiate these trial builds, which branches
are eligible for trial builds, and which Builders should be used for them.

The scheduler has various means to accept build requests.
All of them enforce more security than the usual buildmaster ports do.
Any source code being built can be used to compromise the buildslave
accounts, but in general that code must be checked out from the VC
repository first, so only people with commit privileges can get
control of the buildslaves. The usual force-build control channels can
waste buildslave time but do not allow arbitrary commands to be
executed by people who don't have those commit privileges. However,
the source code patch that is provided with the trial build does not
have to go through the VC system first, so it is important to make
sure these builds cannot be abused by a non-committer to acquire as
much control over the buildslaves as a committer has. Ideally, only
developers who have commit access to the VC repository would be able
to start trial builds, but unfortunately the buildmaster does not, in
general, have access to VC system's user list.

As a result, the try scheduler requires a bit more configuration. There are
currently two ways to set this up:

	jobdir (ssh)

	This approach creates a command queue directory, called the
jobdir, in the buildmaster's working directory. The buildmaster
admin sets the ownership and permissions of this directory to only
grant write access to the desired set of developers, all of whom must
have accounts on the machine. The buildbot try command creates
a special file containing the source stamp information and drops it in
the jobdir, just like a standard maildir. When the buildmaster notices
the new file, it unpacks the information inside and starts the builds.

The config file entries used by 'buildbot try' either specify a local
queuedir (for which write and mv are used) or a remote one (using scp
and ssh).

The advantage of this scheme is that it is quite secure, the
disadvantage is that it requires fiddling outside the buildmaster
config (to set the permissions on the jobdir correctly). If the
buildmaster machine happens to also house the VC repository, then it
can be fairly easy to keep the VC userlist in sync with the
trial-build userlist. If they are on different machines, this will be
much more of a hassle. It may also involve granting developer accounts
on a machine that would not otherwise require them.

To implement this, the buildslave invokes ssh -l username host
buildbot tryserver ARGS, passing the patch contents over stdin. The
arguments must include the inlet directory and the revision
information.

	user+password (PB)

	In this approach, each developer gets a username/password pair, which
are all listed in the buildmaster's configuration file. When the
developer runs buildbot try, their machine connects to the
buildmaster via PB and authenticates themselves using that username
and password, then sends a PB command to start the trial build.

The advantage of this scheme is that the entire configuration is
performed inside the buildmaster's config file. The disadvantages are
that it is less secure (while the cred authentication system does
not expose the password in plaintext over the wire, it does not offer
most of the other security properties that SSH does). In addition, the
buildmaster admin is responsible for maintaining the username/password
list, adding and deleting entries as developers come and go.

For example, to set up the jobdir style of trial build, using a
command queue directory of MASTERDIR/jobdir (and assuming that
all your project developers were members of the developers unix
group), you would first set up that directory:

mkdir -p MASTERDIR/jobdir MASTERDIR/jobdir/new MASTERDIR/jobdir/cur MASTERDIR/jobdir/tmp
chgrp developers MASTERDIR/jobdir MASTERDIR/jobdir/*
chmod g+rwx,o-rwx MASTERDIR/jobdir MASTERDIR/jobdir/*

and then use the following scheduler in the buildmaster's config file:

from buildbot.schedulers.trysched import Try_Jobdir
s = Try_Jobdir(name="try1",
 builderNames=["full-linux", "full-netbsd", "full-OSX"],
 jobdir="jobdir")
c['schedulers'] = [s]

Note that you must create the jobdir before telling the buildmaster to
use this configuration, otherwise you will get an error. Also remember
that the buildmaster must be able to read and write to the jobdir as
well. Be sure to watch the twistd.log file (Logfiles)
as you start using the jobdir, to make sure the buildmaster is happy
with it.

Note

Patches in the jobdir are encoded using netstrings, which place an
arbitrary upper limit on patch size of 99999 bytes. If your submitted try
jobs are rejected with BadJobfile, try increasing this limit with a
snippet like this in your master.cfg:

from twisted.protocols.basic import NetstringReceiver
NetstringReceiver.MAX_LENGTH = 1000000

To use the username/password form of authentication, create a
Try_Userpass instance instead. It takes the same
builderNames argument as the Try_Jobdir form, but
accepts an additional port argument (to specify the TCP port to
listen on) and a userpass list of username/password pairs to
accept. Remember to use good passwords for this: the security of the
buildslave accounts depends upon it:

from buildbot.schedulers.trysched import Try_Userpass
s = Try_Userpass(name="try2",
 builderNames=["full-linux", "full-netbsd", "full-OSX"],
 port=8031,
 userpass=[("alice","pw1"), ("bob", "pw2")])
c['schedulers'] = [s]

Like most places in the buildbot, the port argument takes a
strports specification. See twisted.application.strports for
details.

Triggerable Scheduler

The Triggerable scheduler waits to be triggered by a Trigger
step (see Triggering Schedulers) in another build. That step
can optionally wait for the scheduler's builds to complete. This
provides two advantages over Dependent schedulers. First, the same
scheduler can be triggered from multiple builds. Second, the ability
to wait for a Triggerable's builds to complete provides a form of
"subroutine call", where one or more builds can "call" a scheduler
to perform some work for them, perhaps on other buildslaves.
The Triggerable-Scheduler supports multiple codebases. The scheduler filters out
all codebases from Trigger steps that are not configured in the scheduler.

The parameters are just the basics:

name

builderNames

properties

	codebases

	See Configuring Schedulers.

This class is only useful in conjunction with the Trigger step.
Here is a fully-worked example:

from buildbot.schedulers import basic, timed, triggerable
from buildbot.process import factory
from buildbot.steps import trigger

checkin = basic.SingleBranchScheduler(name="checkin",
 branch=None,
 treeStableTimer=5*60,
 builderNames=["checkin"])
nightly = timed.Nightly(name='nightly',
 branch=None,
 builderNames=['nightly'],
 hour=3,
 minute=0)

mktarball = triggerable.Triggerable(name="mktarball",
 builderNames=["mktarball"])
build = triggerable.Triggerable(name="build-all-platforms",
 builderNames=["build-all-platforms"])
test = triggerable.Triggerable(name="distributed-test",
 builderNames=["distributed-test"])
package = triggerable.Triggerable(name="package-all-platforms",
 builderNames=["package-all-platforms"])

c['schedulers'] = [mktarball, checkin, nightly, build, test, package]

on checkin, make a tarball, build it, and test it
checkin_factory = factory.BuildFactory()
checkin_factory.addStep(trigger.Trigger(schedulerNames=['mktarball'],
 waitForFinish=True))
checkin_factory.addStep(trigger.Trigger(schedulerNames=['build-all-platforms'],
 waitForFinish=True))
checkin_factory.addStep(trigger.Trigger(schedulerNames=['distributed-test'],
 waitForFinish=True))

and every night, make a tarball, build it, and package it
nightly_factory = factory.BuildFactory()
nightly_factory.addStep(trigger.Trigger(schedulerNames=['mktarball'],
 waitForFinish=True))
nightly_factory.addStep(trigger.Trigger(schedulerNames=['build-all-platforms'],
 waitForFinish=True))
nightly_factory.addStep(trigger.Trigger(schedulerNames=['package-all-platforms'],
 waitForFinish=True))

NightlyTriggerable Scheduler

	
class buildbot.schedulers.timed.NightlyTriggerable

	

The NightlyTriggerable scheduler is a mix of the Nightly and Triggerable schedulers.
This scheduler triggers builds at a particular time of day, week, or year, exactly as the Nightly scheduler.
However, the source stamp set that is used that provided by the last Trigger step that targeted this scheduler.

The parameters are just the basics:

name

builderNames

properties

	codebases

	See Configuring Schedulers.

minute

hour

dayOfMonth

month

	dayOfWeek

	See Nightly.

This class is only useful in conjunction with the Trigger step.
Note that waitForFinish is ignored by Trigger steps targeting this scheduler.

Here is a fully-worked example:

from buildbot.schedulers import basic, timed
from buildbot.process import factory
from buildbot.steps import shell, trigger

checkin = basic.SingleBranchScheduler(name="checkin",
 branch=None,
 treeStableTimer=5*60,
 builderNames=["checkin"])
nightly = timed.NightlyTriggerable(name='nightly',
 builderNames=['nightly'],
 hour=3,
 minute=0)

c['schedulers'] = [checkin, nightly]

on checkin, run tests
checkin_factory = factory.BuildFactory()
checkin_factory.addStep(shell.Test())
checkin_factory.addStep(trigger.Trigger(schedulerNames=['nightly']))

and every night, package the latest successful build
nightly_factory = factory.BuildFactory()
nightly_factory.addStep(shell.ShellCommand(command=['make', 'package']))

ForceScheduler Scheduler

The ForceScheduler scheduler is the way you can configure a
force build form in the web UI.

In the builder/<builder-name> web page, you will see one form for each
ForceScheduler scheduler that was configured for this builder.

This allows you to customize exactly how the build form looks, which builders
have a force build form (it might not make sense to force build every builder),
and who is allowed to force builds on which builders.

The scheduler takes the following parameters:

name

builderNames

See Configuring Schedulers.

reason

A parameter specifying the reason for
the build. The default value is a string parameter with value "force build".

reasonString

A string that will be used to create the build reason for the forced build. This
string can contain the placeholders '%(owner)s' and '%(reason)s', which represents
the value typed into the reason field.

username

A parameter specifying the project for
the build. The default value is a username parameter,

codebases

A list of strings or CodebaseParameter specifying
the codebases that should be presented. The default is a single codebase with no name.

properties

A list of parameters, one for each
property. These can be arbitrary parameters, where the parameter's name is
taken as the property name, or AnyPropertyParameter, which allows the
web user to specify the property name.

buttonName

The name of the "submit" button on the resulting force-build form.
This defaults to "Force Build".

An example may be better than long explanation. What you need in your config
file is something like:

from buildbot.schedulers.forcesched import *

sch = ForceScheduler(name="force",
 builderNames=["my-builder"],

 # will generate a combo box
 branch=ChoiceStringParameter(name="branch",
 choices=["main","devel"], default="main"),

 # will generate a text input
 reason=StringParameter(name="reason",label="reason:
",
 required=True, size=80),

 # will generate nothing in the form, but revision, repository,
 # and project are needed by buildbot scheduling system so we
 # need to pass a value ("")
 revision=FixedParameter(name="revision", default=""),
 repository=FixedParameter(name="repository", default=""),
 project=FixedParameter(name="project", default=""),

 # in case you dont require authentication this will display
 # input for user to type his name
 username=UserNameParameter(label="your name:
", size=80),

 # A completely customized property list. The name of the
 # property is the name of the parameter
 properties=[

 BooleanParameter(name="force_build_clean",
 label="force a make clean", default=False),

 StringParameter(name="pull_url",
 label="optionally give a public Git pull url:
",
 default="", size=80)
]
)
c['schedulers'].append(sch)

Authorization

The force scheduler uses the web status's authorization
framework to determine which user has the right to force which build. Here is
an example of code on how you can define which user has which right:

user_mapping = {
 re.compile("project1-builder"): ["project1-maintainer", "john"] ,
 re.compile("project2-builder"): ["project2-maintainer", "jack"],
 re.compile(".*"): ["root"]
}
def force_auth(user, status):
 global user_mapping
 for r,users in user_mapping.items():
 if r.match(status.name):
 if user in users:
 return True
 return False

use authz_cfg in your WebStatus setup
authz_cfg=authz.Authz(
 auth=my_auth,
 forceBuild = force_auth,
)

ForceSched Parameters

Most of the arguments to ForceScheduler are "parameters". Several classes
of parameters are available, each describing a different kind of input from a
force-build form.

All parameter types have a few common arguments:

name (required)

The name of the parameter. For properties, this will correspond to the name
of the property that your parameter will set. The name is also used
internally as the identifier for in the HTML form.

label (optional; default is same as name)

The label of the parameter. This is what is displayed to the user. HTML is
permitted here.

default (optional; default: "")

The default value for the parameter, that is used if there is no user
input.

required (optional; default: False)

If this is true, then an error will be shown to user if
there is no input in this field

The parameter types are:

FixedParameter

FixedParameter(name="branch", default="trunk"),

This parameter type will not be shown on the web form, and always generate a
property with its default value.

StringParameter

StringParameter(name="pull_url",
 label="optionally give a public Git pull url:
",
 default="", size=80)

This parameter type will show a single-line text-entry box, and allow the user
to enter an arbitrary string. It adds the following arguments:

regex (optional)

a string that will be compiled as a regex, and used to validate the input
of this parameter

size (optional; default: 10)

The width of the input field (in characters)

TextParameter

StringParameter(name="comments",
 label="comments to be displayed to the user of the built binary",
 default="This is a development build", cols=60, rows=5)

This parameter type is similar to StringParameter, except that it is
represented in the HTML form as a textarea, allowing multi-line input. It adds
the StringParameter arguments, this type allows:

cols (optional; default: 80)

The number of columns the textarea will have

rows (optional; default: 20)

The number of rows the textarea will have

This class could be subclassed in order to have more customization e.g.

	developer could send a list of Git branches to pull from

	developer could send a list of gerrit changes to cherry-pick,

	developer could send a shell script to amend the build.

beware of security issues anyway.

IntParameter

IntParameter(name="debug_level",
 label="debug level (1-10)", default=2)

This parameter type accepts an integer value using a text-entry box.

BooleanParameter

BooleanParameter(name="force_build_clean",
 label="force a make clean", default=False)

This type represents a boolean value. It will be presented as a checkbox.

UserNameParameter

UserNameParameter(label="your name:
", size=80)

This parameter type accepts a username. If authentication is active, it will
use the authenticated user instead of displaying a text-entry box.

	size (optional; default: 10)

	The width of the input field (in characters)

	need_email (optional; default True)

	If true, require a full email address rather than arbitrary text.

ChoiceStringParameter

ChoiceStringParameter(name="branch",
 choices=["main","devel"], default="main")

This parameter type lets the user choose between several choices (e.g the list
of branches you are supporting, or the test campaign to run). If multiple
is false, then its result is a string - one of the choices. If multiple is
true, then the result is a list of strings from the choices.

Note that for some use cases, the choices need to be generated dynamically. This can
be done via subclassing and overiding the 'getChoices' member function. An example
of this is provided by the source for the InheritBuildParameter class.

Its arguments, in addition to the common options, are:

choices

The list of available choices.

strict (optional; default: True)

If true, verify that the user's input is from the list. Note that this
only affects the validation of the form request; even if this argument is
False, there is no HTML form component available to enter an arbitrary
value.

multiple

If true, then the user may select multiple choices.

Example:

ChoiceStringParameter(name="forced_tests",
 label = "smoke test campaign to run",
 default = default_tests,
 multiple = True,
 strict = True,
 choices = ["test_builder1",
 "test_builder2",
 "test_builder3"])

.. and later base the schedulers to trigger off this property:

triggers the tests depending on the property forced_test
builder1.factory.addStep(Trigger(name="Trigger tests",
 schedulerNames=Property("forced_tests")))

CodebaseParameter

CodebaseParameter(codebase="myrepo")

This is a parameter group to specify a sourcestamp for a given codebase.

codebase

The name of the codebase.

branch (optional; default: StringParameter)

A parameter specifying the branch to
build. The default value is a string parameter.

revision (optional; default: StringParameter)

A parameter specifying the revision to
build. The default value is a string parameter.

repository (optional; default: StringParameter)

A parameter specifying the repository
for the build. The default value is a string parameter.

project (optional; default: StringParameter)

A parameter specifying the project for
the build. The default value is a string parameter.

InheritBuildParameter

This is a special parameter for inheriting force build properties from another
build. The user is presented with a list of compatible builds from which to
choose, and all forced-build parameters from the selected build are copied into
the new build. The new parameter is:

compatible_builds

A function to find compatible builds in the build history. This function is
given the master Status instance as
first argument, and the current builder name as second argument, or None
when forcing all builds.

Example:

def get_compatible_builds(status, builder):
 if builder == None: # this is the case for force_build_all
 return ["cannot generate build list here"]
 # find all successful builds in builder1 and builder2
 builds = []
 for builder in ["builder1","builder2"]:
 builder_status = status.getBuilder(builder)
 for num in xrange(1,40): # 40 last builds
 b = builder_status.getBuild(-num)
 if not b:
 continue
 if b.getResults() == FAILURE:
 continue
 builds.append(builder+"/"+str(b.getNumber()))
 return builds

...

sched = Scheduler(...,
 properties=[
 InheritBuildParameter(
 name="inherit",
 label="promote a build for merge",
 compatible_builds=get_compatible_builds,
 required = True),
])

BuildslaveChoiceParameter

This parameter allows a scheduler to require that a build is assigned to the
chosen buildslave. The choice is assigned to the slavename property for the build.
The enforceChosenSlave functor must be assigned to
the canStartBuild parameter for the Builder.

Example:

from buildbot.process.builder import enforceChosenSlave

schedulers:
ForceScheduler(
 # ...
 properties=[
 BuildslaveChoiceParameter(),
]
)

builders:
BuilderConfig(
 # ...
 canStartBuild=enforceChosenSlave,
)

AnyPropertyParameter

This parameter type can only be used in properties, and allows the user to
specify both the property name and value in the HTML form.

This Parameter is here to reimplement old Buildbot behavior, and should be
avoided. Stricter parameter name and type should be preferred.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

 	Configuration

Buildslaves

The slaves configuration key specifies a list of known buildslaves.
In the common case, each buildslave is defined by an instance of the
BuildSlave class. It represents a standard, manually started machine
that will try to connect to the buildbot master as a slave. Buildbot also
supports "on-demand", or latent, buildslaves, which allow buildbot to
dynamically start and stop buildslave instances.

	Defining Buildslaves

	BuildSlave Options

	Latent Buildslaves

Defining Buildslaves

A BuildSlave instance is created with a slavename and a
slavepassword. These are the same two values that need to be provided to
the buildslave administrator when they create the buildslave.

The slavename must be unique, of course. The password exists to
prevent evildoers from interfering with the buildbot by inserting
their own (broken) buildslaves into the system and thus displacing the
real ones.

Buildslaves with an unrecognized slavename or a non-matching password will be
rejected when they attempt to connect, and a message describing the problem
will be written to the log file (see Logfiles).

A configuration for two slaves would look like:

from buildbot.buildslave import BuildSlave
c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd'),
 BuildSlave('bot-bsd', 'bsdpasswd'),
]

BuildSlave Options

BuildSlave objects can also be created with an optional
properties argument, a dictionary specifying properties that
will be available to any builds performed on this slave. For example:

c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 properties={ 'os':'solaris' }),
]

The BuildSlave constructor can also take an optional
max_builds parameter to limit the number of builds that it
will execute simultaneously:

c['slaves'] = [
 BuildSlave("bot-linux", "linuxpassword", max_builds=2)
]

Master-Slave TCP Keepalive

By default, the buildmaster sends a simple, non-blocking message to each slave
every hour. These keepalives ensure that traffic is flowing over the
underlying TCP connection, allowing the system's network stack to detect any
problems before a build is started.

The interval can be modified by specifying the interval in seconds using the
keepalive_interval parameter of BuildSlave:

c['slaves'] = [
 BuildSlave('bot-linux', 'linuxpasswd',
 keepalive_interval=3600),
]

The interval can be set to None to disable this functionality
altogether.

When Buildslaves Go Missing

Sometimes, the buildslaves go away. One very common reason for this is
when the buildslave process is started once (manually) and left
running, but then later the machine reboots and the process is not
automatically restarted.

If you'd like to have the administrator of the buildslave (or other
people) be notified by email when the buildslave has been missing for
too long, just add the notify_on_missing= argument to the
BuildSlave definition. This value can be a single email
address, or a list of addresses:

c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 notify_on_missing="bob@example.com"),
]

By default, this will send email when the buildslave has been
disconnected for more than one hour. Only one email per
connection-loss event will be sent. To change the timeout, use
missing_timeout= and give it a number of seconds (the default
is 3600).

You can have the buildmaster send email to multiple recipients: just
provide a list of addresses instead of a single one:

c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 notify_on_missing=["bob@example.com",
 "alice@example.org"],
 missing_timeout=300, # notify after 5 minutes
),
]

The email sent this way will use a MailNotifier (see
MailNotifier) status target, if one is configured. This provides a
way for you to control the from address of the email, as well as the
relayhost (aka smarthost) to use as an SMTP server. If no
MailNotifier is configured on this buildmaster, the buildslave-missing
emails will be sent using a default configuration.

Note that if you want to have a MailNotifier for buildslave-missing
emails but not for regular build emails, just create one with
builders=[], as follows:

from buildbot.status import mail
m = mail.MailNotifier(fromaddr="buildbot@localhost", builders=[],
 relayhost="smtp.example.org")
c['status'].append(m)

from buildbot.buildslave import BuildSlave
c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 notify_on_missing="bob@example.com"),
]

Latent Buildslaves

The standard buildbot model has slaves started manually. The previous section
described how to configure the master for this approach.

Another approach is to let the buildbot master start slaves when builds are
ready, on-demand. Thanks to services such as Amazon Web Services' Elastic
Compute Cloud ("AWS EC2"), this is relatively easy to set up, and can be
very useful for some situations.

The buildslaves that are started on-demand are called "latent" buildslaves.
As of this writing, buildbot ships with an abstract base class for building
latent buildslaves, and a concrete implementation for AWS EC2 and for libvirt.

Common Options

The following options are available for all latent buildslaves.

	build_wait_timeout

	This option allows you to specify how long a latent slave should wait after
a build for another build before it shuts down. It defaults to 10 minutes.
If this is set to 0 then the slave will be shut down immediately. If it is
less than 0 it will never automatically shutdown.

Amazon Web Services Elastic Compute Cloud ("AWS EC2")

EC2 [http://aws.amazon.com/ec2/] is a web service that allows you to
start virtual machines in an Amazon data center. Please see their website for
details, including costs. Using the AWS EC2 latent buildslaves involves getting
an EC2 account with AWS and setting up payment; customizing one or more EC2
machine images ("AMIs") on your desired operating system(s) and publishing
them (privately if needed); and configuring the buildbot master to know how to
start your customized images for "substantiating" your latent slaves.

Get an AWS EC2 Account

To start off, to use the AWS EC2 latent buildslave, you need to get an AWS
developer account and sign up for EC2. Although Amazon often changes this
process, these instructions should help you get started:

	Go to http://aws.amazon.com/ and click to "Sign Up Now" for an AWS account.

	Once you are logged into your account, you need to sign up for EC2.
Instructions for how to do this have changed over time because Amazon changes
their website, so the best advice is to hunt for it. After signing up for EC2,
it may say it wants you to upload an x.509 cert. You will need this to create
images (see below) but it is not technically necessary for the buildbot master
configuration.

	You must enter a valid credit card before you will be able to use EC2. Do that
under 'Payment Method'.

	Make sure you're signed up for EC2 by going to 'Your Account'->'Account
Activity' and verifying EC2 is listed.

Create an AMI

Now you need to create an AMI and configure the master. You may need to
run through this cycle a few times to get it working, but these instructions
should get you started.

Creating an AMI is out of the scope of this document. The
EC2 Getting Started Guide [http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/]
is a good resource for this task. Here are a few additional hints.

	When an instance of the image starts, it needs to automatically start a
buildbot slave that connects to your master (to create a buildbot slave,
Creating a buildslave; to make a daemon,
Launching the daemons).

	You may want to make an instance of the buildbot slave, configure it as a
standard buildslave in the master (i.e., not as a latent slave), and test and
debug it that way before you turn it into an AMI and convert to a latent
slave in the master.

Configure the Master with an EC2LatentBuildSlave

Now let's assume you have an AMI that should work with the
EC2LatentBuildSlave. It's now time to set up your buildbot master
configuration.

You will need some information from your AWS account: the Access Key Id and
the Secret Access Key. If you've built the AMI yourself, you probably
already are familiar with these values. If you have not, and someone has
given you access to an AMI, these hints may help you find the necessary
values:

	While logged into your AWS account, find the "Access Identifiers" link (either
on the left, or via "Your Account" -> "Access Identifiers".

	On the page, you'll see alphanumeric values for "Your Access Key Id:" and
"Your Secret Access Key:". Make a note of these. Later on, we'll call the
first one your identifier and the second one your secret_identifier.

When creating an EC2LatentBuildSlave in the buildbot master configuration,
the first three arguments are required. The name and password are the first
two arguments, and work the same as with normal buildslaves. The next
argument specifies the type of the EC2 virtual machine (available options as
of this writing include m1.small, m1.large, m1.xlarge, c1.medium,
and c1.xlarge; see the EC2 documentation for descriptions of these
machines).

Here is the simplest example of configuring an EC2 latent buildslave. It
specifies all necessary remaining values explicitly in the instantiation.

from buildbot.buildslave.ec2 import EC2LatentBuildSlave
c['slaves'] = [EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 ami='ami-12345',
 identifier='publickey',
 secret_identifier='privatekey'
)]

The ami argument specifies the AMI that the master should start. The
identifier argument specifies the AWS Access Key Id, and the
secret_identifier specifies the AWS Secret Access Key. Both the AMI and
the account information can be specified in alternate ways.

Note

Whoever has your identifier and secret_identifier values can request
AWS work charged to your account, so these values need to be carefully
protected. Another way to specify these access keys is to put them in a
separate file. You can then make the access privileges stricter for this
separate file, and potentially let more people read your main configuration
file.

By default, you can make an .ec2 directory in the home folder of the user
running the buildbot master. In that directory, create a file called aws_id.
The first line of that file should be your access key id; the second line
should be your secret access key id. Then you can instantiate the build slave
as follows.

from buildbot.buildslave.ec2 import EC2LatentBuildSlave
c['slaves'] = [EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 ami='ami-12345')]

If you want to put the key information in another file, use the
aws_id_file_path initialization argument.

Previous examples used a particular AMI. If the Buildbot master will be
deployed in a process-controlled environment, it may be convenient to
specify the AMI more flexibly. Rather than specifying an individual AMI,
specify one or two AMI filters.

In all cases, the AMI that sorts last by its location (the S3 bucket and
manifest name) will be preferred.

One available filter is to specify the acceptable AMI owners, by AWS account
number (the 12 digit number, usually rendered in AWS with hyphens like
"1234-5678-9012", should be entered as in integer).

from buildbot.buildslave.ec2 import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 valid_ami_owners=[11111111111,
 22222222222],
 identifier='publickey',
 secret_identifier='privatekey'
)

The other available filter is to provide a regular expression string that
will be matched against each AMI's location (the S3 bucket and manifest name).

from buildbot.buildslave.ec2 import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave(
 'bot1', 'sekrit', 'm1.large',
 valid_ami_location_regex=r'buildbot\-.*/image.manifest.xml',
 identifier='publickey', secret_identifier='privatekey')

The regular expression can specify a group, which will be preferred for the
sorting. Only the first group is used; subsequent groups are ignored.

from buildbot.buildslave.ec2 import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave(
 'bot1', 'sekrit', 'm1.large',
 valid_ami_location_regex=r'buildbot\-.*\-(.*)/image.manifest.xml',
 identifier='publickey', secret_identifier='privatekey')

If the group can be cast to an integer, it will be. This allows 10 to sort
after 1, for instance.

from buildbot.buildslave.ec2 import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave(
 'bot1', 'sekrit', 'm1.large',
 valid_ami_location_regex=r'buildbot\-.*\-(\d+)/image.manifest.xml',
 identifier='publickey', secret_identifier='privatekey')

In addition to using the password as a handshake between the master and the
slave, you may want to use a firewall to assert that only machines from a
specific IP can connect as slaves. This is possible with AWS EC2 by using
the Elastic IP feature. To configure, generate a Elastic IP in AWS, and then
specify it in your configuration using the elastic_ip argument.

from buildbot.buildslave.ec2 import EC2LatentBuildSlave
c['slaves'] = [EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 'ami-12345',
 identifier='publickey',
 secret_identifier='privatekey',
 elastic_ip='208.77.188.166'
)]

One other way to configure a slave is by settings AWS tags. They can for example be used to
have a more restrictive security IAM [http://aws.amazon.com/iam/] policy. To get Buildbot to tag the latent slave
specify the tag keys and values in your configuration using the tags argument.

from buildbot.buildslave.ec2 import EC2LatentBuildSlave
c['slaves'] = [EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 'ami-12345',
 identifier='publickey',
 secret_identifier='privatekey',
 tags={'SomeTag': 'foo'}
)]

The EC2LatentBuildSlave supports all other configuration from the standard
BuildSlave. The missing_timeout and notify_on_missing specify how long
to wait for an EC2 instance to attach before considering the attempt to have
failed, and email addresses to alert, respectively. missing_timeout
defaults to 20 minutes.

volumes expects a list of (volume_id, mount_point) tuples to attempt attaching when
your instance has been created.

keypair_name and security_name allow you to specify different names for
these AWS EC2 values. They both default to latent_buildbot_slave.

Spot instances

If you would prefer to use spot instances for running your builds, you can accomplish that
by passing in a True value to the spot_instance parameter to the EC2LatentBuildSlave
constructor. Additionally, you may want to specify max_spot_price and price_multiplier
in order to limit your builds' budget consumption.

from buildbot.buildslave.ec2 import EC2LatentBuildSlave
c['slaves'] = [EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 'ami-12345', region='us-west-2',
 identifier='publickey',
 secret_identifier='privatekey',
 elastic_ip='208.77.188.166',
 placement='b', spot_instance=True,
 max_spot_price=0.09,
 price_multiplier=1.15
)]

This example would attempt to create a m1.large spot instance in the us-west-2b region
costing no more than $0.09/hour. The spot prices for that region in the last 24 hours
will be averaged and multiplied by the price_multiplier parameter, then a spot request
will be sent to Amazon with the above details. If the spot request is rejected, an error
message will be logged with the final status.

Libvirt

libvirt [http://www.libvirt.org/] is a virtualization API for interacting
with the virtualization capabilities of recent versions of Linux and other OSes.
It is LGPL and comes with a stable C API, and Python bindings.

This means we know have an API which when tied to buildbot allows us to have slaves
that run under Xen, QEMU, KVM, LXC, OpenVZ, User Mode Linux, VirtualBox and VMWare.

The libvirt code in Buildbot was developed against libvirt 0.7.5 on Ubuntu Lucid. It
is used with KVM to test Python code on Karmic VM's, but obviously isn't limited to that.
Each build is run on a new VM, images are temporary and thrown away after each build.

Setting up libvirt

We won't show you how to set up libvirt as it is quite different on each platform,
but there are a few things you should keep in mind.

	If you are running on Ubuntu, your master should run Lucid. Libvirt and apparmor are
buggy on Karmic.

	If you are using the system libvirt, your buildbot master user will need to be in the
libvirtd group.

	If you are using KVM, your buildbot master user will need to be in the KVM group.

	You need to think carefully about your virtual network first. Will NAT be enough?
What IP will my VM's need to connect to for connecting to the master?

Configuring your base image

You need to create a base image for your builds that has everything needed to build
your software. You need to configure the base image with a buildbot slave that is configured
to connect to the master on boot.

Because this image may need updating a lot, we strongly suggest scripting its creation.

If you want to have multiple slaves using the same base image it can be annoying to duplicate
the image just to change the buildbot credentials. One option is to use libvirt's DHCP
server to allocate an identity to the slave: DHCP sets a hostname, and the slave takes its
identity from that.

Doing all this is really beyond the scope of the manual, but there is a vmbuilder script
and a network.xml file to create such a DHCP server in
contrib/ (Contrib Scripts)
that should get you started:

sudo apt-get install ubuntu-vm-builder
sudo contrib/libvirt/vmbuilder

Should create an ubuntu/ folder with a suitable image in it.

virsh net-define contrib/libvirt/network.xml
virsh net-start buildbot-network

Should set up a KVM compatible libvirt network for your buildbot VM's to run on.

Configuring your Master

If you want to add a simple on demand VM to your setup, you only need the following. We
set the username to minion1, the password to sekrit. The base image is called base_image
and a copy of it will be made for the duration of the VM's life. That copy will be thrown
away every time a build is complete.

from buildbot.buildslave.libvirt import LibVirtSlave, Connection
c['slaves'] = [LibVirtSlave('minion1', 'sekrit', Connection("qemu:///session"),
 '/home/buildbot/images/minion1', '/home/buildbot/images/base_image')]

You can use virt-manager to define minion1 with the correct hardware. If you don't, buildbot
won't be able to find a VM to start.

LibVirtSlave accepts the following arguments:

	name

	Both a buildbot username and the name of the virtual machine.

	password

	A password for the buildbot to login to the master with.

	connection

	Connection instance wrapping connection to libvirt.

	hd_image

	The path to a libvirt disk image, normally in qcow2 format when using KVM.

	base_image

	If given a base image, buildbot will clone it every time it starts a VM.
This means you always have a clean environment to do your build in.

	xml

	If a VM isn't predefined in virt-manager, then you can instead provide XML
like that used with virsh define. The VM will be created
automatically when needed, and destroyed when not needed any longer.

OpenStack

OpenStack [http://openstack.org/] is a series of interconnected components
that facilitates managing compute, storage, and network resources in a
data center. It is available under the Apache License and has a REST interface
along with a Python client.

Get an Account in an OpenStack cloud

Setting up OpenStack is outside the domain of this document. There are four
account details necessary for the Buildbot master to interact with your
OpenStack cloud: username, password, a tenant name, and the auth URL to use.

Create an Image

OpenStack supports a large number of image formats. OpenStack maintains a short
list of prebuilt images; if the desired image is not listed, The
OpenStack Compute Administration Manual [http://docs.openstack.org/trunk/openstack-compute/admin/content/index.html]
is a good resource for creating new images. You need to configure the image with
a buildbot slave to connect to the master on boot.

Configure the Master with an OpenStackLatentBuildSlave

With the configured image in hand, it is time to configure the buildbot master
to create OpenStack instances of it. You will need the aforementioned account
details. These are the same details set in either environment variables or
passed as options to an OpenStack client.

OpenStackLatentBuildSlave accepts the following arguments:

	name

	The buildslave name.

	password

	A password for the buildslave to login to the master with.

	flavor

	The flavor ID to use for the instance.

	image

	A string containing the image UUID to use for the instance. A callable may
instead be passed. It will be passed the list of available images and must
return the image to use.

os_username

os_password

os_tenant_name

	os_auth_url

	The OpenStack authentication needed to create and delete instances. These
are the same as the environment variables with uppercase names of the
arguments.

	meta

	A dictionary of string key-value pairs to pass to the instance. These will
be available under the metadata key from the metadata service.

Here is the simplest example of configuring an OpenStack latent buildslave.

from buildbot.buildslave.openstack import OpenStackLatentBuildSlave
c['slaves'] = [OpenStackLatentBuildSlave('bot2', 'sekrit',
 flavor=1, image='8ac9d4a4-5e03-48b0-acde-77a0345a9ab1',
 os_username='user', os_password='password',
 os_tenant_name='tenant',
 os_auth_url='http://127.0.0.1:35357/v2.0')]

The image argument also supports being given a callable. The callable will
be passed the list of available images and must return the image to use. The
invocation happens in a separate thread to prevent blocking the build master
when interacting with OpenStack.

from buildbot.buildslave.openstack import OpenStackLatentBuildSlave

def find_image(images):
 # Sort oldest to newest.
 cmp_fn = lambda x,y: cmp(x.created, y.created)
 candidate_images = sorted(images, cmp=cmp_fn)
 # Return the oldest candiate image.
 return candidate_images[0]

c['slaves'] = [OpenStackLatentBuildSlave('bot2', 'sekrit',
 flavor=1, image=find_image,
 os_username='user', os_password='password',
 os_tenant_name='tenant',
 os_auth_url='http://127.0.0.1:35357/v2.0')]

OpenStackLatentBuildSlave supports all other configuration from the
standard BuildSlave. The missing_timeout and notify_on_missing
specify how long to wait for an OpenStack instance to attach before considering
the attempt to have failed and email addresses to alert, respectively.
missing_timeout defaults to 20 minutes.

Dangers with Latent Buildslaves

Any latent build slave that interacts with a for-fee service, such as the
EC2LatentBuildSlave, brings significant risks. As already identified, the
configuration will need access to account information that, if obtained by a
criminal, can be used to charge services to your account. Also, bugs in the
buildbot software may lead to unnecessary charges. In particular, if the
master neglects to shut down an instance for some reason, a virtual machine
may be running unnecessarily, charging against your account. Manual and/or
automatic (e.g. nagios with a plugin using a library like boto)
double-checking may be appropriate.

A comparatively trivial note is that currently if two instances try to attach
to the same latent buildslave, it is likely that the system will become
confused. This should not occur, unless, for instance, you configure a normal
build slave to connect with the authentication of a latent buildbot. If this
situation does occurs, stop all attached instances and restart the master.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

 	Configuration

Builder Configuration

	Merging Build Requests

	Prioritizing Builds

The builders configuration key is a list of objects giving
configuration for the Builders. For more information on the function of
Builders in Buildbot, see the Concepts chapter. The class
definition for the builder configuration is in buildbot.config. In the
configuration file, its use looks like:

from buildbot.config import BuilderConfig
c['builders'] = [
 BuilderConfig(name='quick', slavenames=['bot1', 'bot2'], factory=f_quick),
 BuilderConfig(name='thorough', slavename='bot1', factory=f_thorough),
]

BuilderConfig takes the following keyword arguments:

	name

	This specifies the Builder's name, which is used in status reports.

slavename

	slavenames

	These arguments specify the buildslave or buildslaves that will be used by
this Builder. All slaves names must appear in the slaves
configuration parameter. Each buildslave can accommodate multiple
builders. The slavenames parameter can be a list of names,
while slavename can specify only one slave.

	factory

	This is a buildbot.process.factory.BuildFactory instance which
controls how the build is performed by defining the steps in the build.
Full details appear in their own section, Build Factories.

Other optional keys may be set on each BuilderConfig:

	builddir

	Specifies the name of a subdirectory of the master's basedir in which
everything related to this builder will be stored. This holds build status
information. If not set, this parameter defaults to the builder name, with
some characters escaped. Each builder must have a unique build directory.

	slavebuilddir

	Specifies the name of a subdirectory (under the slave's configured base
directory) in which everything related to this builder will be placed on
the buildslave. This is where checkouts, compiles, and tests are run. If
not set, defaults to builddir. If a slave is connected to multiple
builders that share the same slavebuilddir, make sure the slave is set
to run one build at a time or ensure this is fine to run multiple builds
from the same directory simultaneously.

	category

	If provided, this is a string that identifies a category for the
builder to be a part of. Status clients can limit themselves to a
subset of the available categories. A common use for this is to add
new builders to your setup (for a new module, or for a new buildslave)
that do not work correctly yet and allow you to integrate them with
the active builders. You can put these new builders in a test
category, make your main status clients ignore them, and have only
private status clients pick them up. As soon as they work, you can
move them over to the active category.

	nextSlave

	If provided, this is a function that controls which slave will be assigned
future jobs. The function is passed two arguments, the Builder
object which is assigning a new job, and a list of SlaveBuilder
objects. The function should return one of the SlaveBuilder
objects, or None if none of the available slaves should be
used. As an example, for each slave in the list, slave.slave will
be a BuildSlave object, and slave.slave.slavename is the slave's name.
The function can optionally return a Deferred, which should fire with the same results.

	nextBuild

	If provided, this is a function that controls which build request will be
handled next. The function is passed two arguments, the Builder
object which is assigning a new job, and a list of BuildRequest
objects of pending builds. The function should return one of the
BuildRequest objects, or None if none of the pending
builds should be started. This function can optionally return a
Deferred which should fire with the same results.

	canStartBuild

	If provided, this is a function that can veto whether a particular buildslave
should be used for a given build request. The function is passed three
arguments: the Builder, a BuildSlave, and a BuildRequest.
The function should return True if the combination is acceptable, or
False otherwise. This function can optionally return a Deferred which
should fire with the same results.

	locks

	This argument specifies a list of locks that apply to this builder; see
Interlocks.

	env

	A Builder may be given a dictionary of environment variables in this parameter.
The variables are used in ShellCommand steps in builds created by this
builder. The environment variables will override anything in the buildslave's
environment. Variables passed directly to a ShellCommand will override
variables of the same name passed to the Builder.

For example, if you have a pool of identical slaves it is often easier to manage
variables like PATH from Buildbot rather than manually editing it inside of
the slaves' environment.

f = factory.BuildFactory
f.addStep(ShellCommand(
 command=['bash', './configure']))
f.addStep(Compile())

c['builders'] = [
 BuilderConfig(name='test', factory=f,
 slavenames=['slave1', 'slave2', 'slave3', 'slave4'],
 env={'PATH': '/opt/local/bin:/opt/app/bin:/usr/local/bin:/usr/bin'}),
]

Unlike most builder configuration arguments, this argument can contain renderables.

	mergeRequests

	Specifies how build requests for this builder should be merged. See
Merging Build Requests, below.

	properties

	A builder may be given a dictionary of Build Properties
specific for this builder in this parameter. Those values can be used
later on like other properties. Interpolate.

	description

	A builder may be given an arbitrary description, which will show up in the
web status on the builder's page.

Merging Build Requests

When more than one build request is available for a builder, Buildbot can
"merge" the requests into a single build. This is desirable when build
requests arrive more quickly than the available slaves can satisfy them, but
has the drawback that separate results for each build are not available.

Requests are only candidated for a merge if both requests have exactly the same
codebases.

This behavior can be controlled globally, using the mergeRequests
parameter, and on a per-Builder basis, using the mergeRequests argument
to the Builder configuration. If mergeRequests is given, it completely
overrides the global configuration.

For either configuration parameter, a value of True (the default) causes
buildbot to merge BuildRequests that have "compatible" source stamps. Source
stamps are compatible if:

	their codebase, branch, project, and repository attributes match exactly;

	neither source stamp has a patch (e.g., from a try scheduler); and

	either both source stamps are associated with changes, or neither ar
associated with changes but they have matching revisions.

This algorithm is implemented by the SourceStamp method canBeMergedWith.

A configuration value of False indicates that requests should never be
merged.

The configuration value can also be a callable, specifying a custom merging
function. See Merge Request Functions for details.

Prioritizing Builds

The BuilderConfig parameter nextBuild can be use to prioritize
build requests within a builder. Note that this is orthogonal to
Prioritizing Builders, which controls the order in which builders are
called on to start their builds. The details of writing such a function are in
Build Priority Functions.

Such a function can be provided to the BuilderConfig as follows:

def pickNextBuild(builder, requests):
 ...
c['builders'] = [
 BuilderConfig(name='test', factory=f,
 nextBuild=pickNextBuild,
 slavenames=['slave1', 'slave2', 'slave3', 'slave4']),
]

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

 	Configuration

Build Factories

Each Builder is equipped with a build factory, which is defines the steps
used to perform that particular type of build. This factory is created in the
configuration file, and attached to a Builder through the factory element
of its dictionary.

The steps used by these builds are defined in the next section, Build Steps.

Note

Build factories are used with builders, and are not added directly to the
buildmaster configuration dictionary.

	Defining a Build Factory

	Predefined Build Factories

Defining a Build Factory

A BuildFactory defines the steps that every build will follow. Think of it as
a glorified script. For example, a build factory which consists of an SVN checkout
followed by a make build would be configured as follows:

from buildbot.steps import svn, shell
from buildbot.process import factory

f = factory.BuildFactory()
f.addStep(svn.SVN(svnurl="http://..", mode="incremental"))
f.addStep(shell.Compile(command=["make", "build"]))

This factory would then be attached to one builder (or several, if desired):

c['builders'].append(
 BuilderConfig(name='quick', slavenames=['bot1', 'bot2'], factory=f))

It is also possible to pass a list of steps into the
BuildFactory when it is created. Using addStep is
usually simpler, but there are cases where is is more convenient to
create the list of steps ahead of time, perhaps using some Python
tricks to generate the steps.

from buildbot.steps import source, shell
from buildbot.process import factory

all_steps = [
 source.CVS(cvsroot=CVSROOT, cvsmodule="project", mode="update"),
 shell.Compile(command=["make", "build"]),
]
f = factory.BuildFactory(all_steps)

Finally, you can also add a sequence of steps all at once:

f.addSteps(all_steps)

Attributes

The following attributes can be set on a build factory after it is created, e.g.,

f = factory.BuildFactory()
f.useProgress = False

	useProgress

	(defaults to True): if True, the buildmaster keeps track of how long
each step takes, so it can provide estimates of how long future builds
will take. If builds are not expected to take a consistent amount of
time (such as incremental builds in which a random set of files are
recompiled or tested each time), this should be set to False to
inhibit progress-tracking.

	workdir

	(defaults to 'build'): workdir given to every build step created by
this factory as default. The workdir can be overridden in a build step
definition.

If this attribute is set to a string, that string will be used for
constructing the workdir (buildslave base + builder builddir + workdir).
The attribute can also be a Python callable, for more complex cases, as
described in Factory Workdir Functions.

Predefined Build Factories

Buildbot includes a few predefined build factories that perform common build
sequences. In practice, these are rarely used, as every site has slightly
different requirements, but the source for these factories may provide examples
for implementation of those requirements.

GNUAutoconf

	
class buildbot.process.factory.GNUAutoconf

	

GNU Autoconf [http://www.gnu.org/software/autoconf/] is a
software portability tool, intended to make it possible to write
programs in C (and other languages) which will run on a variety of
UNIX-like systems. Most GNU software is built using autoconf. It is
frequently used in combination with GNU automake. These tools both
encourage a build process which usually looks like this:

% CONFIG_ENV=foo ./configure --with-flags
% make all
% make check
make install

(except of course the Buildbot always skips the make install
part).

The Buildbot's buildbot.process.factory.GNUAutoconf factory is
designed to build projects which use GNU autoconf and/or automake. The
configuration environment variables, the configure flags, and command
lines used for the compile and test are all configurable, in general
the default values will be suitable.

Example:

f = factory.GNUAutoconf(source=source.SVN(svnurl=URL, mode="copy"),
 flags=["--disable-nls"])

Required Arguments:

	source

	This argument must be a step specification tuple that provides a
BuildStep to generate the source tree.

Optional Arguments:

	configure

	The command used to configure the tree. Defaults to
./configure. Accepts either a string or a list of shell argv
elements.

	configureEnv

	The environment used for the initial configuration step. This accepts
a dictionary which will be merged into the buildslave's normal
environment. This is commonly used to provide things like
CFLAGS="-O2 -g" (to turn off debug symbols during the compile).
Defaults to an empty dictionary.

	configureFlags

	A list of flags to be appended to the argument list of the configure
command. This is commonly used to enable or disable specific features
of the autoconf-controlled package, like ["--without-x"] to
disable windowing support. Defaults to an empty list.

	reconf

	use autoreconf to generate the ./configure file, set to True to use a
buildbot default autoreconf command, or define the command for the
ShellCommand.

	compile

	this is a shell command or list of argv values which is used to
actually compile the tree. It defaults to make all. If set to
None, the compile step is skipped.

	test

	this is a shell command or list of argv values which is used to run
the tree's self-tests. It defaults to make check. If set to
None, the test step is skipped.

	distcheck

	this is a shell command or list of argv values which is used to run
the packaging test. It defaults to make distcheck. If set to
None, the test step is skipped.

BasicBuildFactory

	
class buildbot.process.factory.BasicBuildFactory

	

This is a subclass of GNUAutoconf which assumes the source is in CVS,
and uses mode='full' and method='clobber' to always build from a clean working copy.

BasicSVN

	
class buildbot.process.factory.BasicSVN

	

This class is similar to QuickBuildFactory, but uses SVN instead of CVS.

QuickBuildFactory

	
class buildbot.process.factory.QuickBuildFactory

	

The QuickBuildFactory class is a subclass of GNUAutoconf which
assumes the source is in CVS, and uses mode='incremental' to get incremental
updates.

The difference between a full build and a quick build is that
quick builds are generally done incrementally, starting with the tree
where the previous build was performed. That simply means that the
source-checkout step should be given a mode='incremental' flag, to
do the source update in-place.

In addition to that, this class sets the useProgress flag to False.
Incremental builds will (or at least the ought to) compile as few files as
necessary, so they will take an unpredictable amount of time to run. Therefore
it would be misleading to claim to predict how long the build will take.

This class is probably not of use to new projects.

CPAN

	
class buildbot.process.factory.CPAN

	

Most Perl modules available from the CPAN [http://www.cpan.org/]
archive use the MakeMaker module to provide configuration,
build, and test services. The standard build routine for these modules
looks like:

% perl Makefile.PL
% make
% make test
make install

(except again Buildbot skips the install step)

Buildbot provides a CPAN factory to compile and test these
projects.

Arguments:

	source

	(required): A step specification tuple, like that used by GNUAutoconf.

	perl

	A string which specifies the perl executable to use. Defaults
to just perl.

Distutils

	
class buildbot.process.factory.Distutils

	

Most Python modules use the distutils package to provide
configuration and build services. The standard build process looks
like:

% python ./setup.py build
% python ./setup.py install

Unfortunately, although Python provides a standard unit-test framework
named unittest, to the best of my knowledge distutils
does not provide a standardized target to run such unit tests. (Please
let me know if I'm wrong, and I will update this factory.)

The Distutils factory provides support for running the build
part of this process. It accepts the same source= parameter as
the other build factories.

Arguments:

	source

	(required): A step specification tuple, like that used by GNUAutoconf.

	python

	A string which specifies the python executable to use. Defaults
to just python.

	test

	Provides a shell command which runs unit tests. This accepts either a
string or a list. The default value is None, which disables the test
step (since there is no common default command to run unit tests in
distutils modules).

Trial

	
class buildbot.process.factory.Trial

	

Twisted provides a unit test tool named trial which provides a
few improvements over Python's built-in unittest module. Many
python projects which use Twisted for their networking or application
services also use trial for their unit tests. These modules are
usually built and tested with something like the following:

% python ./setup.py build
% PYTHONPATH=build/lib.linux-i686-2.3 trial -v PROJECTNAME.test
% python ./setup.py install

Unfortunately, the build/lib directory into which the
built/copied .py files are placed is actually architecture-dependent,
and I do not yet know of a simple way to calculate its value. For many
projects it is sufficient to import their libraries in place from
the tree's base directory (PYTHONPATH=.).

In addition, the PROJECTNAME value where the test files are
located is project-dependent: it is usually just the project's
top-level library directory, as common practice suggests the unit test
files are put in the test sub-module. This value cannot be
guessed, the Trial class must be told where to find the test
files.

The Trial class provides support for building and testing
projects which use distutils and trial. If the test module name is
specified, trial will be invoked. The library path used for testing
can also be set.

One advantage of trial is that the Buildbot happens to know how to
parse trial output, letting it identify which tests passed and which
ones failed. The Buildbot can then provide fine-grained reports about
how many tests have failed, when individual tests fail when they had
been passing previously, etc.

Another feature of trial is that you can give it a series of source
.py files, and it will search them for special test-case-name
tags that indicate which test cases provide coverage for that file.
Trial can then run just the appropriate tests. This is useful for
quick builds, where you want to only run the test cases that cover the
changed functionality.

Arguments:

	testpath

	Provides a directory to add to PYTHONPATH when running the unit
tests, if tests are being run. Defaults to . to include the
project files in-place. The generated build library is frequently
architecture-dependent, but may simply be build/lib for
pure-python modules.

	python

	which Python executable to use. This list will form the start of
the argv array that will launch trial. If you use this,
you should set trial to an explicit path (like
/usr/bin/trial or ./bin/trial). The parameter defaults
to None, which
leaves it out entirely (running trial args instead of
python ./bin/trial args). Likely values are ['python'],
['python2.2'], or ['python', '-Wall'].

	trial

	provides the name of the trial command. It is occasionally
useful to use an alternate executable, such as trial2.2 which
might run the tests under an older version of Python. Defaults to
trial.

	trialMode

	a list of arguments to pass to trial, specifically to set the reporting mode.
This defaults to ['--reporter=bwverbose'], which only works for
Twisted-2.1.0 and later.

	trialArgs

	a list of arguments to pass to trial, available to turn on any extra flags you
like. Defaults to [].

	tests

	Provides a module name or names which contain the unit tests for this
project. Accepts a string, typically PROJECTNAME.test, or a
list of strings. Defaults to None, indicating that no tests should be
run. You must either set this or testChanges.

	testChanges

	if True, ignore the tests parameter and instead ask the Build for all
the files that make up the Changes going into this build. Pass these filenames
to trial and ask it to look for test-case-name tags, running just the tests
necessary to cover the changes.

	recurse

	If True, tells Trial (with the --recurse argument) to look in all
subdirectories for additional test cases.

	reactor

	which reactor to use, like 'gtk' or 'java'. If not provided, the Twisted's
usual platform-dependent default is used.

	randomly

	If True, tells Trial (with the --random=0 argument) to
run the test cases in random order, which sometimes catches subtle
inter-test dependency bugs. Defaults to False.

The step can also take any of the ShellCommand arguments, e.g.,
haltOnFailure.

Unless one of tests or testChanges are set, the step will
generate an exception.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

 	Configuration

Properties

Build properties are a generalized way to provide configuration information to
build steps; see Build Properties for the conceptual overview of
properties.

	Common Build Properties

	Source Stamp Attributes

	Using Properties in Steps

Some build properties come from external sources and are set before the build
begins; others are set during the build, and available for later steps. The
sources for properties are:

	global configuration -- These properties apply to all
builds.

	schedulers -- A scheduler can specify
properties that become available to all builds it starts.

	changes -- A change can have properties attached to
it, supplying extra information gathered by the change source. This is most
commonly used with the sendchange command.

	forced builds -- The "Force Build" form allows users
to specify properties

	buildslaves -- A buildslave can pass properties on to
the builds it performs.

	builds -- A build automatically sets a
number of properties on itself.

	builders -- A builder can set properties on all the
builds it runs.

	steps -- The steps of a build can set properties that are available to subsequent steps.
In particular, source steps set the got_revision property.

If the same property is supplied in multiple places, the final appearance takes
precedence. For example, a property set in a builder configuration will
override one supplied by a scheduler.

Properties are stored internally in JSON format, so they are limited to basic
types of data: numbers, strings, lists, and dictionaries.

Common Build Properties

The following build properties are set when the build is started, and
are available to all steps.

	got_revision

	This property is set when a Source step checks out the source tree, and provides the revision that was actually obtained from the VC system.
In general this should be the same as revision, except for non-absolute sourcestamps, where got_revision indicates what revision was current when the checkout was performed.
This can be used to rebuild the same source code later.

Note

For some VC systems (Darcs in particular), the revision is a
large string containing newlines, and is not suitable for interpolation
into a filename.

For multi-codebase builds (where codebase is not the default ''), this property is a dictionary, keyed by codebase.

	buildername

	This is a string that indicates which Builder the build was a part of.
The combination of buildername and buildnumber uniquely identify a
build.

	buildnumber

	Each build gets a number, scoped to the Builder (so the first build
performed on any given Builder will have a build number of 0). This
integer property contains the build's number.

	slavename

	This is a string which identifies which buildslave the build is
running on.

	scheduler

	If the build was started from a scheduler, then this property will
contain the name of that scheduler.

	workdir

	The absolute path of the base working directory on the slave, of the current
builder.

For single codebase builds, where the codebase is '', the following Source Stamp Attributes are also available as properties: branch, revision, repository, and project .

Source Stamp Attributes

branch
revision
repository
project
codebase

For details of these attributes see Concepts.

changes

This attribute is a list of dictionaries reperesnting the changes that make up this sourcestamp.

Using Properties in Steps

For the most part, properties are used to alter the behavior of build steps
during a build. This is done by annotating the step definition in
master.cfg with placeholders. When the step is executed, these
placeholders will be replaced using the current values of the build properties.

Note

Properties are defined while a build is in progress; their values are
not available when the configuration file is parsed. This can sometimes
confuse newcomers to Buildbot! In particular, the following is a common error:

if Property('release_train') == 'alpha':
 f.addStep(...)

This does not work because the value of the property is not available when
the if statement is executed. However, Python will not detect this as
an error - you will just never see the step added to the factory.

You can use build properties in most step parameters. Please file bugs for any
parameters which do not accept properties.

Property

The simplest form of annotation is to wrap the property name with
Property:

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import Property

f.addStep(ShellCommand(command=['echo', 'buildername:', Property('buildername')]))

You can specify a default value by passing a default keyword argument:

f.addStep(ShellCommand(command=['echo', 'warnings:',
 Property('warnings', default='none')]))

The default value is used when the property doesn't exist, or when the value is
something Python regards as False. The defaultWhenFalse argument can be
set to False to force buildbot to use the default argument only if the
parameter is not set:

f.addStep(ShellCommand(command=['echo', 'warnings:',
 Property('warnings', default='none', defaultWhenFalse=False)]))

The default value can reference other properties, e.g.,

command=Property('command', default=Property('default-command'))

Interpolate

Property can only be used to replace an entire argument: in the
example above, it replaces an argument to echo. Often, properties need to
be interpolated into strings, instead. The tool for that job is
Interpolate.

The more common pattern is to use Python dictionary-style string interpolation by using the %(prop:<propname>)s syntax.
In this form, the property name goes in the parentheses, as above.
A common mistake is to omit the trailing "s", leading to a rather obscure error from Python ("ValueError: unsupported format character").

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import Interpolate
f.addStep(ShellCommand(command=['make', Interpolate('REVISION=%(prop:got_revision)s'),
 'dist']))

This example will result in a make command with an argument like
REVISION=12098.

The syntax of dictionary-style interpolation is a selector, followed by a colon, followed by a selector specific key, optionally followed by a colon and a string indicating how to interpret the value produced by the key.

The following selectors are supported.

	prop

	The key is the name of a property.

	src

	The key is a codebase and source stamp attribute, separated by a colon.

	kw

	The key refers to a keyword argument passed to Interpolate.

	slave

	The key to the per-buildslave "info" dictionary (e.g., the "Slave information" properties shown
in the buildslave web page for each buildslave)

The following ways of interpreting the value are available.

	-replacement

	If the key exists, substitute its value; otherwise,
substitute replacement. replacement may be empty
(%(prop:propname:-)s). This is the default.

	~replacement

	Like -replacement, but only substitutes the value
of the key if it is something Python regards as True.
Python considers None, 0, empty lists, and the empty string to be
false, so such values will be replaced by replacement.

	+replacement

	If the key exists, substitute replacement; otherwise,
substitute an empty string.

?|sub_if_exists|sub_if_missing

	#?|sub_if_true|sub_if_false

	Ternary substitution, depending on either the key being present (with
?, similar to +) or being True (with #?, like ~).
Notice that there is a pipe immediately following the question mark and
between the two substitution alternatives. The character that follows the
question mark is used as the delimiter between the two alternatives. In the
above examples, it is a pipe, but any character other than (can be used.

Although these are similar to shell substitutions, no other substitutions are currently supported.

Example

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import Interpolate
f.addStep(ShellCommand(command=['make', Interpolate('REVISION=%(prop:got_revision:-%(src::revision:-unknown)s)s'),
 'dist']))

In addition, Interpolate supports using positional string interpolation.
Here, %s is used as a placeholder, and the substitutions (which may themselves be placeholders), are given as subsequent arguments:

TODO

Note

Like Python, you can use either positional interpolation or
dictionary-style interpolation, not both. Thus you cannot use a string
like Interpolate("foo-%(src::revision)s-%s", "branch").

Renderer

While Interpolate can handle many simple cases, and even some common conditionals, more complex cases are best handled with Python code.
The renderer decorator creates a renderable object that will be replaced with the result of the function, called when the step it's passed to begins.
The function receives an IProperties object, which it can use to examine the values of any and all properties. For example:

from buildbot.process import properties
@properties.renderer
def makeCommand(props):
 command = ['make']
 cpus = props.getProperty('CPUs')
 if cpus:
 command += ['-j', str(cpus+1)]
 else:
 command += ['-j', '2']
 command += ['all']
 return command
f.addStep(ShellCommand(command=makeCommand))

You can think of renderer as saying "call this function when the step starts".

FlattenList

If nested list should be flatten for some renderables, FlattenList could be used.
For example:

f.addStep(ShellCommand(command=['make'], descriptionDone=FlattenList(['make ', ['done']])))

descriptionDone would be set to ['make', 'done'] when the ShellCommand executes.
This is useful when a list-returning property is used in renderables.

Note

ShellCommand automatically flattens nested lists in its command argument, so there is no need to use FlattenList for it.

WithProperties

Warning

This placeholder is deprecated. It is an older version of Interpolate.
It exists for compatibility with older configs.

The simplest use of this class is with positional string interpolation. Here,
%s is used as a placeholder, and property names are given as subsequent
arguments:

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import WithProperties
f.addStep(ShellCommand(
 command=["tar", "czf",
 WithProperties("build-%s-%s.tar.gz", "branch", "revision"),
 "source"]))

If this BuildStep were used in a tree obtained from Git, it would
create a tarball with a name like
build-master-a7d3a333db708e786edb34b6af646edd8d4d3ad9.tar.gz.

The more common pattern is to use Python dictionary-style string interpolation
by using the %(propname)s syntax. In this form, the property name goes in
the parentheses, as above. A common mistake is to omit the trailing "s",
leading to a rather obscure error from Python ("ValueError: unsupported format
character").

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import WithProperties
f.addStep(ShellCommand(command=['make', WithProperties('REVISION=%(got_revision)s'),
 'dist']))

This example will result in a make command with an argument like
REVISION=12098.

The dictionary-style interpolation supports a number of more advanced
syntaxes in the parentheses.

	propname:-replacement

	If propname exists, substitute its value; otherwise,
substitute replacement. replacement may be empty
(%(propname:-)s)

	propname:~replacement

	Like propname:-replacement, but only substitutes the value
of property propname if it is something Python regards as True.
Python considers None, 0, empty lists, and the empty string to be
false, so such values will be replaced by replacement.

	propname:+replacement

	If propname exists, substitute replacement; otherwise,
substitute an empty string.

Although these are similar to shell substitutions, no other
substitutions are currently supported, and replacement in the
above cannot contain more substitutions.

Note: like Python, you can use either positional interpolation or
dictionary-style interpolation, not both. Thus you cannot use a string like
WithProperties("foo-%(revision)s-%s", "branch").

Custom Renderables

If the options described above are not sufficient, more complex substitutions can be achieved by writing custom renderables.

Renderables are objects providing the IRenderable interface.
That interface is simple - objects must provide a getRenderingFor method.
The method should take one argument - an IProperties provider - and should return a string or a deferred firing with a string.
Pass instances of the class anywhere other renderables are accepted.
For example:

class DetermineFoo(object):
 implements(IRenderable)
 def getRenderingFor(self, props):
 if props.hasProperty('bar'):
 return props['bar']
 elif props.hasProperty('baz'):
 return props['baz']
 return 'qux'
ShellCommand(command=['echo', DetermineFoo()])

or, more practically,

class Now(object):
 implements(IRenderable)
 def getRenderingFor(self, props):
 return time.clock()
ShellCommand(command=['make', Interpolate('TIME=%(kw:now)s', now=Now())])

This is equivalent to:

@renderer
def now(props):
 return time.clock()
ShellCommand(command=['make', Interpolate('TIME=%(kw:now)s', now=now)])

Note that a custom renderable must be instantiated (and its constructor can take whatever arguments you'd like), whereas a function decorated with renderer can be used directly.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

 	Configuration

Build Steps

BuildSteps are usually specified in the buildmaster's
configuration file, in a list that goes into the BuildFactory.
The BuildStep instances in this list are used as templates to
construct new independent copies for each build (so that state can be
kept on the BuildStep in one build without affecting a later
build). Each BuildFactory can be created with a list of steps,
or the factory can be created empty and then steps added to it using
the addStep method:

from buildbot.steps import source, shell
from buildbot.process import factory

f = factory.BuildFactory()
f.addStep(source.SVN(svnurl="http://svn.example.org/Trunk/"))
f.addStep(shell.ShellCommand(command=["make", "all"]))
f.addStep(shell.ShellCommand(command=["make", "test"]))

The basic behavior for a BuildStep is to:

	run for a while, then stop

	possibly invoke some RemoteCommands on the attached build slave

	possibly produce a set of log files

	finish with a status described by one of four values defined in
buildbot.status.builder: SUCCESS, WARNINGS, FAILURE, SKIPPED

	provide a list of short strings to describe the step

The rest of this section describes all the standard BuildStep objects
available for use in a Build, and the parameters which can be used to
control each. A full list of build steps is available in the Build Step Index.

	Common Parameters

	Source Checkout
	Common Parameters

	Mercurial

	Git

	SVN

	CVS

	Bzr

	P4

	Repo

	Gerrit

	Darcs

	Monotone

	Source Checkout (Slave-Side)
	CVS (Slave-Side)

	SVN (Slave-Side)

	Darcs (Slave-Side)

	Mercurial (Slave-Side)

	Bzr (Slave-Side)

	P4 (Slave-Side)

	Git (Slave-Side)

	BitKeeper (Slave-Side)

	Repo (Slave-Side)

	Monotone (Slave-Side)

	ShellCommand
	Using ShellCommands

	Configure

	Compile

	Visual C++

	Robocopy

	Test

	TreeSize

	PerlModuleTest

	MTR (mysql-test-run)

	SubunitShellCommand

	Slave Filesystem Steps
	FileExists

	CopyDirectory

	RemoveDirectory

	MakeDirectory

	Python BuildSteps
	BuildEPYDoc

	PyFlakes

	Sphinx

	PyLint

	Trial

	RemovePYCs

	Transferring Files
	Other Parameters

	Transfering Directories

	Transferring Multiple Files At Once

	Transfering Strings

	Running Commands on the Master
	LogRenderable

	Setting Properties
	SetProperty

	SetPropertyFromCommand

	SetPropertiesFromEnv

	Setting Buildslave Info
	SetSlaveInfo

	Triggering Schedulers

	RPM-Related Steps
	RpmBuild

	RpmLint

	Mock Steps

	MockBuildSRPM Step

	MockRebuild Step

	Debian Build Steps
	DebPbuilder

	DebCowbuilder

	DebLintian

	Miscellaneous BuildSteps
	HLint

	MaxQ

	HTTP Requests

Common Parameters

All BuildSteps accept some common parameters. Some of these control
how their individual status affects the overall build. Others are used
to specify which Locks (see Interlocks) should be
acquired before allowing the step to run.

Arguments common to all BuildStep subclasses:

	name

	the name used to describe the step on the status display. It is also
used to give a name to any LogFiles created by this step.

	haltOnFailure

	if True, a FAILURE of this build step will cause the build to halt
immediately. Steps with alwaysRun=True are still run. Generally
speaking, haltOnFailure implies flunkOnFailure (the default for most
BuildSteps). In some cases, particularly series of tests, it makes sense
to haltOnFailure if something fails early on but not flunkOnFailure.
This can be achieved with haltOnFailure=True, flunkOnFailure=False.

	flunkOnWarnings

	when True, a WARNINGS or FAILURE of this build step will mark the
overall build as FAILURE. The remaining steps will still be executed.

	flunkOnFailure

	when True, a FAILURE of this build step will mark the overall build as
a FAILURE. The remaining steps will still be executed.

	warnOnWarnings

	when True, a WARNINGS or FAILURE of this build step will mark the
overall build as having WARNINGS. The remaining steps will still be
executed.

	warnOnFailure

	when True, a FAILURE of this build step will mark the overall build as
having WARNINGS. The remaining steps will still be executed.

	alwaysRun

	if True, this build step will always be run, even if a previous buildstep
with haltOnFailure=True has failed.

	description

	This will be used to describe the command (on the Waterfall display)
while the command is still running. It should be a single
imperfect-tense verb, like compiling or testing. The preferred
form is a list of short strings, which allows the HTML
displays to create narrower columns by emitting a
 tag between each
word. You may also provide a single string.

	descriptionDone

	This will be used to describe the command once it has finished. A
simple noun like compile or tests should be used. Like
description, this may either be a list of short strings or a
single string.

If neither description nor descriptionDone are set, the
actual command arguments will be used to construct the description.
This may be a bit too wide to fit comfortably on the Waterfall
display.

All subclasses of BuildStep will contain the description
attributes. Consequently, you could add a ShellCommand
step like so:

from buildbot.steps.shell import ShellCommand
f.addStep(ShellCommand(command=["make", "test"],
 description=["testing"],
 descriptionDone=["tests"]))

	descriptionSuffix

	This is an optional suffix appended to the end of the description (ie,
after description and descriptionDone). This can be used to distinguish
between build steps that would display the same descriptions in the waterfall.
This parameter may be set to list of short strings, a single string, or None.

For example, a builder might use the Compile step to build two different
codebases. The descriptionSuffix could be set to projectFoo and projectBar,
respectively for each step, which will result in the full descriptions
compiling projectFoo and compiling projectBar to be shown in the waterfall.

	doStepIf

	A step can be configured to only run under certain conditions. To do this, set
the step's doStepIf to a boolean value, or to a function that returns a
boolean value or Deferred. If the value or function result is false, then the step will
return SKIPPED without doing anything. Otherwise, the step will be executed
normally. If you set doStepIf to a function, that function should
accept one parameter, which will be the Step object itself.

	hideStepIf

	A step can be optionally hidden from the waterfall and build details web pages.
To do this, set the step's hideStepIf to a boolean value, or to a function that takes two parameters -- the results and the BuildStep -- and returns a boolean value.
Steps are always shown while they execute, however after the step as finished, this parameter is evaluated (if a function) and if the value is True, the step is hidden.
For example, in order to hide the step if the step has been skipped,

factory.addStep(Foo(..., hideStepIf=lambda results, s: results==SKIPPED))

	locks

	a list of Locks (instances of buildbot.locks.SlaveLock or
buildbot.locks.MasterLock) that should be acquired before starting this
Step. The Locks will be released when the step is complete. Note that this is a
list of actual Lock instances, not names. Also note that all Locks must have
unique names. See Interlocks.

Source Checkout

At the moment, Buildbot contains two implementations of most source steps. The
new implementation handles most of the logic on the master side, and has a
simpler, more unified approach. The older implementation
(Source Checkout (Slave-Side)) handles the logic on the slave side, and
some of the classes have a bewildering array of options.

Caution

Master-side source checkout steps are recently developed and not
stable yet. If you find any bugs please report them on the Buildbot Trac [http://trac.buildbot.net/newticket]. The older Slave-side described source
steps are Source Checkout (Slave-Side).

The old source steps are imported like this:

from buildbot.steps.source import Git

while new source steps are in separate source-packages for each
version-control system:

from buildbot.steps.source.git import Git

New users should, where possible, use the new implementations. The old
implementations will be deprecated in a later release. Old users should take
this opportunity to switch to the new implementations while both are supported
by Buildbot.

Some version control systems have not yet been implemented as master-side
steps. If you are interested in continued support for such a version control
system, please consider helping the Buildbot developers to create such an
implementation. In particular, version-control systems with proprietary
licenses will not be supported without access to the version-control system
for development.

Common Parameters

All source checkout steps accept some common parameters to control how they get
the sources and where they should be placed. The remaining per-VC-system
parameters are mostly to specify where exactly the sources are coming from.

mode
method

These two parameters specify the means by which the source is checked out.
mode specifies the type of checkout and method tells about the
way to implement it.

factory = BuildFactory()
from buildbot.steps.source.mercurial import Mercurial
factory.addStep(Mercurial(repourl='path/to/repo', mode='full', method='fresh'))

The mode parameter a string describing the kind of VC operation that is
desired, defaulting to incremental. The options are

	incremental

	Update the source to the desired revision, but do not remove any other files
generated by previous builds. This allows compilers to take advantage of
object files from previous builds. This mode is exactly same as the old
update mode.

	full

	Update the source, but delete remnants of previous builds. Build steps that
follow will need to regenerate all object files.

Methods are specific to the version-control system in question, as they may
take advantage of special behaviors in that version-control system that can
make checkouts more efficient or reliable.

	workdir

	like all Steps, this indicates the directory where the build will take
place. Source Steps are special in that they perform some operations
outside of the workdir (like creating the workdir itself).

	alwaysUseLatest

	if True, bypass the usual behavior of checking out the revision in the
source stamp, and always update to the latest revision in the repository
instead.

	retry

	If set, this specifies a tuple of (delay, repeats) which means
that when a full VC checkout fails, it should be retried up to
repeats times, waiting delay seconds between attempts. If
you don't provide this, it defaults to None, which means VC
operations should not be retried. This is provided to make life easier
for buildslaves which are stuck behind poor network connections.

	repository

	The name of this parameter might vary depending on the Source step you
are running. The concept explained here is common to all steps and
applies to repourl as well as for baseURL (when
applicable).

A common idiom is to pass Property('repository', 'url://default/repo/path')
as repository. This grabs the repository from the source stamp of the
build. This can be a security issue, if you allow force builds from the
web, or have the WebStatus change hooks enabled; as the buildslave
will download code from an arbitrary repository.

	codebase

	This specifies which codebase the source step should use to select the right
source stamp. The default codebase value is ''. The codebase must correspond
to a codebase assigned by the codebaseGenerator. If there is no
codebaseGenerator defined in the master then codebase doesn't need to be set,
the default value will then match all changes.

	timeout

	Specifies the timeout for slave-side operations, in seconds. If
your repositories are particularly large, then you may need to
increase this value from its default of 1200 (20 minutes).

	logEnviron

	If this option is true (the default), then the step's logfile will
describe the environment variables on the slave. In situations
where the environment is not relevant and is long, it may be
easier to set logEnviron=False.

	env

	a dictionary of environment strings which will be added to the child
command's environment. The usual property interpolations can be used in
environment variable names and values - see Properties.

Mercurial

	
class buildbot.steps.source.mercurial.Mercurial

	

The Mercurial build step performs a Mercurial [http://selenic.com/mercurial]
(aka hg) checkout or update.

Branches are available in two modes: dirname, where the name of the branch is
a suffix of the name of the repository, or inrepo, which uses Hg's
named-branches support. Make sure this setting matches your changehook, if you
have that installed.

from buildbot.steps.source.mercurial import Mercurial
factory.addStep(Mercurial(repourl='path/to/repo', mode='full',
 method='fresh', branchType='inrepo'))

The Mercurial step takes the following arguments:

	repourl

	where the Mercurial source repository is available.

	defaultBranch

	this specifies the name of the branch to use when a Build does not provide
one of its own. This will be appended to repourl to create the
string that will be passed to the hg clone command.

	branchType

	either 'dirname' (default) or 'inrepo' depending on whether the
branch name should be appended to the repourl or the branch
is a Mercurial named branch and can be found within the repourl.

	clobberOnBranchChange

	boolean, defaults to True. If set and using inrepos branches,
clobber the tree at each branch change. Otherwise, just update to
the branch.

mode
method

Mercurial's incremental mode does not require a method. The full mode has
three methods defined:

	clobber

	It removes the build directory entirely then makes full clone
from repo. This can be slow as it need to clone whole repository

	fresh

	This remove all other files except those tracked by VCS. First
it does hg purge --all then pull/update

	clean

	All the files which are tracked by Mercurial and listed ignore
files are not deleted. Remaining all other files will be deleted
before pull/update. This is equivalent to hg purge
then pull/update.

Git

	
class buildbot.steps.source.git.Git

	

The Git build step clones or updates a Git [http://git.or.cz/]
repository and checks out the specified branch or revision. Note that
the buildbot supports Git version 1.2.0 and later: earlier versions
(such as the one shipped in Ubuntu 'Dapper') do not support the
git init command that the buildbot uses.

from buildbot.steps.source.git import Git
factory.addStep(Git(repourl='git://path/to/repo', mode='full',
 method='clobber', submodules=True))

The Git step takes the following arguments:

	repourl

	(required): the URL of the upstream Git repository.

	branch

	(optional): this specifies the name of the branch to use when a Build does not provide one of its own.
If this this parameter is not specified, and the Build does not provide a branch, the default branch of the remote repository will be used.

	submodules

	(optional): when initializing/updating a Git repository, this
decides whether or not buildbot should consider Git submodules.
Default: False.

	shallow

	(optional): instructs git to attempt shallow clones (--depth 1).
This option can be used only in full builds with clobber method.

	reference

	(optional): use the specified string as a path to a reference
repository on the local machine. Git will try to grab objects from
this path first instead of the main repository, if they exist.

	progress

	(optional): passes the (--progress) flag to (git
fetch). This solves issues of long fetches being killed due to
lack of output, but requires Git 1.7.2 or later.

	retryFetch

	(optional): defaults to False.
If true, if the git fetch fails then buildbot retries to fetch again instead of failing the entire source checkout.

	clobberOnFailure

	(optional): defaults to False. If a fetch or full clone
fails we can checkout source removing everything. This way new
repository will be cloned. If retry fails it fails the source
checkout step.

mode

(optional): defaults to 'incremental'.
Specifies whether to clean the build tree or not.

	incremental

	The source is update, but any built files are left untouched.

	full

	The build tree is clean of any built files.
The exact method for doing this is controlled by the method argument.

method

(optional): defaults to fresh when mode is full.
Git's incremental mode does not require a method.
The full mode has four methods defined:

	clobber

	It removes the build directory entirely then makes full clone
from repo. This can be slow as it need to clone whole repository. To make
faster clones enable shallow option. If shallow options is enabled and
build request have unknown revision value, then this step fails.

	fresh

	This remove all other files except those tracked by Git. First
it does git clean -d -f -f -x then fetch/checkout to a
specified revision(if any). This option is equal to update mode
with ignore_ignores=True in old steps.

	clean

	All the files which are tracked by Git and listed ignore files
are not deleted. Remaining all other files will be deleted
before fetch/checkout. This is equivalent to git clean
-d -f -f then fetch. This is equivalent to
ignore_ignores=False in old steps.

	copy

	This first checkout source into source directory then copy the
source directory to build directory then performs the
build operation in the copied directory. This way we make fresh
builds with very less bandwidth to download source. The behavior
of source checkout follows exactly same as incremental. It
performs all the incremental checkout behavior in source
directory.

getDescription

(optional) After checkout, invoke a git describe on the revision and save
the result in a property; the property's name is either commit-description
or commit-description-foo, depending on whether the codebase
argument was also provided. The argument should either be a bool or dict,
and will change how git describe is called:

	getDescription=False: disables this feature explicitly

	getDescription=True or empty dict(): Run git describe with no args

	getDescription={...}: a dict with keys named the same as the Git option.
Each key's value can be False or None to explicitly skip that argument.

For the following keys, a value of True appends the same-named Git argument:

	all : --all

	always: --always

	contains: --contains

	debug: --debug

	long: --long`

	exact-match: --exact-match

	tags: --tags

	dirty: --dirty

For the following keys, an integer or string value (depending on what Git expects)
will set the argument's parameter appropriately. Examples show the key-value pair:

	match=foo: --match foo

	abbrev=7: --abbrev=7

	candidates=7: --candidates=7

	dirty=foo: --dirty=foo

config

(optional) A dict of git configuration settings to pass to the remote git commands.

SVN

	
class buildbot.steps.source.svn.SVN

	

The SVN build step performs a Subversion [http://subversion.tigris.org]
checkout or update. There are two
basic ways of setting up the checkout step, depending upon whether you
are using multiple branches or not.

The SVN step should be created with the
repourl argument:

	repourl

	(required): this specifies the URL argument that will be
given to the svn checkout command. It dictates both where
the repository is located and which sub-tree should be
extracted. One way to specify the branch is to use Interpolate. For
example, if you wanted to check out the trunk repository, you could use
repourl=Interpolate("http://svn.example.com/repos/%(src::branch)s")
Alternatively, if you are using a remote Subversion repository
which is accessible through HTTP at a URL of http://svn.example.com/repos,
and you wanted to check out the trunk/calc sub-tree, you would directly
use repourl="http://svn.example.com/repos/trunk/calc" as an
argument to your SVN step.

If you are building from multiple branches, then you should create
the SVN step with the repourl and provide branch
information with Interpolate:

from buildbot.steps.source.svn import SVN
factory.addStep(SVN(mode='incremental',
 repourl=Interpolate('svn://svn.example.org/svn/%(src::branch)s/myproject')))

Alternatively, the repourl argument can be used to create the SVN step without
Interpolate:

from buildbot.steps.source.svn import SVN
factory.addStep(SVN(mode='full',
 repourl='svn://svn.example.org/svn/myproject/trunk'))

	username

	(optional): if specified, this will be passed to the svn
binary with a --username option.

	password

	(optional): if specified, this will be passed to the svn binary
with a --password option.

	extra_args

	(optional): if specified, an array of strings that will be passed
as extra arguments to the svn binary.

	keep_on_purge

	(optional): specific files or directories to keep between purges,
like some build outputs that can be reused between builds.

	depth

	(optional): Specify depth argument to achieve sparse checkout.
Only available if slave has Subversion 1.5 or higher.

If set to empty updates will not pull in any files or
subdirectories not already present. If set to files, updates will
pull in any files not already present, but not directories. If set
to immediates, updates will pull in any files or subdirectories
not already present, the new subdirectories will have depth: empty.
If set to infinity, updates will pull in any files or
subdirectories not already present; the new subdirectories will
have depth-infinity. Infinity is equivalent to SVN default update
behavior, without specifying any depth argument.

	preferLastChangedRev

	(optional): By default, the got_revision property is set to the
repository's global revision ("Revision" in the svn info output). Set this
parameter to True to have it set to the "Last Changed Rev" instead.

mode
method

SVN's incremental mode does not require a method. The full mode
has five methods defined:

	clobber

	It removes the working directory for each build then makes full checkout.

	fresh

	This always always purges local changes before updating. This
deletes unversioned files and reverts everything that would
appear in a svn status --no-ignore. This is equivalent
to the old update mode with always_purge.

	clean

	This is same as fresh except that it deletes all unversioned
files generated by svn status.

	copy

	This first checkout source into source directory then copy the
source directory to build directory then performs
the build operation in the copied directory. This way we make
fresh builds with very less bandwidth to download source. The
behavior of source checkout follows exactly same as
incremental. It performs all the incremental checkout behavior
in source directory.

	export

	Similar to method='copy', except using svn export to create build
directory so that there are no .svn directories in the build
directory.

If you are using branches, you must also make sure your
ChangeSource will report the correct branch names.

CVS

	
class buildbot.steps.source.cvs.CVS

	

The CVS build step performs a CVS [http://www.nongnu.org/cvs/]
checkout or update.

from buildbot.steps.source.cvs import CVS
factory.addStep(CVS(mode='incremental',
 cvsroot=':pserver:me@cvs.sourceforge.net:/cvsroot/myproj',
 cvsmodule='buildbot'))

This step takes the following arguments:

	cvsroot

	(required): specify the CVSROOT value, which points to a CVS repository,
probably on a remote machine. For example, if Buildbot was hosted in CVS
then the cvsroot value you would use to get a copy of the Buildbot source
code might be
:pserver:anonymous@cvs.sourceforge.net:/cvsroot/buildbot.

	cvsmodule

	(required): specify the cvs module, which is generally a
subdirectory of the CVSROOT. The cvsmodule for the Buildbot source code is
buildbot.

	branch

	a string which will be used in a -r argument. This is most useful for
specifying a branch to work on. Defaults to HEAD.

	global_options

	a list of flags to be put before the argument checkout in the CVS
command.

	extra_options

	a list of flags to be put after the checkout in the CVS command.

mode
method

No method is needed for incremental mode. For full mode, method can
take the values shown below. If no value is given, it defaults to
fresh.

	clobber

	This specifies to remove the workdir and make a full checkout.

	fresh

	This method first runs cvsdisard in the build directory, then updates
it. This requires cvsdiscard which is a part of the cvsutil package.

	clean

	This method is the same as method='fresh', but it runs cvsdiscard
--ignore instead of cvsdiscard.

	copy

	This maintains a source directory for source, which it updates copies to
the build directory. This allows Buildbot to start with a fresh directory,
without downloading the entire repository on every build.

Bzr

	
class buildbot.steps.source.bzr.Bzr

	

bzr is a descendant of Arch/Baz, and is frequently referred to
as simply Bazaar. The repository-vs-workspace model is similar to
Darcs, but it uses a strictly linear sequence of revisions (one
history per branch) like Arch. Branches are put in subdirectories.
This makes it look very much like Mercurial.

from buildbot.steps.source.bzr import Bzr
factory.addStep(Bzr(mode='incremental',
 repourl='lp:~knielsen/maria/tmp-buildbot-test'))

The step takes the following arguments:

	repourl

	(required unless baseURL is provided): the URL at which the
Bzr source repository is available.

	baseURL

	(required unless repourl is provided): the base repository URL,
to which a branch name will be appended. It should probably end in a
slash.

	defaultBranch

	(allowed if and only if baseURL is provided): this specifies
the name of the branch to use when a Build does not provide one of its
own. This will be appended to baseURL to create the string that
will be passed to the bzr checkout command.

mode
method

No method is needed for incremental mode. For full mode, method can
take the values shown below. If no value is given, it defaults to
fresh.

	clobber

	This specifies to remove the workdir and make a full checkout.

	fresh

	This method first runs bzr clean-tree to remove all the unversioned
files then update the repo. This remove all unversioned files
including those in .bzrignore.

	clean

	This is same as fresh except that it doesn't remove the files mentioned
in .bzrginore i.e, by running bzr clean-tree --ignore.

	copy

	A local bzr repository is maintained and the repo is copied to build
directory for each build. Before each build the local bzr repo is
updated then copied to build for next steps.

P4

	
class buildbot.steps.source.p4.P4

	

The P4 build step creates a Perforce [http://www.perforce.com/]
client specification and performs an update.

from buildbot.steps.source.p4 import P4
factory.addStep(P4(p4port=p4port,
 p4client=WithProperties('%(P4USER)s-%(slavename)s-%(buildername)s'),
 p4user=p4user,
 p4base='//depot',
 p4viewspec=p4viewspec,
 mode='incremental',
))

You can specify the client spec in two different ways. You can use the p4base,
p4branch, and (optionally) p4extra_views to build up the viewspec, or you can utilize
the p4viewspec to specify the whole viewspec as a set of tuples.

Using p4viewspec will allow you to add lines such as:

//depot/branch/mybranch/... //<p4client>/...
-//depot/branch/mybranch/notthisdir/... //<p4client>/notthisdir/...

If you specify p4viewspec and any of p4base, p4branch, and/or p4extra_views
you will receive a configuration error exception.

	p4base

	A view into the Perforce depot without branch name or trailing "/...".
Typically //depot/proj.

	p4branch

	
	(optional): A single string, which is appended to the p4base as follows

	<p4base>/<p4branch>/... to form the first line in the viewspec

	p4extra_views

	(optional): a list of (depotpath, clientpath) tuples containing extra
views to be mapped into the client specification. Both will have
/... appended automatically. The client name and source directory
will be prepended to the client path.

	p4viewspec

	This will override any p4branch, p4base, and/or p4extra_views specified.
The viewspec will be an array of tuples as follows:

[('//depot/main/','')]

It yields a viewspec with just:

//depot/main/... //<p4client>/...

	p4viewspec_suffix

	(optional): The p4viewspec lets you customize the client spec for a builder but, as the
previous example shows, it automatically adds ... at the end of each line.
If you need to also specify file-level remappings, you can set the p4viewspec_suffix
to None so that nothing is added to your viewspec:

[('//depot/main/...', '...'),
 ('-//depot/main/config.xml', 'config.xml'),
 ('//depot/main/config.vancouver.xml', 'config.xml')]

It yields a viewspec with:

//depot/main/... //<p4client>/...
-//depot/main/config.xml //<p4client/main/config.xml
//depot/main/config.vancouver.xml //<p4client>/main/config.xml

Note how, with p4viewspec_suffix set to None, you need to manually add ...
where you need it.

	p4client_spec_options

	(optional): By default, clients are created with the allwrite rmdir options. This
string lets you change that.

	p4port

	(optional): the host:port string describing how to get to the P4 Depot
(repository), used as the -p argument for all p4 commands.

	p4user

	(optional): the Perforce user, used as the -u argument to all p4
commands.

	p4passwd

	(optional): the Perforce password, used as the -p argument to all p4
commands.

	p4client

	(optional): The name of the client to use. In mode='full' and
mode='incremental', it's particularly important that a unique name is used
for each checkout directory to avoid incorrect synchronization. For
this reason, Python percent substitution will be performed on this value
to replace %(slave)s with the slave name and %(builder)s with the
builder name. The default is buildbot_%(slave)s_%(build)s.

	p4line_end

	(optional): The type of line ending handling P4 should use. This is
added directly to the client spec's LineEnd property. The default is
local.

	p4extra_args

	(optional): Extra arguments to be added to the P4 command-line for the sync
command. So for instance if you want to sync only to populate a Perforce proxy
(without actually syncing files to disk), you can do:

P4(p4extra_args=['-Zproxyload'], ...)

Repo

	
class buildbot.steps.source.repo.Repo

	

The Repo build step performs a Repo [http://lwn.net/Articles/304488/]
init and sync.

It is a drop-in replacement for Repo (Slave-Side), which should not be used anymore
for new and old projects.

The Repo step takes the following arguments:

	manifestURL

	(required): the URL at which the Repo's manifests source repository is available.

	manifestBranch

	(optional, defaults to master): the manifest repository branch
on which repo will take its manifest. Corresponds to the -b
argument to the repo init command.

	manifestFile

	(optional, defaults to default.xml): the manifest
filename. Corresponds to the -m argument to the repo
init command.

	tarball

	(optional, defaults to None): the repo tarball used for
fast bootstrap. If not present the tarball will be created
automatically after first sync. It is a copy of the .repo
directory which contains all the Git objects. This feature helps
to minimize network usage on very big projects with lots of slaves.

	jobs

	(optional, defaults to None): Number of projects to fetch
simultaneously while syncing. Passed to repo sync subcommand with "-j".

	syncAllBranches

	(optional, defaults to False): renderable boolean to control whether repo
syncs all branches. i.e. repo sync -c

	depth

	(optional, defaults to 0): Depth argument passed to repo init.
Specifies the amount of git history to store. A depth of 1 is useful for shallow clones.
This can save considerable disk space on very large projects.

	updateTarballAge

	(optional, defaults to "one week"):
renderable to control the policy of updating of the tarball
given properties
Returns: max age of tarball in seconds, or None, if we
want to skip tarball update
The default value should be good trade off on size of the tarball,
and update frequency compared to cost of tarball creation

	repoDownloads

	(optional, defaults to None):
list of repo download commands to perform at the end of the Repo step
each string in the list will be prefixed repo download, and run as is.
This means you can include parameter in the string. e.g:

	["-c project 1234/4"] will cherry-pick patchset 4 of patch 1234 in project project

	["-f project 1234/4"] will enforce fast-forward on patchset 4 of patch 1234 in project project

	
class buildbot.steps.source.repo.RepoDownloadsFromProperties

	

RepoDownloadsFromProperties can be used as a renderable of the repoDownload parameter
it will look in passed properties for string with following possible format:

	repo download project change_number/patchset_number.

	project change_number/patchset_number.

	project/change_number/patchset_number.

All of these properties will be translated into a repo download.
This feature allows integrators to build with several pending interdependent changes,
which at the moment cannot be described properly in Gerrit, and can only be described
by humans.

	
class buildbot.steps.source.repo.RepoDownloadsFromChangeSource

	

RepoDownloadsFromChangeSource can be used as a renderable of the repoDownload parameter

This rendereable integrates with GerritChangeSource, and will
automatically use the repo download command of repo to
download the additionnal changes introduced by a pending changeset.

Note

you can use the two above Rendereable in conjuction by using the class buildbot.process.properties.FlattenList

for example:

from buildbot.steps.source.repo import Repo, RepoDownloadsFromChangeSource,
from buildbot.steps.source.repo import RepoDownloadsFromProperties
from buildbot.process.properties import FlattenList

factory.addStep(Repo(manifestURL='git://mygerrit.org/manifest.git',
 repoDownloads=FlattenList([RepoDownloadsFromChangeSource(),
 RepoDownloadsFromProperties("repo_downloads")
]
)
))

Gerrit

	
class buildbot.steps.source.gerrit.Gerrit

	

This Source step is exactly like the Git checkout step , except that
it integrates with GerritChangeSource, and will automatically checkout
the additional changes.

Gerrit integration can be also triggered using forced build with property named
gerrit_change with values in format change_number/patchset_number. This property
will be translated into a branch name. This feature allows integrators to build with
several pending interdependent changes, which at the moment cannot be described properly
in Gerrit, and can only be described by humans.

Darcs

	
class buildbot.steps.source.darcs.Darcs

	

The :bb:step`Darcs` build step performs a Darcs [http://darcs.net/]
checkout or update.

from buildbot.steps.source.darcs import Darcs
factory.addStep(Darcs(repourl='http://path/to/repo',
 mode='full', method='clobber', retry=(10, 1)))

Darcs step takes the following arguments:

	repourl

	(required): The URL at which the Darcs source repository is available.

mode

(optional): defaults to 'incremental'.
Specifies whether to clean the build tree or not.

	incremental

	The source is update, but any built files are left untouched.

	full

	The build tree is clean of any built files.
The exact method for doing this is controlled by the method argument.

	method

	(optional): defaults to copy when mode is full.
Darcs' incremental mode does not require a method.
The full mode has two methods defined:

	clobber

	It removes the working directory for each build then makes full checkout.

	copy

	This first checkout source into source directory then copy the
source directory to build directory then performs
the build operation in the copied directory. This way we make
fresh builds with very less bandwidth to download source. The
behavior of source checkout follows exactly same as
incremental. It performs all the incremental checkout behavior
in source directory.

Monotone

	
class buildbot.steps.source.mtn.Monotone

	

The Monotone build step performs a Monotone [http://www.monotone.ca/]
checkout or update.

from buildbot.steps.source.mtn import Monotone
factory.addStep(Darcs(repourl='http://path/to/repo',
 mode='full', method='clobber', branch='some.branch.name',
 retry=(10, 1)))

Monotone step takes the following arguments:

	repourl

	the URL at which the Monotone source repository is available.

	branch

	this specifies the name of the branch to use when a Build does not
provide one of its own.

	progress

	this is a boolean that has a pull from the repository use
--ticker=dot instead of the default --ticker=none.

mode

(optional): defaults to 'incremental'.
Specifies whether to clean the build tree or not.

	incremental

	The source is update, but any built files are left untouched.

	full

	The build tree is clean of any built files.
The exact method for doing this is controlled by the method argument.

method

(optional): defaults to copy when mode is full.
Monotone's incremental mode does not require a method.
The full mode has four methods defined:

	clobber

	It removes the build directory entirely then makes full clone
from repo. This can be slow as it need to clone whole repository.

	clean

	This remove all other files except those tracked and ignored by Monotone. It will remove
all the files that appear in mtn ls unknown. Then it will pull from
remote and update the working directory.

	fresh

	This remove all other files except those tracked by Monotone. It will remove
all the files that appear in mtn ls ignored and mtn ls unknows.
Then pull and update similar to clean

	copy

	This first checkout source into source directory then copy the
source directory to build directory then performs the
build operation in the copied directory. This way we make fresh
builds with very less bandwidth to download source. The behavior
of source checkout follows exactly same as incremental. It
performs all the incremental checkout behavior in source
directory.

Source Checkout (Slave-Side)

This section describes the more mature slave-side source steps. Where
possible, new users should use the master-side source checkout steps, as the
slave-side steps will be removed in a future version. See
Source Checkout.

The first step of any build is typically to acquire the source code
from which the build will be performed. There are several classes to
handle this, one for each of the different source control system that
Buildbot knows about. For a description of how Buildbot treats source
control in general, see Version Control Systems.

All source checkout steps accept some common parameters to control how
they get the sources and where they should be placed. The remaining
per-VC-system parameters are mostly to specify where exactly the
sources are coming from.

	mode

	a string describing the kind of VC operation that is desired. Defaults
to update.

	update

	specifies that the CVS checkout/update should be performed
directly into the workdir. Each build is performed in the same
directory, allowing for incremental builds. This minimizes
disk space, bandwidth, and CPU time. However, it may encounter
problems if the build process does not handle dependencies
properly (sometimes you must do a clean build to make sure
everything gets compiled), or if source files are deleted but
generated files can influence test behavior (e.g. Python's
.pyc files), or when source directories are deleted but
generated files prevent CVS from removing them. Builds ought
to be correct regardless of whether they are done from
scratch or incrementally, but it is useful to test both
kinds: this mode exercises the incremental-build style.

	copy

	specifies that the CVS workspace should be maintained in a
separate directory (called the copydir), using
checkout or update as necessary. For each build, a new workdir
is created with a copy of the source tree (rm -rf workdir;
cp -r copydir workdir). This doubles the disk space
required, but keeps the bandwidth low (update instead of a
full checkout). A full 'clean' build is performed each
time. This avoids any generated-file build problems, but is
still occasionally vulnerable to CVS problems such as a
repository being manually rearranged, causing CVS errors on
update which are not an issue with a full checkout.

	clobber

	specifies that the working directory should be deleted each
time, necessitating a full checkout for each build. This
insures a clean build off a complete checkout, avoiding any of
the problems described above. This mode exercises the
from-scratch build style.

	export

	this is like clobber, except that the cvs export
command is used to create the working directory. This command
removes all CVS metadata files (the CVS/ directories)
from the tree, which is sometimes useful for creating source
tarballs (to avoid including the metadata in the tar file).

	workdir

	As for all steps, this indicates the directory where the build will take
place. Source Steps are special in that they perform some operations
outside of the workdir (like creating the workdir itself).

	alwaysUseLatest

	if True, bypass the usual update to the last Change behavior, and
always update to the latest changes instead.

	retry

	If set, this specifies a tuple of (delay, repeats) which means
that when a full VC checkout fails, it should be retried up to
repeats times, waiting delay seconds between attempts. If
you don't provide this, it defaults to None, which means VC
operations should not be retried. This is provided to make life easier
for buildslaves which are stuck behind poor network connections.

	repository

	The name of this parameter might varies depending on the Source step you
are running. The concept explained here is common to all steps and
applies to repourl as well as for baseURL (when
applicable). Buildbot, now being aware of the repository name via the
change source, might in some cases not need the repository url. There
are multiple way to pass it through to this step, those correspond to
the type of the parameter given to this step:

	None

	In the case where no parameter is specified, the repository url will be
taken exactly from the Change attribute. You are looking for that one if
your ChangeSource step has all information about how to reach the
Change.

	string

	The parameter might be a string, in this case, this string will be taken
as the repository url, and nothing more. the value coming from the
ChangeSource step will be forgotten.

	format string

	If the parameter is a string containing %s, then this the
repository attribute from the Change will be place in place of the
%s. This is useful when the change source knows where the
repository resides locally, but don't know the scheme used to access
it. For instance ssh://server/%s makes sense if the the
repository attribute is the local path of the repository.

	dict

	In this case, the repository URL will be the value indexed by the
repository attribute in the dict given as parameter.

	callable

	The callable given as parameter will take the repository attribute from
the Change and its return value will be used as repository URL.

Note

this is quite similar to the mechanism used by the
WebStatus for the changecommentlink, projects or
repositories parameter.

	timeout

	Specifies the timeout for slave-side operations, in seconds. If
your repositories are particularly large, then you may need to
increase this value from its default of 1200 (20 minutes).

My habit as a developer is to do a cvs update and make each
morning. Problems can occur, either because of bad code being checked in, or
by incomplete dependencies causing a partial rebuild to fail where a
complete from-scratch build might succeed. A quick Builder which emulates
this incremental-build behavior would use the mode='update'
setting.

On the other hand, other kinds of dependency problems can cause a clean
build to fail where a partial build might succeed. This frequently results
from a link step that depends upon an object file that was removed from a
later version of the tree: in the partial tree, the object file is still
around (even though the Makefiles no longer know how to create it).

official builds (traceable builds performed from a known set of
source revisions) are always done as clean builds, to make sure it is
not influenced by any uncontrolled factors (like leftover files from a
previous build). A full Builder which behaves this way would want
to use the mode='clobber' setting.

Each VC system has a corresponding source checkout class: their
arguments are described on the following pages.

CVS (Slave-Side)

The CVS build step performs a CVS [http://www.nongnu.org/cvs/]
checkout or update. It takes the following arguments:

	cvsroot

	(required): specify the CVSROOT value, which points to a CVS
repository, probably on a remote machine. For example, the cvsroot
value you would use to get a copy of the Buildbot source code is
:pserver:anonymous@cvs.sourceforge.net:/cvsroot/buildbot

	cvsmodule

	(required): specify the cvs module, which is generally a
subdirectory of the CVSROOT. The cvsmodule for the Buildbot source
code is buildbot.

	branch

	a string which will be used in a -r argument. This is most
useful for specifying a branch to work on. Defaults to HEAD.

	global_options

	a list of flags to be put before the verb in the CVS command.

checkout_options

export_options

	extra_options

	a list of flags to be put after the verb in the CVS command.
checkout_options is only used for checkout operations,
export_options is only used for export operations, and
extra_options is used for both.

	checkoutDelay

	if set, the number of seconds to put between the timestamp of the last
known Change and the value used for the -D option. Defaults to
half of the parent Build's treeStableTimer.

SVN (Slave-Side)

The SVN build step performs a
Subversion [http://subversion.tigris.org] checkout or update.
There are two basic ways of setting up the checkout step, depending
upon whether you are using multiple branches or not.

The most versatile way to create the SVN step is with the
svnurl argument:

	svnurl

	(required): this specifies the URL argument that will be given
to the svn checkout command. It dictates both where the
repository is located and which sub-tree should be extracted. In this
respect, it is like a combination of the CVS cvsroot and
cvsmodule arguments. For example, if you are using a remote
Subversion repository which is accessible through HTTP at a URL of
http://svn.example.com/repos, and you wanted to check out the
trunk/calc sub-tree, you would use
svnurl="http://svn.example.com/repos/trunk/calc" as an argument
to your SVN step.

The svnurl argument can be considered as a universal means to
create the SVN step as it ignores the branch information in the
SourceStamp.

Alternatively, if you are building from multiple branches, then you
should preferentially create the SVN step with the
baseURL and defaultBranch arguments instead:

	baseURL

	(required): this specifies the base repository URL, to which a branch
name will be appended. It should probably end in a slash.

	defaultBranch

	(optional): this specifies the name of the branch to use when a Build
does not provide one of its own. This will be appended to
baseURL to create the string that will be passed to the
svn checkout command.

It is possible to mix to have a mix of SVN steps that use
either the svnurl or baseURL arguments but not both at
the same time.

	username

	(optional): if specified, this will be passed to the svn
binary with a --username option.

	password

	(optional): if specified, this will be passed to the svn
binary with a --password option. The password itself will be
suitably obfuscated in the logs.

	extra_args

	(optional): if specified, an array of strings that will be passed as
extra arguments to the svn binary.

	keep_on_purge

	(optional): specific files or directories to keep between purges,
like some build outputs that can be reused between builds.

	ignore_ignores

	(optional): when purging changes, don't use rules defined in
svn:ignore properties and global-ignores in subversion/config.

	always_purge

	(optional): if set to True, always purge local changes before updating. This
deletes unversioned files and reverts everything that would appear in a
svn status.

	depth

	(optional): Specify depth argument to achieve sparse checkout. Only
available if slave has Subversion 1.5 or higher.

If set to "empty" updates will not pull in any files or subdirectories not
already present. If set to "files", updates will pull in any files not already
present, but not directories. If set to "immediates", updates will pull in any
files or subdirectories not already present, the new subdirectories will have
depth: empty. If set to "infinity", updates will pull in any files or
subdirectories not already present; the new subdirectories will have
depth-infinity. Infinity is equivalent to SVN default update behavior, without
specifying any depth argument.

If you are using branches, you must also make sure your
ChangeSource will report the correct branch names.

Darcs (Slave-Side)

The Darcs build step performs a
Darcs [http://darcs.net/] checkout or update.

Like SVN, this step can either be configured to always check
out a specific tree, or set up to pull from a particular branch that
gets specified separately for each build. Also like SVN, the
repository URL given to Darcs is created by concatenating a
baseURL with the branch name, and if no particular branch is
requested, it uses a defaultBranch. The only difference in
usage is that each potential Darcs repository URL must point to a
fully-fledged repository, whereas SVN URLs usually point to sub-trees
of the main Subversion repository. In other words, doing an SVN
checkout of baseURL is legal, but silly, since you'd probably
wind up with a copy of every single branch in the whole repository.
Doing a Darcs checkout of baseURL is just plain wrong, since
the parent directory of a collection of Darcs repositories is not
itself a valid repository.

The Darcs step takes the following arguments:

	repourl

	(required unless baseURL is provided): the URL at which the
Darcs source repository is available.

	baseURL

	(required unless repourl is provided): the base repository URL,
to which a branch name will be appended. It should probably end in a
slash.

	defaultBranch

	(allowed if and only if baseURL is provided): this specifies
the name of the branch to use when a Build does not provide one of its
own. This will be appended to baseURL to create the string that
will be passed to the darcs get command.

Mercurial (Slave-Side)

The Mercurial build step performs a
Mercurial [http://selenic.com/mercurial] (aka hg) checkout
or update.

Branches are available in two modes: dirname like Darcs, or
inrepo, which uses the repository internal branches. Make sure this
setting matches your changehook, if you have that installed.

The Mercurial step takes the following arguments:

	repourl

	(required unless baseURL is provided): the URL at which the
Mercurial source repository is available.

	baseURL

	(required unless repourl is provided): the base repository URL,
to which a branch name will be appended. It should probably end in a
slash.

	defaultBranch

	(allowed if and only if baseURL is provided): this specifies
the name of the branch to use when a Build does not provide one of its
own. This will be appended to baseURL to create the string that
will be passed to the hg clone command.

	branchType

	either 'dirname' (default) or 'inrepo' depending on whether
the branch name should be appended to the baseURL
or the branch is a Mercurial named branch and can be
found within the repourl.

	clobberOnBranchChange

	boolean, defaults to True. If set and
using inrepos branches, clobber the tree
at each branch change. Otherwise, just
update to the branch.

Bzr (Slave-Side)

bzr is a descendant of Arch/Baz, and is frequently referred to
as simply Bazaar. The repository-vs-workspace model is similar to
Darcs, but it uses a strictly linear sequence of revisions (one
history per branch) like Arch. Branches are put in subdirectories.
This makes it look very much like Mercurial. It takes the following
arguments:

	repourl

	(required unless baseURL is provided): the URL at which the
Bzr source repository is available.

	baseURL

	(required unless repourl is provided): the base repository URL,
to which a branch name will be appended. It should probably end in a
slash.

	defaultBranch

	(allowed if and only if baseURL is provided): this specifies
the name of the branch to use when a Build does not provide one of its
own. This will be appended to baseURL to create the string that
will be passed to the bzr checkout command.

	forceSharedRepo

	(boolean, optional, defaults to False): If set to True, the working directory
will be made into a bzr shared repository if it is not already. Shared
repository greatly reduces the amount of history data that needs to be
downloaded if not using update/copy mode, or if using update/copy mode with
multiple branches.

P4 (Slave-Side)

The P4 (Slave-Side) build step creates a Perforce [http://www.perforce.com/]
client specification and performs an update.

	p4base

	A view into the Perforce depot without branch name or trailing "...".
Typically //depot/proj/.

	defaultBranch

	A branch name to append on build requests if none is specified.
Typically trunk.

	p4port

	(optional): the host:port string describing how to get to the P4 Depot
(repository), used as the -p argument for all p4 commands.

	p4user

	(optional): the Perforce user, used as the -u argument to all p4
commands.

	p4passwd

	(optional): the Perforce password, used as the -p argument to all p4
commands.

	p4extra_views

	(optional): a list of (depotpath, clientpath) tuples containing extra
views to be mapped into the client specification. Both will have
"/..." appended automatically. The client name and source directory
will be prepended to the client path.

	p4client

	(optional): The name of the client to use. In mode='copy' and
mode='update', it's particularly important that a unique name is used
for each checkout directory to avoid incorrect synchronization. For
this reason, Python percent substitution will be performed on this value
to replace %(slave)s with the slave name and %(builder)s with the
builder name. The default is buildbot_%(slave)s_%(build)s.

	p4line_end

	(optional): The type of line ending handling P4 should use. This is
added directly to the client spec's LineEnd property. The default is
local.

Git (Slave-Side)

The Git build step clones or updates a Git [http://git.or.cz/]
repository and checks out the specified branch or revision. Note
that the buildbot supports Git version 1.2.0 and later: earlier
versions (such as the one shipped in Ubuntu 'Dapper') do not support
the git init command that the buildbot uses.

The Git step takes the following arguments:

	repourl

	(required): the URL of the upstream Git repository.

	branch

	(optional): this specifies the name of the branch to use when a Build
does not provide one of its own. If this this parameter is not
specified, and the Build does not provide a branch, the master
branch will be used.

	ignore_ignores

	(optional): when purging changes, don't use .gitignore and
.git/info/exclude.

	submodules

	(optional): when initializing/updating a Git repository, this decides whether
or not buildbot should consider Git submodules. Default: False.

	reference

	(optional): use the specified string as a path to a reference
repository on the local machine. Git will try to grab objects from
this path first instead of the main repository, if they exist.

	shallow

	(optional): instructs Git to attempt shallow clones (--depth 1). If the
user/scheduler asks for a specific revision, this parameter is ignored.

	progress

	(optional): passes the (--progress) flag to (git
fetch). This solves issues of long fetches being killed due to
lack of output, but requires Git 1.7.2 or later.

This Source step integrates with GerritChangeSource, and will automatically use
Gerrit's "virtual branch" (refs/changes/*) to download the additionnal changes
introduced by a pending changeset.

Gerrit integration can be also triggered using forced build with gerrit_change
property with value in format: change_number/patchset_number.

BitKeeper (Slave-Side)

The BK build step performs a BitKeeper [http://www.bitkeeper.com/]
checkout or update.

The BitKeeper step takes the following arguments:

	repourl

	(required unless baseURL is provided): the URL at which the
BitKeeper source repository is available.

	baseURL

	(required unless repourl is provided): the base repository URL,
to which a branch name will be appended. It should probably end in a
slash.

Repo (Slave-Side)

	
class buildbot.steps.source.Repo

	

The Repo (Slave-Side) build step performs a Repo [http://lwn.net/Articles/304488/]
init and sync.

This step is obsolete and should not be used anymore. please use: Repo instead

The Repo step takes the following arguments:

	manifest_url

	(required): the URL at which the Repo's manifests source repository is available.

	manifest_branch

	(optional, defaults to master): the manifest repository branch
on which repo will take its manifest. Corresponds to the -b
argument to the repo init command.

	manifest_file

	(optional, defaults to default.xml): the manifest
filename. Corresponds to the -m argument to the repo
init command.

	tarball

	(optional, defaults to None): the repo tarball used for
fast bootstrap. If not present the tarball will be created
automatically after first sync. It is a copy of the .repo
directory which contains all the Git objects. This feature helps
to minimize network usage on very big projects.

	jobs

	(optional, defaults to None): Number of projects to fetch
simultaneously while syncing. Passed to repo sync subcommand with "-j".

This Source step integrates with GerritChangeSource, and will
automatically use the repo download command of repo to
download the additionnal changes introduced by a pending changeset.

Gerrit integration can be also triggered using forced build with following properties:
repo_d, repo_d[0-9], repo_download, repo_download[0-9]
with values in format: project/change_number/patchset_number.
All of these properties will be translated into a repo download.
This feature allows integrators to build with several pending interdependent changes,
which at the moment cannot be described properly in Gerrit, and can only be described
by humans.

Monotone (Slave-Side)

The Monotone build step performs a
Monotone [http://www.monotone.ca], (aka mtn) checkout
or update.

The Monotone step takes the following arguments:

	repourl

	the URL at which the Monotone source repository is available.

	branch

	this specifies the name of the branch to use when a Build does not
provide one of its own.

	progress

	this is a boolean that has a pull from the repository use
--ticker=dot instead of the default --ticker=none.

ShellCommand

Most interesting steps involve executing a process of some sort on the
buildslave. The ShellCommand class handles this activity.

Several subclasses of ShellCommand are provided as starting points for
common build steps.

Using ShellCommands

	
class buildbot.steps.shell.ShellCommand

	

This is a useful base class for just about everything you might want
to do during a build (except for the initial source checkout). It runs
a single command in a child shell on the buildslave. All stdout/stderr
is recorded into a LogFile. The step usually finishes with a
status of FAILURE if the command's exit code is non-zero, otherwise
it has a status of SUCCESS.

The preferred way to specify the command is with a list of argv strings,
since this allows for spaces in filenames and avoids doing any fragile
shell-escaping. You can also specify the command with a single string, in
which case the string is given to /bin/sh -c COMMAND for parsing.

On Windows, commands are run via cmd.exe /c which works well. However,
if you're running a batch file, the error level does not get propagated
correctly unless you add 'call' before your batch file's name:
cmd=['call', 'myfile.bat', ...].

The ShellCommand arguments are:

	command

	a list of strings (preferred) or single string (discouraged) which
specifies the command to be run. A list of strings is preferred
because it can be used directly as an argv array. Using a single
string (with embedded spaces) requires the buildslave to pass the
string to /bin/sh for interpretation, which raises all sorts of
difficult questions about how to escape or interpret shell
metacharacters.

If command contains nested lists (for example, from a properties
substitution), then that list will be flattened before it is executed.

On the topic of shell metacharacters, note that in DOS the pipe character
(|) is conditionally escaped (to ^|) when it occurs inside a more
complex string in a list of strings. It remains unescaped when it
occurs as part of a single string or as a lone pipe in a list of strings.

	workdir

	All ShellCommands are run by default in the workdir, which
defaults to the build subdirectory of the slave builder's
base directory. The absolute path of the workdir will thus be the
slave's basedir (set as an option to buildslave create-slave,
Creating a buildslave) plus the builder's basedir (set in the
builder's builddir key in master.cfg) plus the workdir
itself (a class-level attribute of the BuildFactory, defaults to
build).

For example:

from buildbot.steps.shell import ShellCommand
f.addStep(ShellCommand(command=["make", "test"],
 workdir="build/tests"))

	env

	a dictionary of environment strings which will be added to the child
command's environment. For example, to run tests with a different i18n
language setting, you might use

from buildbot.steps.shell import ShellCommand
f.addStep(ShellCommand(command=["make", "test"],
 env={'LANG': 'fr_FR'}))

These variable settings will override any existing ones in the
buildslave's environment or the environment specified in the
Builder. The exception is PYTHONPATH, which is
merged with (actually prepended to) any existing
PYTHONPATH setting. The following example will prepend
/home/buildbot/lib/python to any existing
PYTHONPATH:

from buildbot.steps.shell import ShellCommand
f.addStep(ShellCommand(
 command=["make", "test"],
 env={'PYTHONPATH': "/home/buildbot/lib/python"}))

To avoid the need of concatenating path together in the master config file,
if the value is a list, it will be joined together using the right platform
dependant separator.

Those variables support expansion so that if you just want to prepend
/home/buildbot/bin to the PATH environment variable, you can do
it by putting the value ${PATH} at the end of the value like
in the example below. Variables that don't exist on the slave will be
replaced by "".

from buildbot.steps.shell import ShellCommand
f.addStep(ShellCommand(
 command=["make", "test"],
 env={'PATH': ["/home/buildbot/bin",
 "${PATH}"]}))

Note that environment values must be strings (or lists that are turned into
strings). In particular, numeric properties such as buildnumber must
be substituted using Interpolate.

	want_stdout

	if False, stdout from the child process is discarded rather than being
sent to the buildmaster for inclusion in the step's LogFile.

	want_stderr

	like want_stdout but for stderr. Note that commands run through
a PTY do not have separate stdout/stderr streams: both are merged into
stdout.

	usePTY

	Should this command be run in a pty? The default is to observe the
configuration of the client (Buildslave Options), but specifying
True or False here will override the
default. This option is not available on Windows.

In general, you do not want to use a pseudo-terminal. This is is
only useful for running commands that require a terminal - for
example, testing a command-line application that will only accept
passwords read from a terminal. Using a pseudo-terminal brings
lots of compatibility problems, and prevents Buildbot from
distinguishing the standard error (red) and standard output
(black) streams.

In previous versions, the advantage of using a pseudo-terminal was
that grandchild processes were more likely to be cleaned up if
the build was interrupted or times out. This occurred because
using a pseudo-terminal incidentally puts the command into its own
process group.

As of Buildbot-0.8.4, all commands are placed in process groups,
and thus grandchild processes will be cleaned up properly.

	logfiles

	Sometimes commands will log interesting data to a local file, rather
than emitting everything to stdout or stderr. For example, Twisted's
trial command (which runs unit tests) only presents summary
information to stdout, and puts the rest into a file named
_trial_temp/test.log. It is often useful to watch these files
as the command runs, rather than using /bin/cat to dump
their contents afterwards.

The logfiles= argument allows you to collect data from these
secondary logfiles in near-real-time, as the step is running. It
accepts a dictionary which maps from a local Log name (which is how
the log data is presented in the build results) to either a remote filename
(interpreted relative to the build's working directory), or a dictionary
of options. Each named file will be polled on a regular basis (every couple
of seconds) as the build runs, and any new text will be sent over to the
buildmaster.

If you provide a dictionary of options instead of a string, you must specify
the filename key. You can optionally provide a follow key which
is a boolean controlling whether a logfile is followed or concatenated in its
entirety. Following is appropriate for logfiles to which the build step will
append, where the pre-existing contents are not interesting. The default value
for follow is False, which gives the same behavior as just
providing a string filename.

from buildbot.steps.shell import ShellCommand
f.addStep(ShellCommand(
 command=["make", "test"],
 logfiles={"triallog": "_trial_temp/test.log"}))

The above example will add a log named 'triallog' on the master,
based on _trial_temp/test.log on the slave.

from buildbot.steps.shell import ShellCommand
f.addStep(ShellCommand(
 command=["make", "test"],
 logfiles={"triallog": {"filename": "_trial_temp/test.log",
 "follow": True,}}))

	lazylogfiles

	If set to True, logfiles will be tracked lazily, meaning that they will
only be added when and if something is written to them. This can be used to
suppress the display of empty or missing log files. The default is False.

	timeout

	if the command fails to produce any output for this many seconds, it
is assumed to be locked up and will be killed. This defaults to
1200 seconds. Pass None to disable.

	maxTime

	if the command takes longer than this many seconds, it will be
killed. This is disabled by default.

	logEnviron

	If this option is True (the default), then the step's logfile will describe the
environment variables on the slave. In situations where the environment is not
relevant and is long, it may be easier to set logEnviron=False.

	interruptSignal

	If the command should be interrupted (either by buildmaster or timeout
etc.), what signal should be sent to the process, specified by name. By
default this is "KILL" (9). Specify "TERM" (15) to give the process a
chance to cleanup. This functionality requires a 0.8.6 slave or newer.

sigtermTime

If set, when interrupting, try to kill the command with SIGTERM and wait for sigtermTime seconds before firing interuptSignal.
If None, interruptSignal will be fired immediately on interrupt.

	initialStdin

	If the command expects input on stdin, that can be supplied a a string with
this parameter. This value should not be excessively large, as it is
handled as a single string throughout Buildbot -- for example, do not pass
the contents of a tarball with this parameter.

	decodeRC

	This is a dictionary that decodes exit codes into results value.
e.g: {0:SUCCESS,1:FAILURE,2:WARNINGS}, will treat the exit code 2 as
WARNINGS.
The default is to treat just 0 as successful. ({0:SUCCESS})
any exit code not present in the dictionary will be treated as FAILURE

Configure

	
class buildbot.steps.shell.Configure

	

This is intended to handle the ./configure step from
autoconf-style projects, or the perl Makefile.PL step from perl
MakeMaker.pm-style modules. The default command is ./configure
but you can change this by providing a command= parameter. The arguments are
identical to ShellCommand.

from buildbot.steps.shell import Configure
f.addStep(Configure())

Compile

This is meant to handle compiling or building a project written in C.
The default command is make all. When the compile is finished,
the log file is scanned for GCC warning messages, a summary log is
created with any problems that were seen, and the step is marked as
WARNINGS if any were discovered. Through the WarningCountingShellCommand
superclass, the number of warnings is stored in a Build Property named
warnings-count, which is accumulated over all Compile steps (so if two
warnings are found in one step, and three are found in another step, the
overall build will have a warnings-count property of 5). Each step can be
optionally given a maximum number of warnings via the maxWarnCount parameter.
If this limit is exceeded, the step will be marked as a failure.

The default regular expression used to detect a warning is
'.*warning[:].*' , which is fairly liberal and may cause
false-positives. To use a different regexp, provide a
warningPattern= argument, or use a subclass which sets the
warningPattern attribute:

from buildbot.steps.shell import Compile
f.addStep(Compile(command=["make", "test"],
 warningPattern="^Warning: "))

The warningPattern= can also be a pre-compiled Python regexp
object: this makes it possible to add flags like re.I (to use
case-insensitive matching).

Note that the compiled warningPattern will have its match method
called, which is subtly different from a search. Your regular
expression must match the from the beginning of the line. This means that to
look for the word "warning" in the middle of a line, you will need to
prepend '.*' to your regular expression.

The suppressionFile= argument can be specified as the (relative) path
of a file inside the workdir defining warnings to be suppressed from the
warning counting and log file. The file will be uploaded to the master from
the slave before compiling, and any warning matched by a line in the
suppression file will be ignored. This is useful to accept certain warnings
(eg. in some special module of the source tree or in cases where the compiler
is being particularly stupid), yet still be able to easily detect and fix the
introduction of new warnings.

The file must contain one line per pattern of warnings to ignore. Empty lines
and lines beginning with # are ignored. Other lines must consist of a
regexp matching the file name, followed by a colon (:), followed by a
regexp matching the text of the warning. Optionally this may be followed by
another colon and a line number range. For example:

Sample warning suppression file

mi_packrec.c : .*result of 32-bit shift implicitly converted to 64 bits.* : 560-600
DictTabInfo.cpp : .*invalid access to non-static.*
kernel_types.h : .*only defines private constructors and has no friends.* : 51

If no line number range is specified, the pattern matches the whole file; if
only one number is given it matches only on that line.

The default warningPattern regexp only matches the warning text, so line
numbers and file names are ignored. To enable line number and file name
matching, provide a different regexp and provide a function (callable) as the
argument of warningExtractor=. The function is called with three
arguments: the BuildStep object, the line in the log file with the warning,
and the SRE_Match object of the regexp search for warningPattern. It
should return a tuple (filename, linenumber, warning_test). For
example:

f.addStep(Compile(command=["make"],
 warningPattern="^(.*?):([0-9]+): [Ww]arning: (.*)$",
 warningExtractor=Compile.warnExtractFromRegexpGroups,
 suppressionFile="support-files/compiler_warnings.supp"))

(Compile.warnExtractFromRegexpGroups is a pre-defined function that
returns the filename, linenumber, and text from groups (1,2,3) of the regexp
match).

In projects with source files in multiple directories, it is possible to get
full path names for file names matched in the suppression file, as long as the
build command outputs the names of directories as they are entered into and
left again. For this, specify regexps for the arguments
directoryEnterPattern= and directoryLeavePattern=. The
directoryEnterPattern= regexp should return the name of the directory
entered into in the first matched group. The defaults, which are suitable for
.. GNU Make, are these:

directoryEnterPattern = "make.*: Entering directory [\"`'](.*)['`\"]"
directoryLeavePattern = "make.*: Leaving directory"

(TODO: this step needs to be extended to look for GCC error messages
as well, and collect them into a separate logfile, along with the
source code filenames involved).

Visual C++

These steps are meant to handle compilation using Microsoft compilers.
VC++ 6-12 (aka Visual Studio 2003-2013 and VCExpress9) are supported via calling
devenv. Msbuild as well as Windows Driver Kit 8 are supported via the
MsBuild4 and MsBuild12 steps. These steps will take care of setting up a
clean compilation environment, parsing the generated output in real time, and
delivering as detailed as possible information about the compilation executed.

All of the classes are in buildbot.steps.vstudio. The available classes are:

	VC6

	VC7

	VC8

	VC9

	VC10

	VC11

	VC12

	VS2003

	VS2005

	VS2008

	VS2010

	VS2012

	VS2013

	VCExpress9

	MsBuild4

	MsBuild12

The available constructor arguments are

	mode

	The mode default to rebuild, which means that first all the
remaining object files will be cleaned by the compiler. The alternate
values are build, where only the updated files will be recompiled,
and clean, where the current build files are removed and no
compilation occurs.

	projectfile

	This is a mandatory argument which specifies the project file to be used
during the compilation.

	config

	This argument defaults to release an gives to the compiler the
configuration to use.

	installdir

	This is the place where the compiler is installed. The default value is
compiler specific and is the default place where the compiler is installed.

	useenv

	This boolean parameter, defaulting to False instruct the compiler
to use its own settings or the one defined through the environment
variables PATH, INCLUDE, and LIB. If any of
the INCLUDE or LIB parameter is defined, this parameter
automatically switches to True.

	PATH

	This is a list of path to be added to the PATH environment
variable. The default value is the one defined in the compiler options.

	INCLUDE

	This is a list of path where the compiler will first look for include
files. Then comes the default paths defined in the compiler options.

	LIB

	This is a list of path where the compiler will first look for
libraries. Then comes the default path defined in the compiler options.

	arch

	That one is only available with the class VS2005 (VC8). It gives the
target architecture of the built artifact. It defaults to x86 and
does not apply to MsBuild4 or MsBuild12. Please see platform below.

	project

	This gives the specific project to build from within a
workspace. It defaults to building all projects. This is useful
for building cmake generate projects.

	platform

	This is a mandatory argument for MsBuild4 and MsBuild12 specifying
the target platform such as 'Win32', 'x64' or 'Vista Debug'. The last one
is an example of driver targets that appear once Windows Driver Kit 8 is
installed.

Here is an example on how to drive compilation with Visual Studio 2013:

from buildbot.steps.vstudio import VS2013

f.addStep(
 VS2013(projectfile="project.sln", config="release",
 arch="x64", mode="build",
 INCLUDE=[r'C:\3rd-pary\libmagic\include'],
 LIB=[r'C:\3rd-party\libmagic\lib-x64']))

Here is a similar example using "MsBuild12":

from buildbot.steps.vstudio import MsBuild12

Build one project in Release mode for Win32
f.addStep(
 MsBuild12(projectfile="trunk.sln", config="Release", platform="Win32",
 workdir="trunk",
 project="tools\\protoc"))

Build the entire solution in Debug mode for x64
f.addStep(
 MsBuild12(projectfile="trunk.sln", config='Debug', platform='x64',
 workdir="trunk"))

Robocopy

	
class buildbot.steps.mswin.Robocopy

	

This step runs robocopy on Windows.

Robocopy [http://technet.microsoft.com/en-us/library/cc733145.aspx] is available in versions
of Windows starting with Windows Vista and Windows Server 2008. For previous versions of Windows,
it's available as part of the Windows Server 2003 Resource Kit Tools [http://www.microsoft.com/en-us/download/details.aspx?id=17657].

from buildbot.steps.mswin import Robocopy

f.addStep(Robocopy(
 name='deploy_binaries',
 description='Deploying binaries...',
 descriptionDone='Deployed binaries.',
 source=Interpolate('Build\\Bin\\%(prop:configuration)s'),
 destination=Interpolate('%(prop:deploy_dir)\\Bin\\%(prop:configuration)s'),
 mirror=True
))

Available constructor arguments are:

	source

	The path to the source directory (mandatory).

	destination

	The path to the destination directory (mandatory).

	files

	An array of file names or patterns to copy.

	recursive

	Copy files and directories recursively (/E parameter).

	mirror

	Mirror the source directory in the destination directory,
including removing files that don't exist anymore (/MIR parameter).

	move

	Delete the source directory after the copy is complete (/MOVE parameter).

	exclude_files

	An array of file names or patterns to exclude from the copy (/XF parameter).

	exclude_dirs

	An array of directory names or patterns to exclude from the copy (/XD parameter).

	custom_opts

	An array of custom parameters to pass directly to the robocopy command.

	verbose

	Whether to output verbose information (/V /TS /TP parameters).

Note that parameters /TEE /NP will always be appended to the
command to signify, respectively, to output logging to the console, use
Unicode logging, and not print any percentage progress information for
each file.

Test

from buildbot.steps.shell import Test
f.addStep(Test())

This is meant to handle unit tests. The default command is make
test, and the warnOnFailure flag is set. The other arguments are identical
to ShellCommand.

TreeSize

from buildbot.steps.shell import TreeSize
f.addStep(TreeSize())

This is a simple command that uses the du tool to measure the size
of the code tree. It puts the size (as a count of 1024-byte blocks, aka 'KiB'
or 'kibibytes') on the step's status text, and sets a build property named
tree-size-KiB with the same value. All arguments are identical to
ShellCommand.

PerlModuleTest

from buildbot.steps.shell import PerlModuleTest
f.addStep(PerlModuleTest())

This is a simple command that knows how to run tests of perl modules. It
parses the output to determine the number of tests passed and failed and total
number executed, saving the results for later query. The command is prove
--lib lib -r t, although this can be overridden with the command
argument. All other arguments are identical to those for
ShellCommand.

MTR (mysql-test-run)

The MTR class is a subclass of Test.
It is used to run test suites using the mysql-test-run program,
as used in MySQL, Drizzle, MariaDB, and MySQL storage engine plugins.

The shell command to run the test suite is specified in the same way as for
the Test class. The MTR class will parse the output of running the test suite,
and use the count of tests executed so far to provide more accurate completion
time estimates. Any test failures that occur during the test are summarized on
the Waterfall Display.

Server error logs are added as additional log files, useful to debug test
failures.

Optionally, data about the test run and any test failures can be inserted into
a database for further analysis and report generation. To use this facility,
create an instance of twisted.enterprise.adbapi.ConnectionPool with
connections to the database. The necessary tables can be created automatically
by setting autoCreateTables to True, or manually using the SQL
found in the mtrlogobserver.py source file.

One problem with specifying a database is that each reload of the
configuration will get a new instance of ConnectionPool (even if the
connection parameters are the same). To avoid that Buildbot thinks the builder
configuration has changed because of this, use the
steps.mtrlogobserver.EqConnectionPool subclass of
ConnectionPool, which implements an equiality operation that avoids
this problem.

Example use:

from buildbot.steps.mtrlogobserver import MTR, EqConnectionPool
myPool = EqConnectionPool("MySQLdb", "host", "buildbot", "password", "db")
myFactory.addStep(MTR(workdir="mysql-test", dbpool=myPool,
 command=["perl", "mysql-test-run.pl", "--force"]))

The MTR step's arguments are:

	textLimit

	Maximum number of test failures to show on the waterfall page (to not flood
the page in case of a large number of test failures. Defaults to 5.

	testNameLimit

	Maximum length of test names to show unabbreviated in the waterfall page, to
avoid excessive column width. Defaults to 16.

	parallel

	Value of --parallel option used for mysql-test-run.pl (number of processes
used to run the test suite in parallel). Defaults to 4. This is used to
determine the number of server error log files to download from the
slave. Specifying a too high value does not hurt (as nonexisting error logs
will be ignored), however if using --parallel value greater than the default
it needs to be specified, or some server error logs will be missing.

	dbpool

	An instance of twisted.enterprise.adbapi.ConnectionPool, or None. Defaults to
None. If specified, results are inserted into the database using the
ConnectionPool.

	autoCreateTables

	Boolean, defaults to False. If True (and dbpool is specified), the
necessary database tables will be created automatically if they do not exist
already. Alternatively, the tables can be created manually from the SQL
statements found in the mtrlogobserver.py source file.

	test_type

	Short string that will be inserted into the database in the row for the test
run. Defaults to the empty string, but can be specified to identify different
types of test runs.

	test_info

	Descriptive string that will be inserted into the database in the row for the test
run. Defaults to the empty string, but can be specified as a user-readable
description of this particular test run.

	mtr_subdir

	The subdirectory in which to look for server error log files. Defaults to
mysql-test, which is usually correct. Interpolate is supported.

SubunitShellCommand

	
class buildbot.steps.subunit.SubunitShellCommand

	

This buildstep is similar to ShellCommand, except that it runs the log content
through a subunit filter to extract test and failure counts.

from buildbot.steps.subunit import SubunitShellCommand
f.addStep(SubunitShellCommand(command="make test"))

This runs make test and filters it through subunit. The 'tests' and
'test failed' progress metrics will now accumulate test data from the test run.

If failureOnNoTests is True, this step will fail if no test is run. By
default failureOnNoTests is False.

Slave Filesystem Steps

Here are some buildsteps for manipulating the slave's filesystem.

FileExists

This step will assert that a given file exists, failing if it does not. The
filename can be specified with a property.

from buildbot.steps.slave import FileExists
f.addStep(FileExists(file='test_data'))

This step requires slave version 0.8.4 or later.

CopyDirectory

This command copies a directory on the slave.

from buildbot.steps.slave import CopyDirectory
f.addStep(CopyDirectory(src="build/data", dest="tmp/data"))

This step requires slave version 0.8.5 or later.

The CopyDirectory step takes the following arguments:

	timeout

	if the copy command fails to produce any output for this many seconds, it
is assumed to be locked up and will be killed. This defaults to
120 seconds. Pass None to disable.

	maxTime

	if the command takes longer than this many seconds, it will be
killed. This is disabled by default.

RemoveDirectory

This command recursively deletes a directory on the slave.

from buildbot.steps.slave import RemoveDirectory
f.addStep(RemoveDirectory(dir="build/build"))

This step requires slave version 0.8.4 or later.

MakeDirectory

This command creates a directory on the slave.

from buildbot.steps.slave import MakeDirectory
f.addStep(MakeDirectory(dir="build/build"))

This step requires slave version 0.8.5 or later.

Python BuildSteps

Here are some BuildSteps that are specifically useful for projects
implemented in Python.

BuildEPYDoc

	
class buildbot.steps.python.BuildEPYDoc

	

epydoc [http://epydoc.sourceforge.net/] is a tool for generating
API documentation for Python modules from their docstrings. It reads
all the .py files from your source tree, processes the docstrings
therein, and creates a large tree of .html files (or a single .pdf
file).

The BuildEPYDoc step will run
epydoc to produce this API documentation, and will count the
errors and warnings from its output.

You must supply the command line to be used. The default is
make epydocs, which assumes that your project has a Makefile
with an epydocs target. You might wish to use something like
epydoc -o apiref source/PKGNAME instead. You might also want
to add --pdf to generate a PDF file instead of a large tree
of HTML files.

The API docs are generated in-place in the build tree (under the
workdir, in the subdirectory controlled by the -o argument). To
make them useful, you will probably have to copy them to somewhere
they can be read. A command like rsync -ad apiref/
dev.example.com:~public_html/current-apiref/ might be useful. You
might instead want to bundle them into a tarball and publish it in the
same place where the generated install tarball is placed.

from buildbot.steps.python import BuildEPYDoc
f.addStep(BuildEPYDoc(command=["epydoc", "-o", "apiref", "source/mypkg"]))

PyFlakes

	
class buildbot.steps.python.PyFlakes

	

PyFlakes [http://divmod.org/trac/wiki/DivmodPyflakes] is a tool
to perform basic static analysis of Python code to look for simple
errors, like missing imports and references of undefined names. It is
like a fast and simple form of the C lint program. Other tools
(like pychecker [http://pychecker.sourceforge.net/])
provide more detailed results but take longer to run.

The PyFlakes step will run pyflakes and
count the various kinds of errors and warnings it detects.

You must supply the command line to be used. The default is
make pyflakes, which assumes you have a top-level Makefile
with a pyflakes target. You might want to use something like
pyflakes . or pyflakes src.

from buildbot.steps.python import PyFlakes
f.addStep(PyFlakes(command=["pyflakes", "src"]))

Sphinx

	
class buildbot.steps.python.Sphinx

	

Sphinx [http://sphinx.pocoo.org/] is the Python Documentation
Generator. It uses RestructuredText [http://docutils.sourceforge.net/rst.html]
as input format.

The Sphinx step will run
sphinx-build or any other program specified in its
sphinx argument and count the various warnings and error it
detects.

from buildbot.steps.python import Sphinx
f.addStep(Sphinx(sphinx_builddir="_build"))

This step takes the following arguments:

	sphinx_builddir

	(required) Name of the directory where the documentation will be generated.

	sphinx_sourcedir

	(optional, defaulting to .), Name the directory where the
conf.py file will be found

	sphinx_builder

	(optional) Indicates the builder to use.

	sphinx

	(optional, defaulting to sphinx-build) Indicates the
executable to run.

	tags

	(optional) List of tags to pass to sphinx-build

	defines

	(optional) Dictionary of defines to overwrite values of the
conf.py file.

	mode

	(optional) String, one of full or incremental (the default).
If set to full, indicates to Sphinx to rebuild everything without
re-using the previous build results.

PyLint

Similarly, the PyLint step will run pylint and
analyze the results.

You must supply the command line to be used. There is no default.

from buildbot.steps.python import PyLint
f.addStep(PyLint(command=["pylint", "src"]))

Trial

	
class buildbot.steps.python_twisted.Trial

	

This step runs a unit test suite using trial, a unittest-like testing
framework that is a component of Twisted Python. Trial is used to implement
Twisted's own unit tests, and is the unittest-framework of choice for many
projects that use Twisted internally.

Projects that use trial typically have all their test cases in a 'test'
subdirectory of their top-level library directory. For example, for a package
petmail, the tests might be in petmail/test/test_*.py. More
complicated packages (like Twisted itself) may have multiple test directories,
like twisted/test/test_*.py for the core functionality and
twisted/mail/test/test_*.py for the email-specific tests.

To run trial tests manually, you run the trial executable and tell it
where the test cases are located. The most common way of doing this is with a
module name. For petmail, this might look like trial petmail.test, which
would locate all the test_*.py files under petmail/test/, running
every test case it could find in them. Unlike the unittest.py that
comes with Python, it is not necessary to run the test_foo.py as a
script; you always let trial do the importing and running. The step's
tests` parameter controls which tests trial will run: it can be a string
or a list of strings.

To find the test cases, the Python search path must allow something like
import petmail.test to work. For packages that don't use a separate
top-level lib directory, PYTHONPATH=. will work, and will use the
test cases (and the code they are testing) in-place.
PYTHONPATH=build/lib or PYTHONPATH=build/lib.somearch are also
useful when you do a python setup.py build step first. The
testpath attribute of this class controls what PYTHONPATH is set
to before running trial.

Trial has the ability, through the --testmodule flag, to run only the
set of test cases named by special test-case-name tags in source files.
We can get the list of changed source files from our parent Build and provide
them to trial, thus running the minimal set of test cases needed to cover the
Changes. This is useful for quick builds, especially in trees with a lot of
test cases. The testChanges parameter controls this feature: if set, it
will override tests.

The trial executable itself is typically just trial, and is typically
found in the shell search path. It can be overridden with the trial
parameter. This is useful for Twisted's own unittests, which want to use the
copy of bin/trial that comes with the sources.

To influence the version of Python being used for the tests, or to add flags to
the command, set the python parameter. This can be a string (like
python2.2) or a list (like ['python2.3', '-Wall']).

Trial creates and switches into a directory named _trial_temp/ before
running the tests, and sends the twisted log (which includes all exceptions) to
a file named test.log. This file will be pulled up to the master where
it can be seen as part of the status output.

from buildbot.steps.python_twisted import Trial
f.addStep(Trial(tests='petmail.test'))

Trial has the ability to run tests on several workers in parallel (beginning
with Twisted 12.3.0). Set jobs to the number of workers you want to
run. Note that running trial in this way will create multiple log
files (named test.N.log, err.N.log and out.N.log
starting with N=0) rather than a single test.log.

This step takes the following arguments:

	jobs

	(optional) Number of slave-resident workers to use when running the tests.
Defaults to 1 worker. Only works with Twisted>=12.3.0.

RemovePYCs

	
class buildbot.steps.python_twisted.RemovePYCs

	

This is a simple built-in step that will remove .pyc files from the
workdir. This is useful in builds that update their source (and thus do not
automatically delete .pyc files) but where some part of the build
process is dynamically searching for Python modules. Notably, trial has a bad
habit of finding old test modules.

from buildbot.steps.python_twisted import RemovePYCs
f.addStep(RemovePYCs())

Transferring Files

	
class buildbot.steps.transfer.FileUpload

	

	
class buildbot.steps.transfer.FileDownload

	

Most of the work involved in a build will take place on the
buildslave. But occasionally it is useful to do some work on the
buildmaster side. The most basic way to involve the buildmaster is
simply to move a file from the slave to the master, or vice versa.
There are a pair of steps named FileUpload and
FileDownload to provide this functionality. FileUpload
moves a file up to the master, while FileDownload moves
a file down from the master.

As an example, let's assume that there is a step which produces an
HTML file within the source tree that contains some sort of generated
project documentation. We want to move this file to the buildmaster,
into a ~/public_html directory, so it can be visible to
developers. This file will wind up in the slave-side working directory
under the name docs/reference.html. We want to put it into the
master-side ~/public_html/ref.html, and add a link to the HTML
status to the uploaded file.

from buildbot.steps.shell import ShellCommand
from buildbot.steps.transfer import FileUpload

f.addStep(ShellCommand(command=["make", "docs"]))
f.addStep(FileUpload(slavesrc="docs/reference.html",
 masterdest="/home/bb/public_html/ref.html",
 url="http://somesite/~buildbot/ref.html"))

The masterdest= argument will be passed to os.path.expanduser,
so things like ~ will be expanded properly. Non-absolute paths
will be interpreted relative to the buildmaster's base directory.
Likewise, the slavesrc= argument will be expanded and
interpreted relative to the builder's working directory.

Note

The copied file will have the same permissions on the master
as on the slave, look at the mode= parameter to set it
differently.

To move a file from the master to the slave, use the
FileDownload command. For example, let's assume that some step
requires a configuration file that, for whatever reason, could not be
recorded in the source code repository or generated on the buildslave
side:

from buildbot.steps.shell import ShellCommand
from buildbot.steps.transfer import FileDownload

f.addStep(FileDownload(mastersrc="~/todays_build_config.txt",
 slavedest="build_config.txt"))
f.addStep(ShellCommand(command=["make", "config"]))

Like FileUpload, the mastersrc= argument is interpreted
relative to the buildmaster's base directory, and the
slavedest= argument is relative to the builder's working
directory. If the buildslave is running in ~buildslave, and the
builder's builddir is something like tests-i386, then the
workdir is going to be ~buildslave/tests-i386/build, and a
slavedest= of foo/bar.html will get put in
~buildslave/tests-i386/build/foo/bar.html. Both of these commands
will create any missing intervening directories.

Other Parameters

The maxsize= argument lets you set a maximum size for the file
to be transferred. This may help to avoid surprises: transferring a
100MB coredump when you were expecting to move a 10kB status file
might take an awfully long time. The blocksize= argument
controls how the file is sent over the network: larger blocksizes are
slightly more efficient but also consume more memory on each end, and
there is a hard-coded limit of about 640kB.

The mode= argument allows you to control the access permissions
of the target file, traditionally expressed as an octal integer. The
most common value is probably 0755, which sets the x executable
bit on the file (useful for shell scripts and the like). The default
value for mode= is None, which means the permission bits will
default to whatever the umask of the writing process is. The default
umask tends to be fairly restrictive, but at least on the buildslave
you can make it less restrictive with a --umask command-line option at
creation time (Buildslave Options).

The keepstamp= argument is a boolean that, when True, forces
the modified and accessed time of the destination file to match the
times of the source file. When False (the default), the modified
and accessed times of the destination file are set to the current time
on the buildmaster.

The url= argument allows you to specify an url that will be
displayed in the HTML status. The title of the url will be the name of
the item transferred (directory for DirectoryUpload or file
for FileUpload). This allows the user to add a link to the
uploaded item if that one is uploaded to an accessible place.

Transfering Directories

	
class buildbot.steps.transfer.DirectoryUpload

	

To transfer complete directories from the buildslave to the master, there
is a BuildStep named DirectoryUpload. It works like FileUpload,
just for directories. However it does not support the maxsize,
blocksize and mode arguments. As an example, let's assume an
generated project documentation, which consists of many files (like the output
of doxygen or epydoc). We want to move the entire documentation to the
buildmaster, into a ~/public_html/docs directory, and add a
link to the uploaded documentation on the HTML status page. On the slave-side
the directory can be found under docs:

from buildbot.steps.shell import ShellCommand
from buildbot.steps.transfer import DirectoryUpload

f.addStep(ShellCommand(command=["make", "docs"]))
f.addStep(DirectoryUpload(slavesrc="docs",
 masterdest="~/public_html/docs",
 url="~buildbot/docs"))

The DirectoryUpload step will create all necessary directories and
transfers empty directories, too.

The maxsize and blocksize parameters are the same as for
FileUpload, although note that the size of the transferred data is
implementation-dependent, and probably much larger than you expect due to the
encoding used (currently tar).

The optional compress argument can be given as 'gz' or
'bz2' to compress the datastream.

Note

The permissions on the copied files will be the same on the
master as originally on the slave, see buildslave
create-slave --umask to change the default one.

Transferring Multiple Files At Once

	
class buildbot.steps.transfer.MultipleFileUpload

	

In addition to the FileUpload and DirectoryUpload steps
there is the MultipleFileUpload step for uploading a bunch of files
(and directories) in a single BuildStep.
The step supports all arguments that are supported by FileUpload and
DirectoryUpload, but instead of a the single slavesrc parameter
it takes a (plural) slavesrcs parameter. This parameter should either be a
list, or something that can be rendered as a list.:

from buildbot.steps.shell import ShellCommand, Test
from buildbot.steps.transfer import MultipleFileUpload

f.addStep(ShellCommand(command=["make", "test"]))
f.addStep(ShellCommand(command=["make", "docs"]))
f.addStep(MultipleFileUpload(slavesrcs=["docs", "test-results.html"],
 masterdest="~/public_html",
 url="~buildbot"))

The url= parameter, can be used to specify a link to be displayed in the
HTML status of the step.

The way URLs are added to the step can be customized by extending the
MultipleFileUpload class. the allUploadsDone method is called
after all files have been uploaded and sets the URL. The uploadDone method
is called once for each uploaded file and can be used to create file-specific
links.:

from buildbot.steps.transfer import MultipleFileUpload
import os.path

class CustomFileUpload(MultipleFileUpload):
 linkTypes = ('.html', '.txt')

 def linkFile(self, basename):
 name, ext = os.path.splitext(basename)
 return ext in self.linkTypes

 def uploadDone(self, result, source, masterdest):
 if self.url:
 basename = os.path.basename(source)
 if self.linkFile(basename):
 self.addURL(self.url + '/' + basename, basename)

 def allUploadsDone(self, result, sources, masterdest):
 if self.url:
 notLinked = filter(lambda src: not self.linkFile(src), sources)
 numFiles = len(notLinked)
 if numFiles:
 self.addURL(self.url, '... %d more' % numFiles)

Transfering Strings

	
class buildbot.steps.transfer.StringDownload

	

	
class buildbot.steps.transfer.JSONStringDownload

	

	
class buildbot.steps.transfer.JSONPropertiesDownload

	

Sometimes it is useful to transfer a calculated value from the master to the
slave. Instead of having to create a temporary file and then use FileDownload,
you can use one of the string download steps.

from buildbot.steps.transfer import StringDownload
f.addStep(StringDownload(Interpolate("%(src::branch)s-%(prop:got_revision)s\n"),
 slavedest="buildid.txt"))

StringDownload works just like FileDownload except it takes a single argument,
s, representing the string to download instead of a mastersrc argument.

from buildbot.steps.transfer import JSONStringDownload
buildinfo = { branch: Property('branch'), got_revision: Property('got_revision') }
f.addStep(JSONStringDownload(buildinfo, slavedest="buildinfo.json"))

JSONStringDownload is similar, except it takes an o argument, which must be JSON
serializable, and transfers that as a JSON-encoded string to the slave.

from buildbot.steps.transfer import JSONPropertiesDownload
f.addStep(JSONPropertiesDownload(slavedest="build-properties.json"))

JSONPropertiesDownload transfers a json-encoded string that represents a
dictionary where properties maps to a dictionary of build property name to
property value; and sourcestamp represents the build's sourcestamp.

Running Commands on the Master

	
class buildbot.steps.master.MasterShellCommand

	

Occasionally, it is useful to execute some task on the master, for example to
create a directory, deploy a build result, or trigger some other centralized
processing. This is possible, in a limited fashion, with the
MasterShellCommand step.

This step operates similarly to a regular ShellCommand, but executes on
the master, instead of the slave. To be clear, the enclosing Build
object must still have a slave object, just as for any other step -- only, in
this step, the slave does not do anything.

In this example, the step renames a tarball based on the day of the week.

from buildbot.steps.transfer import FileUpload
from buildbot.steps.master import MasterShellCommand

f.addStep(FileUpload(slavesrc="widgetsoft.tar.gz",
 masterdest="/var/buildoutputs/widgetsoft-new.tar.gz"))
f.addStep(MasterShellCommand(command="""
 cd /var/buildoutputs;
 mv widgetsoft-new.tar.gz widgetsoft-`date +%a`.tar.gz"""))

Note

By default, this step passes a copy of the buildmaster's environment
variables to the subprocess. To pass an explicit environment instead, add an
env={..} argument.

Environment variables constructed using the env argument support expansion
so that if you just want to prepend /home/buildbot/bin to the
PATH environment variable, you can do it by putting the value
${PATH} at the end of the value like in the example below.
Variables that don't exist on the master will be replaced by "".

from buildbot.steps.master import MasterShellCommand
f.addStep(MasterShellCommand(
 command=["make", "www"],
 env={'PATH': ["/home/buildbot/bin",
 "${PATH}"]}))

Note that environment values must be strings (or lists that are turned into
strings). In particular, numeric properties such as buildnumber must
be substituted using Interpolate.

	interruptSignal

	(optional) Signal to use to end the process, if the step is interrupted.

LogRenderable

	
class buildbot.steps.master.LogRenderable

	

This build step takes content which can be renderable and logs it in a pretty-printed format.
It can be useful for debugging properties during a build.

Setting Properties

These steps set properties on the master based on information from the slave.

SetProperty

	
class buildbot.steps.master.SetProperty

	

SetProperty takes two arguments of property and value where the value is to be assigned to the property key.
It is usually called with the value argument being specifed as a Interpolate object
which allows the value to be built from other property values:

from buildbot.steps.master import SetProperty
from buildbot.process.properties import Interpolate
f.addStep(SetProperty(property="SomeProperty",
 value=Interpolate("sch=%(prop:scheduler)s, slave=%(prop:slavename)s")))

SetPropertyFromCommand

	
class buildbot.steps.shell.SetPropertyFromCommand

	

This buildstep is similar to ShellCommand, except that it captures the
output of the command into a property. It is usually used like this:

from buildbot.steps import shell
f.addStep(shell.SetPropertyFromCommand(command="uname -a", property="uname"))

This runs uname -a and captures its stdout, stripped of leading
and trailing whitespace, in the property uname. To avoid stripping,
add strip=False.

The property argument can be specified as a Interpolate
object, allowing the property name to be built from other property values.

The more advanced usage allows you to specify a function to extract
properties from the command output. Here you can use regular
expressions, string interpolation, or whatever you would like. In this
form, extract_fn should be passed, and not Property.
The extract_fn function is called with three arguments: the exit status of the
command, its standard output as a string, and its standard error as
a string. It should return a dictionary containing all new properties.

def glob2list(rc, stdout, stderr):
 jpgs = [l.strip() for l in stdout.split('\n')]
 return { 'jpgs' : jpgs }
f.addStep(SetPropertyFromCommand(command="ls -1 *.jpg", extract_fn=glob2list))

Note that any ordering relationship of the contents of stdout and
stderr is lost. For example, given

f.addStep(SetPropertyFromCommand(
 command="echo output1; echo error >&2; echo output2",
 extract_fn=my_extract))

Then my_extract will see stdout="output1\noutput2\n"
and stderr="error\n".

Avoid using the extract_fn form of this step with commands that produce a great deal of output, as the output is buffered in memory until complete.

	
class buildbot.steps.slave.SetPropertiesFromEnv

	

SetPropertiesFromEnv

Buildbot slaves (later than version 0.8.3) provide their environment variables
to the master on connect. These can be copied into Buildbot properties with
the SetPropertiesFromEnv step. Pass a variable or list of variables
in the variables parameter, then simply use the values as properties in a
later step.

Note that on Windows, environment variables are case-insensitive, but Buildbot
property names are case sensitive. The property will have exactly the variable
name you specify, even if the underlying environment variable is capitalized
differently. If, for example, you use variables=['Tmp'], the result
will be a property named Tmp, even though the environment variable is
displayed as TMP in the Windows GUI.

from buildbot.steps.slave import SetPropertiesFromEnv
from buildbot.steps.shell import Compile

f.addStep(SetPropertiesFromEnv(variables=["SOME_JAVA_LIB_HOME", "JAVAC"]))
f.addStep(Compile(commands=[Interpolate("%(prop:JAVAC)s"), "-cp", Interpolate("%(prop:SOME_JAVA_LIB_HOME)s")]))

Note that this step requires that the Buildslave be at least version 0.8.3.
For previous versions, no environment variables are available (the slave
environment will appear to be empty).

Setting Buildslave Info

Each buildslave has a dictionary of properties (the "buildslave info dictionary") that is persisted into the database.
This info dictionary is displayed on the "buildslave" web page and is available in Interpolate operations.

SetSlaveInfo

	
class buildbot.steps.master.SetSlaveInfo

	

SetSlaveInfo is a base class to provide a facility to set values in the buildslave info dictionary.
For example:

from buildbot.steps.master import SetSlaveInfo

class SetSlaveFromPropInfo(SetSlaveInfo):
 name = "SetSlaveFromPropInfo"

 # override this to return the dictionary update
 def getSlaveInfoUpdate(self):
 # for example, copy a property into the buildslave dict
 update = {
 "foo": self.getProperty("foo")
 }
 return update

Triggering Schedulers

The counterpart to the Triggerable described in section
Triggerable is the Trigger build step:

from buildbot.steps.trigger import Trigger
f.addStep(Trigger(schedulerNames=['build-prep'],
 waitForFinish=True,
 updateSourceStamp=True,
 set_properties={ 'quick' : False }))

The schedulerNames= argument lists the Triggerable schedulers
that should be triggered when this step is executed. Note that
it is possible, but not advisable, to create a cycle where a build
continually triggers itself, because the schedulers are specified
by name.

If waitForFinish is True, then the step will not finish until
all of the builds from the triggered schedulers have finished. Hyperlinks
are added to the waterfall and the build detail web pages for each
triggered build. If this argument is False (the default) or not given,
then the buildstep succeeds immediately after triggering the schedulers.

The SourceStamps to use for the triggered build are controlled by the arguments
updateSourceStamp, alwaysUseLatest, and sourceStamps. If
updateSourceStamp is True (the default), then step updates the
source stamps given to the Triggerable schedulers to include
got_revision (the revision actually used in this build) as revision
(the revision to use in the triggered builds). This is useful to ensure that
all of the builds use exactly the same source stamps, even if other
Changes have occurred while the build was running. If
updateSourceStamp is False (and neither of the other arguments are
specified), then the exact same SourceStamps are used. If alwaysUseLatest is
True, then no SourceStamps are given, corresponding to using the latest revisions
of the repositories specified in the Source steps. This is useful if the triggered
builds use to a different source repository. The argument sourceStamps
accepts a list of dictionaries containing the keys branch, revision,
repository, project, and optionally patch_level,
patch_body, patch_subdir, patch_author and patch_comment
and creates the corresponding SourceStamps.
If only one sourceStamp has to be specified then the argument sourceStamp
can be used for a dictionary containing the keys mentioned above. The arguments
updateSourceStamp, alwaysUseLatest, and sourceStamp can be specified
using properties.

The set_properties parameter allows control of the properties that are passed to the triggered scheduler.
The parameter takes a dictionary mapping property names to values.
You may use Interpolate here to dynamically construct new property values.
For the simple case of copying a property, this might look like

set_properties={"my_prop1" : Property("my_prop1")}

The copy_properties parameter, given a list of properties to copy into the new build request, has been deprecated in favor of explicit use of set_properties.

RPM-Related Steps

These steps work with RPMs and spec files.

RpmBuild

The RpmBuild step builds RPMs based on a spec file:

from buildbot.steps.package.rpm import RpmBuild
f.addStep(RpmBuild(specfile="proj.spec",
 dist='.el5'))

The step takes the following parameters

	specfile

	The .spec file to build from

	topdir

	Definition for _topdir, defaulting to the workdir.

	builddir

	Definition for _builddir, defaulting to the workdir.

	rpmdir

	Definition for _rpmdir, defaulting to the workdir.

	sourcedir

	Definition for _sourcedir, defaulting to the workdir.

	srcrpmdir

	Definition for _srcrpmdir, defaulting to the workdir.

	dist

	Distribution to build, used as the definition for _dist.

	autoRelease

	If true, use the auto-release mechanics.

	vcsRevision

	If true, use the version-control revision mechanics. This uses the
got_revision property to determine the revision and define
_revision. Note that this will not work with multi-codebase builds.

RpmLint

The RpmLint step checks for common problems in RPM packages or
spec files:

from buildbot.steps.package.rpm import RpmLint
f.addStep(RpmLint())

The step takes the following parameters

	fileloc

	The file or directory to check. In case of a directory, it is recursively
searched for RPMs and spec files to check.

	config

	Path to a rpmlint config file. This is passed as the user configuration
file if present.

Mock Steps

Mock (http://fedoraproject.org/wiki/Projects/Mock) creates chroots and builds
packages in them. It populates the changeroot with a basic system
and the packages listed as build requirement. The type of chroot to build
is specified with the root parameter. To use mock your buildbot user must
be added to the mock group.

MockBuildSRPM Step

The MockBuildSRPM step builds a SourceRPM based on a spec file and
optionally a source directory:

from buildbot.steps.package.rpm import MockBuildSRPM
f.addStep(MockBuildSRPM(root='default', spec='mypkg.spec'))

The step takes the following parameters

	root

	Use chroot configuration defined in /etc/mock/<root>.cfg.

	resultdir

	The directory where the logfiles and the SourceRPM are written to.

	spec

	Build the SourceRPM from this spec file.

	sources

	Path to the directory containing the sources, defaulting to ..

MockRebuild Step

The MockRebuild step rebuilds a SourceRPM package:

from buildbot.steps.package.rpm import MockRebuild
f.addStep(MockRebuild(root='default', spec='mypkg-1.0-1.src.rpm'))

The step takes the following parameters

	root

	Uses chroot configuration defined in /etc/mock/<root>.cfg.

	resultdir

	The directory where the logfiles and the SourceRPM are written to.

	srpm

	The path to the SourceRPM to rebuild.

Debian Build Steps

DebPbuilder

The DebPbuilder step builds Debian packages within a chroot built
by pbuilder. It populates the changeroot with a basic system and the packages
listed as build requirement. The type of chroot to build is specified with the
distribution, distribution and mirror parameter. To use pbuilder
your buildbot must have the right to run pbuilder as root through sudo.

from buildbot.steps.package.deb.pbuilder import DebPbuilder
f.addStep(DebPbuilder())

The step takes the following parameters

	architecture

	Architecture to build chroot for.

	distribution

	Name, or nickname, of the distribution. Defaults to 'stable'.

	basetgz

	Path of the basetgz to use for building.

	mirror

	URL of the mirror used to download the packages from.

	extrapackages

	List if packages to install in addition to the base system.

	keyring

	Path to a gpg keyring to verify the downloaded packages. This is necessary
if you build for a foreign distribution.

	components

	Repos to activate for chroot building.

DebCowbuilder

The DebCowbuilder step is a subclass of DebPbuilder,
which use cowbuilder instead of pbuilder.

DebLintian

The DebLintian step checks a build .deb for bugs and policy
violations. The packages or changes file to test is specified in fileloc

from buildbot.steps.package.deb.lintian import DebLintian
f.addStep(DebLintian(fileloc=Interpolate("%(prop:deb-changes)s")))

Miscellaneous BuildSteps

A number of steps do not fall into any particular category.

HLint

The HLint step runs Twisted Lore, a lint-like checker over a set of
.xhtml files. Any deviations from recommended style is flagged and put
in the output log.

The step looks at the list of changes in the build to determine which files to
check - it does not check all files. It specifically excludes any .xhtml
files in the top-level sandbox/ directory.

The step takes a single, optional, parameter: python. This specifies the
Python executable to use to run Lore.

from buildbot.steps.python_twisted import HLint
f.addStep(HLint())

MaxQ

MaxQ (http://maxq.tigris.org/) is a web testing tool that allows you to record
HTTP sessions and play them back. The MaxQ step runs this
framework.

from buildbot.steps.maxq import MaxQ
f.addStep(MaxQ(testdir='tests/'))

The single argument, testdir, specifies where the tests should be run.
This directory will be passed to the run_maxq.py command, and the results
analyzed.

HTTP Requests

Using the HTTPStep step, it is possible to perform HTTP requests in order to trigger another REST service about the progress of the build.

Note

This step requires the txrequests [https://pypi.python.org/pypi/txrequests] and requests [http://python-requests.org] Python libraries.

The parameters are the following:

	url

	(mandatory) The URL where to send the request

	method

	The HTTP method to use (out of POST, GET, PUT, DELETE,
HEAD or OPTIONS), default to POST.

	params

	Dictionary of URL parameters to append to the URL.

	data

	The body to attach the request.
If a dictionary is provided, form-encoding will take place.

	headers

	Dictionary of headers to send.

	other params

	Any other keywords supported by the requests api can be passed to this step

Note

The entire Buildbot master process shares a single Requests Session object.
This has the advantage of supporting connection re-use and other HTTP/1.1 features.
However, it also means that any cookies or other state changed by one step will be visible to other steps, causing unexpected results.
This behavior may change in future versions.

When the method is known in advance, class with the name of the method can also be used.
In this case, it is not necessary to specify the method.

Example:

from buildbot.steps.http import POST
from buildbot.process.properties import Property
f.addStep(
 POST('http://myRESTService.example.com/builds',
 data = {
 'builder': Property('buildername'),
 'buildnumber': Property('buildnumber'),
 'slavename': Property('slavename'),
 'revision': Property('got_revision'),
 }
)
)

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

 	Configuration

Interlocks

	Access Modes

	Count

	Scope

	Examples

Until now, we assumed that a master can run builds at any slave whenever
needed or desired. Some times, you want to enforce additional constraints on
builds. For reasons like limited network bandwidth, old slave machines, or a
self-willed data base server, you may want to limit the number of builds (or
build steps) that can access a resource.

Access Modes

The mechanism used by Buildbot is known as the read/write lock [1]. It
allows either many readers or a single writer but not a combination of readers
and writers. The general lock has been modified and extended for use in
Buildbot. Firstly, the general lock allows an infinite number of readers. In
Buildbot, we often want to put an upper limit on the number of readers, for
example allowing two out of five possible builds at the same time. To do this,
the lock counts the number of active readers. Secondly, the terms read
mode and write mode are confusing in Buildbot context. They have been
replaced by counting mode (since the lock counts them) and exclusive
mode. As a result of these changes, locks in Buildbot allow a number of
builds (up to some fixed number) in counting mode, or they allow one build in
exclusive mode.

Note

Access modes are specified when a lock is used. That is, it is
possible to have a single lock that is used by several slaves in counting mode,
and several slaves in exclusive mode. In fact, this is the strength of the
modes: accessing a lock in exclusive mode will prevent all counting-mode
accesses.

Count

Often, not all slaves are equal. To allow for this situation, Buildbot allows
to have a separate upper limit on the count for each slave. In this way, you
can have at most 3 concurrent builds at a fast slave, 2 at a slightly older
slave, and 1 at all other slaves.

Scope

The final thing you can specify when you introduce a new lock is its scope.
Some constraints are global -- they must be enforced over all slaves. Other
constraints are local to each slave. A master lock is used for the
global constraints. You can ensure for example that at most one build (of all
builds running at all slaves) accesses the data base server. With a
slave lock you can add a limit local to each slave. With such a lock,
you can for example enforce an upper limit to the number of active builds at a
slave, like above.

Examples

Time for a few examples. Below a master lock is defined to protect a data base,
and a slave lock is created to limit the number of builds at each slave.

from buildbot import locks

db_lock = locks.MasterLock("database")
build_lock = locks.SlaveLock("slave_builds",
 maxCount = 1,
 maxCountForSlave = { 'fast': 3, 'new': 2 })

After importing locks from buildbot, db_lock is defined to be a master
lock. The database string is used for uniquely identifying the lock.
At the next line, a slave lock called build_lock is created. It is
identified by the slave_builds string. Since the requirements of the
lock are a bit more complicated, two optional arguments are also specified. The
maxCount parameter sets the default limit for builds in counting mode to
1. For the slave called 'fast' however, we want to have at most
three builds, and for the slave called 'new' the upper limit is two
builds running at the same time.

The next step is accessing the locks in builds. Buildbot allows a lock to be used
during an entire build (from beginning to end), or only during a single build
step. In the latter case, the lock is claimed for use just before the step
starts, and released again when the step ends. To prevent
deadlocks, [2] it is not possible to claim or release
locks at other times.

To use locks, you add them with a locks argument to a build or a step.
Each use of a lock is either in counting mode (that is, possibly shared with
other builds) or in exclusive mode, and this is indicated with the syntax
lock.access(mode), where mode is one of "counting" or "exclusive".

A build or build step proceeds only when it has acquired all locks. If a build
or step needs a lot of locks, it may be starved [3] by other builds that need
fewer locks.

To illustrate use of locks, a few examples.

from buildbot import locks
from buildbot.steps import source, shell
from buildbot.process import factory

db_lock = locks.MasterLock("database")
build_lock = locks.SlaveLock("slave_builds",
 maxCount = 1,
 maxCountForSlave = { 'fast': 3, 'new': 2 })

f = factory.BuildFactory()
f.addStep(source.SVN(svnurl="http://example.org/svn/Trunk"))
f.addStep(shell.ShellCommand(command="make all"))
f.addStep(shell.ShellCommand(command="make test",
 locks=[db_lock.access('exclusive')]))

b1 = {'name': 'full1', 'slavename': 'fast', 'builddir': 'f1', 'factory': f,
 'locks': [build_lock.access('counting')] }

b2 = {'name': 'full2', 'slavename': 'new', 'builddir': 'f2', 'factory': f,
 'locks': [build_lock.access('counting')] }

b3 = {'name': 'full3', 'slavename': 'old', 'builddir': 'f3', 'factory': f,
 'locks': [build_lock.access('counting')] }

b4 = {'name': 'full4', 'slavename': 'other', 'builddir': 'f4', 'factory': f,
 'locks': [build_lock.access('counting')] }

c['builders'] = [b1, b2, b3, b4]

Here we have four slaves b1, b2, b3, and b4. Each
slave performs the same checkout, make, and test build step sequence.
We want to enforce that at most one test step is executed between all slaves due
to restrictions with the data base server. This is done by adding the
locks= parameter with the third step. It takes a list of locks with their
access mode. In this case only the db_lock is needed. The exclusive
access mode is used to ensure there is at most one slave that executes the test
step.

In addition to exclusive accessing the data base, we also want slaves to stay
responsive even under the load of a large number of builds being triggered.
For this purpose, the slave lock called build_lock is defined. Since
the restraint holds for entire builds, the lock is specified in the builder
with 'locks': [build_lock.access('counting')].

Note that you will occasionally see lock.access(mode) written as
LockAccess(lock, mode). The two are equivalent, but the former is
preferred.

	[1]	See http://en.wikipedia.org/wiki/Read/write_lock_pattern for more information.

	[2]	Deadlock is the situation where two or more slaves each
hold a lock in exclusive mode, and in addition want to claim the lock held by
the other slave exclusively as well. Since locks allow at most one exclusive
user, both slaves will wait forever.

	[3]	Starving is the
situation that only a few locks are available, and they are immediately grabbed
by another build. As a result, it may take a long time before all locks needed
by the starved build are free at the same time.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

 	Configuration

Status Targets

	WebStatus
	Configuration

	Buildbot Web Resources

	WebStatus Configuration Parameters

	Change Hooks

	MailNotifier
	MailNotifier arguments

	IRC Bot

	PBListener

	StatusPush

	HttpStatusPush

	GerritStatusPush

	GitHubStatus

The Buildmaster has a variety of ways to present build status to
various users. Each such delivery method is a Status Target object
in the configuration's status list. To add status targets, you
just append more objects to this list:

c['status'] = []

from buildbot.status import html
c['status'].append(html.Waterfall(http_port=8010))

from buildbot.status import mail
m = mail.MailNotifier(fromaddr="buildbot@localhost",
 extraRecipients=["builds@lists.example.com"],
 sendToInterestedUsers=False)
c['status'].append(m)

from buildbot.status import words
c['status'].append(words.IRC(host="irc.example.com", nick="bb",
 channels=[{"channel": "#example1"},
 {"channel": "#example2",
 "password": "somesecretpassword"}]))

Most status delivery objects take a categories= argument, which
can contain a list of category names: in this case, it will only
show status for Builders that are in one of the named categories.

Note

Implementation Note

Each of these objects should be a service.MultiService which will be attached
to the BuildMaster object when the configuration is processed. They should use
self.parent.getStatus() to get access to the top-level IStatus object,
either inside startService or later. They may call
status.subscribe in startService to receive notifications of
builder events, in which case they must define builderAdded and related
methods. See the docstrings in buildbot/interfaces.py for full details.

The remainder of this section describes each built-in status target. A full
list of status targets is available in the Status Target Index.

WebStatus

	
class buildbot.status.web.baseweb.WebStatus

	

The buildbot.status.html.WebStatus status target runs a small
web server inside the buildmaster. You can point a browser at this web
server and retrieve information about every build the buildbot knows
about, as well as find out what the buildbot is currently working on.

The first page you will see is the Welcome Page, which contains
links to all the other useful pages. By default, this page is served from the
status/web/templates/root.html file in buildbot's library area.

One of the most complex resource provided by WebStatus is the
Waterfall Display, which shows a time-based chart of events. This
somewhat-busy display provides detailed information about all steps of all
recent builds, and provides hyperlinks to look at individual build logs and
source changes. By simply reloading this page on a regular basis, you will see
a complete description of everything the buildbot is currently working on.

A similar, but more developer-oriented display is the Grid display. This
arranges builds by SourceStamp (horizontal axis) and builder (vertical axis),
and can provide quick information as to which revisions are passing or failing
on which builders.

There are also pages with more specialized information. For example,
there is a page which shows the last 20 builds performed by the
buildbot, one line each. Each line is a link to detailed information
about that build. By adding query arguments to the URL used to reach
this page, you can narrow the display to builds that involved certain
branches, or which ran on certain Builders. These pages are described
in great detail below.

Configuration

The simplest possible configuration for WebStatus is:

from buildbot.status.html import WebStatus
c['status'].append(WebStatus(8080))

Buildbot uses a templating system for the web interface. The source
of these templates can be found in the status/web/templates/ directory
in buildbot's library area. You can override these templates by creating
alternate versions in a templates/ directory within the buildmaster's
base directory.

If that isn't enough you can also provide additional Jinja2 template loaders:

import jinja2
myloaders = [
 jinja2.FileSystemLoader("/tmp/mypath"),
]

c['status'].append(html.WebStatus(
 # ...
 jinja_loaders = myloaders,
))

The first time a buildmaster is created, the public_html/
directory is populated with some sample files, which you will probably
want to customize for your own project. These files are all static:
the buildbot does not modify them in any way as it serves them to HTTP
clients.

Templates in templates/ take precedence over static files in
public_html/.

The initial robots.txt file has Disallow lines for all of
the dynamically-generated buildbot pages, to discourage web spiders
and search engines from consuming a lot of CPU time as they crawl
through the entire history of your buildbot. If you are running the
buildbot behind a reverse proxy, you'll probably need to put the
robots.txt file somewhere else (at the top level of the parent web
server), and replace the URL prefixes in it with more suitable values.

If you would like to use an alternative root directory, add the
public_html= option to the WebStatus creation:

c['status'].append(WebStatus(8080, public_html="/var/www/buildbot"))

In addition, if you are familiar with twisted.web Resource
Trees, you can write code to add additional pages at places inside
this web space. Just use webstatus.putChild to place these
resources.

The following section describes the special URLs and the status views
they provide.

Buildbot Web Resources

Certain URLs are magic, and the pages they serve are created by
code in various classes in the buildbot.status.web package
instead of being read from disk. The most common way to access these
pages is for the buildmaster admin to write or modify the
index.html page to contain links to them. Of course other
project web pages can contain links to these buildbot pages as well.

Many pages can be modified by adding query arguments to the URL. For
example, a page which shows the results of the most recent build
normally does this for all builders at once. But by appending
?builder=i386 to the end of the URL, the page will show only the
results for the i386 builder. When used in this way, you can add
multiple builder= arguments to see multiple builders. Remembering
that URL query arguments are separated from each other with
ampersands, a URL that ends in ?builder=i386&builder=ppc would
show builds for just those two Builders.

The branch= query argument can be used on some pages. This
filters the information displayed by that page down to only the builds
or changes which involved the given branch. Use branch=trunk to
reference the trunk: if you aren't intentionally using branches,
you're probably using trunk. Multiple branch= arguments can be
used to examine multiple branches at once (so appending
?branch=foo&branch=bar to the URL will show builds involving
either branch). No branch= arguments means to show builds and
changes for all branches.

Some pages may include the Builder name or the build number in the
main part of the URL itself. For example, a page that describes Build
#7 of the i386 builder would live at /builders/i386/builds/7.

The table below lists all of the internal pages and the URLs that can
be used to access them.

	/waterfall

	This provides a chronologically-oriented display of the activity of
all builders. It is the same display used by the Waterfall display.

By adding one or more builder= query arguments, the Waterfall is
restricted to only showing information about the given Builders. By
adding one or more branch= query arguments, the display is
restricted to showing information about the given branches. In
addition, adding one or more category= query arguments to the URL
will limit the display to Builders that were defined with one of the
given categories.

A show_events=true query argument causes the display to include
non-Build events, like slaves attaching and detaching, as well as
reconfiguration events. show_events=false hides these events. The
default is to show them.

By adding the failures_only=true query argument, the Waterfall is
restricted to only showing information about the builders that
are currently failing. A builder is considered failing if the
last finished build was not successful, a step in the current
build(s) is failing, or if the builder is offline.

The last_time=, first_time=, and show_time=
arguments will control what interval of time is displayed. The default
is to show the latest events, but these can be used to look at earlier
periods in history. The num_events= argument also provides a
limit on the size of the displayed page.

The Waterfall has references to resources many of the other portions
of the URL space: /builders for access to individual builds,
/changes for access to information about source code changes,
etc.

	/grid

	This provides a chronologically oriented display of builders, by
revision. The builders are listed down the left side of the page,
and the revisions are listed across the top.

By adding one or more category= arguments the grid will be
restricted to revisions in those categories.

A width=N argument will limit the number of revisions shown to N,
defaulting to 5.

A branch=BRANCHNAME argument will limit the grid to revisions on
branch BRANCHNAME.

	/tgrid

	The Transposed Grid is similar to the standard grid, but, as the name
implies, transposes the grid: the revisions are listed down the left side
of the page, and the build hosts are listed across the top. It accepts
the same query arguments. The exception being that instead of width
the argument is named length.

This page also has a rev_order= query argument that lets you
change in what order revisions are shown. Valid values are asc
(ascending, oldest revision first) and desc (descending,
newest revision first).

	/console

	EXPERIMENTAL: This provides a developer-oriented display of the last
changes and how they affected the builders.

It allows a developer to quickly see the status of each builder for the
first build including his or her change. A green box means that the change
succeeded for all the steps for a given builder. A red box means that
the changed introduced a new regression on a builder. An orange box
means that at least one of the tests failed, but it was also failing
in the previous build, so it is not possible to see if there were any
regressions from this change. Finally a yellow box means that the test
is in progress.

By adding one or more builder= query arguments, the Console view is
restricted to only showing information about the given Builders. Adding a
repository= argument will limit display to a given repository. By
adding one or more branch= query arguments, the display is restricted
to showing information about the given branches. In addition, adding one or
more category= query arguments to the URL will limit the display to
Builders that were defined with one of the given categories. With the
project= query argument, it's possible to restrict the view to changes
from the given project. With the codebase= query argument, it's possible
to restrict the view to changes for the given codebase.

By adding one or more name= query arguments to the URL, the console view is
restricted to only showing changes made by the given users.

NOTE: To use this page, your buildbot.css file in
public_html must be the one found in
master/buildbot/status/web/files/default.css [https://github.com/buildbot/buildbot/blob/master/master/buildbot/status/web/files/default.css]. This is the default
for new installs, but upgrades of very old installs of Buildbot may need to
manually fix the CSS file.

The console view is still in development. At this moment by
default the view sorts revisions lexically, which can lead to odd
behavior with non-integer revisions (e.g., Git), or with integer
revisions of different length (e.g., 999 and 1000). It also has
some issues with displaying multiple branches at the same time. If
you do have multiple branches, you should use the branch=
query argument. The order_console_by_time option may help
sorting revisions, although it depends on the date being set
correctly in each commit:

w = html.WebStatus(http_port=8080, order_console_by_time=True)

	/rss

	This provides a rss feed summarizing all failed builds. The same
query-arguments used by 'waterfall' can be added to filter the
feed output.

	/atom

	This provides an atom feed summarizing all failed builds. The same
query-arguments used by 'waterfall' can be added to filter the feed
output.

	/json

	This view provides quick access to Buildbot status information in a form that
is easily digested from other programs, including JavaScript. See
/json/help for detailed interactive documentation of the output formats
for this view.

	/buildstatus?builder=$BUILDERNAME&number=$BUILDNUM

	This displays a waterfall-like chronologically-oriented view of all the
steps for a given build number on a given builder.

	/builders/$BUILDERNAME

	This describes the given Builder and provides buttons to force a
build. A numbuilds= argument will control how many build lines
are displayed (5 by default). This page also accepts property filters
of the form property.${PROPERTYNAME}=${PROPERTVALUE}. When used,
only builds and build requests which have properties with matching string
representations will be shown.

	/builders/$BUILDERNAME/builds/$BUILDNUM

	This describes a specific Build.

	/builders/$BUILDERNAME/builds/$BUILDNUM/steps/$STEPNAME

	This describes a specific BuildStep.

	/builders/$BUILDERNAME/builds/$BUILDNUM/steps/$STEPNAME/logs/$LOGNAME

	This provides an HTML representation of a specific logfile.

	/builders/$BUILDERNAME/builds/$BUILDNUM/steps/$STEPNAME/logs/$LOGNAME/text

	This returns the logfile as plain text, without any HTML coloring
markup. It also removes the headers, which are the lines that
describe what command was run and what the environment variable
settings were like. This maybe be useful for saving to disk and
feeding to tools like grep.

	/changes

	This provides a brief description of the ChangeSource in use
(see Change Sources).

	/changes/NN

	This shows detailed information about the numbered Change: who was the
author, what files were changed, what revision number was represented,
etc.

	/buildslaves

	This summarizes each BuildSlave, including which Builders are
configured to use it, whether the buildslave is currently connected or
not, and host information retrieved from the buildslave itself.

A no_builders=1 URL argument will omit the builders column. This is
useful if each buildslave is assigned to a large number of builders.

	/one_line_per_build

	This page shows one line of text for each build, merging information
from all Builders [1]. Each line specifies
the name of the Builder, the number of the Build, what revision it
used, and a summary of the results. Successful builds are in green,
while failing builds are in red. The date and time of the build are
added to the right-hand edge of the line. The lines are ordered by
build finish timestamp.

One or more builder= or branch= arguments can be used to
restrict the list. In addition, a numbuilds= argument will
control how many lines are displayed (20 by default).

	/builders

	This page shows a small table, with one box for each Builder,
containing the results of the most recent Build. It does not show the
individual steps, or the current status. This is a simple summary of
buildbot status: if this page is green, then all tests are passing.

As with /one_line_per_build, this page will also honor
builder= and branch= arguments.

	/png

	This view produces an image in png format with information about the last build for the given builder name or whatever other build number if is passed as an argument to the view.

	/png?builder=$BUILDERNAME&number=$BUILDNUM&size=large

	This generate a large png image reporting the status of the given $BUILDNUM for the given builder $BUILDERNAME. The sizes are small, normal and large if no size is given the normal size is returned, if no $BUILDNUM is given the last build is returned. For example:

[image: ../_images/success_normal.png]

	/png?builder=$BUILDERNAME&revision=$REVHASH&size=large

	This generate a large png image reporting the status of the build of the given $REVHASH for the given builder $BUILDERNAME. If both number and revision are specified revision will be ignored. $REVHASH must be the full length hash not the short one.

Note

Buildbot stores old build details in pickle files so it's a good idea to enable
cache if you are planning to actively search build statuses by revision.

	/users

	This page exists for authentication reasons when checking showUsersPage.
It'll redirect to /authfail on False, /users/table on True,
and give a username/password login prompt on 'auth'. Passing or failing
results redirect to the same pages as False and True.

	/users/table

	This page shows a table containing users that are stored in the database.
It has columns for their respective uid and identifier values,
with the uid values being clickable for more detailed information
relating to a user.

	/users/table/{NN}

	Shows all the attributes stored in the database relating to the user
with uid {NN} in a table.

	/about

	This page gives a brief summary of the Buildbot itself: software
version, versions of some libraries that the Buildbot depends upon,
etc. It also contains a link to the buildbot.net home page.

There are also a set of web-status resources that are intended for use
by other programs, rather than humans.

	/change_hook

	This provides an endpoint for web-based source change
notification. It is used by GitHub and
contrib/post_build_request.py. See Change Hooks for more
details.

WebStatus Configuration Parameters

HTTP Connection

The most common way to run a WebStatus is on a regular TCP
port. To do this, just pass in the TCP port number when you create the
WebStatus instance; this is called the http_port argument:

from buildbot.status.html import WebStatus
c['status'].append(WebStatus(http_port=8080))

The http_port argument is actually a strports specification for the
port that the web server should listen on. This can be a simple port number, or
a string like http_port="tcp:8080:interface=127.0.0.1" (to limit
connections to the loopback interface, and therefore to clients running on the
same host) [2].

If instead (or in addition) you provide the distrib_port
argument, a twisted.web distributed server will be started either on a
TCP port (if distrib_port is like "tcp:12345") or more
likely on a UNIX socket (if distrib_port is like
"unix:/path/to/socket").

The public_html option gives the path to a regular directory of HTML
files that will be displayed alongside the various built-in URLs buildbot
supplies. This is most often used to supply CSS files (/buildbot.css)
and a top-level navigational file (/index.html), but can also serve any
other files required - even build results!

Authorization

The buildbot web status is, by default, read-only. It displays lots of
information, but users are not allowed to affect the operation of the
buildmaster. However, there are a number of supported activities that can
be enabled, and Buildbot can also perform rudimentary username/password
authentication. The actions are:

	view

	view buildbot web status

	forceBuild

	force a particular builder to begin building, optionally with a specific revision, branch, etc.

	forceAllBuilds

	force all builders to start building

	pingBuilder

	"ping" a builder's buildslaves to check that they are alive

	gracefulShutdown

	gracefully shut down a slave when it is finished with its current build

	pauseSlave

	temporarily stop running new builds on a slave

	stopBuild

	stop a running build

	stopAllBuilds

	stop all running builds

	cancelPendingBuild

	cancel a build that has not yet started

	cancelAllPendingBuilds

	cancel all or selected subset of builds that has not yet started

	stopChange

	cancel builds that include a given change number

	cleanShutdown

	shut down the master gracefully, without interrupting builds

	showUsersPage

	access to page displaying users in the database, see User Objects

For each of these actions, you can configure buildbot to never allow the
action, always allow the action, allow the action to any authenticated user, or
check with a function of your creation to determine whether the action is OK
(see below).

This is all configured with the Authz class:

from buildbot.status.html import WebStatus
from buildbot.status.web.authz import Authz
authz = Authz(
 forceBuild=True,
 stopBuild=True)
c['status'].append(WebStatus(http_port=8080, authz=authz))

Each of the actions listed above is an option to Authz. You can
specify False (the default) to prohibit that action or True to enable
it. Or you can specify a callable. Each such callable will take a username as
its first argument. The remaining arguments vary depending on the type of
authorization request. For forceBuild, the second argument is the builder
status.

Authentication

If you do not wish to allow strangers to perform actions, but do want
developers to have such access, you will need to add some authentication
support. Pass an instance of status.web.auth.IAuth as a auth
keyword argument to Authz, and specify the action as "auth".

from buildbot.status.html import WebStatus
from buildbot.status.web.authz import Authz
from buildbot.status.web.auth import BasicAuth
users = [('bob', 'secret-pass'), ('jill', 'super-pass')]
authz = Authz(auth=BasicAuth(users),
 forceBuild='auth', # only authenticated users
 pingBuilder=True, # but anyone can do this
)
c['status'].append(WebStatus(http_port=8080, authz=authz))
or
from buildbot.status.web.auth import HTPasswdAuth
auth = (HTPasswdAuth('/path/to/htpasswd'))
or
from buildbot.status.web.auth import UsersAuth
auth = UsersAuth()

The class BasicAuth implements a basic authentication mechanism using a
list of user/password tuples provided from the configuration file. The class
HTPasswdAuth implements an authentication against an .htpasswd
file. The HTPasswdAprAuth a subclass of HTPasswdAuth use libaprutil for
authenticating. This adds support for apr1/md5 and sha1 password hashes but
requires libaprutil at runtime. The UsersAuth works with
User Objects to check for valid user credentials.

If you need still-more flexibility, pass a function for the authentication
action. That function will be called with an authenticated username and some
action-specific arguments, and should return true if the action is authorized.

def canForceBuild(username, builder_status):
 if builder_status.getName() == 'smoketest':
 return True # any authenticated user can run smoketest
 elif username == 'releng':
 return True # releng can force whatever they want
 else:
 return False # otherwise, no way.

authz = Authz(auth=BasicAuth(users),
 forceBuild=canForceBuild)

The forceBuild and pingBuilder actions both supply a
BuilderStatus object. The stopBuild action supplies a BuildStatus
object. The cancelPendingBuild action supplies a BuildRequest. The
remainder do not supply any extra arguments.

HTTP-based authentication by frontend server

In case if WebStatus is served through reverse proxy that supports HTTP-based
authentication (like apache, lighttpd), it's possible to to tell WebStatus to
trust web server and get username from request headers. This allows displaying
correct usernames in build reason, interrupt messages, etc.

Just set useHttpHeader to True in Authz constructor.

authz = Authz(useHttpHeader=True) # WebStatus secured by web frontend with HTTP auth

Please note that WebStatus can decode password for HTTP Basic requests only (for
Digest authentication it's just impossible). Custom status.web.auth.IAuth
subclasses may just ignore password at all since it's already validated by web server.

Administrator must make sure that it's impossible to get access to WebStatus
using other way than through frontend. Usually this means that WebStatus should
listen for incoming connections only on localhost (or on some firewall-protected
port). Frontend must require HTTP authentication to access WebStatus pages
(using any source for credentials, such as htpasswd, PAM, LDAP).

If you allow unauthenticated access through frontend as well, it's possible to
specify a httpLoginUrl which will be rendered on the WebStatus for
unauthenticated users as a link named Login.

authz = Authz(useHttpHeader=True, httpLoginUrl='https://buildbot/login')

A configuration example with Apache HTTPD as reverse proxy could look like the
following.

authz = Authz(
 useHttpHeader=True,
 httpLoginUrl='https://buildbot/login',
 auth = HTPasswdAprAuth('/var/www/htpasswd'),
 forceBuild = 'auth')

Corresponding Apache configuration.

ProxyPass / http://127.0.0.1:8010/

<Location /login>
 AuthType Basic
 AuthName "Buildbot"
 AuthUserFile /var/www/htpasswd
 Require valid-user

 RewriteEngine on
 RewriteCond %{HTTP_REFERER} ^https?://([^/]+)/(.*)$
 RewriteRule ^.*$ https://%1/%2 [R,L]
</Location>

Logging configuration

The WebStatus uses a separate log file (http.log) to avoid clutter
buildbot's default log (twistd.log) with request/response messages.
This log is also, by default, rotated in the same way as the twistd.log
file, but you can also customize the rotation logic with the following
parameters if you need a different behaviour.

	rotateLength

	An integer defining the file size at which log files are rotated.

	maxRotatedFiles

	The maximum number of old log files to keep.

URL-decorating options

These arguments adds an URL link to various places in the WebStatus,
such as revisions, repositories, projects and, optionally, ticket/bug references
in change comments.

revlink

The revlink argument on WebStatus is deprecated in favour of the
global revlink option. Only use this if you need to generate
different URLs for different web status instances.

In addition to a callable like revlink, this argument accepts a
format string or a dict mapping a string (repository name) to format strings.

The format string should use %s to insert the revision id in the url. For
example, for Buildbot on GitHub:

revlink='http://github.com/buildbot/buildbot/tree/%s'

The revision ID will be URL encoded before inserted in the replacement string

changecommentlink

The changecommentlink argument can be used to create links to
ticket-ids from change comments (i.e. #123).

The argument can either be a tuple of three strings, a dictionary
mapping strings (project names) to tuples or a callable taking a
changetext (a jinja2.Markup instance) and a project name,
returning a the same change text with additional links/html tags added
to it.

If the tuple is used, it should contain three strings where the first
element is a regex that searches for strings (with match groups), the
second is a replace-string that, when substituted with \1 etc,
yields the URL and the third is the title attribute of the link. (The
 is added by the system.) So, for Trac
tickets (#42, etc): changecommentlink(r"#(\d+)",
r"http://buildbot.net/trac/ticket/\1", r"Ticket \g<0>") .

projects

A dictionary from strings to strings, mapping project names to URLs,
or a callable taking a project name and returning an URL.

repositories

Same as the projects arg above, a dict or callable mapping project names
to URLs.

Display-Specific Options

The order_console_by_time option affects the rendering of the console;
see the description of the console above.

The numbuilds option determines the number of builds that most status
displays will show. It can usually be overriden in the URL, e.g.,
?numbuilds=13.

The num_events option gives the default number of events that the
waterfall will display. The num_events_max gives the maximum number of
events displayed, even if the web browser requests more.

Change Hooks

The /change_hook url is a magic URL which will accept HTTP requests and translate
them into changes for buildbot. Implementations (such as a trivial json-based endpoint
and a GitHub implementation) can be found in master/buildbot/status/web/hooks [https://github.com/buildbot/buildbot/blob/master/master/buildbot/status/web/hooks].
The format of the url is /change_hook/DIALECT where DIALECT is a package within the
hooks directory. Change_hook is disabled by default and each DIALECT has to be enabled
separately, for security reasons

An example WebStatus configuration line which enables change_hook and two DIALECTS:

c['status'].append(html.WebStatus(http_port=8010,allowForce=True,
 change_hook_dialects={
 'base': True,
 'somehook': {'option1':True,
 'option2':False}}))

Within the WebStatus arguments, the change_hook key enables/disables the module
and change_hook_dialects whitelists DIALECTs where the keys are the module names
and the values are optional arguments which will be passed to the hooks.

The post_build_request.py script in master/contrib allows for the
submission of an arbitrary change request. Run post_build_request.py
--help for more information. The base dialect must be enabled for this to
work.

GitHub hook

The GitHub hook is simple and takes no options.

c['status'].append(html.WebStatus(...,
 change_hook_dialects={ 'github' : True }))

With this set up, add a Post-Receive URL for the project in the GitHub
administrative interface, pointing to /change_hook/github relative to
the root of the web status. For example, if the grid URL is
http://builds.mycompany.com/bbot/grid, then point GitHub to
http://builds.mycompany.com/bbot/change_hook/github. To specify a project
associated to the repository, append ?project=name to the URL.

Note that there is a standalone HTTP server available for receiving GitHub
notifications, as well: contrib/github_buildbot.py. This script may be
useful in cases where you cannot expose the WebStatus for public consumption.

Warning

The incoming HTTP requests for this hook are not authenticated by default.
Anyone who can access the web status can "fake" a request from
GitHub, potentially causing the buildmaster to run arbitrary code.

To protect URL against unauthorized access you should use change_hook_auth option

c['status'].append(html.WebStatus(...,
 change_hook_auth=["file:changehook.passwd"]))

And create a file changehook.passwd

user:password

Then, create a GitHub service hook (see https://help.github.com/articles/post-receive-hooks) with a WebHook URL like http://user:password@builds.mycompany.com/bbot/change_hook/github.

See the documentation [https://twistedmatrix.com/documents/current/core/howto/cred.html] for twisted cred for more option to pass to change_hook_auth.

Note that not using change_hook_auth can expose you to security risks.

BitBucket hook

The BitBucket hook is as simple as GitHub one and it also takes no options.

c['status'].append(html.WebStatus(...,
 change_hook_dialects={ 'bitbucket' : True }))

When this is setup you should add a POST service pointing to /change_hook/bitbucket
relative to the root of the web status. For example, it the grid URL is
http://builds.mycompany.com/bbot/grid, then point BitBucket to
http://builds.mycompany.com/change_hook/bitbucket. To specify a project associated
to the repository, append ?project=name to the URL.

Note that there is a satandalone HTTP server available for receiving BitBucket
notifications, as well: contrib/bitbucket_buildbot.py. This script may be
useful in cases where you cannot expose the WebStatus for public consumption.

Warning

As in the previous case, the incoming HTTP requests for this hook are not
authenticated bu default. Anyone who can access the web status can "fake"
a request from BitBucket, potentially causing the buildmaster to run
arbitrary code.

To protect URL against unauthorized access you should use change_hook_auth option.

c['status'].append(html.WebStatus(...,
 change_hook_auth=["file:changehook.passwd"]))

Then, create a BitBucket service hook (see https://confluence.atlassian.com/display/BITBUCKET/POST+Service+Management) with a WebHook URL like http://user:password@builds.mycompany.com/bbot/change_hook/bitbucket.

Note that as before, not using change_hook_auth can expose you to security risks.

Google Code hook

The Google Code hook is quite similar to the GitHub Hook. It has one option
for the "Post-Commit Authentication Key" used to check if the request is
legitimate:

c['status'].append(html.WebStatus(
 # ...
 change_hook_dialects={'googlecode': {'secret_key': 'FSP3p-Ghdn4T0oqX'}}
))

This will add a "Post-Commit URL" for the project in the Google Code
administrative interface, pointing to /change_hook/googlecode relative to
the root of the web status.

Alternatively, you can use the GoogleCodeAtomPoller ChangeSource
that periodically poll the Google Code commit feed for changes.

Note

Google Code doesn't send the branch on which the changes were made. So, the
hook always returns 'default' as the branch, you can override it with the
'branch' option:

change_hook_dialects={'googlecode': {'secret_key': 'FSP3p-Ghdn4T0oqX', 'branch': 'master'}}

Poller hook

The poller hook allows you to use GET or POST requests to trigger
polling. One advantage of this is your buildbot instance can poll
at launch (using the pollAtLaunch flag) to get changes that happened
while it was down, but then you can still use a commit hook to get
fast notification of new changes.

Suppose you have a poller configured like this:

c['change_source'] = SVNPoller(
 svnurl="https://amanda.svn.sourceforge.net/svnroot/amanda/amanda",
 split_file=split_file_branches,
 pollInterval=24*60*60,
 pollAtLaunch=True)

And you configure your WebStatus to enable this hook:

c['status'].append(html.WebStatus(
 # ...
 change_hook_dialects={'poller': True}
))

Then you will be able to trigger a poll of the SVN repository by poking the
/change_hook/poller URL from a commit hook like this:

curl -s -F poller=https://amanda.svn.sourceforge.net/svnroot/amanda/amanda \
 http://yourbuildbot/change_hook/poller

If no poller argument is provided then the hook will trigger polling of all
polling change sources.

You can restrict which pollers the webhook has access to using the allowed
option:

c['status'].append(html.WebStatus(
 # ...
 change_hook_dialects={'poller': {'allowed': ['https://amanda.svn.sourceforge.net/svnroot/amanda/amanda']}}
))

GitLab hook

The GitLab hook is as simple as GitHub one and it also takes no options.

c['status'].append(html.WebStatus(
 # ...
 change_hook_dialects={ 'gitlab' : True }
))

When this is setup you should add a POST service pointing to /change_hook/gitlab
relative to the root of the web status. For example, it the grid URL is
http://builds.mycompany.com/bbot/grid, then point GitLab to
http://builds.mycompany.com/change_hook/gitlab. The project and/or codebase can
also be passed in the URL by appending ?project=name or ?codebase=foo to the URL.
These parameters will be passed along to the scheduler.

Warning

As in the previous case, the incoming HTTP requests for this hook are not
authenticated bu default. Anyone who can access the web status can "fake"
a request from your GitLab server, potentially causing the buildmaster to run
arbitrary code.

To protect URL against unauthorized access you should use change_hook_auth option.

c['status'].append(html.WebStatus(
 # ...
 change_hook_auth=["file:changehook.passwd"]
))

Then, create a GitLab service hook (see https://your.gitlab.server/help/web_hooks) with a WebHook URL like http://user:password@builds.mycompany.com/bbot/change_hook/gitlab.

Note that as before, not using change_hook_auth can expose you to security risks.

Gitorious Hook

The Gitorious hook is as simple as GitHub one and it also takes no options.

c['status'].append(html.WebStatus(
 # ...
 change_hook_dialects={'gitorious': True}
))

When this is setup you should add a POST service pointing to /change_hook/gitorious
relative to the root of the web status. For example, it the grid URL is
http://builds.mycompany.com/bbot/grid, then point Gitorious to
http://builds.mycompany.com/change_hook/gitorious.

Warning

As in the previous case, the incoming HTTP requests for this hook are not
authenticated by default. Anyone who can access the web status can "fake"
a request from your Gitorious server, potentially causing the buildmaster to run
arbitrary code.

To protect URL against unauthorized access you should use change_hook_auth option.

c['status'].append(html.WebStatus(
 # ...
 change_hook_auth=["file:changehook.passwd"]
))

Then, create a Gitorious web hook (see http://gitorious.org/gitorious/pages/WebHooks) with a WebHook URL like http://user:password@builds.mycompany.com/bbot/change_hook/gitorious.

Note that as before, not using change_hook_auth can expose you to security risks.

Note

Web hooks are only available for local Gitorious
installations, since this feature is not offered as part of
Gitorious.org yet.

MailNotifier

	
class buildbot.status.mail.MailNotifier

	

The buildbot can also send email when builds finish. The most common
use of this is to tell developers when their change has caused the
build to fail. It is also quite common to send a message to a mailing
list (usually named builds or similar) about every build.

The MailNotifier status target is used to accomplish this. You
configure it by specifying who mail should be sent to, under what
circumstances mail should be sent, and how to deliver the mail. It can
be configured to only send out mail for certain builders, and only
send messages when the build fails, or when the builder transitions
from success to failure. It can also be configured to include various
build logs in each message.

If a proper lookup function is configured, the message will be sent to the
"interested users" list (Doing Things With Users), which includes all
developers who made changes in the build. By default, however, Buildbot does
not know how to construct an email addressed based on the information from the
version control system. See the lookup argument, below, for more
information.

You can add additional, statically-configured, recipients with the
extraRecipients argument. You can also add interested users by setting the
owners build property to a list of users in the scheduler constructor
(Configuring Schedulers).

Each MailNotifier sends mail to a single set of recipients. To send
different kinds of mail to different recipients, use multiple
MailNotifiers.

The following simple example will send an email upon the completion of
each build, to just those developers whose Changes were included in
the build. The email contains a description of the Build, its results,
and URLs where more information can be obtained.

from buildbot.status.mail import MailNotifier
mn = MailNotifier(fromaddr="buildbot@example.org", lookup="example.org")
c['status'].append(mn)

To get a simple one-message-per-build (say, for a mailing list), use
the following form instead. This form does not send mail to individual
developers (and thus does not need the lookup= argument,
explained below), instead it only ever sends mail to the extra
recipients named in the arguments:

mn = MailNotifier(fromaddr="buildbot@example.org",
 sendToInterestedUsers=False,
 extraRecipients=['listaddr@example.org'])

If your SMTP host requires authentication before it allows you to send emails,
this can also be done by specifying smtpUser and smptPassword:

mn = MailNotifier(fromaddr="myuser@gmail.com",
 sendToInterestedUsers=False,
 extraRecipients=["listaddr@example.org"],
 relayhost="smtp.gmail.com", smtpPort=587,
 smtpUser="myuser@gmail.com", smtpPassword="mypassword")

If you want to require Transport Layer Security (TLS), then you can also
set useTls:

mn = MailNotifier(fromaddr="myuser@gmail.com",
 sendToInterestedUsers=False,
 extraRecipients=["listaddr@example.org"],
 useTls=True, relayhost="smtp.gmail.com", smtpPort=587,
 smtpUser="myuser@gmail.com", smtpPassword="mypassword")

Note

If you see twisted.mail.smtp.TLSRequiredError exceptions in
the log while using TLS, this can be due either to the server not
supporting TLS or to a missing PyOpenSSL [http://pyopenssl.sourceforge.net/] package on the buildmaster system.

In some cases it is desirable to have different information then what is
provided in a standard MailNotifier message. For this purpose MailNotifier
provides the argument messageFormatter (a function) which allows for the
creation of messages with unique content.

For example, if only short emails are desired (e.g., for delivery to phones)

from buildbot.status.builder import Results
def messageFormatter(mode, name, build, results, master_status):
 result = Results[results]

 text = list()
 text.append("STATUS: %s" % result.title())
 return {
 'body' : "\n".join(text),
 'type' : 'plain'
 }

mn = MailNotifier(fromaddr="buildbot@example.org",
 sendToInterestedUsers=False,
 mode=('problem',),
 extraRecipients=['listaddr@example.org'],
 messageFormatter=messageFormatter)

Another example of a function delivering a customized html email
containing the last 80 log lines of logs of the last build step is
given below:

from buildbot.status.builder import Results

import cgi, datetime

def html_message_formatter(mode, name, build, results, master_status):
 """Provide a customized message to Buildbot's MailNotifier.

 The last 80 lines of the log are provided as well as the changes
 relevant to the build. Message content is formatted as html.
 """
 result = Results[results]

 limit_lines = 80
 text = list()
 text.append(u'<h4>Build status: %s</h4>' % result.upper())
 text.append(u'<table cellspacing="10"><tr>')
 text.append(u"<td>Buildslave for this Build:</td><td>%s</td></tr>" % build.getSlavename())
 if master_status.getURLForThing(build):
 text.append(u'<tr><td>Complete logs for all build steps:</td><td>%s</td></tr>'
 % (master_status.getURLForThing(build),
 master_status.getURLForThing(build))
)
 text.append(u'<tr><td>Build Reason:</td><td>%s</td></tr>' % build.getReason())
 source = u""
 for ss in build.getSourceStamps():
 if ss.codebase:
 source += u'%s: ' % ss.codebase
 if ss.branch:
 source += u"[branch %s] " % ss.branch
 if ss.revision:
 source += ss.revision
 else:
 source += u"HEAD"
 if ss.patch:
 source += u" (plus patch)"
 if ss.patch_info: # add patch comment
 source += u" (%s)" % ss.patch_info[1]
 text.append(u"<tr><td>Build Source Stamp:</td><td>%s</td></tr>" % source)
 text.append(u"<tr><td>Blamelist:</td><td>%s</td></tr>" % ",".join(build.getResponsibleUsers()))
 text.append(u'</table>')
 if ss.changes:
 text.append(u'<h4>Recent Changes:</h4>')
 for c in ss.changes:
 cd = c.asDict()
 when = datetime.datetime.fromtimestamp(cd['when']).ctime()
 text.append(u'<table cellspacing="10">')
 text.append(u'<tr><td>Repository:</td><td>%s</td></tr>' % cd['repository'])
 text.append(u'<tr><td>Project:</td><td>%s</td></tr>' % cd['project'])
 text.append(u'<tr><td>Time:</td><td>%s</td></tr>' % when)
 text.append(u'<tr><td>Changed by:</td><td>%s</td></tr>' % cd['who'])
 text.append(u'<tr><td>Comments:</td><td>%s</td></tr>' % cd['comments'])
 text.append(u'</table>')
 files = cd['files']
 if files:
 text.append(u'<table cellspacing="10"><tr><th align="left">Files</th></tr>')
 for file in files:
 text.append(u'<tr><td>%s:</td></tr>' % file['name'])
 text.append(u'</table>')
 text.append(u'
')
 # get log for last step
 logs = build.getLogs()
 # logs within a step are in reverse order. Search back until we find stdio
 for log in reversed(logs):
 if log.getName() == 'stdio':
 break
 name = "%s.%s" % (log.getStep().getName(), log.getName())
 status, dummy = log.getStep().getResults()
 content = log.getText().splitlines() # Note: can be VERY LARGE
 url = u'%s/steps/%s/logs/%s' % (master_status.getURLForThing(build),
 log.getStep().getName(),
 log.getName())

 text.append(u'<i>Detailed log of last build step:</i> %s'
 % (url, url))
 text.append(u'
')
 text.append(u'<h4>Last %d lines of "%s"</h4>' % (limit_lines, name))
 unilist = list()
 for line in content[len(content)-limit_lines:]:
 unilist.append(cgi.escape(unicode(line,'utf-8')))
 text.append(u'<pre>')
 text.extend(unilist)
 text.append(u'</pre>')
 text.append(u'

')
 text.append(u'-The Buildbot')
 return {
 'body': u"\n".join(text),
 'type': 'html'
 }

mn = MailNotifier(fromaddr="buildbot@example.org",
 sendToInterestedUsers=False,
 mode=('failing',),
 extraRecipients=['listaddr@example.org'],
 messageFormatter=html_message_formatter)

MailNotifier arguments

	fromaddr

	The email address to be used in the 'From' header.

	sendToInterestedUsers

	(boolean). If True (the default), send mail to all of the Interested
Users. If False, only send mail to the extraRecipients list.

	extraRecipients

	(list of strings). A list of email addresses to which messages should
be sent (in addition to the InterestedUsers list, which includes any
developers who made Changes that went into this build). It is a good
idea to create a small mailing list and deliver to that, then let
subscribers come and go as they please.

	subject

	(string). A string to be used as the subject line of the message.
%(builder)s will be replaced with the name of the builder which
provoked the message.

	mode

	Mode is a list of strings; however there are two strings which can be used
as shortcuts instead of the full lists. The possible shortcuts are:

	all

	Always send mail about builds. Equivalent to (change, failing,
passing, problem, warnings, exception).

	warnings

	Equivalent to (warnings, failing).

(list of strings). A combination of:

	change

	Send mail about builds which change status.

	failing

	Send mail about builds which fail.

	passing

	Send mail about builds which succeed.

	problem

	Send mail about a build which failed when the previous build has passed.

	warnings

	Send mail about builds which generate warnings.

	exception

	Send mail about builds which generate exceptions.

Defaults to (failing, passing, warnings).

	builders

	(list of strings). A list of builder names for which mail should be
sent. Defaults to None (send mail for all builds). Use either builders
or categories, but not both.

	categories

	(list of strings). A list of category names to serve status
information for. Defaults to None (all categories). Use either
builders or categories, but not both.

	addLogs

	(boolean). If True, include all build logs as attachments to the
messages. These can be quite large. This can also be set to a list of
log names, to send a subset of the logs. Defaults to False.

	addPatch

	(boolean). If True, include the patch content if a patch was present.
Patches are usually used on a Try server.
Defaults to True.

	buildSetSummary

	(boolean). If True, send a single summary email consisting of the
concatenation of all build completion messages rather than a
completion message for each build. Defaults to False.

	relayhost

	(string). The host to which the outbound SMTP connection should be
made. Defaults to 'localhost'

	smtpPort

	(int). The port that will be used on outbound SMTP
connections. Defaults to 25.

	useTls

	(boolean). When this argument is True (default is False)
MailNotifier sends emails using TLS and authenticates with the
relayhost. When using TLS the arguments smtpUser and
smtpPassword must also be specified.

	smtpUser

	(string). The user name to use when authenticating with the
relayhost.

	smtpPassword

	(string). The password that will be used when authenticating with the
relayhost.

	lookup

	(implementor of IEmailLookup). Object which provides
IEmailLookup, which is responsible for mapping User names (which come
from the VC system) into valid email addresses.

If the argument is not provided, the MailNotifier will attempt to build
the sendToInterestedUsers from the authors of the Changes that led to
the Build via User Objects. If the author of one of the Build's
Changes has an email address stored, it will added to the recipients list.
With this method, owners are still added to the recipients. Note that,
in the current implementation of user objects, email addresses are not
stored; as a result, unless you have specifically added email addresses to
the user database, this functionality is unlikely to actually send any
emails.

Most of the time you can use a simple Domain instance. As a shortcut, you
can pass as string: this will be treated as if you had provided
Domain(str). For example, lookup='twistedmatrix.com' will allow
mail to be sent to all developers whose SVN usernames match their
twistedmatrix.com account names. See buildbot/status/mail.py for
more details.

Regardless of the setting of lookup, MailNotifier will also send
mail to addresses in the extraRecipients list.

	messageFormatter

	This is a optional function that can be used to generate a custom mail message.
A messageFormatter function takes the mail mode (mode), builder
name (name), the build status (build), the result code
(results), and the BuildMaster status (master_status). It
returns a dictionary. The body key gives a string that is the complete
text of the message. The type key is the message type ('plain' or
'html'). The 'html' type should be used when generating an HTML message. The
subject key is optional, but gives the subject for the email.

	extraHeaders

	(dictionary) A dictionary containing key/value pairs of extra headers to add
to sent e-mails. Both the keys and the values may be a Interpolate instance.

	previousBuildGetter

	An optional function to calculate the previous build to the one at hand. A
previousBuildGetter takes a BuildStatus and returns a
BuildStatus. This function is useful when builders don't process
their requests in order of arrival (chronologically) and therefore the order
of completion of builds does not reflect the order in which changes (and
their respective requests) arrived into the system. In such scenarios,
status transitions in the chronological sequence of builds within a builder
might not reflect the actual status transition in the topological sequence
of changes in the tree. What's more, the latest build (the build at hand)
might not always be for the most recent request so it might not make sense
to send a "change" or "problem" email about it. Returning None from this
function will prevent such emails from going out.

As a help to those writing messageFormatter functions, the following
table describes how to get some useful pieces of information from the various
status objects:

	Name of the builder that generated this event

	name

	Title of the buildmaster

	master_status.getTitle

	MailNotifier mode

	
	mode (a combination of change, failing, passing, problem, warnings,

	exception, all)

Builder result as a string

from buildbot.status.builder import Results
result_str = Results[results]
one of 'success', 'warnings', 'failure', 'skipped', or 'exception'

	URL to build page

	master_status.getURLForThing(build)

	URL to buildbot main page.

	master_status.getBuildbotURL()

	Build text

	build.getText()

	Mapping of property names to values

	build.getProperties() (a Properties instance)

	Slave name

	build.getSlavename()

	Build reason (from a forced build)

	build.getReason()

	List of responsible users

	build.getResponsibleUsers()

Source information (only valid if ss is not None)

A build has a set of sourcestamps:

for ss in build.getSourceStamp():
 branch = ss.branch
 revision = ss.revision
 patch = ss.patch
 changes = ss.changes # list

A change object has the following useful information:

	who

	(str) who made this change

	revision

	(str) what VC revision is this change

	branch

	(str) on what branch did this change occur

	when

	(str) when did this change occur

	files

	(list of str) what files were affected in this change

	comments

	(str) comments reguarding the change.

The Change methods asText and asDict can be used to format the
information above. asText returns a list of strings and asDict returns
a dictionary suitable for html/mail rendering.

Log information

logs = list()
for log in build.getLogs():
 log_name = "%s.%s" % (log.getStep().getName(), log.getName())
 log_status, dummy = log.getStep().getResults()
 log_body = log.getText().splitlines() # Note: can be VERY LARGE
 log_url = '%s/steps/%s/logs/%s' % (master_status.getURLForThing(build),
 log.getStep().getName(),
 log.getName())
 logs.append((log_name, log_url, log_body, log_status))

IRC Bot

	
class buildbot.status.words.IRC

	

The buildbot.status.words.IRC status target creates an IRC bot
which will attach to certain channels and be available for status
queries. It can also be asked to announce builds as they occur, or be
told to shut up.

from buildbot.status import words
irc = words.IRC("irc.example.org", "botnickname",
 useColors=False,
 channels=[{"channel": "#example1"},
 {"channel": "#example2",
 "password": "somesecretpassword"}],
 password="mysecretnickservpassword",
 notify_events={
 'exception': 1,
 'successToFailure': 1,
 'failureToSuccess': 1,
 })
c['status'].append(irc)

Take a look at the docstring for words.IRC for more details on
configuring this service. Note that the useSSL option requires
PyOpenSSL [http://pyopenssl.sourceforge.net/]. The password argument, if provided, will be sent to
Nickserv to claim the nickname: some IRC servers will not allow clients to send
private messages until they have logged in with a password. We can also specify
a different port number. Default value is 6667.

To use the service, you address messages at the buildbot, either
normally (botnickname: status) or with private messages
(/msg botnickname status). The buildbot will respond in kind.

The bot will add color to some of its messages. This is enabled by default,
you might turn it off with useColors=False argument to words.IRC().

If you issue a command that is currently not available, the buildbot
will respond with an error message. If the noticeOnChannel=True
option was used, error messages will be sent as channel notices instead
of messaging. The default value is noticeOnChannel=False.

Some of the commands currently available:

	list builders

	Emit a list of all configured builders

	status BUILDER

	Announce the status of a specific Builder: what it is doing right now.

	status all

	Announce the status of all Builders

	watch BUILDER

	If the given Builder is currently running, wait until the Build is
finished and then announce the results.

	last BUILDER

	Return the results of the last build to run on the given Builder.

	join CHANNEL

	Join the given IRC channel

	leave CHANNEL

	Leave the given IRC channel

	notify on|off|list EVENT

	Report events relating to builds. If the command is issued as a
private message, then the report will be sent back as a private
message to the user who issued the command. Otherwise, the report
will be sent to the channel. Available events to be notified are:

	started

	A build has started

	finished

	A build has finished

	success

	A build finished successfully

	failure

	A build failed

	exception

	A build generated and exception

	xToY

	The previous build was x, but this one is Y, where x and Y are each
one of success, warnings, failure, exception (except Y is
capitalized). For example: successToFailure will notify if the
previous build was successful, but this one failed

	help COMMAND

	Describe a command. Use help commands to get a list of known
commands.

	shutdown ARG

	Control the shutdown process of the buildbot master.
Available arguments are:

	check

	Check if the buildbot master is running or shutting down

	start

	Start clean shutdown

	stop

	Stop clean shutdown

	now

	Shutdown immediately without waiting for the builders to finish

	source

	Announce the URL of the Buildbot's home page.

	version

	Announce the version of this Buildbot.

Additionally, the config file may specify default notification options
as shown in the example earlier.

If the allowForce=True option was used, some additional commands
will be available:

	force build [--branch=BRANCH] [--revision=REVISION] [--props=PROP1=VAL1,PROP2=VAL2...] BUILDER REASON

	Tell the given Builder to start a build of the latest code. The user
requesting the build and REASON are recorded in the Build status. The
buildbot will announce the build's status when it finishes.The
user can specify a branch and/or revision with the optional
parameters --branch=BRANCH and --revision=REVISION. The user
can also give a list of properties with --props=PROP1=VAL1,PROP2=VAL2...

	stop build BUILDER REASON

	Terminate any running build in the given Builder. REASON will be added
to the build status to explain why it was stopped. You might use this
if you committed a bug, corrected it right away, and don't want to
wait for the first build (which is destined to fail) to complete
before starting the second (hopefully fixed) build.

If the categories is set to a category of builders (see the categories
option in Builder Configuration) changes related to only that
category of builders will be sent to the channel.

If the useRevisions option is set to True, the IRC bot will send status messages
that replace the build number with a list of revisions that are contained in that
build. So instead of seeing build #253 of ..., you would see something like
build containing revisions [a87b2c4]. Revisions that are stored as hashes are
shortened to 7 characters in length, as multiple revisions can be contained in one
build and may exceed the IRC message length limit.

Two additional arguments can be set to control how fast the IRC bot tries to
reconnect when it encounters connection issues. lostDelay is the number of
of seconds the bot will wait to reconnect when the connection is lost, where as
failedDelay is the number of seconds until the bot tries to reconnect when
the connection failed. lostDelay defaults to a random number between 1 and 5,
while failedDelay defaults to a random one between 45 and 60. Setting random
defaults like this means multiple IRC bots are less likely to deny each other
by flooding the server.

PBListener

	
class buildbot.status.client.PBListener

	

import buildbot.status.client
pbl = buildbot.status.client.PBListener(port=int, user=str,
 passwd=str)
c['status'].append(pbl)

This sets up a PB listener on the given TCP port, to which a PB-based
status client can connect and retrieve status information.
buildbot statusgui (statusgui) is an example of such a
status client. The port argument can also be a strports
specification string.

StatusPush

	
class buildbot.status.status_push.StatusPush

	

def Process(self):
 print str(self.queue.popChunk())
 self.queueNextServerPush()

import buildbot.status.status_push
sp = buildbot.status.status_push.StatusPush(serverPushCb=Process,
 bufferDelay=0.5,
 retryDelay=5)
c['status'].append(sp)

StatusPush batches events normally processed and sends it to the
serverPushCb callback every bufferDelay seconds. The callback
should pop items from the queue and then queue the next callback.
If no items were popped from self.queue, retryDelay seconds will be
waited instead.

HttpStatusPush

import buildbot.status.status_push
sp = buildbot.status.status_push.HttpStatusPush(
 serverUrl="http://example.com/submit")
c['status'].append(sp)

HttpStatusPush builds on StatusPush and sends HTTP requests to
serverUrl, with all the items json-encoded. It is useful to create a
status front end outside of buildbot for better scalability.

GerritStatusPush

	
class buildbot.status.status_gerrit.GerritStatusPush

	

from buildbot.status.status_gerrit import GerritStatusPush
from buildbot.status.builder import Results, SUCCESS, RETRY

def gerritReviewCB(builderName, build, result, status, arg):
 if result == RETRY:
 return None, 0, 0

 message = "Buildbot finished compiling your patchset\n"
 message += "on configuration: %s\n" % builderName
 message += "The result is: %s\n" % Results[result].upper()

 if arg:
 message += "\nFor more details visit:\n"
 message += status.getURLForThing(build) + "\n"

 # message, verified, reviewed
 return message, (result == SUCCESS or -1), 0

def gerritStartCB(builderName, build, arg):
 message = "Buildbot started compiling your patchset\n"
 message += "on configuration: %s\n" % builderName

 return message

def gerritSummaryCB(buildInfoList, results, status, arg):
 success = False
 failure = False

 msgs = []

 for buildInfo in buildInfoList:
 msg = "Builder %(name)s %(resultText)s (%(text)s)" % buildInfo
 link = buildInfo.get('url', None)
 if link:
 msg += " - " + link
 else:
 msg += "."
 msgs.append(msg)

 if buildInfo['result'] == SUCCESS:
 success = True
 else:
 failure = True

 msg = '\n\n'.join(msgs)

 if success and not failure:
 verified = 1
 else:
 verified = -1

 reviewed = 0
 return (msg, verified, reviewed)

c['buildbotURL'] = 'http://buildbot.example.com/'
c['status'].append(GerritStatusPush('127.0.0.1', 'buildbot',
 reviewCB=gerritReviewCB,
 reviewArg=c['buildbotURL'],
 startCB=gerritStartCB,
 startArg=c['buildbotURL'],
 summaryCB=gerritSummaryCB,
 summaryArg=c['buildbotURL']))

GerritStatusPush sends review of the Change back to the Gerrit server,
optionally also sending a message when a build is started. GerritStatusPush
can send a separate review for each build that completes, or a single review
summarizing the results for all of the builds. By default, a single summary
review is sent; that is, a default summaryCB is provided, but no reviewCB or
startCB.

reviewCB, if specified, determines the message and score to give when
sending a review for each separate build. It should return a tuple of
(message, verified, reviewed).

If startCB is specified, it should return a message. This message will be
sent to the Gerrit server when each build is started.

summaryCB, if specified, determines the message and score to give when
sending a single review summarizing all of the builds. It should return a
tuple of (message, verified, reviewed).

GitHubStatus

	
class buildbot.status.github.GitHubStatus

	

from buildbot.status.github import GitHubStatus

repoOwner = Interpolate("%(prop:github_repo_owner)s")
repoName = Interpolate("%(prop:github_repo_name)s")
sha = Interpolate("%(src::revision)s")
gs = GitHubStatus(token='githubAPIToken',
 repoOwner=repoOwner,
 repoName=repoName,
 sha=sha,
 startDescription='Build started.',
 endDescription='Build done.',
)
buildbot_bbtools = BuilderConfig(
 name='builder-name',
 slavenames=['slave1'],
 factory=BuilderFactory(),
 properties={
 "github_repo_owner": "buildbot",
 "github_repo_name": "bbtools",
 },
)
c['builders'].append(buildbot_bbtools)
c['status'].append(gs)

GitHubStatus publishes a build status using
GitHub Status API [http://developer.github.com/v3/repos/statuses].

It requires txgithub <https://pypi.python.org/pypi/txgithub> package to
allow interaction with GitHub API.

It is configured with at least a GitHub API token, repoOwner and repoName
arguments.

You can create a token from you own
GitHub - Profile - Applications - Register new application [https://github.com/settings/applications] or use an external tool to
generate one.

repoOwner, repoName are used to inform the plugin where
to send status for build. This allow using a single GitHubStatus for
multiple projects.
repoOwner, repoName can be passes as a static string (for single
project) or Interpolate for dynamic substitution in multiple
project.

sha argument is use to define the commit SHA for which to send the status.
By default sha is defined as: %(src::revision)s.

In case any of repoOwner, repoName or sha returns None, False or
empty string, the plugin will skip sending the status.

You can define custom start and end build messages using the
startDescription and endDescription optional interpolation arguments.

	[1]	Apparently this is the same way http://buildd.debian.org displays build status

	[2]	It may even be possible to provide SSL access by using a
specification like "ssl:12345:privateKey=mykey.pen:certKey=cert.pem",
but this is completely untested

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

Customization

For advanced users, Buildbot acts as a framework supporting a customized build
application. For the most part, such configurations consist of subclasses set
up for use in a regular Buildbot configuration file.

This chapter describes some of the more common idioms in advanced Buildbot
configurations.

At the moment, this chapter is an unordered set of suggestions; if you'd like
to clean it up, fork the project on GitHub and get started!

Programmatic Configuration Generation

Bearing in mind that master.cfg is a Python file, large configurations can
be shortened considerably by judicious use of Python loops. For example, the
following will generate a builder for each of a range of supported versions of
Python:

pythons = ['python2.4', 'python2.5', 'python2.6', 'python2.7',
 'python3.2', 'python3.3']
pytest_slaves = ["slave%s" % n for n in range(10)]
for python in pythons:
 f = BuildFactory()
 f.addStep(SVN(...))
 f.addStep(ShellCommand(command=[python, 'test.py']))
 c['builders'].append(BuilderConfig(
 name="test-%s" % python,
 factory=f,
 slavenames=pytest_slaves))

Merge Request Functions

The logic Buildbot uses to decide which build request can be merged can be
customized by providing a Python function (a callable) instead of True or
False described in Merging Build Requests.

The callable will be invoked with three positional arguments: a
Builder object and two BuildRequest objects. It should return
true if the requests can be merged, and False otherwise. For example:

def mergeRequests(builder, req1, req2):
 "any requests with the same branch can be merged"
 return req1.source.branch == req2.source.branch
c['mergeRequests'] = mergeRequests

In many cases, the details of the SourceStamps and BuildRequests are important.
In this example, only BuildRequests with the same "reason" are merged; thus
developers forcing builds for different reasons will see distinct builds. Note
the use of the canBeMergedWith method to access the source stamp
compatibility algorithm.

def mergeRequests(builder, req1, req2):
 if req1.source.canBeMergedWith(req2.source) and req1.reason == req2.reason:
 return True
 return False
c['mergeRequests'] = mergeRequests

If it's necessary to perform some extended operation to determine whether two
requests can be merged, then the mergeRequests callable may return its
result via Deferred. Note, however, that the number of invocations of the
callable is proportional to the square of the request queue length, so a
long-running callable may cause undesirable delays when the queue length
grows. For example:

def mergeRequests(builder, req1, req2):
 d = defer.gatherResults([
 getMergeInfo(req1.source.revision),
 getMergeInfo(req2.source.revision),
])
 def process(info1, info2):
 return info1 == info2
 d.addCallback(process)
 return d
c['mergeRequests'] = mergeRequests

Builder Priority Functions

The prioritizeBuilders configuration key specifies a function which
is called with two arguments: a BuildMaster and a list of
Builder objects. It should return a list of the same Builder
objects, in the desired order. It may also remove items from the list if
builds should not be started on those builders. If necessary, this function can
return its results via a Deferred (it is called with maybeDeferred).

A simple prioritizeBuilders implementation might look like this:

def prioritizeBuilders(buildmaster, builders):
 """Prioritize builders. 'finalRelease' builds have the highest
 priority, so they should be built before running tests, or
 creating builds."""
 builderPriorities = {
 "finalRelease": 0,
 "test": 1,
 "build": 2,
 }
 builders.sort(key=lambda b: builderPriorities.get(b.name, 0))
 return builders

c['prioritizeBuilders'] = prioritizeBuilders

Build Priority Functions

When a builder has multiple pending build requests, it uses a nextBuild
function to decide which build it should start first. This function is given
two parameters: the Builder, and a list of BuildRequest
objects representing pending build requests.

A simple function to prioritize release builds over other builds might look
like this:

def nextBuild(bldr, requests):
 for r in requests:
 if r.source.branch == 'release':
 return r
 return requests[0]

If some non-immediate result must be calculated, the nextBuild function can
also return a Deferred:

def nextBuild(bldr, requests):
 d = get_request_priorities(requests)
 def pick(priorities):
 if requests:
 return sorted(zip(priorities, requests))[0][1]
 d.addCallback(pick)
 return d

The nextBuild function is passed as parameter to BuilderConfig.

Customizing SVNPoller

Each source file that is tracked by a Subversion repository has a
fully-qualified SVN URL in the following form:
({REPOURL})({PROJECT-plus-BRANCH})({FILEPATH}). When you create the
SVNPoller, you give it a svnurl value that includes all of the
{REPOURL} and possibly some portion of the
{PROJECT-plus-BRANCH} string. The SVNPoller is responsible
for producing Changes that contain a branch name and a {FILEPATH}
(which is relative to the top of a checked-out tree). The details of how these
strings are split up depend upon how your repository names its branches.

PROJECT/BRANCHNAME/FILEPATH repositories

One common layout is to have all the various projects that share a repository
get a single top-level directory each, with branches, tags, and
trunk subdirectories:

amanda/trunk
 /branches/3_2
 /3_3
 /tags/3_2_1
 /3_2_2
 /3_3_0

To set up a SVNPoller that watches the Amanda trunk (and nothing
else), we would use the following, using the default split_file:

from buildbot.changes.svnpoller import SVNPoller
c['change_source'] = SVNPoller(
 svnurl="https://svn.amanda.sourceforge.net/svnroot/amanda/amanda/trunk")

In this case, every Change that our SVNPoller produces will have
its branch attribute set to None, to indicate that the Change is on the
trunk. No other sub-projects or branches will be tracked.

If we want our ChangeSource to follow multiple branches, we have to do
two things. First we have to change our svnurl= argument to
watch more than just amanda/trunk. We will set it to
amanda so that we'll see both the trunk and all the branches.
Second, we have to tell SVNPoller how to split the
({PROJECT-plus-BRANCH})({FILEPATH}) strings it gets from the repository
out into ({BRANCH}) and ({FILEPATH})`.

We do the latter by providing a split_file function. This function is
responsible for splitting something like branches/3_3/common-src/amanda.h
into branch='branches/3_3' and filepath='common-src/amanda.h'. The
function is always given a string that names a file relative to the
subdirectory pointed to by the SVNPoller's svnurl= argument.
It is expected to return a dictionary with at least the path key. The
splitter may optionally set branch, project and repository.
For backwards compatibility it may return a tuple of (branchname, path).
It may also return None to indicate that the file is of no interest.

Note

the function should return branches/3_3 rather than just 3_3
because the SVN checkout step, will append the branch name to the
baseURL, which requires that we keep the branches component in
there. Other VC schemes use a different approach towards branches and may
not require this artifact.

If your repository uses this same {PROJECT}/{BRANCH}/{FILEPATH} naming
scheme, the following function will work:

def split_file_branches(path):
 pieces = path.split('/')
 if len(pieces) > 1 and pieces[0] == 'trunk':
 return (None, '/'.join(pieces[1:]))
 elif len(pieces) > 2 and pieces[0] == 'branches':
 return ('/'.join(pieces[0:2]),
 '/'.join(pieces[2:]))
 else:
 return None

In fact, this is the definition of the provided split_file_branches
function. So to have our Twisted-watching SVNPoller follow
multiple branches, we would use this:

from buildbot.changes.svnpoller import SVNPoller, split_file_branches
c['change_source'] = SVNPoller("svn://svn.twistedmatrix.com/svn/Twisted",
 split_file=split_file_branches)

Changes for all sorts of branches (with names like "branches/1.5.x", and
None to indicate the trunk) will be delivered to the Schedulers. Each
Scheduler is then free to use or ignore each branch as it sees fit.

If you have multiple projects in the same repository your split function can
attach a project name to the Change to help the Scheduler filter out unwanted
changes:

from buildbot.changes.svnpoller import split_file_branches
def split_file_projects_branches(path):
 if not "/" in path:
 return None
 project, path = path.split("/", 1)
 f = split_file_branches(path)
 if f:
 info = dict(project=project, path=f[1])
 if f[0]:
 info['branch'] = f[0]
 return info
 return f

Again, this is provided by default. To use it you would do this:

from buildbot.changes.svnpoller import SVNPoller, split_file_projects_branches
c['change_source'] = SVNPoller(
 svnurl="https://svn.amanda.sourceforge.net/svnroot/amanda/",
 split_file=split_file_projects_branches)

Note here that we are monitoring at the root of the repository, and that within
that repository is a amanda subdirectory which in turn has trunk and
branches. It is that amanda subdirectory whose name becomes the
project field of the Change.

BRANCHNAME/PROJECT/FILEPATH repositories

Another common way to organize a Subversion repository is to put the branch
name at the top, and the projects underneath. This is especially frequent when
there are a number of related sub-projects that all get released in a group.

For example, Divmod.org [http://Divmod.org] hosts a project named Nevow as
well as one named Quotient. In a checked-out Nevow tree there is a directory
named formless that contains a Python source file named webform.py.
This repository is accessible via webdav (and thus uses an http: scheme)
through the divmod.org hostname. There are many branches in this repository,
and they use a ({BRANCHNAME})/({PROJECT}) naming policy.

The fully-qualified SVN URL for the trunk version of webform.py is
http://divmod.org/svn/Divmod/trunk/Nevow/formless/webform.py.
The 1.5.x branch version of this file would have a URL of
http://divmod.org/svn/Divmod/branches/1.5.x/Nevow/formless/webform.py.
The whole Nevow trunk would be checked out with
http://divmod.org/svn/Divmod/trunk/Nevow, while the Quotient
trunk would be checked out using
http://divmod.org/svn/Divmod/trunk/Quotient.

Now suppose we want to have an SVNPoller that only cares about the
Nevow trunk. This case looks just like the {PROJECT}/{BRANCH} layout
described earlier:

from buildbot.changes.svnpoller import SVNPoller
c['change_source'] = SVNPoller("http://divmod.org/svn/Divmod/trunk/Nevow")

But what happens when we want to track multiple Nevow branches? We
have to point our svnurl= high enough to see all those
branches, but we also don't want to include Quotient changes (since
we're only building Nevow). To accomplish this, we must rely upon the
split_file function to help us tell the difference between
files that belong to Nevow and those that belong to Quotient, as well
as figuring out which branch each one is on.

from buildbot.changes.svnpoller import SVNPoller
c['change_source'] = SVNPoller("http://divmod.org/svn/Divmod",
 split_file=my_file_splitter)

The my_file_splitter function will be called with repository-relative
pathnames like:

	trunk/Nevow/formless/webform.py

	This is a Nevow file, on the trunk. We want the Change that includes this
to see a filename of formless/webform.py, and a branch of
None

	branches/1.5.x/Nevow/formless/webform.py

	This is a Nevow file, on a branch. We want to get
branch='branches/1.5.x' and filename='formless/webform.py'.

	trunk/Quotient/setup.py

	This is a Quotient file, so we want to ignore it by having
my_file_splitter return None.

	branches/1.5.x/Quotient/setup.py

	This is also a Quotient file, which should be ignored.

The following definition for my_file_splitter will do the job:

def my_file_splitter(path):
 pieces = path.split('/')
 if pieces[0] == 'trunk':
 branch = None
 pieces.pop(0) # remove 'trunk'
 elif pieces[0] == 'branches':
 pieces.pop(0) # remove 'branches'
 # grab branch name
 branch = 'branches/' + pieces.pop(0)
 else:
 return None # something weird
 projectname = pieces.pop(0)
 if projectname != 'Nevow':
 return None # wrong project
 return dict(branch=branch, path='/'.join(pieces))

If you later decide you want to get changes for Quotient as well you could
replace the last 3 lines with simply:

return dict(project=projectname, branch=branch, path='/'.join(pieces))

Writing Change Sources

For some version-control systems, making Buildbot aware of new changes can be a
challenge. If the pre-supplied classes in Change Sources are not
sufficient, then you will need to write your own.

There are three approaches, one of which is not even a change source.
The first option is to write a change source that exposes some service to
which the version control system can "push" changes. This can be more
complicated, since it requires implementing a new service, but delivers changes
to Buildbot immediately on commit.

The second option is often preferable to the first: implement a notification
service in an external process (perhaps one that is started directly by the
version control system, or by an email server) and delivers changes to Buildbot
via PBChangeSource. This section does not describe this particular
approach, since it requires no customization within the buildmaster process.

The third option is to write a change source which polls for changes -
repeatedly connecting to an external service to check for new changes. This
works well in many cases, but can produce a high load on the version control
system if polling is too frequent, and can take too long to notice changes if
the polling is not frequent enough.

Writing a Notification-based Change Source

	
class buildbot.changes.base.ChangeSource

	

A custom change source must implement
buildbot.interfaces.IChangeSource.

The easiest way to do this is to subclass
buildbot.changes.base.ChangeSource, implementing the describe
method to describe the instance. ChangeSource is a Twisted service, so
you will need to implement the startService and stopService
methods to control the means by which your change source receives
notifications.

When the class does receive a change, it should call
self.master.addChange(..) to submit it to the buildmaster. This method
shares the same parameters as master.db.changes.addChange, so consult the
API documentation for that function for details on the available arguments.

You will probably also want to set compare_attrs to the list of object
attributes which Buildbot will use to compare one change source to another when
reconfiguring. During reconfiguration, if the new change source is different
from the old, then the old will be stopped and the new started.

Writing a Change Poller

	
class buildbot.changes.base.PollingChangeSource

	

Polling is a very common means of seeking changes, so Buildbot supplies a
utility parent class to make it easier. A poller should subclass
buildbot.changes.base.PollingChangeSource, which is a subclass of
ChangeSource. This subclass implements the Service methods,
and causes the poll method to be called every self.pollInterval
seconds. This method should return a Deferred to signal its completion.

Aside from the service methods, the other concerns in the previous section
apply here, too.

Writing a New Latent Buildslave Implementation

Writing a new latent buildslave should only require subclassing
buildbot.buildslave.AbstractLatentBuildSlave and implementing
start_instance and stop_instance.

def start_instance(self):
 # responsible for starting instance that will try to connect with this
 # master. Should return deferred. Problems should use an errback. The
 # callback value can be None, or can be an iterable of short strings to
 # include in the "substantiate success" status message, such as
 # identifying the instance that started.
 raise NotImplementedError

def stop_instance(self, fast=False):
 # responsible for shutting down instance. Return a deferred. If `fast`,
 # we're trying to shut the master down, so callback as soon as is safe.
 # Callback value is ignored.
 raise NotImplementedError

See buildbot.ec2buildslave.EC2LatentBuildSlave for an example, or see
the test example buildbot.test_slaves.FakeLatentBuildSlave.

Custom Build Classes

The standard BuildFactory object creates Build objects
by default. These Builds will each execute a collection of BuildSteps
in a fixed sequence. Each step can affect the results of the build,
but in general there is little intelligence to tie the different steps
together.

By setting the factory's buildClass attribute to a different class, you can
instantiate a different build class. This might be useful, for example, to
create a build class that dynamically determines which steps to run. The
skeleton of such a project would look like:

class DynamicBuild(Build):
 # override some methods
 ...

f = factory.BuildFactory()
f.buildClass = DynamicBuild
f.addStep(...)

Factory Workdir Functions

It is sometimes helpful to have a build's workdir determined at runtime based
on the parameters of the build. To accomplish this, set the workdir
attribute of the build factory to a callable. That callable will be invoked
with the SourceStamp for the build, and should return the appropriate
workdir. Note that the value must be returned immediately - Deferreds are not
supported.

This can be useful, for example, in scenarios with multiple repositories
submitting changes to BuildBot. In this case you likely will want to have a
dedicated workdir per repository, since otherwise a sourcing step with mode =
"update" will fail as a workdir with a working copy of repository A can't be
"updated" for changes from a repository B. Here is an example how you can
achieve workdir-per-repo:

def workdir(source_stamp):
 return hashlib.md5 (source_stamp.repository).hexdigest()[:8]

build_factory = factory.BuildFactory()
build_factory.workdir = workdir

build_factory.addStep(Git(mode="update"))
...
builders.append ({'name': 'mybuilder',
 'slavename': 'myslave',
 'builddir': 'mybuilder',
 'factory': build_factory})

The end result is a set of workdirs like

Repo1 => <buildslave-base>/mybuilder/a78890ba
Repo2 => <buildslave-base>/mybuilder/0823ba88

You could make the workdir function compute other paths, based on
parts of the repo URL in the sourcestamp, or lookup in a lookup table
based on repo URL. As long as there is a permanent 1:1 mapping between
repos and workdir, this will work.

Writing New BuildSteps

Warning

Buildbot is transitioning to a new, simpler style for writing custom steps.
See New-Style Build Steps for details.
This section documents new-style steps exclusively, although old-style steps are still supported.

While it is a good idea to keep your build process self-contained in the source code tree, sometimes it is convenient to put more intelligence into your Buildbot configuration.
One way to do this is to write a custom BuildStep.
Once written, this Step can be used in the master.cfg file.

The best reason for writing a custom BuildStep is to better parse the results of the command being run.
For example, a BuildStep that knows about JUnit could look at the logfiles to determine which tests had been run, how many passed and how many failed, and then report more detailed information than a simple rc==0 -based good/bad decision.

Buildbot has acquired a large fleet of build steps, and sports a number of knobs and hooks to make steps easier to write.
This section may seem a bit overwhelming, but most custom steps will only need to apply one or two of the techniques outlined here.

For complete documentation of the build step interfaces, see BuildSteps.

Writing BuildStep Constructors

Build steps act as their own factories, so their constructors are a bit more complex than necessary.
The configuration file instantiates a BuildStep object, but the step configuration must be re-used for multiple builds, so Buildbot needs some way to create more steps.

Consider the use of a BuildStep in master.cfg:

f.addStep(MyStep(someopt="stuff", anotheropt=1))

This creates a single instance of class MyStep.
However, Buildbot needs a new object each time the step is executed.
An instance of BuildStep remembers how it was constructed, and can create copies of itself.
When writing a new step class, then, keep in mind are that you cannot do anything "interesting" in the constructor -- limit yourself to checking and storing arguments.

It is customary to call the parent class's constructor with all otherwise-unspecified keyword arguments.
Keep a **kwargs argument on the end of your options, and pass that up to the parent class's constructor.

The whole thing looks like this:

class Frobnify(LoggingBuildStep):
 def __init__(self,
 frob_what="frobee",
 frob_how_many=None,
 frob_how=None,
 **kwargs):

 # check
 if frob_how_many is None:
 raise TypeError("Frobnify argument how_many is required")

 # override a parent option
 kwargs['parentOpt'] = 'xyz'

 # call parent
 LoggingBuildStep.__init__(self, **kwargs)

 # set Frobnify attributes
 self.frob_what = frob_what
 self.frob_how_many = how_many
 self.frob_how = frob_how

class FastFrobnify(Frobnify):
 def __init__(self,
 speed=5,
 **kwargs):
 Frobnify.__init__(self, **kwargs)
 self.speed = speed

Step Execution Process

A step's execution occurs in its run method.
When this method returns (more accurately, when the Deferred it returns fires), the step is complete.
The method's result must be an integer, giving the result of the step.
Any other output from the step (logfiles, status strings, URLs, etc.) is the responsibility of the run method.

The ShellCommand class implements this run method, and in most cases steps subclassing ShellCommand simply implement some of the subsidiary methods that its run method calls.

Running Commands

To spawn a command in the buildslave, create a RemoteCommand instance in your step's run method and run it with runCommand:

cmd = RemoteCommand(args)
d = self.runCommand(cmd)

The CommandMixin class offers a simple interface to several common slave-side commands.

For the much more common task of running a shell command on the buildslave, use ShellMixin.
This class provides a method to handle the myriad constructor arguments related to shell commands, as well as a method to create new RemoteCommand instances.
This mixin is the recommended method of implementing custom shell-based steps.
The older pattern of subclassing ShellCommand is no longer recommended.

A simple example of a step using the shell mixin is:

class RunCleanup(buildstep.ShellMixin, buildstep.BuildStep):
 def __init__(self, cleanupScript='./cleanup.sh', **kwargs):
 self.cleanupScript = cleanupScript
 kwargs = self.setupShellMixin(kwargs, prohibitArgs=['command'])
 buildstep.BuildStep.__init__(self, **kwargs)

 @defer.inlineCallbacks
 def run(self):
 cmd = yield self.makeRemoteShellCommand(
 command=[self.cleanupScript])
 yield self.runCommand(cmd)
 if cmd.didFail():
 cmd = yield self.makeRemoteShellCommand(
 command=[self.cleanupScript, '--force'],
 logEnviron=False)
 yield self.runCommand(cmd)
 defer.returnValue(cmd.results())

@defer.inlineCallbacks
def run(self):
 cmd = RemoteCommand(args)
 log = yield self.addLog('output')
 cmd.useLog(log, closeWhenFinished=True)
 yield self.runCommand(cmd)

Updating Status Strings

Each step can summarize its current status in a very short string.
For example, a compile step might display the file being compiled.
This information can be helpful users eager to see their build finish.

Similarly, a build has a set of short strings collected from its steps summarizing the overall state of the build.
Useful information here might include the number of tests run, but probably not the results of a make clean step.

As a step runs, Buildbot calls its getCurrentSummary method as necessary to get the step's current status.
"As necessary" is determined by calls to buildbot.process.buildstep.BuildStep.updateSummary.
Your step should call this method every time the status summary may have changed.
Buildbot will take care of rate-limiting summary updates.

When the step is complete, Buildbot calls its getResultSummary method to get a final summary of the step along with a summary for the build.

About Logfiles

Each BuildStep has a collection of log files.
Each one has a short name, like stdio or warnings.
Each log file contains an arbitrary amount of text, usually the contents of some output file generated during a build or test step, or a record of everything that was printed to stdout/stderr during the execution of some command.

Each can contain multiple channels, generally limited to three
basic ones: stdout, stderr, and headers. For example, when a
shell command runs, it writes a few lines to the headers channel to
indicate the exact argv strings being run, which directory the command
is being executed in, and the contents of the current environment
variables. Then, as the command runs, it adds a lot of stdout and
stderr messages. When the command finishes, a final header
line is added with the exit code of the process.

Status display plugins can format these different channels in
different ways. For example, the web page shows log files as text/html,
with header lines in blue text, stdout in black, and stderr in red. A
different URL is available which provides a text/plain format, in
which stdout and stderr are collapsed together, and header lines are
stripped completely. This latter option makes it easy to save the
results to a file and run grep or whatever against the
output.

Writing Log Files

Most commonly, logfiles come from commands run on the build slave.
Internally, these are configured by supplying the RemoteCommand instance with log files via the useLog method:

@defer.inlineCallbacks
def run(self):
 ...
 log = yield self.addLog('stdio')
 cmd.useLog(log, closeWhenFinished=True, 'stdio')
 yield self.runCommand(cmd)

The name passed to useLog must match that configured in the command.
In this case, stdio is the default.

If the log file was already added by another part of the step, it can be retrieved with getLog:

stdioLog = self.getLog('stdio')

Less frequently, some master-side processing produces a log file.
If this log file is short and easily stored in memory, this is as simple as a call to addCompleteLog:

@defer.inlineCallbacks
def run(self):
 ...
 summary = u'\n'.join('%s: %s' % (k, count)
 for (k, count) in self.lint_results.iteritems())
 yield self.addCompleteLog('summary', summary)

Note that the log contents must be a unicode string.

Longer logfiles can be constructed line-by-line using the add methods of the log file:

@defer.inlineCallbacks
def run(self):
 ...
 updates = yield self.addLog('updates')
 while True:
 ...
 yield updates.addStdout(some_update)

Again, note that the log input must be a unicode string.

Finally, addHTMLLog is similar to addCompleteLog, but the resulting log will be tagged as containing HTML.
The web UI will display the contents of the log using the browser.

The logfiles= argument to ShellCommand and its subclasses creates new log files and fills them in realtime by asking the buildslave to watch a actual file on disk.
The buildslave will look for additions in the target file and report them back to the BuildStep.
These additions will be added to the log file by calling addStdout.

All log files can be used as the source of a LogObserver just like the normal stdio LogFile.
In fact, it's possible for one LogObserver to observe a logfile created by another.

Reading Logfiles

For the most part, Buildbot tries to avoid loading the contents of a log file into memory as a single string.
For large log files on a busy master, this behavior can quickly consume a great deal of memory.

Instead, steps should implement a LogObserver to examine log files one chunk or line at a time.

For commands which only produce a small quantity of output, RemoteCommand will collect the command's stdout into its stdout attribute if given the collectStdout=True constructor argument.

Adding LogObservers

Most shell commands emit messages to stdout or stderr as they operate, especially if you ask them nicely with a --verbose flag of some sort.
They may also write text to a log file while they run.
Your BuildStep can watch this output as it arrives, to keep track of how much progress the command has made or to process log output for later summarization.

To accomplish this, you will need to attach a LogObserver to the log.
This observer is given all text as it is emitted from the command, and has the opportunity to
parse that output incrementally.

There are a number of pre-built LogObserver classes that you
can choose from (defined in buildbot.process.buildstep, and of
course you can subclass them to add further customization. The
LogLineObserver class handles the grunt work of buffering and
scanning for end-of-line delimiters, allowing your parser to operate
on complete stdout/stderr lines. (Lines longer than a set maximum
length are dropped; the maximum defaults to 16384 bytes, but you can
change it by calling setMaxLineLength on your
LogLineObserver instance. Use sys.maxint for effective
infinity.)

For example, let's take a look at the TrialTestCaseCounter,
which is used by the Trial step to count test cases as they are run.
As Trial executes, it emits lines like the following:

buildbot.test.test_config.ConfigTest.testDebugPassword ... [OK]
buildbot.test.test_config.ConfigTest.testEmpty ... [OK]
buildbot.test.test_config.ConfigTest.testIRC ... [FAIL]
buildbot.test.test_config.ConfigTest.testLocks ... [OK]

When the tests are finished, trial emits a long line of ====== and
then some lines which summarize the tests that failed. We want to
avoid parsing these trailing lines, because their format is less
well-defined than the [OK] lines.

A simple version of the parser for this output looks like this.
The full version is in master/buildbot/steps/python_twisted.py [https://github.com/buildbot/buildbot/blob/master/master/buildbot/steps/python_twisted.py].

from buildbot.process.logobserver import LogLineObserver

class TrialTestCaseCounter(LogLineObserver):
 _line_re = re.compile(r'^([\w\.]+) \.\.\. \[([^\]]+)\]$')
 numTests = 0
 finished = False

 def outLineReceived(self, line):
 if self.finished:
 return
 if line.startswith("=" * 40):
 self.finished = True
 return

 m = self._line_re.search(line.strip())
 if m:
 testname, result = m.groups()
 self.numTests += 1
 self.step.setProgress('tests', self.numTests)

This parser only pays attention to stdout, since that's where trial
writes the progress lines. It has a mode flag named finished to
ignore everything after the ==== marker, and a scary-looking
regular expression to match each line while hopefully ignoring other
messages that might get displayed as the test runs.

Each time it identifies a test has been completed, it increments its counter
and delivers the new progress value to the step with self.step.setProgress.
This helps Buildbot to determine the ETA for the step.

To connect this parser into the Trial build step,
Trial.__init__ ends with the following clause:

this counter will feed Progress along the 'test cases' metric
counter = TrialTestCaseCounter()
self.addLogObserver('stdio', counter)
self.progressMetrics += ('tests',)

This creates a TrialTestCaseCounter and tells the step that the
counter wants to watch the stdio log. The observer is
automatically given a reference to the step in its step
attribute.

Using Properties

In custom BuildSteps, you can get and set the build properties with
the getProperty and setProperty methods. Each takes a string
for the name of the property, and returns or accepts an
arbitrary JSON-able (lists, dicts, strings, and numbers) object. For example:

class MakeTarball(ShellCommand):
 def start(self):
 if self.getProperty("os") == "win":
 self.setCommand([...]) # windows-only command
 else:
 self.setCommand([...]) # equivalent for other systems
 ShellCommand.start(self)

Remember that properties set in a step may not be available until the next step begins.
In particular, any Property or Interpolate instances for the current step are interpolated before the step starts, so they cannot use the value of any properties determined in that step.

Using Statistics

Statistics can be generated for each step, and then summarized across all steps in a build.
For example, a test step might set its warnings statistic to the number of warnings observed.
The build could then sum the warnings on all steps to get a total number of warnings.

Statistics are set and retrieved with the setStatistic and:py:meth:~buildbot.process.buildstep.BuildStep.getStatistic methods.
The hasStatistic method determines whether a statistic exists.

The Build method getSummaryStatistic can be used to aggregate over all steps in a Build.

BuildStep URLs

Each BuildStep has a collection of links.
Each has a name and a target URL.
The web display displays clickable links for each link, making them a useful way to point to extra information about a step.
For example, a step that uploads a build result to an external service might include a link to the uploaded flie.

To set one of these links, the BuildStep should call the addURL method with the name of the link and the target URL.
Multiple URLs can be set.
For example:

@defer.inlineCallbacks
def run(self):
 ... # create and upload report to coverage server
 url = 'http://coverage.corp.com/reports/%s' % reportname
 yield self.addURL('coverage', url)

Discovering files

When implementing a BuildStep it may be necessary to know about files
that are created during the build. There are a few slave commands that can be
used to find files on the slave and test for the existence (and type) of files
and directories.

The slave provides the following file-discovery related commands:

	stat calls os.stat for a file in the slave's build directory. This
can be used to check if a known file exists and whether it is a regular file,
directory or symbolic link.

	listdir calls os.listdir for a directory on the slave. It can be
used to obtain a list of files that are present in a directory on the slave.

	glob calls glob.glob on the slave, with a given shell-style pattern
containing wildcards.

For example, we could use stat to check if a given path exists and contains
*.pyc files. If the path does not exist (or anything fails) we mark the step
as failed; if the path exists but is not a directory, we mark the step as having
"warnings".

from buildbot.process import buildstep
from buildbot.interfaces import BuildSlaveToOldError
from buildbot.status.results import SUCCESS, WARNINGS, FAILURE
import stat

class MyBuildStep(buildstep.BuildStep):

 def __init__(self, dirname, **kwargs):
 buildstep.BuildStep.__init__(self, **kwargs)
 self.dirname = dirname

 def start(self):
 # make sure the slave knows about stat
 slavever = (self.slaveVersion('stat'),
 self.slaveVersion('glob'))
 if not all(slavever):
 raise BuildSlaveToOldError('need stat and glob')

 cmd = buildstep.RemoteCommand('stat', {'file': self.dirname})

 d = self.runCommand(cmd)
 d.addCallback(lambda res: self.evaluateStat(cmd))
 d.addErrback(self.failed)
 return d

 def evaluateStat(self, cmd):
 if cmd.didFail():
 self.step_status.setText(["File not found."])
 self.finished(FAILURE)
 return
 s = cmd.updates["stat"][-1]
 if not stat.S_ISDIR(s[stat.ST_MODE]):
 self.step_status.setText(["'tis not a directory"])
 self.finished(WARNINGS)
 return

 cmd = buildstep.RemoteCommand('glob', {'glob': self.dirname + '/*.pyc'})

 d = self.runCommand(cmd)
 d.addCallback(lambda res: self.evaluateGlob(cmd))
 d.addErrback(self.failed)
 return d

 def evaluateGlob(self, cmd):
 if cmd.didFail():
 self.step_status.setText(["Glob failed."])
 self.finished(FAILURE)
 return
 files = cmd.updates["files"][-1]
 if len(files):
 self.step_status.setText(["Found pycs"]+files)
 else:
 self.step_status.setText(["No pycs found"])
 self.finished(SUCCESS)

For more information on the available commands, see Master-Slave API.

A Somewhat Whimsical Example

Let's say that we've got some snazzy new unit-test framework called
Framboozle. It's the hottest thing since sliced bread. It slices, it
dices, it runs unit tests like there's no tomorrow. Plus if your unit
tests fail, you can use its name for a Web 2.1 startup company, make
millions of dollars, and hire engineers to fix the bugs for you, while
you spend your afternoons lazily hang-gliding along a scenic pacific
beach, blissfully unconcerned about the state of your
tests. [1]

To run a Framboozle-enabled test suite, you just run the 'framboozler'
command from the top of your source code tree. The 'framboozler'
command emits a bunch of stuff to stdout, but the most interesting bit
is that it emits the line "FNURRRGH!" every time it finishes running a
test case You'd like to have a test-case counting LogObserver that
watches for these lines and counts them, because counting them will
help the buildbot more accurately calculate how long the build will
take, and this will let you know exactly how long you can sneak out of
the office for your hang-gliding lessons without anyone noticing that
you're gone.

This will involve writing a new BuildStep (probably named
"Framboozle") which inherits from ShellCommand. The BuildStep class
definition itself will look something like this:

from buildbot.steps.shell import ShellCommand
from buildbot.process.logobserver import LogLineObserver

class FNURRRGHCounter(LogLineObserver):
 numTests = 0
 def outLineReceived(self, line):
 if "FNURRRGH!" in line:
 self.numTests += 1
 self.step.setProgress('tests', self.numTests)

class Framboozle(ShellCommand):
 command = ["framboozler"]

 def __init__(self, **kwargs):
 ShellCommand.__init__(self, **kwargs) # always upcall!
 counter = FNURRRGHCounter()
 self.addLogObserver('stdio', counter)
 self.progressMetrics += ('tests',)

So that's the code that we want to wind up using. How do we actually
deploy it?

You have a couple of different options.

Inclusion in the master.cfg file

The simplest technique is to simply put the step class definitions
in your master.cfg file, somewhere
before the BuildFactory definition where you actually use it in a
clause like:

f = BuildFactory()
f.addStep(SVN(svnurl="stuff"))
f.addStep(Framboozle())

Remember that master.cfg is secretly just a Python program with one
job: populating the BuildmasterConfig dictionary. And Python programs
are allowed to define as many classes as they like. So you can define
classes and use them in the same file, just as long as the class is
defined before some other code tries to use it.

This is easy, and it keeps the point of definition very close to the
point of use, and whoever replaces you after that unfortunate
hang-gliding accident will appreciate being able to easily figure out
what the heck this stupid "Framboozle" step is doing anyways. The
downside is that every time you reload the config file, the Framboozle
class will get redefined, which means that the buildmaster will think
that you've reconfigured all the Builders that use it, even though
nothing changed. Bleh.

python file somewhere on the system

Instead, we can put this code in a separate file, and import
it into the master.cfg file just like we would the normal buildsteps
like ShellCommand and SVN.

Create a directory named ~/lib/python, put the step class definitions
in ~/lib/python/framboozle.py, and run your buildmaster using:

PYTHONPATH=~/lib/python buildbot start MASTERDIR

or use the Makefile.buildbot to control the way
buildbot start works. Or add something like this to
something like your ~/.bashrc or ~/.bash_profile or ~/.cshrc:

export PYTHONPATH=~/lib/python

Once we've done this, our master.cfg can look like:

from framboozle import Framboozle
f = BuildFactory()
f.addStep(SVN(svnurl="stuff"))
f.addStep(Framboozle())

or:

import framboozle
f = BuildFactory()
f.addStep(SVN(svnurl="stuff"))
f.addStep(framboozle.Framboozle())

(check out the Python docs for details about how import and from A
import B work).

What we've done here is to tell Python that every time it handles an
"import" statement for some named module, it should look in our
~/lib/python/ for that module before it looks anywhere else. After our
directories, it will try in a bunch of standard directories too
(including the one where buildbot is installed). By setting the
PYTHONPATH environment variable, you can add directories to the front
of this search list.

Python knows that once it "import"s a file, it doesn't need to
re-import it again. This means that reconfiguring the buildmaster
(with buildbot reconfig, for example) won't make it think the
Framboozle class has changed every time, so the Builders that use it
will not be spuriously restarted. On the other hand, you either have
to start your buildmaster in a slightly weird way, or you have to
modify your environment to set the PYTHONPATH variable.

Install this code into a standard Python library directory

Find out what your Python's standard include path is by asking it:

80:warner@luther% python
Python 2.4.4c0 (#2, Oct 2 2006, 00:57:46)
[GCC 4.1.2 20060928 (prerelease) (Debian 4.1.1-15)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import sys
>>> import pprint
>>> pprint.pprint(sys.path)
['',
 '/usr/lib/python24.zip',
 '/usr/lib/python2.4',
 '/usr/lib/python2.4/plat-linux2',
 '/usr/lib/python2.4/lib-tk',
 '/usr/lib/python2.4/lib-dynload',
 '/usr/local/lib/python2.4/site-packages',
 '/usr/lib/python2.4/site-packages',
 '/usr/lib/python2.4/site-packages/Numeric',
 '/var/lib/python-support/python2.4',
 '/usr/lib/site-python']

In this case, putting the code into
/usr/local/lib/python2.4/site-packages/framboozle.py would work just
fine. We can use the same master.cfg import framboozle statement as
in Option 2. By putting it in a standard include directory (instead of
the decidedly non-standard ~/lib/python), we don't even have to set
PYTHONPATH to anything special. The downside is that you probably have
to be root to write to one of those standard include directories.

Submit the code for inclusion in the Buildbot distribution

Make a fork of buildbot on http://github.com/buildbot/buildbot or post a patch
in a bug at http://buildbot.net. In either case, post a note about your patch
to the mailing list, so others can provide feedback and, eventually, commit it.

from buildbot.steps import framboozle
f = BuildFactory()
f.addStep(SVN(svnurl="stuff"))
f.addStep(framboozle.Framboozle())

And then you don't even have to install framboozle.py anywhere on your system,
since it will ship with Buildbot. You don't have to be root, you don't have to
set PYTHONPATH. But you do have to make a good case for Framboozle
being worth going into the main distribution, you'll probably have to provide
docs and some unit test cases, you'll need to figure out what kind of beer the
author likes (IPA's and Stouts for Dustin), and then you'll have to wait until
the next release. But in some environments, all this is easier than getting
root on your buildmaster box, so the tradeoffs may actually be worth it.

Putting the code in master.cfg (1) makes it available to that
buildmaster instance. Putting it in a file in a personal library
directory (2) makes it available for any buildmasters you might be
running. Putting it in a file in a system-wide shared library
directory (3) makes it available for any buildmasters that anyone on
that system might be running. Getting it into the buildbot's upstream
repository (4) makes it available for any buildmasters that anyone in
the world might be running. It's all a matter of how widely you want
to deploy that new class.

Writing New Status Plugins

Each status plugin is an object which provides the
twisted.application.service.IService interface, which creates a
tree of Services with the buildmaster at the top [not strictly true].
The status plugins are all children of an object which implements
buildbot.interfaces.IStatus, the main status object. From this
object, the plugin can retrieve anything it wants about current and
past builds. It can also subscribe to hear about new and upcoming
builds.

Status plugins which only react to human queries (like the Waterfall
display) never need to subscribe to anything: they are idle until
someone asks a question, then wake up and extract the information they
need to answer it, then they go back to sleep. Plugins which need to
act spontaneously when builds complete (like the MailNotifier plugin)
need to subscribe to hear about new builds.

If the status plugin needs to run network services (like the HTTP
server used by the Waterfall plugin), they can be attached as Service
children of the plugin itself, using the IServiceCollection
interface.

	[1]	framboozle.com is still available. Remember, I get 10% :).

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

New-Style Build Steps

In Buildbot-0.9.0, many operations performed by BuildStep subclasses return a Deferred.
As a result, custom build steps which call these methods will need to be rewritten.

Buildbot-0.8.9 supports old-style steps natively, while new-style steps are emulated.
Buildbot-0.9.0 supports new-style steps natively, while old-style steps are emulated.
Later versions of Buildbot wil not support old-style steps at all.
All custom steps should be rewritten in the new style as soon as possible.

Buildbot distinguishes new-style from old-style steps by the presence of a run method.
If this method is present, then the step is a new-style step.

Summary of Changes

	New-style steps have a run method that is simpler to implement than the old start method.

	Many methods are now asynchronous (return Deferreds), as they perform operations on the database.

	Logs are now implemented by a completely different class.
This class supports the same log-writing methods (addStderr and so on), although they are now asynchronous.
However, it does not support log-reading methods such as getText.
It was never advisable to handle logs as enormous strings.
New-style steps should, instead, use a LogObserver or (in Buildbot-0.9.0) fetch log lines bit by bit using the data API.

	buildbot.process.buildstep.LoggingBuildStep is deprecated and cannot be uesd in new-style steps.
Mix in buildbot.process.buildstep.ShellMixin instead.

Rewriting start

If your custom buildstep implements the start method, then rename that method to run and set it up to return a Deferred, either explicitly or via inlineCallbacks.
The value of the Deferred should be the result of the step (one of the codes in buildbot.status.results), or a Twisted failure instance to complete the step as EXCEPTION.
The new run method should not call self.finished or self.failed, instead signalling the same via Deferred.

For example, the following old-style start method

def start(self): ## old style
 cmd = remotecommand.RemoteCommand('stat', {'file': self.file })
 d = self.runCommand(cmd)
 d.addCallback(lambda res: self.convertResult(cmd))
 d.addErrback(self.failed)

Becomes

@defer.inlineCallbacks
def run(self): ## new style
 cmd = remotecommand.RemoteCommand('stat', {'file': self.file })
 yield self.runCommand(cmd)
 yield self.convertResult(cmd)

Newly Asynchronous Methods

The following methods now return a Deferred:

	buildbot.process.buildstep.BuildStep.addLog

	log.addStdout

	log.addStderr

	log.addHeader

	log.finish (see "Log Objects", below)

	buildbot.process.remotecommand.RemoteCommand.addStdout

	buildbot.process.remotecommand.RemoteCommand.addStderr

	buildbot.process.remotecommand.RemoteCommand.addHeader

	buildbot.process.remotecommand.RemoteCommand.addToLog

	buildbot.process.buildstep.BuildStep.addCompleteLog

	buildbot.process.buildstep.BuildStep.addHTMLLog

	buildbot.process.buildstep.BuildStep.addURL

Any custom code in a new-style step that calls these methods must handle the resulting Deferred.
In some cases, that means that the calling method's signature will change.
For example

def summarize(self): ## old-style
 for m in self.MESSAGES:
 if counts[m]:
 self.addCompleteLog(m, "".join(summaries[m]))
 self.setProperty("count-%s" % m, counts[m], "counter")

Is a synchronous function, not returning a Deferred.
However, when converted to a new-style test, it must handle Deferreds from the methods it calls, so it must be asynchronous.
Syntactically, inlineCallbacks makes the change fairly simple:

@defer.inlineCallbacks
def summarize(self): ## new-style
 for m in self.MESSAGES:
 if counts[m]:
 yield self.addCompleteLog(m, "".join(summaries[m]))
 self.setProperty("count-%s" % m, counts[m], "counter")

However, this method's callers must now handle the Deferred that it returns.
All methods that can be overridden in custom steps can return a Deferred.

Properties

Good news!
The API for properties is the same synchronous API as was available in old-style steps.
Properties are handled synchronously during the build, and persisted to the database at completion of each step.

Log Objects

Old steps had two ways of interacting with logfiles, both of which have changed.

The first is writing to logs while a step is executing.
When using addCompleteLog or addHTMLLog, this is straightforward, except that in new-style steps these methods return a Deferred.

The second method is via buildbot.process.buildstep.BuildStep.addLog.
In new-style steps, the returned object (via Deferred) has the following methods to add log content:

	addStdout

	addStderr

	addHeader

	finish

All of these methods now return Deferreds.
None of the old log-reading methods are available on this object:

	hasContents

	getText

	readLines

	getTextWithHeaders

	getChunks

If your step uses such methods, consider using a LogObserver instead, or using the Data API to get the required data.

The undocumented and unused subscribeConsumer method of logfiles has also been removed.

The subscribe method now takes a callable, rather than an instance, and does not support catchup.
This method was primarily used by LogObserver, the implementation of which has been modified accordingly.
Any other uses of the subscribe method should be refactored to use a LogObserver.

Status Strings

The self.step_status.setText and setText2 methods have been removed.
Similarly, the _describe and describe methods are not used in new-style steps.
In fact, steps no longer set their status directly.

Instead, steps call buildbot.process.buildstep.BuildStep.updateSummary whenever the status may have changed.
This method calls getCurrentSummary or getResultSummary as appropriate and update displays of the step's status.
Steps override the latter two methods to provide appropriate summaries.

Statistics

Support for statistics has been moved to the BuildStep and Build objects.
Calls to self.step_status.setStatistic should be rewritten as self.setStatistic.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

Command-line Tool

This section describes command-line tools available after buildbot
installation. Since version 0.8 the one-for-all buildbot
command-line tool was divided into two parts namely buildbot
and buildslave. The last one was separated from main
command-line tool to minimize dependencies required for running a
buildslave while leaving all other functions to buildbot tool.

Every command-line tool has a list of global options and a set of commands
which have their own options. One can run these tools in the following way:

buildbot [global options] command [command options]
buildslave [global options] command [command options]

The buildbot command is used on the master, while buildslave is used on
the slave. Global options are the same for both tools which perform the
following actions:

	
--help
	Print general help about available commands and global options and exit.
All subsequent arguments are ignored.

	
--verbose
	Set verbose output.

	
--version
	Print current buildbot version and exit. All subsequent arguments are
ignored.

You can get help on any command by specifying --help as a
command option:

buildbot @var{command} --help

You can also use manual pages for buildbot and
buildslave for quick reference on command-line options.

The remainder of this section describes each buildbot command. See
Command Line Index for a full list.

buildbot

The buildbot command-line tool can be used to start or stop a
buildmaster or buildbot, and to interact with a running buildmaster.
Some of its subcommands are intended for buildmaster admins, while
some are for developers who are editing the code that the buildbot is
monitoring.

Administrator Tools

The following buildbot sub-commands are intended for
buildmaster administrators:

create-master

buildbot create-master -r {BASEDIR}

This creates a new directory and populates it with files that allow it to be used as a buildmaster's base directory.

You will usually want to use the -r option to create a relocatable buildbot.tac.
This allows you to move the master directory without editing this file.

start

buildbot start [--nodaemon] {BASEDIR}

This starts a buildmaster which was already created in the given base directory.
The daemon is launched in the background, with events logged to a file named twistd.log.

The --nodaemon option instructs Buildbot to skip daemonizing.
The process will start in the foreground.
It will only return to the command-line when it is stopped.

restart

buildbot restart [--nodaemon] {BASEDIR}

Restart the buildmaster.
This is equivalent to stop followed by start
The --nodaemon option has the same meaning as for start.

stop

buildbot stop {BASEDIR}

This terminates the daemon (either buildmaster or buildslave) running in the given directory.
The --clean option shuts down the buildmaster cleanly.

sighup

buildbot sighup {BASEDIR}

This sends a SIGHUP to the buildmaster running in the given directory, which causes it to re-read its master.cfg file.

Developer Tools

These tools are provided for use by the developers who are working on
the code that the buildbot is monitoring.

statuslog

buildbot statuslog --master {MASTERHOST}:{PORT}

This command starts a simple text-based status client, one which just
prints out a new line each time an event occurs on the buildmaster.

The --master option provides the location of the
buildbot.status.client.PBListener status port, used to deliver
build information to realtime status clients. The option is always in
the form of a string, with hostname and port number separated by a
colon (HOSTNAME:PORTNUM). Note that this port is not the
same as the slaveport (although a future version may allow the same
port number to be used for both purposes). If you get an error message
to the effect of Failure: twisted.cred.error.UnauthorizedLogin:,
this may indicate that you are connecting to the slaveport rather than
a PBListener port.

The --master option can also be provided by the
masterstatus name in .buildbot/options
(see .buildbot config directory).

statusgui

If you have set up a PBListener, you will be able
to monitor your Buildbot using a simple Gtk+ application invoked with
the buildbot statusgui command:

buildbot statusgui --master {MASTERHOST}:{PORT}

This command starts a simple Gtk+-based status client, which contains a few
boxes for each Builder that change color as events occur. It uses the same
--master argument and masterstatus option as the
buildbot statuslog command (statuslog).

try

This lets a developer to ask the question What would happen if I
committed this patch right now?. It runs the unit test suite (across
multiple build platforms) on the developer's current code, allowing
them to make sure they will not break the tree when they finally
commit their changes.

The buildbot try command is meant to be run from within a
developer's local tree, and starts by figuring out the base revision
of that tree (what revision was current the last time the tree was
updated), and a patch that can be applied to that revision of the tree
to make it match the developer's copy. This (revision, patch) pair is
then sent to the buildmaster, which runs a build with that
SourceStamp. If you want, the tool will emit status messages as the
builds run, and will not terminate until the first failure has been
detected (or the last success).

There is an alternate form which accepts a pre-made patch file
(typically the output of a command like svn diff). This --diff
form does not require a local tree to run from. See try --diff concerning
the --diff command option.

For this command to work, several pieces must be in place: the
Try_Jobdir or :Try_Userpass, as well as some client-side
configuration.

Locating the master

The try command needs to be told how to connect to the
try scheduler, and must know which of the authentication
approaches described above is in use by the buildmaster. You specify
the approach by using --connect=ssh or --connect=pb
(or try_connect = 'ssh' or try_connect = 'pb' in
.buildbot/options).

For the PB approach, the command must be given a --master
argument (in the form HOST:PORT) that points to TCP port that you
picked in the Try_Userpass scheduler. It also takes a
--username and --passwd pair of arguments that match
one of the entries in the buildmaster's userpass list. These
arguments can also be provided as try_master,
try_username, and try_password entries in the
.buildbot/options file.

For the SSH approach, the command must be given --host and
--username, to get to the buildmaster host. It must also be given
--jobdir, which points to the inlet directory configured
above. The jobdir can be relative to the user's home directory, but
most of the time you will use an explicit path like
~buildbot/project/trydir. These arguments can be provided in
.buildbot/options as try_host, try_username,
try_password, and try_jobdir.

The SSH approach also provides a --buildbotbin argument to
allow specification of the buildbot binary to run on the
buildmaster. This is useful in the case where buildbot is installed in
a virtualenv on the buildmaster
host, or in other circumstances where the buildbot command is not on
the path of the user given by --username. The
--buildbotbin argument can be provided in
.buildbot/options as try_buildbotbin

The following command line arguments are deprecated, but retained for
backward compatibility:

	
--tryhost
	is replaced by --host

	
--trydir
	is replaced by --jobdir

	
--master
	is replaced by --masterstatus

Likewise, the following .buildbot/options file entries are
deprecated, but retained for backward compatibility:

	try_dir is replaced by try_jobdir

	masterstatus is replaced by try_masterstatus

Waiting for results

If you provide the --wait option (or try_wait = True
in .buildbot/options), the buildbot try command will
wait until your changes have either been proven good or bad before
exiting. Unless you use the --quiet option (or
try_quiet=True), it will emit a progress message every 60
seconds until the builds have completed.

The SSH connection method does not support waiting for results.

Choosing the Builders

A trial build is performed on multiple Builders at the same time, and
the developer gets to choose which Builders are used (limited to a set
selected by the buildmaster admin with the TryScheduler's
builderNames= argument). The set you choose will depend upon
what your goals are: if you are concerned about cross-platform
compatibility, you should use multiple Builders, one from each
platform of interest. You might use just one builder if that platform
has libraries or other facilities that allow better test coverage than
what you can accomplish on your own machine, or faster test runs.

The set of Builders to use can be specified with multiple
--builder arguments on the command line. It can also be
specified with a single try_builders option in
.buildbot/options that uses a list of strings to specify all
the Builder names:

try_builders = ["full-OSX", "full-win32", "full-linux"]

If you are using the PB approach, you can get the names of the builders
that are configured for the try scheduler using the get-builder-names
argument:

buildbot try --get-builder-names --connect=pb --master=... --username=... --passwd=...

Specifying the VC system

The try command also needs to know how to take the
developer's current tree and extract the (revision, patch)
source-stamp pair. Each VC system uses a different process, so you
start by telling the try command which VC system you are
using, with an argument like --vc=cvs or --vc=git.
This can also be provided as try_vc in
.buildbot/options.

The following names are recognized: bzr cvs darcs hg
git mtn p4 svn

Finding the top of the tree

Some VC systems (notably CVS and SVN) track each directory
more-or-less independently, which means the try command
needs to move up to the top of the project tree before it will be able
to construct a proper full-tree patch. To accomplish this, the
try command will crawl up through the parent directories
until it finds a marker file. The default name for this marker file is
.buildbot-top, so when you are using CVS or SVN you should
touch .buildbot-top from the top of your tree before running
buildbot try. Alternatively, you can use a filename like
ChangeLog or README, since many projects put one of
these files in their top-most directory (and nowhere else). To set
this filename, use --topfile=ChangeLog, or set it in the
options file with try_topfile = 'ChangeLog'.

You can also manually set the top of the tree with
--topdir=~/trees/mytree, or try_topdir =
'~/trees/mytree'. If you use try_topdir, in a
.buildbot/options file, you will need a separate options file
for each tree you use, so it may be more convenient to use the
try_topfile approach instead.

Other VC systems which work on full projects instead of individual
directories (Darcs, Mercurial, Git, Monotone) do not require
try to know the top directory, so the --try-topfile
and --try-topdir arguments will be ignored.

If the try command cannot find the top directory, it will
abort with an error message.

The following command line arguments are deprecated, but retained for
backward compatibility:

	--try-topdir is replaced by --topdir

	--try-topfile is replaced by --topfile

Determining the branch name

Some VC systems record the branch information in a way that try
can locate it. For the others, if you are using something other than
the default branch, you will have to tell the buildbot which branch
your tree is using. You can do this with either the --branch
argument, or a try_branch entry in the
.buildbot/options file.

Determining the revision and patch

Each VC system has a separate approach for determining the tree's base
revision and computing a patch.

	CVS

	try pretends that the tree is up to date. It converts the
current time into a -D time specification, uses it as the base
revision, and computes the diff between the upstream tree as of that
point in time versus the current contents. This works, more or less,
but requires that the local clock be in reasonably good sync with the
repository.

	SVN

	try does a svn status -u to find the latest
repository revision number (emitted on the last line in the Status
against revision: NN message). It then performs an svn diff
-rNN to find out how your tree differs from the repository version,
and sends the resulting patch to the buildmaster. If your tree is not
up to date, this will result in the try tree being created with
the latest revision, then backwards patches applied to bring it
back to the version you actually checked out (plus your actual
code changes), but this will still result in the correct tree being
used for the build.

	bzr

	try does a bzr revision-info to find the base revision,
then a bzr diff -r$base.. to obtain the patch.

	Mercurial

	hg parents --template '{node}\n' emits the full revision id (as opposed to
the common 12-char truncated) which is a SHA1 hash of the current
revision's contents. This is used as the base revision.
hg diff then provides the patch relative to that
revision. For try to work, your working directory must only
have patches that are available from the same remotely-available
repository that the build process' source.Mercurial will use.

	Perforce

	try does a p4 changes -m1 ... to determine the latest
changelist and implicitly assumes that the local tree is synced to this
revision. This is followed by a p4 diff -du to obtain the patch.
A p4 patch differs slightly from a normal diff. It contains full depot
paths and must be converted to paths relative to the branch top. To convert
the following restriction is imposed. The p4base (see P4Source)
is assumed to be //depot

	Darcs

	try does a darcs changes --context to find the list
of all patches back to and including the last tag that was made. This text
file (plus the location of a repository that contains all these
patches) is sufficient to re-create the tree. Therefore the contents
of this context file are the revision stamp for a
Darcs-controlled source tree. It then does a darcs diff -u
to compute the patch relative to that revision.

	Git

	git branch -v lists all the branches available in the local
repository along with the revision ID it points to and a short summary
of the last commit. The line containing the currently checked out
branch begins with * (star and space) while all the others start
with (two spaces). try scans for this line and extracts
the branch name and revision from it. Then it generates a diff against
the base revision.

	Monotone

	mtn automate get_base_revision_id emits the full revision id
which is a SHA1 hash of the current revision's contents. This is used as
the base revision.
mtn diff then provides the patch relative to that
revision. For try to work, your working directory must
only have patches that are available from the same
remotely-available repository that the build process'
source.Monotone will use.

patch information

You can provide the --who=dev to designate who is running the
try build. This will add the dev to the Reason field on the try
build's status web page. You can also set try_who = dev in the
.buildbot/options file. Note that --who=dev will not
work on version 0.8.3 or earlier masters.

Similarly, --comment=COMMENT will specify the comment for the patch,
which is also displayed in the patch information. The corresponding
config-file option is try_comment.

Sending properties

You can set properties to send with your change using either the
--property=key=value option, which sets a single property,
or the --properties=key1=value1,key2=value2... option,
which sets multiple comma-separated properties.
Either of these can be sepcified multiple times.
Note that the --properties option uses commas to split on
properties, so if your property value itself contains a comma,
you'll need to use the --property option to set it.

try --diff

Sometimes you might have a patch from someone else that you want to
submit to the buildbot. For example, a user may have created a patch
to fix some specific bug and sent it to you by email. You've inspected
the patch and suspect that it might do the job (and have at least
confirmed that it doesn't do anything evil). Now you want to test it
out.

One approach would be to check out a new local tree, apply the patch,
run your local tests, then use buildbot try to run the tests on
other platforms. An alternate approach is to use the buildbot
try --diff form to have the buildbot test the patch without using a
local tree.

This form takes a --diff argument which points to a file that
contains the patch you want to apply. By default this patch will be
applied to the TRUNK revision, but if you give the optional
--baserev argument, a tree of the given revision will be used
as a starting point instead of TRUNK.

You can also use buildbot try --diff=- to read the patch
from stdin.

Each patch has a patchlevel associated with it. This indicates the
number of slashes (and preceding pathnames) that should be stripped
before applying the diff. This exactly corresponds to the -p
or --strip argument to the patch utility. By
default buildbot try --diff uses a patchlevel of 0, but you
can override this with the -p argument.

When you use --diff, you do not need to use any of the other
options that relate to a local tree, specifically --vc,
--try-topfile, or --try-topdir. These options will
be ignored. Of course you must still specify how to get to the
buildmaster (with --connect, --tryhost, etc).

Other Tools

These tools are generally used by buildmaster administrators.

sendchange

This command is used to tell the buildmaster about source changes. It
is intended to be used from within a commit script, installed on the
VC server. It requires that you have a PBChangeSource
(PBChangeSource) running in the buildmaster (by being set in
c['change_source']).

buildbot sendchange --master {MASTERHOST}:{PORT} --auth {USER}:{PASS}
 --who {USER} {FILENAMES..}

The auth option specifies the credentials to use to connect to the
master, in the form user:pass. If the password is omitted, then
sendchange will prompt for it. If both are omitted, the old default (username
"change" and password "changepw") will be used. Note that this password is
well-known, and should not be used on an internet-accessible port.

The master and username arguments can also be given in the
options file (see .buildbot config directory). There are other (optional)
arguments which can influence the Change that gets submitted:

	
--branch
	(or option branch) This provides the (string) branch specifier. If
omitted, it defaults to None, indicating the default branch. All files
included in this Change must be on the same branch.

	
--category
	(or option category) This provides the (string) category specifier. If
omitted, it defaults to None, indicating no category. The category property
can be used by Schedulers to filter what changes they listen to.

	
--project
	(or option project) This provides the (string) project to which this
change applies, and defaults to ''. The project can be used by schedulers to
decide which builders should respond to a particular change.

	
--repository
	(or option repository) This provides the repository from which this
change came, and defaults to ''.

	
--revision
	This provides a revision specifier, appropriate to the VC system in use.

	
--revision_file

		This provides a filename which will be opened and the contents used as
the revision specifier. This is specifically for Darcs, which uses the
output of darcs changes --context as a revision specifier.
This context file can be a couple of kilobytes long, spanning a couple
lines per patch, and would be a hassle to pass as a command-line
argument.

	
--property
	This parameter is used to set a property on the Change generated by sendchange.
Properties are specified as a name:value pair, separated by a colon. You may
specify many properties by passing this parameter multiple times.

	
--comments
	This provides the change comments as a single argument. You may want
to use --logfile instead.

	
--logfile
	This instructs the tool to read the change comments from the given
file. If you use - as the filename, the tool will read the
change comments from stdin.

	
--encoding
	Specifies the character encoding for all other parameters,
defaulting to 'utf8'.

	
--vc
	Specifies which VC system the Change is coming from, one of: cvs,
svn, darcs, hg, bzr, git, mtn, or p4.
Defaults to None.

debugclient

buildbot debugclient --master {MASTERHOST}:{PORT} --passwd {DEBUGPW}

This launches a small Gtk+/Glade-based debug tool, connecting to the
buildmaster's debug port. This debug port shares the same port
number as the slaveport (see Setting the PB Port for Slaves), but the
debugPort is only enabled if you set a debug password in the
buildmaster's config file (see Debug Options). The
--passwd option must match the c['debugPassword']
value.

--master can also be provided in .debug/options by the
master key. --passwd can be provided by the
debugPassword key. See .buildbot config directory.

The Connect button must be pressed before any of the other
buttons will be active. This establishes the connection to the
buildmaster. The other sections of the tool are as follows:

	Reload .cfg

	Forces the buildmaster to reload its master.cfg file. This is
equivalent to sending a SIGHUP to the buildmaster, but can be done
remotely through the debug port. Note that it is a good idea to be
watching the buildmaster's twistd.log as you reload the config
file, as any errors which are detected in the config file will be
announced there.

	Rebuild .py

	(not yet implemented). The idea here is to use Twisted's rebuild
facilities to replace the buildmaster's running code with a new
version. Even if this worked, it would only be used by buildbot
developers.

	poke IRC

	This locates a words.IRC status target and causes it to emit a
message on all the channels to which it is currently connected. This
was used to debug a problem in which the buildmaster lost the
connection to the IRC server and did not attempt to reconnect.

	Commit

	This allows you to inject a Change, just as if a real one had been
delivered by whatever VC hook you are using. You can set the name of
the committed file and the name of the user who is doing the commit.
Optionally, you can also set a revision for the change. If the
revision you provide looks like a number, it will be sent as an
integer, otherwise it will be sent as a string.

	Force Build

	This lets you force a Builder (selected by name) to start a build of
the current source tree.

	Currently

	(obsolete). This was used to manually set the status of the given
Builder, but the status-assignment code was changed in an incompatible
way and these buttons are no longer meaningful.

user

Note that in order to use this command, you need to configure a
CommandlineUserManager instance in your master.cfg file, which is
explained in Users Options.

This command allows you to manage users in buildbot's database.
No extra requirements are needed to use this command, aside from
the Buildmaster running. For details on how Buildbot manages users,
see Users.

	
--master
	The user command can be run virtually anywhere
provided a location of the running buildmaster. The master
argument is of the form {MASTERHOST}:{PORT}.

	
--username
	PB connection authentication that should match the arguments to
CommandlineUserManager.

	
--passwd
	PB connection authentication that should match the arguments to
CommandlineUserManager.

	
--op
	There are four supported values for the op argument:
add, update, remove, and
get. Each are described in full in the following sections.

	
--bb_username
	Used with the update option, this sets the user's username
for web authentication in the database. It requires bb_password
to be set along with it.

	
--bb_password
	Also used with the update option, this sets the password
portion of a user's web authentication credentials into the database.
The password is first encrypted prior to storage for security reasons.

	
--ids
	When working with users, you need to be able to refer to them by
unique identifiers to find particular users in the database. The
ids option lets you specify a comma separated list of these
identifiers for use with the user command.

The ids option is used only when using remove
or show.

	
--info
	Users are known in buildbot as a collection of attributes tied
together by some unique identifier (see Users). These
attributes are specified in the form {TYPE}={VALUE} when
using the info option. These {TYPE}={VALUE} pairs
are specified in a comma separated list, so for example:

--info=svn=jschmo,git='Joe Schmo <joe@schmo.com>'

The info option can be specified multiple times in the
user command, as each specified option will be interpreted
as a new user. Note that info is only used with add
or with update, and whenever you use update you need
to specify the identifier of the user you want to update. This is done
by prepending the info arguments with {ID:}. If we were
to update 'jschmo' from the previous example, it would look like this:

--info=jschmo:git='Joseph Schmo <joe@schmo.com>'

Note that --master, --username, --passwd, and
--op are always required to issue the user command.

The --master, --username, and --passwd options
can be specified in the option file with keywords user_master,
user_username, and user_passwd, respectively. If
user_master is not specified, then master from the options
file will be used instead.

Below are examples of how each command should look. Whenever a
user command is successful, results will be shown
to whoever issued the command.

For add:

buildbot user --master={MASTERHOST} --op=add \
 --username={USER} --passwd={USERPW} \
 --info={TYPE}={VALUE},...

For update:

buildbot user --master={MASTERHOST} --op=update \
 --username={USER} --passwd={USERPW} \
 --info={ID}:{TYPE}={VALUE},...

For remove:

buildbot user --master={MASTERHOST} --op=remove \
 --username={USER} --passwd={USERPW} \
 --ids={ID1},{ID2},...

For get:

buildbot user --master={MASTERHOST} --op=get \
 --username={USER} --passwd={USERPW} \
 --ids={ID1},{ID2},...

A note on update: when updating the bb_username
and bb_password, the info doesn't need to have
additional {TYPE}={VALUE} pairs to update and can just take
the {ID} portion.

.buildbot config directory

Many of the buildbot tools must be told how to contact the
buildmaster that they interact with. This specification can be
provided as a command-line argument, but most of the time it will be
easier to set them in an options file. The buildbot
command will look for a special directory named .buildbot,
starting from the current directory (where the command was run) and
crawling upwards, eventually looking in the user's home directory. It
will look for a file named options in this directory, and will
evaluate it as a Python script, looking for certain names to be set.
You can just put simple name = 'value' pairs in this file to
set the options.

For a description of the names used in this file, please see the
documentation for the individual buildbot sub-commands. The
following is a brief sample of what this file's contents could be.

for status-reading tools
masterstatus = 'buildbot.example.org:12345'
for 'sendchange' or the debug port
master = 'buildbot.example.org:18990'
debugPassword = 'eiv7Po'

Note carefully that the names in the options file usually do not match
the command-line option name.

	masterstatus

	Equivalent to --master for statuslog and statusgui, this
gives the location of the client.PBListener status port.

	master

	Equivalent to --master for debugclient and sendchange.
This option is used for two purposes. It is the location of the
debugPort for debugclient and the location of the
pb.PBChangeSource for `sendchange. Generally these are the
same port.

	debugPassword

	Equivalent to --passwd for debugclient.

Important

This value must match the value of debugPassword, used to
protect the debug port, for the debugclient command.

	username

	Equivalent to --username for the sendchange command.

	branch

	Equivalent to --branch for the sendchange command.

	category

	Equivalent to --category for the sendchange command.

	try_connect

	Equivalent to --connect, this specifies how the try command should
deliver its request to the buildmaster. The currently accepted values are
ssh and pb.

	try_builders

	Equivalent to --builders, specifies which builders should be used for
the try build.

	try_vc

	Equivalent to --vc for try, this specifies the version control
system being used.

	try_branch

	Equivalent to --branch, this indicates that the current tree is on a
non-trunk branch.

try_topdir

	try_topfile

	Use try_topdir, equivalent to --try-topdir, to explicitly
indicate the top of your working tree, or try_topfile, equivalent to
--try-topfile to name a file that will only be found in that top-most
directory.

try_host

try_username

	try_dir

	When try_connect is ssh, the command will use try_host for
--tryhost, try_username for --username, and try_dir
for --trydir. Apologies for the confusing presence and absence of
'try'.

try_username

try_password

	try_master

	Similarly, when try_connect is pb, the command will pay attention to
try_username for --username, try_password for
--passwd, and try_master for --master.

try_wait

	masterstatus

	try_wait and masterstatus (equivalent to --wait and
master, respectively) are used to ask the try command to wait for
the requested build to complete.

buildslave

buildslave command-line tool is used for buildslave management
only and does not provide any additional functionality. One can create,
start, stop and restart the buildslave.

create-slave

This creates a new directory and populates it with files that let it
be used as a buildslave's base directory. You must provide several
arguments, which are used to create the initial buildbot.tac
file.

The -r option is advisable here, just like for create-master.

buildslave create-slave -r {BASEDIR} {MASTERHOST}:{PORT} {SLAVENAME} {PASSWORD}

The create-slave options are described in Buildslave Options.

start

This starts a buildslave which was already created in the given base
directory. The daemon is launched in the background, with events logged
to a file named twistd.log.

buildslave start [--nodaemon] BASEDIR

The --nodaemon option instructs Buildbot to skip daemonizing. The
process will start in the foreground. It will only return to the command-line
when it is stopped.

restart

buildslave restart [--nodaemon] BASEDIR

This restarts a buildslave which is already running.
It is equivalent to a stop followed by a start.

The --nodaemon option has the same meaning as for start.

stop

This terminates the daemon buildslave running in the given directory.

buildbot stop BASEDIR

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

Resources

The Buildbot home page is http://buildbot.net/.

For configuration questions and general discussion, please use the
buildbot-devel mailing list. The subscription instructions and
archives are available at
http://lists.sourceforge.net/lists/listinfo/buildbot-devel

The #buildbot channel on Freenode's IRC servers hosts development discussion, and
often folks are available to answer questions there, as well.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Manual

Optimization

If you're feeling your Buildbot is running a bit slow, here are some tricks that may help you,
but use them at your own risk.

Properties load speedup

For example, if most of your build properties are strings, you can gain an approx. 30% speedup
if you put this snippet of code inside your master.cfg file:

def speedup_json_loads():
 import json, re

 original_decode = json._default_decoder.decode
 my_regexp = re.compile(r'^\[\"([^"]*)\",\s+\"([^"]*)\"\]$')
 def decode_with_re(str, *args, **kw):
 m = my_regexp.match(str)
 try:
 return list(m.groups())
 except:
 return original_decode(str, *args, **kw)
 json._default_decoder.decode = decode_with_re

speedup_json_loads()

It patches json decoder so that it would first try to extract a value from JSON that is a list
of two strings (which is the case for a property being a string), and would fallback to general
JSON decoder on any error

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

Buildbot Development

This chapter is the official repository for the collected wisdom of the
Buildbot hackers. It is intended both for developers writing patches that will
be included in Buildbot itself, and for advanced users who wish to customize
Buildbot.

	Master Organization
	Buildmaster Service Hierarchy

	Definitions
	Repository

	Project

	Version Control Comparison

	Buildbot Coding Style
	Symbol Names

	Twisted Idioms

	Buildbot's Test Suite
	Suites

	Mixins

	Fakes

	Good Tests

	Configuration
	Builder Configuration

	Error Handling

	Reconfiguration

	Utilities
	buildbot.util.lru

	buildbot.util.bbcollections

	buildbot.util.eventual

	buildbot.util.debounce

	buildbot.util.json

	buildbot.util.maildir

	buildbot.util.misc

	buildbot.util.netstrings

	buildbot.util.sautils

	buildbot.util.subscription

	buildbot.util.croniter

	buildbot.util.state

	buildbot.util.identifiers

	Database
	Database Overview

	Schema

	API

	Writing Database Connector Methods

	Modifying the Database Schema

	Database Compatibility Notes

	Build Result Codes

	File Formats
	Log File Format

	Web Status
	Jinja Web Templates

	Web Authorization Framework

	Master-Slave API
	Connection

	Build Slaves

	Setup

	Pinging

	Building

	Slave Builders

	Commands

	Updates

	String Encodings
	Inputs

	Outputs

	Metrics
	Metric Events

	Metric Handlers

	Metric Watchers

	Metric Helpers

	Classes
	BuildFactory

	BuildSetSummaryNotifierMixin

	RemoteCommands

	BuildSteps

	ForceScheduler

	IRenderable

	IProperties

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Master Organization

Buildbot makes heavy use of Twisted Python's support for services - software
modules that can be started and stopped dynamically. Buildbot adds the ability
to reconfigure such services, too - see Reconfiguration.
Twisted arranges services into trees; the following section describes the
service tree on a running master.

Buildmaster Service Hierarchy

The hierarchy begins with the master, a buildbot.master.BuildMaster
instance. Most other services contain a reference to this object in their
master attribute, and in general the appropriate way to access other
objects or services is to begin with self.master and navigate from there.

The master has several child services:

	master.metrics

	A buildbot.process.metrics.MetricLogObserver instance that
handles tracking and reporting on master metrics.

	master.caches

	A buildbot.process.caches.CacheManager instance that provides
access to object caches.

	master.pbmanager

	A buildbot.pbmanager.PBManager instance that handles incoming
PB connections, potentially on multiple ports, and dispatching those
connections to appropriate components based on the supplied username.

	master.change_svc

	A buildbot.changes.manager.ChangeManager instance that manages
the active change sources, as well as the stream of changes received from
those sources. All active change sources are child services of this instance.

	master.botmaster

	A buildbot.process.botmaster.BotMaster instance that manages
all of the slaves and builders as child services.

The botmaster acts as the parent service for a
buildbot.process.botmaster.BuildRequestDistributor instance (at
master.botmaster.brd) as well as all active slaves
(buildbot.buildslave.AbstractBuildSlave instances) and builders
(buildbot.process.builder.Builder instances).

	master.scheduler_manager

	A buildbot.schedulers.manager.SchedulerManager instance that
manages the active schedulers. All active schedulers are child services of
this instance.

	master.user_manager

	A buildbot.process.users.manager.UserManagerManager instance
that manages access to users. All active user managers are child services
of this instance.

	master.db

	A buildbot.db.connector.DBConnector instance that manages
access to the buildbot database. See Database for more
information.

	master.debug

	A buildbot.process.debug.DebugServices instance that manages
debugging-related access -- the debug client and manhole.

	master.status

	A buildbot.status.master.Status instance that provides access
to all status data. This instance is also the service parent for all
status listeners.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Definitions

Buildbot uses some terms and concepts that have specific meanings.

Repository

See Repository.

Project

See Project.

Version Control Comparison

Buildbot supports a number of version control systems, and they don't all agree
on their terms. This table should help to disambiguate them.

	Name
	Change
	Revision
	Branches

	CVS
	patch [1]
	timestamp
	unnamed

	Subversion
	revision
	integer
	directories

	Git
	commit
	sha1 hash
	named refs

	Mercurial
	changeset
	sha1 hash
	different repos
or (permanently)
named commits

	Darcs
	?
	none [2]
	different repos

	Bazaar
	?
	?
	?

	Perforce
	?
	?
	?

	BitKeeper
	changeset
	?
	different repos

	[1] note that CVS only tracks patches to individual files. Buildbot tries to
recognize coordinated changes to multiple files by correlating change times.

	[2] Darcs does not have a concise way of representing a particular revision
of the source.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Buildbot Coding Style

Symbol Names

Buildbot follows PEP8 [http://www.python.org/dev/peps/pep-0008/] regarding the formatting of symbol names.
Because Buildbot uses Twisted so heavily, and Twisted uses interCaps, this is not very consistently applied throughout the codebase.

The single exception to PEP8 is in naming of functions and methods.
That is, you should spell methods and functions with the first character in lower-case, and the first letter of subsequent words capitalized, e.g., compareToOther or getChangesGreaterThan.

Symbols used as parameters to functions used in configuration files should use underscores.

In summary, then:

	Symbol Type
	Format

	Methods
	interCaps

	Functions
	interCaps

	Function Arguments
	under_scores

	Classes
	InitialCaps

	Variables
	under_scores

	Constants
	ALL_CAPS

Twisted Idioms

Programming with Twisted Python can be daunting. But sticking to a few
well-defined patterns can help avoid surprises.

Prefer to Return Deferreds

If you're writing a method that doesn't currently block, but could conceivably
block sometime in the future, return a Deferred and document that it does so.
Just about anything might block - even getters and setters!

Helpful Twisted Classes

Twisted has some useful, but little-known classes.
Brief descriptions follow, but you should consult the API documentation or source code
for the full details.

	twisted.internet.task.LoopingCall

	Calls an asynchronous function repeatedly at set intervals.
Note that this will stop looping if the function fails.
In general, you will want to wrap the function to capture and log errors.

	twisted.application.internet.TimerService

	Similar to t.i.t.LoopingCall, but implemented as a service that will automatically start and stop the function calls when the service starts and stops.
See the warning about failing functions for t.i.t.LoopingCall.

Sequences of Operations

Especially in Buildbot, we're often faced with executing a sequence of
operations, many of which may block.

In all cases where this occurs, there is a danger of pre-emption, so exercise
the same caution you would if writing a threaded application.

For simple cases, you can use nested callback functions. For more complex cases, deferredGenerator is appropriate.

Nested Callbacks

First, an admonition: do not create extra class methods that represent the continuations of the first:

def myMethod(self):
 d = ...
 d.addCallback(self._myMethod_2) # BAD!
def _myMethod_2(self, res): # BAD!
 ...

Invariably, this extra method gets separated from its parent as the code
evolves, and the result is completely unreadable. Instead, include all of the
code for a particular function or method within the same indented block, using
nested functions:

def getRevInfo(revname):
 results = {}
 d = defer.succeed(None)
 def rev_parse(_): # note use of '_' to quietly indicate an ignored parameter
 return utils.getProcessOutput(git, ['rev-parse', revname])
 d.addCallback(rev_parse)
 def parse_rev_parse(res):
 results['rev'] = res.strip()
 return utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b', results['rev']])
 d.addCallback(parse_rev_parse)
 def parse_log(res):
 results['comments'] = res.strip()
 d.addCallback(parse_log)
 def set_results(_):
 return results
 d.addCallback(set_results)
 return d

it is usually best to make the first operation occur within a callback, as the
deferred machinery will then handle any exceptions as a failure in the outer
Deferred. As a shortcut, d.addCallback works as a decorator:

d = defer.succeed(None)
@d.addCallback
def rev_parse(_): # note use of '_' to quietly indicate an ignored parameter
 return utils.getProcessOutput(git, ['rev-parse', revname])

Be careful with local variables. For example, if parse_rev_parse, above,
merely assigned rev = res.strip(), then that variable would be local to
parse_rev_parse and not available in set_results. Mutable variables
(dicts and lists) at the outer function level are appropriate for this purpose.

Note

do not try to build a loop in this style by chaining multiple
Deferreds! Unbounded chaining can result in stack overflows, at least on older
versions of Twisted. Use deferredGenerator instead.

inlineCallbacks

twisted.internet.defer.inlineCallbacks is a great help to writing code
that makes a lot of asynchronous calls, particularly if those calls are made in
loop or conditionals. Refer to the Twisted documentation for the details, but
the style within Buildbot is as follows:

from twisted.internet import defer

@defer.inlineCallbacks
def mymethod(self, x, y):
 xval = yield getSomething(x)

 for z in (yield getZValues()):
 y += z

 if xval > 10:
 defer.returnValue(xval + y)
 return

 self.someOtherMethod()

The key points to notice here:

	Always import defer as a module, not the names within it.

	Use the decorator form of inlineCallbacks.

	In most cases, the result of a yield expression should be assigned to a
variable. It can be used in a larger expression, but remember that Python
requires that you enclose the expression in its own set of parentheses.

	Python does not permit returning a value from a generator, so statements like
return xval + y are invalid. Instead, yield the result of
defer.returnValue. Although this function does cause an immediate
function exit, for clarity follow it with a bare return, as in
the example, unless it is the last statement in a function.

The great advantage of inlineCallbacks is that it allows you to use all
of the usual Pythonic control structures in their natural form. In particular,
it is easy to represent a loop, or even nested loops, in this style without
losing any readability.

Note that code using deferredGenerator is no longer acceptable in Buildbot.

Locking

Remember that asynchronous programming does not free you from the need to worry
about concurrency issues. Particularly if you are executing a sequence of
operations, each time you wait for a Deferred, arbitrary other actions can take
place.

In general, you should try to perform actions atomically, but for the rare
situations that require synchronization, the following might be useful:

	twisted.internet.defer.DeferredLock

	buildbot.util.misc.deferredLocked

	buildbot.util.misc.SerializedInvocation

Joining Sequences

It's often the case that you'll want to perform multiple operations in
parallel, and re-join the results at the end. For this purpose, you'll want to
use a DeferredList [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.DeferredList.html]

def getRevInfo(revname):
 results = {}
 finished = dict(rev_parse=False, log=False)

 rev_parse_d = utils.getProcessOutput(git, ['rev-parse', revname])
 def parse_rev_parse(res):
 return res.strip()
 rev_parse_d.addCallback(parse_rev_parse)

 log_d = utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b', results['rev']])
 def parse_log(res):
 return res.strip()
 log_d.addCallback(parse_log)

 d = defer.DeferredList([rev_parse_d, log_d], consumeErrors=1, fireOnFirstErrback=1)
 def handle_results(results):
 return dict(rev=results[0][1], log=results[1][1])
 d.addCallback(handle_results)
 return d

Here the deferred list will wait for both rev_parse_d and log_d to
fire, or for one of them to fail. You may attach callbacks and errbacks to a
DeferredList just as for a deferred.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Buildbot's Test Suite

Buildbot's tests are under buildbot.test and, for the buildslave,
buildslave.test. Tests for the slave are similar to the master, although
in some cases helpful functionality on the master is not re-implemented on the
slave.

Suites

Tests are divided into a few suites:

	Unit tests (buildbot.test.unit) - these follow unit-testing practices and
attempt to maximally isolate the system under test. Unit tests are the main
mechanism of achieving test coverage, and all new code should be well-covered
by corresponding unit tests.

	Interface tests (buildbot.test.interface). In many cases, Buildbot has
multiple implementations of the same interface -- at least one "real"
implementation and a fake implementation used in unit testing. The interface
tests ensure that these implementations all meet the same standards. This
ensures consistency between implementations, and also ensures that the unit
tests are testing against realistic fakes.

	Integration tests (buildbot.test.integration) - these test combinations
of multiple units. Of necessity, integration tests are incomplete - they
cannot test every condition; difficult to maintain - they tend to be complex
and touch a lot of code; and slow - they usually require considerable setup
and execute a lot of code. As such, use of integration tests is limited to a
few, broad tests to act as a failsafe for the unit and interface tests.

	Regression tests (buildbot.test.regressions) - these test to prevent
re-occurrence of historical bugs. In most cases, a regression is better
tested by a test in the other suites, or unlike to recur, so this suite tends
to be small.

	Fuzz tests (buildbot.test.fuzz) - these tests run for a long time and
apply randomization to try to reproduce rare or unusual failures. The
Buildbot project does not currently have a framework to run fuzz tests
regularly.

Unit Tests

Every code module should have corresponding unit tests. This is not currently
true of Buildbot, due to a large body of legacy code, but is a goal of the
project. All new code must meet this requirement.

Unit test modules are be named after the package or class they test, replacing
. with _ and omitting the buildbot_. For example,
test_status_web_authz_Authz.py tests the Authz class in
buildbot/status/web/authz.py. Modules with only one class, or a few
trivial classes, can be tested in a single test module. For more complex
situations, prefer to use multiple test modules.

Interface Tests

Interface tests exist to verify that multiple implementations of an interface
meet the same requirements. Note that the name 'interface' should not be
confused with the sparse use of Zope Interfaces in the Buildbot code -- in this
context, an interface is any boundary between testable units.

Ideally, all interfaces, both public and private, should be tested. Certainly,
any public interfaces need interface tests.

Interface test modules are named after the interface they are testing, e.g.,
test_mq.py. They generally begin as follows:

from buildbot.test.util import interfaces
from twistd.trial import unittest

class Tests(interfaces.InterfaceTests):

 # define methods that must be overridden per implementation
 def someSetupMethod(self):
 raise NotImplementedError

 # tests that all implementations must pass
 def test_signature_someMethod(self):
 @self.assertArgSpecMatches(self.systemUnderTest.someMethod)
 def someMethod(self, arg1, arg2):
 pass

 def test_something(self):
 pass # ...

class RealTests(Tests):

 # tests that all *real* implementations must pass
 def test_something_else(self):
 pass # ...

All of the test methods are defined here, segregated into tests that all
implementations must pass, and tests that the fake implementation is not
expected to pass. The test_signature_someMethod test above illustrates the
assertArgSpecMatches decorator, which can be used to compare the argument
specification of a callable with a reference implementation conveniently
written as a nested function.

At the bottom of the test module, a subclass is created for each
implementation, implementing the setup methods that were stubbed out in the
parent classes:

class TestFakeThing(unittest.TestCase, Tests):

 def someSetupMethod(self):
 pass # ...

class TestRealThing(unittest.TestCase, RealTests):

 def someSetupMethod(self):
 pass # ...

For implementations which require optional software, this is the appropriate
place to signal that tests should be skipped when their prerequisites are not
available.

Integration Tests

Integration test modules test several units at once, including their
interactions. In general, they serve as a catch-all for failures and bugs that
were not detected by the unit and interface tests. As such, they should not
aim to be exhaustive, but merely representative.

Integration tests are very difficult to maintain if they reach into the
internals of any part of Buildbot. Where possible, try to use the same means
as a user would to set up, run, and check the results of an integration test.
That may mean writing a master.cfg to be parsed, and checking the
results by examining the database (or fake DB API) afterward.

Regression Tests

Regression tests are even more rare in Buildbot than integration tests. In
many cases, a regression test is not necessary -- either the test is
better-suited as a unit or interface test, or the failure is so specific that a
test will never fail again.

Regression tests tend to be closely tied to the code in which the error
occurred. When that code is refactored, the regression test generally becomes
obsolete, and is deleted.

Fuzz Tests

Fuzz tests generally run for a fixed amount of time, running randomized tests
against a system. They do not run at all during normal runs of the Buildbot
tests, unless BUILDBOT_FUZZ is defined. This is accomplished with something
like the following at the end of each test module:

if 'BUILDBOT_FUZZ' not in os.environ:
 del LRUCacheFuzzer

Mixins

Buildbot provides a number of purpose-specific mixin classes in
master/buildbot/util [https://github.com/buildbot/buildbot/blob/master/master/buildbot/util]. These generally define a set of utility
functions as well as setUpXxx and tearDownXxx methods. These methods
should be called explicitly from your subclass's setUp and tearDown
methods. Note that some of these methods return Deferreds, which should be
handled properly by the caller.

Fakes

Buildbot provides a number of pre-defined fake implementations of internal
interfaces, in master/buildbot/fake [https://github.com/buildbot/buildbot/blob/master/master/buildbot/fake]. These are designed to be used
in unit tests to limit the scope of the test. For example, the fake DB API
eliminates the need to create a real database when testing code that uses the
DB API, and isolates bugs in the system under test from bugs in the real DB
implementation.

The danger of using fakes is that the fake interface and the real interface can
differ. The interface tests exist to solve this problem. All fakes should be
fully tested in an integration test, so that the fakes pass the same tests as
the "real" thing. It is particularly important that the method signatures be
compared.

Good Tests

Bad tests are worse than no tests at all, since they waste developers' time
wondering "was that a spurious failure?" or "what the heck is this test trying
to do?" Buildbot needs good tests. So what makes a good test?

Independent of Time

Tests that depend on wall time will fail. As a bonus, they run very slowly. Do
not use reactor.callLater to wait "long enough" for something to happen.

For testing things that themselves depend on time, consider using
twisted.internet.tasks.Clock. This may mean passing a clock instance to
the code under test, and propagating that instance as necessary to ensure that
all of the code using callLater uses it. Refactoring code for
testability is difficult, but worthwhile.

For testing things that do not depend on time, but for which you cannot detect
the "end" of an operation: add a way to detect the end of the operation!

Clean Code

Make your tests readable. This is no place to skimp on comments! Others will
attempt to learn about the expected behavior of your class by reading the
tests. As a side note, if you use a Deferred chain in your test, write
the callbacks as nested functions, rather than using methods with funny names:

def testSomething(self):
 d = doThisFirst()
 def andThisNext(res):
 pass # ...
 d.addCallback(andThisNext)
 return d

This isolates the entire test into one indented block. It is OK to add methods
for common functionality, but give them real names and explain in detail what
they do.

Good Name

Test method names should follow the pattern test_METHOD_CONDITION
where METHOD is the method being tested, and CONDITION is the
condition under which it's tested. Since we can't always test a single
method, this is not a hard-and-fast rule.

Assert Only One Thing

Where practical, each test should have a single assertion. This may require a
little bit of work to get several related pieces of information into a single
Python object for comparison. The problem with multiple assertions is that, if
the first assertion fails, the remainder are not tested. The test results then
do not tell the entire story.

Prefer Fakes to Mocks

Mock objects are too "compliant", and this often masks errors in the system
under test. For example, a mis-spelled method name on a mock object will not
raise an exception.

Where possible, use one of the pre-written fake objects (see
Fakes) instead of a mock object. Fakes
themselves should be well-tested using interface tests.

Where they are appropriate, Mock objects can be constructed easily using the
aptly-named mock [http://www.voidspace.org.uk/python/mock/] module, which is
a requirement for Buildbot's tests.

Small Tests

The shorter each test is, the better. Test as little code as possible in each test.

It is fine, and in fact encouraged, to write the code under test in such a way
as to facilitate this. As an illustrative example, if you are testing a new
Step subclass, but your tests require instantiating a BuildMaster, you're
probably doing something wrong!

This also applies to test modules. Several short, easily-digested test modules
are preferred over a 1000-line monster.

Isolation

Each test should be maximally independent of other tests. Do not leave files
laying around after your test has finished, and do not assume that some other
test has run beforehand. It's fine to use caching techniques to avoid repeated,
lengthy setup times.

Be Correct

Tests should be as robust as possible, which at a basic level means using the
available frameworks correctly. All Deferreds should have callbacks and be
chained properly. Error conditions should be checked properly. Race conditions
should not exist (see Independent of Time, above).

Be Helpful

Note that tests will pass most of the time, but the moment when they are most
useful is when they fail.

When the test fails, it should produce output that is helpful to the person
chasing it down. This is particularly important when the tests are run
remotely, in which case the person chasing down the bug does not have access to
the system on which the test fails. A test which fails sporadically with no
more information than "AssertionFailed" is a prime candidate for deletion if
the error isn't obvious. Making the error obvious also includes adding comments
describing the ways a test might fail.

Keeping State

Python does not allow assignment to anything but the innermost local scope or
the global scope with the global keyword. This presents a problem when
creating nested functions:

def test_localVariable(self):
 cb_called = False
 def cb():
 cb_called = True
 cb()
 self.assertTrue(cb_called) # will fail!

The cb_called = True assigns to a different variable than
cb_called = False. In production code, it's usually best to work around
such problems, but in tests this is often the clearest way to express the
behavior under test.

The solution is to change something in a common mutable object. While a simple
list can serve as such a mutable object, this leads to code that is hard to
read. Instead, use State:

from buildbot.test.state import State

def test_localVariable(self):
 state = State(cb_called=False)
 def cb():
 state.cb_called = True
 cb()
 self.assertTrue(state.cb_called) # passes

This is almost as readable as the first example, but it actually works.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Configuration

Wherever possible, Buildbot components should access configuration information
as needed from the canonical source, master.config, which is an instance of
MasterConfig. For example, components should not keep a copy of
the buildbotURL locally, as this value may change throughout the lifetime
of the master.

Components which need to be notified of changes in the configuration should be
implemented as services, subclassing ReconfigurableServiceMixin, as
described in Reconfiguration.

	
class buildbot.config.MasterConfig

	The master object makes much of the configuration available from an object
named master.config. Configuration is stored as attributes of this
object. Where possible, other Buildbot components should access this
configuration directly and not cache the configuration values anywhere
else. This avoids the need to ensure that update-from-configuration
methods are called on a reconfig.

Aside from validating the configuration, this class handles any
backward-compatibility issues - renamed parameters, type changes, and so on
- removing those concerns from other parts of Buildbot.

This class may be instantiated directly, creating an entirely default
configuration, or via loadConfig, which will load the
configuration from a config file.

The following attributes are available from this class, representing the
current configuration. This includes a number of global parameters:

	
title

	The title of this buildmaster, from title.

	
titleURL

	The URL corresponding to the title, from titleURL.

	
buildbotURL

	The URL of this buildmaster, for use in constructing WebStatus URLs;
from buildbotURL.

	
changeHorizon

	The current change horizon, from changeHorizon.

	
eventHorizon

	The current event horizon, from eventHorizon.

	
logHorizon

	The current log horizon, from logHorizon.

	
buildHorizon

	The current build horizon, from buildHorizon.

	
logCompressionLimit

	The current log compression limit, from logCompressionLimit.

	
logCompressionMethod

	The current log compression method, from
logCompressionMethod.

	
logMaxSize

	The current log maximum size, from logMaxSize.

	
logMaxTailSize

	The current log maximum size, from logMaxTailSize.

	
properties

	A Properties instance
containing global properties, from properties.

	
mergeRequests

	A callable, or True or False, describing how to merge requests; from
mergeRequests.

	
prioritizeBuilders

	A callable, or None, used to prioritize builders; from
prioritizeBuilders.

	
codebaseGenerator

	A callable, or None, used to determine the codebase from an incoming
Change,
from codebaseGenerator

	
protocols

	The per-protocol port specification for slave connections.
Based on protocols.

	
multiMaster

	If true, then this master is part of a cluster; based on
multiMaster.

	
debugPassword

	The password for the debug client, or None; from
debugPassword.

	
manhole

	The manhole instance to use, or None; from manhole.

The remaining attributes contain compound configuration structures, usually
dictionaries:

	
validation

	Validation regular expressions, a dictionary from validation.
It is safe to assume that all expected keys are present.

	
db

	Database specification, a dictionary with keys db_url and
db_poll_interval. It is safe to assume that both keys are
present.

	
metrics

	The metrics configuration from metrics, or an empty
dictionary by default.

	
caches

	The cache configuration, from caches as well as the
deprecated buildCacheSize and changeCacheSize
parameters.

The keys Builds and Caches are always available; other keys
should use config.caches.get(cachename, 1).

	
schedulers

	The dictionary of scheduler instances, by name, from schedulers.

	
builders

	The list of BuilderConfig instances from
builders. Builders specified as dictionaries in the
configuration file are converted to instances.

	
slaves

	The list of BuildSlave instances from
slaves.

	
change_sources

	The list of IChangeSource providers from
change_source.

	
status

	The list of IStatusReceiver providers from
status.

	
user_managers

	The list of user managers providers from user_managers.

Loading of the configuration file is generally triggered by the master,
using the following methods:

	
classmethod loadConfig(basedir, filename)

	

	Parameters:	
	basedir (string) -- directory to which config is relative

	filename (string) -- the configuration file to load

	Raises:	ConfigErrors if any errors occur

	Returns:	new MasterConfig instance

Load the configuration in the given file. Aside from syntax errors,
this will also detect a number of semantic errors such as multiple
schedulers with the same name.

The filename is treated as relative to the basedir, if it is not
absolute.

Builder Configuration

	
class buildbot.config.BuilderConfig([keyword args])

	This class parameterizes configuration of builders; see
Builder Configuration for its arguments. The constructor checks for
errors and applies defaults, and sets the properties described here. Most
are simply copied from the constructor argument of the same name.

Users may subclass this class to add defaults, for example.

	
name

	The builder's name.

	
factory

	The builder's factory.

	
slavenames

	The builder's slave names (a list, regardless of whether the names were
specified with slavename or slavenames).

	
builddir

	The builder's builddir.

	
slavebuilddir

	The builder's slave-side builddir.

	
category

	The builder's category.

	
nextSlave

	The builder's nextSlave callable.

	
nextBuild

	The builder's nextBuild callable.

	
canStartBuild

	The builder's canStartBuild callable.

	
locks

	The builder's locks.

	
env

	The builder's environmnet variables.

	
properties

	The builder's properties, as a dictionary.

	
mergeRequests

	The builder's mergeRequests callable.

	
description

	The builder's description, displayed in the web status.

Error Handling

If any errors are encountered while loading the configuration buildbot.config.error
should be called. This can occur both in the configuration-loading code,
and in the constructors of any objects that are instantiated in the
configuration - change sources, slaves, schedulers, build steps, and so on.

	
buildbot.config.error(error)

	

	Parameters:	error -- error to report

	Raises:	ConfigErrors if called at build-time

This function reports a configuration error. If a config file is being loaded,
then the function merely records the error, and allows the rest of the configuration
to be loaded. At any other time, it raises ConfigErrors. This is done
so all config errors can be reported, rather than just the first.

	
exception buildbot.config.ConfigErrors([errors])

	

	Parameters:	errors (list) -- errors to report

This exception represents errors in the configuration. It supports
reporting multiple errors to the user simultaneously, e.g., when several
consistency checks fail.

	
errors

	A list of detected errors, each given as a string.

	
addError(msg)

	

	Parameters:	msg (string) -- the message to add

Add another error message to the (presumably not-yet-raised) exception.

Reconfiguration

When the buildmaster receives a signal to begin a reconfig, it re-reads the
configuration file, generating a new MasterConfig instance, and
then notifies all of its child services via the reconfig mechanism described
below. The master ensures that at most one reconfiguration is taking place at
any time.

See Master Organization for the structure of the Buildbot service
tree.

To simplify initialization, a reconfiguration is performed immediately on
master startup. As a result, services only need to implement their
configuration handling once, and can use startService for initialization.

See below for instructions on implementing configuration of common types of
components in Buildbot.

Note

Because Buildbot uses a pure-Python configuration file, it is not possible
to support all forms of reconfiguration. In particular, when the
configuration includes custom subclasses or modules, reconfiguration can
turn up some surprising behaviors due to the dynamic nature of Python. The
reconfig support in Buildbot is intended for "intermediate" uses of the
software, where there are fewer surprises.

Reconfigurable Services

Instances which need to be notified of a change in configuration should be
implemented as Twisted services, and mix in the
ReconfigurableServiceMixin class, overriding the
reconfigService method.

	
class buildbot.config.ReconfigurableServiceMixin

	
	
reconfigService(new_config)

	

	Parameters:	new_config (MasterConfig) -- new master configuration

	Returns:	Deferred

This method notifies the service that it should make any changes
necessary to adapt to the new configuration values given.

This method will be called automatically after a service is started.

It is generally too late at this point to roll back the
reconfiguration, so if possible any errors should be detected in the
MasterConfig implementation. Errors are handled as best as
possible and communicated back to the top level invocation, but such
errors may leave the master in an inconsistent state.
ConfigErrors exceptions will be displayed appropriately to
the user on startup.

Subclasses should always call the parent class's implementation. For
MultiService instances, this will call any child services'
reconfigService methods, as appropriate. This will be done
sequentially, such that the Deferred from one service must fire before
the next service is reconfigured.

	
priority

	Child services are reconfigured in order of decreasing priority. The
default priority is 128, so a service that must be reconfigured before
others should be given a higher priority.

Change Sources

When reconfiguring, there is no method by which Buildbot can determine that a
new ChangeSource represents the same source
as an existing ChangeSource, but with
different configuration parameters. As a result, the change source manager
compares the lists of existing and new change sources using equality, stops any
existing sources that are not in the new list, and starts any new change
sources that do not already exist.

ChangeSource inherits
ComparableMixin, so change sources are compared
based on the attributes described in their compare_attrs.

If a change source does not make reference to any global configuration
parameters, then there is no need to inherit
ReconfigurableServiceMixin, as a simple comparison and
startService and stopService will be sufficient.

If the change source does make reference to global values, e.g., as default
values for its parameters, then it must inherit
ReconfigurableServiceMixin to support the case where the global
values change.

Schedulers

Schedulers have names, so Buildbot can determine whether a scheduler has been
added, removed, or changed during a reconfig. Old schedulers will be stopped,
new schedulers will be started, and both new and existing schedulers will see a
call to reconfigService, if such a
method exists. For backward compatibility, schedulers which do not support
reconfiguration will be stopped, and the new scheduler started, when their
configuration changes.

If, during a reconfiguration, a new and old scheduler's fully qualified class
names differ, then the old class will be stopped and the new class started.
This supports the case when a user changes, for example, a Nightly scheduler to
a Periodic scheduler without changing the name.

Because Buildbot uses BaseScheduler
instances directly in the configuration file, a reconfigured scheduler must
extract its new configuration information from another instance of itself.
BaseScheduler implements a helper method,
findNewSchedulerInstance,
which will return the new instance of the scheduler in the given
MasterConfig object.

Custom Subclasses

Custom subclasses are most often defined directly in the configuration file, or
in a Python module that is reloaded with reload every time the
configuration is loaded. Because of the dynamic nature of Python, this creates
a new object representing the subclass every time the configuration is loaded
-- even if the class definition has not changed.

Note that if a scheduler's class changes in a reconfig, but the scheduler's
name does not, it will still be treated as a reconfiguration of the existing
scheduler. This means that implementation changes in custom scheduler
subclasses will not be activated with a reconfig. This behavior avoids
stopping and starting such schedulers on every reconfig, but can make
development difficult.

One workaround for this is to change the name of the scheduler before each
reconfig - this will cause the old scheduler to be stopped, and the new
scheduler (with the new name and class) to be started.

Slaves

Similar to schedulers, slaves are specified by name, so new and old
configurations are first compared by name, and any slaves to be added or
removed are noted. Slaves for which the fully-qualified class name has changed
are also added and removed. All slaves have their
reconfigService method called.

This method takes care of the basic slave attributes, including changing the PB
registration if necessary. Any subclasses that add configuration parameters
should override reconfigService and
update those parameters. As with Schedulers, because the
AbstractBuildSlave instance is given directly
in the configuration, on reconfig instances must extract the configuration from
a new instance. The
findNewSlaveInstance method
can be used to find the new instance.

User Managers

Since user managers are rarely used, and their purpose is unclear, they are
always stopped and re-started on every reconfig. This may change in figure
versions.

Status Receivers

At every reconfig, all status listeners are stopped and new versions started.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Utilities

Several small utilities are available at the top-level buildbot.util
package.

	
buildbot.util.naturalSort(list)

	

	Parameters:	list -- list of strings

	Returns:	sorted strings

This function sorts strings "naturally", with embedded numbers sorted
numerically. This ordering is good for objects which might have a numeric
suffix, e.g., winslave1, winslave2

	
buildbot.util.formatInterval(interval)

	

	Parameters:	interval -- duration in seconds

	Returns:	human-readable (English) equivalent

This function will return a human-readable string describing a length of
time, given a number of seconds.

	
class buildbot.util.ComparableMixin

	This mixin class adds comparability to a subclass. Use it like this:

class Widget(FactoryProduct, ComparableMixin):
 compare_attrs = ['radius', 'thickness']
 # ...

Any attributes not in compare_attrs will not be considered when
comparing objects. This is particularly useful in implementing buildbot's
reconfig logic, where a simple comparison between the new and existing objects
can determine whether the new object should replace the existing object.

A point to note is that the compare_attrs list is cumulative; that is,
when a subclass also has a compare_attrs and the parent class has a
compare_attrs, the subclass' compare_attrs also includes the parent
class' compare_attrs.

	
buildbot.util.safeTranslate(str)

	

	Parameters:	str -- input string

	Returns:	safe version of the input

This function will filter out some inappropriate characters for filenames;
it is suitable for adapting strings from the configuration for use as
filenames. It is not suitable for use with strings from untrusted sources.

	
buildbot.util.epoch2datetime(epoch)

	

	Parameters:	epoch -- an epoch time (integer)

	Returns:	equivalent datetime object

Convert a UNIX epoch timestamp to a Python datetime object, in the UTC
timezone. Note that timestamps specify UTC time (modulo leap seconds and a
few other minor details).

	
buildbot.util.datetime2epoch(datetime)

	

	Parameters:	datetime -- a datetime object

	Returns:	equivalent epoch time (integer)

Convert an arbitrary Python datetime object into a UNIX epoch timestamp.

	
buildbot.util.UTC

	A datetime.tzinfo subclass representing UTC time. A similar class has
finally been added to Python in version 3.2, but the implementation is simple
enough to include here. This is mostly used in tests to create timezone-aware
datetime objects in UTC:

dt = datetime.datetime(1978, 6, 15, 12, 31, 15, tzinfo=UTC)

	
buildbot.util.diffSets(old, new)

	

	Parameters:	
	old (set or iterable) -- old set

	new (set or iterable) -- new set

	Returns:	a tuple, (removed, added)

This function compares two sets of objects, returning elements that were
added and elements that were removed. This is largely a convenience
function for reconfiguring services.

	
buildbot.util.makeList(input)

	

	Parameters:	input -- a thing

	Returns:	a list of zero or more things

This function is intended to support the many places in Buildbot where the
user can specify either a string or a list of strings, but the
implementation wishes to always consider lists. It converts any string to
a single-element list, None to an empty list, and any iterable to a
list. Input lists are copied, avoiding aliasing issues.

	
buildbot.util.now()

	

	Returns:	epoch time (integer)

Return the current time, using either reactor.seconds or
time.time().

	
buildbot.util.flatten(list)

	

	Parameters:	list -- potentially nested list

	Returns:	flat list

Flatten nested lists into a list containing no other lists. For example:

>>> flatten([[1, 2], 3, [[4]]])
[1, 2, 3, 4]

Note that this looks strictly for lists -- tuples, for example, are not
flattened.

	
buildbot.util.none_or_str(obj)

	

	Parameters:	obj -- input value

	Returns:	string or None

If obj is not None, return its string representation.

	
buildbot.util.NotABranch

	This is a sentinel value used to indicate that no branch is specified. It
is necessary since schedulers and change sources consider None a valid
name for a branch. This is generally used as a default value in a method
signature, and then tested against with is:

if branch is NotABranch:
 pass # ...

	
buildbot.util.in_reactor(fn)

	This decorator will cause the wrapped function to be run in the Twisted
reactor, with the reactor stopped when the function completes. It returns
the result of the wrapped function. If the wrapped function fails, its
traceback will be printed, the reactor halted, and None returned.

	
buildbot.util.asyncSleep(secs)

	Yield a deferred that will fire with no result after secs seconds.
This is the asynchronous equivalent to time.sleep, and can be useful in tests.

buildbot.util.lru

	
LRUCache(miss_fn, max_size=50):

	

	Parameters:	
	miss_fn -- function to call, with key as parameter, for cache misses.
The function should return the value associated with the key argument,
or None if there is no value associated with the key.

	max_size -- maximum number of objects in the cache.

This is a simple least-recently-used cache. When the cache grows beyond
the maximum size, the least-recently used items will be automatically
removed from the cache.

This cache is designed to control memory usage by minimizing duplication of
objects, while avoiding unnecessary re-fetching of the same rows from the
database.

All values are also stored in a weak valued dictionary, even after they
have expired from the cache. This allows values that are used elsewhere in
Buildbot to "stick" in the cache in case they are needed by another
component. Weak references cannot be used for some types, so these types
are not compatible with this class. Note that dictionaries can be weakly
referenced if they are an instance of a subclass of dict.

If the result of the miss_fn is None, then the value is not cached;
this is intended to avoid caching negative results.

This is based on Raymond Hettinger's implementation [http://code.activestate.com/recipes/498245-lru-and-lfu-cache-decorators/],
licensed under the PSF license, which is GPL-compatiblie.

	
buildbot.util.lru.hits

	cache hits so far

	
buildbot.util.lru.refhits

	cache misses found in the weak ref dictionary, so far

	
buildbot.util.lru.misses

	cache misses leading to re-fetches, so far

	
buildbot.util.lru.max_size

	maximum allowed size of the cache

	
buildbot.util.lru.get(key, **miss_fn_kwargs)

	

	Parameters:	
	key -- cache key

	miss_fn_kwargs -- keyword arguments to the miss_fn

	Returns:	value via Deferred

Fetch a value from the cache by key, invoking miss_fn(key,
**miss_fn_kwargs) if the key is not in the cache.

Any additional keyword arguments are passed to the miss_fn as
keyword arguments; these can supply additional information relating to
the key. It is up to the caller to ensure that this information is
functionally identical for each key value: if the key is already in the
cache, the miss_fn will not be invoked, even if the keyword
arguments differ.

	
buildbot.util.lru.put(key, value)

	

	Parameters:	
	key -- key at which to place the value

	value -- value to place there

Add the given key and value into the cache. The purpose of this
method is to insert a new value into the cache without invoking
the miss_fn (e.g., to avoid unnecessary overhead).

	
buildbot.util.lru.inv()

	Check invariants on the cache. This is intended for debugging
purposes.

	
AsyncLRUCache(miss_fn, max_size=50):

	

	Parameters:	
	miss_fn -- This is the same as the miss_fn for class LRUCache, with
the difference that this function must return a Deferred.

	max_size -- maximum number of objects in the cache.

This class has the same functional interface as LRUCache, but asynchronous
locking is used to ensure that in the common case of multiple concurrent
requests for the same key, only one fetch is performed.

buildbot.util.bbcollections

This package provides a few useful collection objects.

Note

This module used to be named collections, but without absolute
imports (PEP 328 [http://www.python.org/dev/peps/pep-0328]), this precluded using the standard library's
collections module.

	
class buildbot.util.bbcollections.defaultdict

	This is a clone of the Python collections.defaultdict for use in
Python-2.4. In later versions, this is simply a reference to the built-in
defaultdict, so buildbot code can simply use
buildbot.util.collections.defaultdict everywhere.

	
class buildbot.util.bbcollections.KeyedSets

	This is a collection of named sets. In principal, it contains an empty set
for every name, and you can add things to sets, discard things from sets,
and so on.

>>> ks = KeyedSets()
>>> ks['tim'] # get a named set
set([])
>>> ks.add('tim', 'friendly') # add an element to a set
>>> ks.add('tim', 'dexterous')
>>> ks['tim']
set(['friendly', 'dexterous'])
>>> 'tim' in ks # membership testing
True
>>> 'ron' in ks
False
>>> ks.discard('tim', 'friendly')# discard set element
>>> ks.pop('tim') # return set and reset to empty
set(['dexterous'])
>>> ks['tim']
set([])

This class is careful to conserve memory space - empty sets do not occupy
any space.

buildbot.util.eventual

This function provides a simple way to say "please do this later". For example:

from buildbot.util.eventual import eventually
def do_what_I_say(what, where):
 # ...
 return d
eventually(do_what_I_say, "clean up", "your bedroom")

The package defines "later" as "next time the reactor has control", so this is
a good way to avoid long loops that block other activity in the reactor.

	
buildbot.util.eventual.eventually(cb, *args, **kwargs)

	

	Parameters:	
	cb -- callable to invoke later

	args -- args to pass to cb

	kwargs -- kwargs to pass to cb

Invoke the callable cb in a later reactor turn.

Callables given to eventually are guaranteed to be called in the
same order as the calls to eventually -- writing eventually(a);
eventually(b) guarantees that a will be called before b.

Any exceptions that occur in the callable will be logged with
log.err(). If you really want to ignore them, provide a callable that
catches those exceptions.

This function returns None. If you care to know when the callable was
run, be sure to provide a callable that notifies somebody.

	
buildbot.util.eventual.fireEventually(value=None)

	

	Parameters:	value -- value with which the Deferred should fire

	Returns:	Deferred

This function returns a Deferred which will fire in a later reactor turn,
after the current call stack has been completed, and after all other
Deferreds previously scheduled with eventually. The returned
Deferred will never fail.

	
buildbot.util.eventual.flushEventualQueue()

	

	Returns:	Deferred

This returns a Deferred which fires when the eventual-send queue is finally
empty. This is useful for tests and other circumstances where it is useful
to know that "later" has arrived.

buildbot.util.debounce

Often, a method must be called exactly once at a time, but many events may trigger a call to the method.
A simple example is the step method updateSummary.

The debounce.method(wait) decorator is the tool for the job.

	
buildbot.util.debounce.method(wait)

	

	Parameters:	wait -- time to wait before invoking, in seconds

Returns a decorator that debounces the underlying method.
The underlying method must take no arguments (except self).

For each call to the decorated method, the underlying method will be invocation at least once within wait seconds (plus the time the method takes to execute).
Calls are "debounced" during that time, meaning that multiple calls to the decorated method may result in a single invocation.

The decorated method is an instance of Debouncer, allowing it to be started and stopped.
This is useful when the method is a part of a Buidbot service: call method.start() from startService and method.stop() from stopService, handling its Deferred appropriately.

	
class buildbot.util.debounce.Debouncer

	
	
stop()

	

	Returns:	Deferred

Stop the debouncer.
While the debouncer is stopped, calls to the decorated method will be ignored.
When the Deferred that stop returns fires, the underlying method is not executing.

	
start()

	Start the debouncer.
This reverses the effects of stop.
This method can be called on a started debouncer without issues.

buildbot.util.json

This package is just an import of the best available JSON module. Use it
instead of a more complex conditional import of simplejson or
json:

from buildbot.util import json

buildbot.util.maildir

Several Buildbot components make use of maildirs [http://www.courier-mta.org/maildir.html] to hand off messages between
components. On the receiving end, there's a need to watch a maildir for
incoming messages and trigger some action when one arrives.

	
class buildbot.util.maildir.MaildirService(basedir)

	

	param basedir:	(optional) base directory of the maildir

A MaildirService instance watches a maildir for new messages. It
should be a child service of some MultiService instance. When
running, this class uses the linux dirwatcher API (if available) or polls for new
files in the 'new' maildir subdirectory. When it discovers a new
message, it invokes its messageReceived method.

To use this class, subclass it and implement a more interesting
messageReceived function.

	
setBasedir(basedir)

	

	Parameters:	basedir -- base directory of the maildir

If no basedir is provided to the constructor, this method must be
used to set the basedir before the service starts.

	
messageReceived(filename)

	

	Parameters:	filename -- unqualified filename of the new message

This method is called with the short filename of the new message. The
full name of the new file can be obtained with os.path.join(maildir,
'new', filename). The method is un-implemented in the
MaildirService class, and must be implemented in
subclasses.

	
moveToCurDir(filename)

	

	Parameters:	filename -- unqualified filename of the new message

	Returns:	open file object

Call this from messageReceived to start processing the
message; this moves the message file to the 'cur' directory and returns
an open file handle for it.

buildbot.util.misc

	
buildbot.util.misc.deferredLocked(lock)

	

	Parameters:	lock -- a twisted.internet.defer.DeferredLock instance or
a string naming an instance attribute containing one

This is a decorator to wrap an event-driven method (one returning a
Deferred) in an acquire/release pair of a designated
DeferredLock. For simple functions
with a static lock, this is as easy as:

someLock = defer.DeferredLock()
@util.deferredLocked(someLock)
def someLockedFunction():
 # ..
 return d

For class methods which must access a lock that is an instance attribute, the
lock can be specified by a string, which will be dynamically resolved to the
specific instance at runtime:

def __init__(self):
 self.someLock = defer.DeferredLock()

@util.deferredLocked('someLock')
def someLockedFunction():
 # ..
 return d

	
class buildbot.util.misc.SerializedInvocation(method)

	This is a method wrapper that will serialize calls to an asynchronous
method. If a second call occurs while the first call is still executing,
it will not begin until the first call has finished. If multiple calls
queue up, they will be collapsed into a single call. The effect is that
the underlying method is guaranteed to be called at least once after every
call to the wrapper.

Note that if this class is used as a decorator on a method, it will
serialize invocations across all class instances. For synchronization
specific to each instance, wrap the method in the constructor:

def __init__(self):
 self.someMethod = SerializedInovcation(self.someMethod)

Tests can monkey-patch the _quiet method of the class to be notified
when all planned invocations are complete.

buildbot.util.netstrings

Similar to maildirs, netstrings [http://cr.yp.to/proto/netstrings.txt] are
used occasionally in Buildbot to encode data for interchange. While Twisted
supports a basic netstring receiver protocol, it does not have a simple way to
apply that to a non-network situation.

	
class buildbot.util.netstrings.NetstringParser

	This class parses strings piece by piece, either collecting the accumulated
strings or invoking a callback for each one.

	
feed(data)

	

	Parameters:	data -- a portion of netstring-formatted data

	Raises:	twisted.protocols.basic.NetstringParseError

Add arbitrarily-sized data to the incoming-data buffer. Any
complete netstrings will trigger a call to the
stringReceived method.

Note that this method (like the Twisted class it is based on) cannot
detect a trailing partial netstring at EOF - the data will be silently
ignored.

	
stringReceived(string):

	

	Parameters:	string -- the decoded string

This method is called for each decoded string as soon as it is read
completely. The default implementation appends the string to the
strings attribute, but subclasses can do anything.

	
strings

	The strings decoded so far, if stringReceived is not
overridden.

buildbot.util.sautils

This module contains a few utilities that are not included with SQLAlchemy.

	
class buildbot.util.sautils.InsertFromSelect(table, select)

	

	Parameters:	
	table -- table into which insert should be performed

	select -- select query from which data should be drawn

This class is taken directly from SQLAlchemy's compiler.html [http://www.sqlalchemy.org/docs/core/compiler.html#compiling-sub-elements-of-a-custom-expression-construct],
and allows a Pythonic representation of INSERT INTO .. SELECT ..
queries.

	
buildbot.util.sautils.sa_version()

	Return a 3-tuple representing the SQLAlchemy version. Note that older
versions that did not have a __version__ attribute are represented by
(0,0,0).

buildbot.util.subscription

The classes in the buildbot.util.subscription module are used for
master-local subscriptions. In the near future, all uses of this module will
be replaced with message-queueing implementations that allow subscriptions and
subscribers to span multiple masters.

buildbot.util.croniter

This module is a copy of https://github.com/taichino/croniter, and provides
support for converting cron-like time specifications into actual times.

buildbot.util.state

The classes in the buildbot.util.subscription module are used for dealing with object state stored in the database.

	
class buildbot.util.state.StateMixin

	This class provides helper methods for accessing the object state stored in the database.

	
name

	This must be set to the name to be used to identify this object in the database.

	
master

	This must point to the BuildMaster object.

	
getState(name, default)

	

	Parameters:	
	name -- name of the value to retrieve

	default -- (optional) value to return if name is not present

	Returns:	state value via a Deferred

	Raises:	
	KeyError -- if name is not present and no default is given

	TypeError -- if JSON parsing fails

Get a named state value from the object's state.

	
getState(name, value)

	

	Parameters:	
	name -- the name of the value to change

	value -- the value to set - must be a JSONable object

	returns -- Deferred

	Raises TypeError:

		if JSONification fails

Set a named state value in the object's persistent state.
Note that value must be json-able.

buildbot.util.identifiers

This module makes it easy to manipulate identifiers.

	
buildbot.util.identifiers.isIdentifier(maxLength, object)

	

	Parameters:	
	maxLength -- maximum length of the identifier

	object -- object to test for identifier-ness

	Returns:	boolean

Is object an identifier?

	
buildbot.util.identifiers.forceIdentifier(maxLength, str)

	

	Parameters:	
	maxLength -- maximum length of the identifier

	str -- string to coerce to an identifier

	Returns:	identifer of maximum length maxLength

Coerce a string (assuming ASCII for bytestrings) into an identifier.
This method will replace any invalid characters with _ and truncate to the given length.

	
buildbot.util.identifiers.incrementIdentifier(maxLength, str)

	

	Parameters:	
	maxLength -- maximum length of the identifier

	str -- identifier to increment

	Returns:	identifer of maximum length maxLength

	Raises:	ValueError if no suitable identifier can be constructed

"Increment" an identifier by adding a numeric suffix, while keeping the total length limited.
This is useful when selecting a unique identifier for an object.
Maximum-length identifiers like _999999 cannot be incremented and will raise ValueError.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Database

As of version 0.8.0, Buildbot has used a database as part of its storage
backend. This section describes the database connector classes, which allow
other parts of Buildbot to access the database. It also describes how to
modify the database schema and the connector classes themselves.

Note

Buildbot is only half-migrated to a database backend. Build and builder
status information is still stored on disk in pickle files. This is
difficult to fix, although work is underway.

Database Overview

All access to the Buildbot database is mediated by database connector classes.
These classes provide a functional, asynchronous interface to other parts of
Buildbot, and encapsulate the database-specific details in a single location in
the codebase.

The connector API, defined below, is a stable API in Buildbot, and can be
called from any other component. Given a master master, the root of the
database connectors is available at master.db, so, for example, the state
connector's getState method is master.db.state.getState.

The connectors all use SQLAlchemy Core [http://www.sqlalchemy.org/docs/index.html] to achieve (almost)
database-independent operation. Note that the SQLAlchemy ORM is not used in
Buildbot. Database queries are carried out in threads, and report their
results back to the main thread via Twisted Deferreds.

Schema

The database schema is maintained with SQLAlchemy-Migrate [http://code.google.com/p/sqlalchemy-migrate/]. This package handles the
details of upgrading users between different schema versions.

The schema itself is considered an implementation detail, and may change
significantly from version to version. Users should rely on the API (below),
rather than performing queries against the database itself.

API

buildrequests

	
exception buildbot.db.buildrequests.AlreadyClaimedError

	Raised when a build request is already claimed, usually by another master.

	
exception buildbot.db.buildrequests.NotClaimedError

	Raised when a build request is not claimed by this master.

	
class buildbot.db.buildrequests.BuildRequestsConnectorComponent

	This class handles the complex process of claiming and unclaiming build
requests, based on a polling model: callers poll for unclaimed requests with
getBuildRequests, then attempt to claim the requests with
claimBuildRequests. The claim can fail if another master has claimed
the request in the interim.

An instance of this class is available at master.db.buildrequests.

Build requests are indexed by an ID referred to as a brid. The contents
of a request are represented as build request dictionaries (brdicts) with
keys

	brid

	buildsetid

	buildername

	priority

	claimed (boolean, true if the request is claimed)

	claimed_at (datetime object, time this request was last claimed)

	mine (boolean, true if the request is claimed by this master)

	complete (boolean, true if the request is complete)

	complete_at (datetime object, time this request was completed)

	
getBuildRequest(brid)

	

	Parameters:	brid -- build request id to look up

	Returns:	brdict or None, via Deferred

Get a single BuildRequest, in the format described above. This method
returns None if there is no such buildrequest. Note that build
requests are not cached, as the values in the database are not fixed.

	
getBuildRequests(buildername=None, complete=None, claimed=None, bsid=None, branch=None, repository=None))

	

	Parameters:	
	buildername (string) -- limit results to buildrequests for this builder

	complete -- if true, limit to completed buildrequests; if false,
limit to incomplete buildrequests; if None, do not limit based on
completion.

	claimed -- see below

	bsid -- see below

	repository -- the repository associated with the sourcestamps originating the requests

	branch -- the branch associated with the sourcestamps originating the requests

	Returns:	list of brdicts, via Deferred

Get a list of build requests matching the given characteristics.

Pass all parameters as keyword parameters to allow future expansion.

The claimed parameter can be None (the default) to ignore the
claimed status of requests; True to return only claimed builds,
False to return only unclaimed builds, or "mine" to return only
builds claimed by this master instance. A request is considered
unclaimed if its claimed_at column is either NULL or 0, and it is
not complete. If bsid is specified, then only build requests for
that buildset will be returned.

A build is considered completed if its complete column is 1; the
complete_at column is not consulted.

	
claimBuildRequests(brids[, claimed_at=XX])

	

	Parameters:	
	brids (list) -- ids of buildrequests to claim

	claimed_at (datetime) -- time at which the builds are claimed

	Returns:	Deferred

	Raises:	AlreadyClaimedError

Try to "claim" the indicated build requests for this buildmaster
instance. The resulting deferred will fire normally on success, or
fail with AlreadyClaimedError if any of the build
requests are already claimed by another master instance. In this case,
none of the claims will take effect.

If claimed_at is not given, then the current time will be used.

As of 0.8.5, this method can no longer be used to re-claim build
requests. All given ID's must be unclaimed. Use
reclaimBuildRequests to reclaim.

Note

On database backends that do not enforce referential integrity
(e.g., SQLite), this method will not prevent claims for nonexistent
build requests. On database backends that do not support
transactions (MySQL), this method will not properly roll back any
partial claims made before an AlreadyClaimedError is
generated.

	
reclaimBuildRequests(brids)

	

	Parameters:	brids (list) -- ids of buildrequests to reclaim

	Returns:	Deferred

	Raises:	AlreadyClaimedError

Re-claim the given build requests, updating the timestamp, but checking
that the requests are owned by this master. The resulting deferred will
fire normally on success, or fail with AlreadyClaimedError if
any of the build requests are already claimed by another master
instance, or don't exist. In this case, none of the reclaims will take
effect.

	
unclaimBuildRequests(brids)

	

	Parameters:	brids (list) -- ids of buildrequests to unclaim

	Returns:	Deferred

Release this master's claim on all of the given build requests. This
will not unclaim requests that are claimed by another master, but will
not fail in this case. The method does not check whether a request is
completed.

	
completeBuildRequests(brids, results[, complete_at=XX])

	

	Parameters:	
	brids (integer) -- build request IDs to complete

	results (integer) -- integer result code

	complete_at (datetime) -- time at which the buildset was completed

	Returns:	Deferred

	Raises:	NotClaimedError

Complete a set of build requests, all of which are owned by this master
instance. This will fail with NotClaimedError if the build
request is already completed or does not exist. If complete_at is
not given, the current time will be used.

	
unclaimExpiredRequests(old)

	

	Parameters:	old (int) -- number of seconds after which a claim is considered old

	Returns:	Deferred

Find any incomplete claimed builds which are older than old
seconds, and clear their claim information.

This is intended to catch builds that were claimed by a master which
has since disappeared. As a side effect, it will log a message if any
requests are unclaimed.

builds

	
class buildbot.db.builds.BuildsConnectorComponent

	This class handles a little bit of information about builds.

Note

The interface for this class will change - the builds table duplicates
some information available in pickles, without including all such
information. Do not depend on this API.

An instance of this class is available at master.db.builds.

Builds are indexed by bid and their contents represented as bdicts
(build dictionaries), with keys

	bid (the build ID, globally unique)

	number (the build number, unique only within this master and builder)

	brid (the ID of the build request that caused this build)

	start_time

	finish_time (datetime objects, or None).

	
getBuild(bid)

	

	Parameters:	bid (integer) -- build id

	Returns:	Build dictionary as above or None, via Deferred

Get a single build, in the format described above. Returns None if
there is no such build.

	
getBuildsForRequest(brid)

	

	Parameters:	brids -- list of build request ids

	Returns:	List of build dictionaries as above, via Deferred

Get a list of builds for the given build request. The resulting build
dictionaries are in exactly the same format as for getBuild.

	
addBuild(brid, number)

	

	Parameters:	
	brid -- build request id

	number -- build number

	Returns:	build ID via Deferred

Add a new build to the db, recorded as having started at the current
time.

	
finishBuilds(bids)

	

	Parameters:	bids (list) -- build ids

	Returns:	Deferred

Mark the given builds as finished, with finish_time set to the
current time. This is done unconditionally, even if the builds are
already finished.

buildsets

	
class buildbot.db.buildsets.BuildsetsConnectorComponent

	This class handles getting buildsets into and out of the database.
Buildsets combine multiple build requests that were triggered together.

An instance of this class is available at master.db.buildsets.

Buildsets are indexed by bsid and their contents represented as bsdicts
(buildset dictionaries), with keys

	bsid

	external_idstring (arbitrary string for mapping builds externally)

	reason (string; reason these builds were triggered)

	sourcestampsetid (source stamp set for this buildset)

	submitted_at (datetime object; time this buildset was created)

	complete (boolean; true if all of the builds for this buildset are complete)

	complete_at (datetime object; time this buildset was completed)

	results (aggregate result of this buildset; see Build Result Codes)

	
addBuildset(sourcestampsetid, reason, properties, builderNames, external_idstring=None)

	

	Parameters:	
	sourcestampsetid (integer) -- id of the SourceStampSet for this buildset

	reason (short unicode string) -- reason for this buildset

	properties (dictionary, where values are tuples of (value, source)) -- properties for this buildset

	builderNames (list of strings) -- builders specified by this buildset

	external_idstring (unicode string) -- external key to identify this buildset; defaults to None

	Returns:	buildset ID and buildrequest IDs, via a Deferred

Add a new Buildset to the database, along with BuildRequests for each
named builder, returning the resulting bsid via a Deferred. Arguments
should be specified by keyword.

The return value is a tuple (bsid, brids) where bsid is the
inserted buildset ID and brids is a dictionary mapping buildernames
to build request IDs.

	
completeBuildset(bsid, results[, complete_at=XX])

	

	Parameters:	
	bsid (integer) -- buildset ID to complete

	results (integer) -- integer result code

	complete_at (datetime) -- time the buildset was completed

	Returns:	Deferred

	Raises:	KeyError if the buildset does not exist or is
already complete

Complete a buildset, marking it with the given results and setting
its completed_at to the current time, if the complete_at
argument is omitted.

	
getBuildset(bsid)

	

	Parameters:	bsid -- buildset ID

	Returns:	bsdict, or None, via Deferred

Get a bsdict representing the given buildset, or None if no such
buildset exists.

Note that buildsets are not cached, as the values in the database are
not fixed.

	
getBuildsets(complete=None)

	

	Parameters:	complete -- if true, return only complete buildsets; if false,
return only incomplete buildsets; if None or omitted, return all
buildsets

	Returns:	list of bsdicts, via Deferred

Get a list of bsdicts matching the given criteria.

	
getRecentBuildsets(count, branch=None, repository=None,

	
complete=None):

	

	Parameters:	
	count -- maximum number of buildsets to retrieve.

	branch (string) -- optional branch name. If specified, only buildsets
affecting such branch will be returned.

	repository (string) -- optional repository name. If specified, only
buildsets affecting such repository will be returned.

	complete (Boolean) -- if true, return only complete buildsets; if false,
return only incomplete buildsets; if None or omitted, return all
buildsets

	Returns:	list of bsdicts, via Deferred

	
getBuildsetProperties(buildsetid)

	

	Parameters:	buildsetid -- buildset ID

	Returns:	dictionary mapping property name to value, source, via
Deferred

Return the properties for a buildset, in the same format they were
given to addBuildset.

Note that this method does not distinguish a nonexistent buildset from
a buildset with no properties, and returns {} in either case.

buildslaves

	
class buildbot.db.buildslaves.BuildslavesConnectorComponent

	This class handles Buildbot's notion of buildslaves. The buildslave
information is returned as a dictionary:

	slaveid

	name (the name of the buildslave)

	slaveinfo (buildslave information as dictionary)

The 'slaveinfo' dictionary has the following keys:

	admin (the admin information)

	host (the name of the host)

	access_uri (the access URI)

	version (the version on the buildslave)

	
getBuildslaves()

	

	Returns:	list of partial information via Deferred

Get the entire list of buildslaves. Only id and name are returned.

	
getBuildslaveByName(name)

	

	Parameters:	name (string) -- the name of the buildslave to retrieve

	Returns:	info dictionary or None, via deferred

Looks up the buildslave with the name, returning the information or
None if no matching buildslave is found.

	
updateBuildslave(name, slaveinfo)

	

	Parameters:	
	name (string) -- the name of the buildslave to update

	slaveinfo (dict) -- the full buildslave dictionary

	Returns:	Deferred

Update information about the given buildslave.

changes

	
class buildbot.db.changes.ChangesConnectorComponent

	This class handles changes in the buildbot database, including pulling
information from the changes sub-tables.

An instance of this class is available at master.db.changes.

Changes are indexed by changeid, and are represented by a chdict, which
has the following keys:

	changeid (the ID of this change)

	author (unicode; the author of the change)

	files (list of unicode; source-code filenames changed)

	comments (unicode; user comments)

	is_dir (deprecated)

	links (list of unicode; links for this change, e.g., to web views,
review)

	revision (unicode string; revision for this change, or None if
unknown)

	when_timestamp (datetime instance; time of the change)

	branch (unicode string; branch on which the change took place, or
None for the "default branch", whatever that might mean)

	category (unicode string; user-defined category of this change, or
None)

	revlink (unicode string; link to a web view of this change)

	properties (user-specified properties for this change, represented as
a dictionary mapping keys to (value, source))

	repository (unicode string; repository where this change occurred)

	project (unicode string; user-defined project to which this change
corresponds)

	
addChange(author=None, files=None, comments=None, is_dir=0, links=None, revision=None, when_timestamp=None, branch=None, category=None, revlink='', properties={}, repository='', project='', uid=None)

	

	Parameters:	
	author (unicode string) -- the author of this change

	files -- a list of filenames that were changed

	comments -- user comments on the change

	is_dir -- deprecated

	links (list of unicode strings) -- a list of links related to this change, e.g., to web
viewers or review pages

	revision (unicode string) -- the revision identifier for this change

	when_timestamp (datetime instance or None) -- when this change occurred, or the current time
if None

	branch (unicode string) -- the branch on which this change took place

	category (unicode string) -- category for this change (arbitrary use by Buildbot
users)

	revlink (unicode string) -- link to a web view of this revision

	properties (dictionary) -- properties to set on this change, where values are
tuples of (value, source). At the moment, the source must be
'Change', although this may be relaxed in later versions.

	repository (unicode string) -- the repository in which this change took place

	project (unicode string) -- the project this change is a part of

	uid (integer) -- uid generated for the change author

	Returns:	new change's ID via Deferred

Add a Change with the given attributes to the database, returning the
changeid via a Deferred. All arguments should be given as keyword
arguments.

The project and repository arguments must be strings; None
is not allowed.

	
getChange(changeid, no_cache=False)

	

	Parameters:	
	changeid -- the id of the change instance to fetch

	no_cache (boolean) -- bypass cache and always fetch from database

	Returns:	chdict via Deferred

Get a change dictionary for the given changeid, or None if no such
change exists.

	
getChangeUids(changeid)

	

	Parameters:	changeid -- the id of the change instance to fetch

	Returns:	list of uids via Deferred

Get the userids associated with the given changeid.

	
getRecentChanges(count)

	

	Parameters:	count -- maximum number of instances to return

	Returns:	list of dictionaries via Deferred, ordered by changeid

Get a list of the count most recent changes, represented as
dictionaries; returns fewer if that many do not exist.

Note

For this function, "recent" is determined by the order of the
changeids, not by when_timestamp. This is most apparent in
DVCS's, where the timestamp of a change may be significantly
earlier than the time at which it is merged into a repository
monitored by Buildbot.

	
getLatestChangeid()

	

	Returns:	changeid via Deferred

Get the most-recently-assigned changeid, or None if there are no
changes at all.

schedulers

	
class buildbot.db.schedulers.SchedulersConnectorComponent

	This class manages the state of the Buildbot schedulers. This state includes
classifications of as-yet un-built changes.

An instance of this class is available at master.db.changes.

Schedulers are identified by a their objectid - see
StateConnectorComponent.

	
classifyChanges(objectid, classifications)

	

	Parameters:	
	objectid -- scheduler classifying the changes

	classifications (dictionary) -- mapping of changeid to boolean, where the boolean
is true if the change is important, and false if it is unimportant

	Returns:	Deferred

Record the given classifications. This method allows a scheduler to
record which changes were important and which were not immediately,
even if the build based on those changes will not occur for some time
(e.g., a tree stable timer). Schedulers should be careful to flush
classifications once they are no longer needed, using
flushChangeClassifications.

	
getChangeClassifications(objectid[, branch])

	

	Parameters:	
	objectid (integer) -- scheduler to look up changes for

	branch (string or None (for default branch)) -- (optional) limit to changes with this branch

	Returns:	dictionary via Deferred

Return the classifications made by this scheduler, in the form of a
dictionary mapping changeid to a boolean, just as supplied to
classifyChanges.

If branch is specified, then only changes on that branch will be
given. Note that specifying branch=None requests changes for the
default branch, and is not the same as omitting the branch argument
altogether.

sourcestamps

	
class buildbot.db.sourcestamps.SourceStampsConnectorComponent

	This class manages source stamps, as stored in the database. Source stamps
are linked to changes. Source stamps with the same sourcestampsetid belong
to the same sourcestampset. Buildsets link to one or more source stamps via
a sourcestampset id.

An instance of this class is available at master.db.sourcestamps.

Source stamps are identified by a ssid, and represented internally as a ssdict, with keys

	ssid

	sourcestampsetid (set to which the sourcestamp belongs)

	branch (branch, or None for default branch)

	revision (revision, or None to indicate the latest revision, in
which case this is a relative source stamp)

	patch_body (body of the patch, or None)

	patch_level (directory stripping level of the patch, or None)

	patch_subdir (subdirectory in which to apply the patch, or None)

	patch_author (author of the patch, or None)

	patch_comment (comment for the patch, or None)

	repository (repository containing the source; never None)

	project (project this source is for; never None)

	changeids (list of changes, by id, that generated this sourcestamp)

Note

Presently, no attempt is made to ensure uniqueness of source stamps, so
multiple ssids may correspond to the same source stamp. This may be fixed
in a future version.

	
addSourceStamp(branch, revision, repository, project, patch_body=None, patch_level=0, patch_author="", patch_comment="", patch_subdir=None, changeids=[])

	

	Parameters:	
	branch (unicode string) --

	revision (unicode string) --

	repository (unicode string) --

	project (string) --

	patch_body (string) -- (optional)

	patch_level (int) -- (optional)

	patch_author (unicode string) -- (optional)

	patch_comment (unicode string) -- (optional)

	patch_subdir (unicode string) -- (optional)

	changeids (list of ints) --

	Returns:	ssid, via Deferred

Create a new SourceStamp instance with the given attributes, and return
its ssid. The arguments all have the same meaning as in an ssdict.
Pass them as keyword arguments to allow for future expansion.

	
getSourceStamp(ssid)

	

	Parameters:	
	ssid -- sourcestamp to get

	no_cache (boolean) -- bypass cache and always fetch from database

	Returns:	ssdict, or None, via Deferred

Get an ssdict representing the given source stamp, or None if no
such source stamp exists.

	
getSourceStamps(sourcestampsetid)

	

	Parameters:	sourcestampsetid (integer) -- identification of the set, all returned sourcestamps belong to this set

	Returns:	sslist of ssdict

Get a set of sourcestamps identified by a set id. The set is returned as
a sslist that contains one or more sourcestamps (represented as ssdicts).
The list is empty if the set does not exist or no sourcestamps belong to the set.

sourcestampset

	
class buildbot.db.sourcestampsets.SourceStampSetsConnectorComponent

	This class is responsible for adding new sourcestampsets to the database.
Build sets link to sourcestamp sets, via their (set) id's.

An instance of this class is available at master.db.sourcestampsets.

Sourcestamp sets are identified by a sourcestampsetid.

	
addSourceStampSet()

	

	Returns:	new sourcestampsetid as integer, via Deferred

Add a new (empty) sourcestampset to the database. The unique identification
of the set is returned as integer. The new id can be used to add
new sourcestamps to the database and as reference in a buildset.

state

	
class buildbot.db.state.StateConnectorComponent

	This class handles maintaining arbitrary key/value state for Buildbot
objects. Each object can store arbitrary key/value pairs, where the values
are any JSON-encodable value. Each pair can be set and retrieved
atomically.

Objects are identified by their (user-visible) name and their
class. This allows, for example, a nightly_smoketest object of class
NightlyScheduler to maintain its state even if it moves between
masters, but avoids cross-contaminating state between different classes
of objects with the same name.

Note that "class" is not interpreted literally, and can be any string that
will uniquely identify the class for the object; if classes are renamed,
they can continue to use the old names.

An instance of this class is available at master.db.state.

Objects are identified by objectid.

	
getObjectId(name, class_name)

	

	Parameters:	
	name -- name of the object

	class_name -- object class name

	Returns:	the objectid, via a Deferred.

Get the object ID for this combination of a name and a class. This
will add a row to the 'objects' table if none exists already.

	
getState(objectid, name[, default])

	

	Parameters:	
	objectid -- objectid on which the state should be checked

	name -- name of the value to retrieve

	default -- (optional) value to return if C{name} is not present

	Returns:	state value via a Deferred

	Raises KeyError:

		if name is not present and no default is given

	Raises:	TypeError if JSON parsing fails

Get the state value for key name for the object with id
objectid.

	
setState(objectid, name, value)

	

	Parameters:	
	objectid -- the objectid for which the state should be changed

	name -- the name of the value to change

	value (JSON-able value) -- the value to set

	returns -- Deferred

	Raises:	TypeError if JSONification fails

Set the state value for name for the object with id objectid,
overwriting any existing value.

users

	
class buildbot.db.users.UsersConnectorComponent

	This class handles Buildbot's notion of users. Buildbot tracks the usual
information about users -- username and password, plus a display name.

The more complicated task is to recognize each user across multiple
interfaces with Buildbot. For example, a user may be identified as
'djmitche' in Subversion, 'dustin@v.igoro.us' in Git, and 'dustin' on IRC.
To support this functionality, each user as a set of attributes, keyed by
type. The findUserByAttr method uses these attributes to match users,
adding a new user if no matching user is found.

Users are identified canonically by uid, and are represented by usdicts (user
dictionaries) with keys

	uid

	identifier (display name for the user)

	bb_username (buildbot login username)

	bb_password (hashed login password)

All attributes are also included in the dictionary, keyed by type. Types
colliding with the keys above are ignored.

	
findUserByAttr(identifier, attr_type, attr_data)

	

	Parameters:	
	identifier -- identifier to use for a new user

	attr_type -- attribute type to search for and/or add

	attr_data -- attribute data to add

	Returns:	userid via Deferred

Get an existing user, or add a new one, based on the given attribute.

This method is intended for use by other components of Buildbot to
search for a user with the given attributes.

Note that identifier is not used in the search for an existing
user. It is only used when creating a new user. The identifier should
be based deterministically on the attributes supplied, in some fashion
that will seem natural to users.

For future compatibility, always use keyword parameters to call this
method.

	
getUser(uid)

	

	Parameters:	
	uid -- user id to look up

	no_cache (boolean) -- bypass cache and always fetch from database

	Returns:	usdict via Deferred

Get a usdict for the given user, or None if no matching user is
found.

	
getUserByUsername(username)

	

	Parameters:	username (string) -- username portion of user credentials

	Returns:	usdict or None via deferred

Looks up the user with the bb_username, returning the usdict or
None if no matching user is found.

	
getUsers()

	

	Returns:	list of partial usdicts via Deferred

Get the entire list of users. User attributes are not included, so the
results are not full userdicts.

	
updateUser(uid=None, identifier=None, bb_username=None, bb_password=None, attr_type=None, attr_data=None)

	

	Parameters:	
	uid (int) -- the user to change

	identifier (string) -- (optional) new identifier for this user

	bb_username (string) -- (optional) new buildbot username

	bb_password (string) -- (optional) new hashed buildbot password

	attr_type (string) -- (optional) attribute type to update

	attr_data (string) -- (optional) value for attr_type

	Returns:	Deferred

Update information about the given user. Only the specified attributes
are updated. If no user with the given uid exists, the method will
return silently.

Note that bb_password must be given if bb_username appears;
similarly, attr_type requires attr_data.

	
removeUser(uid)

	

	Parameters:	uid (int) -- the user to remove

	Returns:	Deferred

Remove the user with the given uid from the database. This will remove
the user from any associated tables as well.

	
identifierToUid(identifier)

	

	Parameters:	identifier (string) -- identifier to search for

	Returns:	uid or None, via Deferred

Fetch a uid for the given identifier, if one exists.

Writing Database Connector Methods

The information above is intended for developers working on the rest of
Buildbot, and treating the database layer as an abstraction. The remainder of
this section describes the internals of the database implementation, and is
intended for developers modifying the schema or adding new methods to the
database layer.

Warning

It's difficult to change the database schema significantly after it has
been released, and very disruptive to users to change the database API.
Consider very carefully the future-proofing of any changes here!

The DB Connector and Components

	
class buildbot.db.connector.DBConnector

	The root of the database connectors, master.db, is a
DBConnector instance. Its main purpose is
to hold reference to each of the connector components, but it also handles
timed cleanup tasks.

If you are adding a new connector component, import its module and create
an instance of it in this class's constructor.

	
class buildbot.db.base.DBConnectorComponent

	This is the base class for connector components.

There should be no need to override the constructor defined by this base
class.

	
db

	A reference to the DBConnector, so that
connector components can use e.g., self.db.pool or
self.db.model. In the unusual case that a connector component
needs access to the master, the easiest path is self.db.master.

Direct Database Access

The connectors all use SQLAlchemy Core [http://www.sqlalchemy.org/docs/index.html] as a wrapper around database
client drivers. Unfortunately, SQLAlchemy is a synchronous library, so some
extra work is required to use it in an asynchronous context like Buildbot.
This is accomplished by deferring all database operations to threads, and
returning a Deferred. The Pool class takes care of
the details.

A connector method should look like this:

def myMethod(self, arg1, arg2):
 def thd(conn):
 q = ... # construct a query
 for row in conn.execute(q):
 ... # do something with the results
 return ... # return an interesting value
 return self.db.pool.do(thd)

Picking that apart, the body of the method defines a function named thd
taking one argument, a Connection object. It then calls
self.db.pool.do, passing the thd function. This function is called in
a thread, and can make blocking calls to SQLAlchemy as desired. The do
method will return a Deferred that will fire with the return value of thd,
or with a failure representing any exceptions raised by thd.

The return value of thd must not be an SQLAlchemy object - in particular,
any ResultProxy
objects must be parsed into lists or other data structures before they are
returned.

Warning

As the name thd indicates, the function runs in a thread. It should
not interact with any other part of Buildbot, nor with any of the Twisted
components that expect to be accessed from the main thread -- the reactor,
Deferreds, etc.

Queries can be constructed using any of the SQLAlchemy core methods, using
tables from Model, and executed with the connection
object, conn.

	
class buildbot.db.pool.DBThreadPool

	
	
do(callable, ...)

	

	Returns:	Deferred

Call callable in a thread, with a Connection object as first
argument. Returns a deferred that will fire with the results of the
callable, or with a failure representing any exception raised during
its execution.

Any additional positional or keyword arguments are passed to
callable.

	
do_with_engine(callable, ...)

	

	Returns:	Deferred

Similar to do, call callable in a thread, but with an
Engine object as
first argument.

This method is only used for schema manipulation, and should not be
used in a running master.

Database Schema

Database connector methods access the database through SQLAlchemy, which
requires access to Python objects representing the database tables. That is
handled through the model.

	
class buildbot.db.model.Model

	This class contains the canonical description of the buildbot schema, It is
presented in the form of SQLAlchemy Table instances, as class variables. At
runtime, the model is available at master.db.model, so for example the
buildrequests table can be referred to as
master.db.model.buildrequests, and columns are available in its c
attribute.

The source file, master/buildbot/db/model.py [https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py], contains comments
describing each table; that information is not replicated in this
documentation.

Note that the model is not used for new installations or upgrades of the
Buildbot database. See Modifying the Database Schema for more
information.

	
metadata

	The model object also has a metadata attribute containing a
MetaData instance.
Connector methods should not need to access this object. The metadata
is not bound to an engine.

The Model class also defines some migration-related methods:

	
is_current()

	

	Returns:	boolean via Deferred

Returns true if the current database's version is current.

	
upgrade()

	

	Returns:	Deferred

Upgrades the database to the most recent schema version.

Caching

Connector component methods that get an object based on an ID are good
candidates for caching. The cached decorator
makes this automatic:

	
buildbot.db.base.cached(cachename)

	

	Parameters:	cache_name -- name of the cache to use

A decorator for "getter" functions that fetch an object from the database
based on a single key. The wrapped method will only be called if the named
cache does not contain the key.

The wrapped function must take one argument (the key); the wrapper will
take a key plus an optional no_cache argument which, if true, will
cause it to invoke the underlying method even if the key is in the cache.

The resulting method will have a cache attribute which can be used to
access the underlying cache.

In most cases, getter methods return a well-defined dictionary. Unfortunately,
Python does not handle weak references to bare dictionaries, so components must
instantiate a subclass of dict. The whole assembly looks something like
this:

class ThDict(dict):
 pass

class ThingConnectorComponent(base.DBConnectorComponent):

 @base.cached('thdicts')
 def getThing(self, thid):
 def thd(conn):
 ...
 thdict = ThDict(thid=thid, attr=row.attr, ...)
 return thdict
 return self.db.pool.do(thd)

Tests

It goes without saying that any new connector methods must be fully tested!

You will also want to add an in-memory implementation of the methods to the
fake classes in master/buildbot/test/fake/fakedb.py. Non-DB Buildbot code
is tested using these fake implementations in order to isolate that code from
the database code.

Modifying the Database Schema

Changes to the schema are accomplished through migration scripts, supported by
SQLAlchemy-Migrate [http://code.google.com/p/sqlalchemy-migrate/]. In fact,
even new databases are created with the migration scripts -- a new database is
a migrated version of an empty database.

The schema is tracked by a version number, stored in the migrate_version
table. This number is incremented for each change to the schema, and used to
determine whether the database must be upgraded. The master will refuse to run
with an out-of-date database.

To make a change to the schema, first consider how to handle any existing data.
When adding new columns, this may not be necessary, but table refactorings can
be complex and require caution so as not to lose information.

Create a new script in master/buildbot/db/migrate/versions [https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/migrate/versions], following
the numbering scheme already present. The script should have an update
method, which takes an engine as a parameter, and upgrades the database, both
changing the schema and performing any required data migrations. The engine
passed to this parameter is "enhanced" by SQLAlchemy-Migrate, with methods to
handle adding, altering, and dropping columns. See the SQLAlchemy-Migrate
documentation for details.

Next, modify master/buildbot/db/model.py [https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py] to represent the updated
schema. Buildbot's automated tests perform a rudimentary comparison of an
upgraded database with the model, but it is important to check the details -
key length, nullability, and so on can sometimes be missed by the checks. If
the schema and the upgrade scripts get out of sync, bizarre behavior can
result.

Also, adjust the fake database table definitions in
master/buildbot/test/fake/fakedb.py [https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake/fakedb.py] according to your changes.

Your upgrade script should have unit tests. The classes in
master/buildbot/test/util/migration.py [https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/migration.py] make this straightforward.
Unit test scripts should be named e.g.,
test_db_migrate_versions_015_remove_bad_master_objectid.py.

The master/buildbot/test/integration/test_upgrade.py also tests
upgrades, and will confirm that the resulting database matches the model. If
you encounter implicit indexes on MySQL, that do not appear on SQLite or
Postgres, add them to implied_indexes in
master/buidlbot/db/model.py.

Database Compatibility Notes

Or: "If you thought any database worked right, think again"

Because Buildbot works over a wide range of databases, it is generally limited
to database features present in all supported backends. This section
highlights a few things to watch out for.

In general, Buildbot should be functional on all supported database backends.
If use of a backend adds minor usage restrictions, or cannot implement some
kinds of error checking, that is acceptable if the restrictions are
well-documented in the manual.

The metabuildbot tests Buildbot against all supported databases, so most
compatibility errors will be caught before a release.

Index Length in MySQL

MySQL only supports about 330-character indexes. The actual index length is
1000 bytes, but MySQL uses 3-byte encoding for UTF8 strings. This is a
longstanding bug in MySQL - see "Specified key was too long; max key
length is 1000 bytes" with utf8 [http://bugs.mysql.com/bug.php?id=4541].
While this makes sense for indexes used for record lookup, it limits the
ability to use unique indexes to prevent duplicate rows.

InnoDB has even more severe restrictions on key lengths, which is why the MySQL
implementation requires a MyISAM storage engine.

Transactions in MySQL

Unfortunately, use of the MyISAM storage engine precludes real transactions in
MySQL. transaction.commit() and transaction.rollback() are essentially
no-ops: modifications to data in the database are visible to other users
immediately, and are not reverted in a rollback.

Referential Integrity in SQLite and MySQL

Neither MySQL nor SQLite enforce referential integrity based on foreign keys.
Postgres does enforce, however. If possible, test your changes on Postgres
before committing, to check that tables are added and removed in the proper
order.

Subqueries in MySQL

MySQL's query planner is easily confused by subqueries. For example, a DELETE
query specifying id's that are IN a subquery will not work. The workaround is
to run the subquery directly, and then execute a DELETE query for each returned
id.

If this weakness has a significant performance impact, it would be acceptable to
conditionalize use of the subquery on the database dialect.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Build Result Codes

Buildbot represents the status of a step, build, or buildset using a set of
numeric constants. From Python, these constants are available in the module
buildbot.status.results, but the values also appear in the database and in
external tools, so the values are fixed.

	
buildbot.status.results.SUCCESS

	Value: 0; color: green; a successful run.

	
buildbot.status.results.WARNINGS

	Value: 1; color: orange; a successful run, with some warnings.

	
buildbot.status.results.FAILURE

	Value: 2; color: red; a failed run, due to problems in the build itself, as
opposed to a Buildbot misconfiguration or bug.

	
buildbot.status.results.SKIPPED

	Value: 3; color: white; a run that was skipped -- usually a step skipped by
doStepIf (see Common Parameters)

	
buildbot.status.results.EXCEPTION

	Value: 4; color: purple; a run that failed due to a problem in Buildbot
itself.

	
buildbot.status.results.RETRY

	Value: 4; color: purple; a run that should be retried, usually due to a
slave disconnection.

	
buildbot.status.results.Results

	A dictionary mapping result codes to their lowercase names.

	
buildbot.status.results.worst_status(a, b)

	This function takes two status values, and returns the "worst" status of
the two. This is used (with exceptions) to aggregate step statuses into
build statuses, and build statuses into buildset statuses.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

File Formats

Log File Format

	
class buildbot.status.logfile.LogFile

	

The master currently stores each logfile in a single file, which may have a
standard compression applied.

The format is a special case of the netstrings protocol - see
http://cr.yp.to/proto/netstrings.txt. The text in each netstring
consists of a one-digit channel identifier followed by the data from that
channel.

The formatting is implemented in the LogFile class in
buildbot/status/logfile.py, and in particular by the merge
method.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Web Status

Jinja Web Templates

Buildbot uses Jinja2 to render its web interface. The authoritative source for
this templating engine is
its own documentation [http://jinja.pocoo.org/2/documentation/],
of course, but a few notes are in order for those who are
making only minor modifications.

Whitespace

Jinja directives are enclosed in {% .. %}, and sometimes also have
dashes. These dashes strip whitespace in the output. For example:

{% for entry in entries %}
 {{ entry }}
{% endfor %}

will produce output with too much whitespace:

pigs

cows

But adding the dashes will collapse that whitespace completely:

{% for entry in entries -%}
 {{ entry }}
{%- endfor %}

yields

pigscows

Web Authorization Framework

Whenever any part of the web framework wants to perform some action on the
buildmaster, it should check the user's authorization first.

Always check authorization twice: once to decide whether to show the option to
the user (link, button, form, whatever); and once before actually performing
the action.

To check whether to display the option, you'll usually want to pass an authz
object to the Jinja template in your HtmlResource subclass:

def content(self, req, cxt):
 # ...
 cxt['authz'] = self.getAuthz(req)
 template = ...
 return template.render(**cxt)

and then determine whether to advertise the action in the template:

{{ if authz.advertiseAction('myNewTrick') }}
 <form action="{{ myNewTrick_url }}"> ...
{{ endif }}

Actions can optionally require authentication, so use needAuthForm to
determine whether to require a 'username' and 'passwd' field in the generated
form. These fields are usually generated by authFormIfNeeded:

{{ authFormIfNeeded(authz, 'myNewTrick') }}

Once the POST request comes in, it's time to check authorization again.
This usually looks something like

res = yield self.getAuthz(req).actionAllowed('myNewTrick', req, someExtraArg)
if not res:
 defer.returnValue(Redirect(path_to_authfail(req)))
 return

The someExtraArg is optional (it's handled with *args, so you can
have several if you want), and is given to the user's authorization function.
For example, a build-related action should pass the build status, so that the
user's authorization function could ensure that devs can only operate on their
own builds.

Note that actionAllowed returns a Deferred instance, so you must wait
for the Deferred and yield the Redirect instead of returning it.

The available actions are described in WebStatus.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Master-Slave API

This section describes the master-slave interface.

Connection

The interface is based on Twisted's Perspective Broker, which operates over TCP
connections.

The slave connects to the master, using the parameters supplied to
buildslave create-slave. It uses a reconnecting process with an
exponential backoff, and will automatically reconnect on disconnection.

Once connected, the slave authenticates with the Twisted Cred (newcred)
mechanism, using the username and password supplied to buildslave
create-slave. The mind is the slave bot instance (class
buildslave.bot.Bot).

On the master side, the realm is implemented by
buildbot.master.Dispatcher, which examines the username of incoming
avatar requests. There are special cases for change, debug, and
statusClient, which are not discussed here. For all other usernames,
the botmaster is consulted, and if a slave with that name is configured, its
buildbot.buildslave.BuildSlave instance is returned as the perspective.

Build Slaves

At this point, the master-side BuildSlave object has a pointer to the remote,
slave-side Bot object in its self.slave, and the slave-side Bot object has
a reference to the master-side BuildSlave object in its self.perspective.

Bot methods

The slave-side Bot object has the following remote methods:

	remote_getCommands

	Returns a list of (name, version) for all commands the slave recognizes

	remote_setBuilderList

	Given a list of builders and their build directories, ensures that
those builders, and only those builders, are running. This can be
called after the initial connection is established, with a new
list, to add or remove builders.

This method returns a dictionary of SlaveBuilder objects - see below

	remote_print

	Adds a message to the slave logfile

	remote_getSlaveInfo

	Returns the contents of the slave's info/ directory. This also
contains the keys

	environ

	copy of the slaves environment

	system

	OS the slave is running (extracted from Python's os.name)

	basedir

	base directory where slave is running

	remote_getVersion

	Returns the slave's version

BuildSlave methods

The master-side object has the following method:

	perspective_keepalive

	Does nothing - used to keep traffic flowing over the TCP connection

Setup

After the initial connection and trading of a mind (Bot) for an avatar
(BuildSlave), the master calls the Bot's setBuilderList method to set
up the proper slave builders on the slave side. This method returns a
reference to each of the new slave-side SlaveBuilder
objects, described below. Each of these is handed to the corresponding
master-side SlaveBuilder object.

This immediately calls the remote setMaster method, then the
print method.

Pinging

To ping a remote SlaveBuilder, the master calls its print method.

Building

When a build starts, the master calls the slave's startBuild method.
Each BuildStep instance will subsequently call the startCommand method,
passing a reference to itself as the stepRef parameter. The
startCommand method returns immediately, and the end of the command is
signalled with a call to a method on the master-side BuildStep object.

Slave Builders

Each build slave has a set of builders which can run on it. These are
represented by distinct classes on the master and slave, just like the
BuildSlave and Bot objects described above.

On the slave side, builders are represented as instances of the
buildslave.bot.SlaveBuilder class. On the master side, they are
represented by the buildbot.process.slavebuilder.SlaveBuilder class.
The identical names are a source of confusion. The following will refer to
these as the slave-side and master-side SlaveBuilder classes. Each object
keeps a reference to its opposite in self.remote.

Slave-Side SlaveBuilder Methods

	remote_setMaster

	Provides a reference to the master-side SlaveBuilder

	remote_print

	Adds a message to the slave logfile; used to check round-trip connectivity

	remote_startBuild

	Indicates that a build is about to start, and that any subsequent
commands are part of that build

	remote_startCommand

	Invokes a command on the slave side

	remote_interruptCommand

	Interrupts the currently-running command

	remote_shutdown

	Shuts down the slave cleanly

Master-side SlaveBuilder Methods

The master side does not have any remotely-callable methods.

Commands

Actual work done by the slave is represented on the master side by a
buildbot.process.buildstep.RemoteCommand instance.

The command instance keeps a reference to the slave-side
buildslave.bot.SlaveBuilder, and calls methods like
remote_startCommand to start new commands.
Once that method is called, the SlaveBuilder instance
keeps a reference to the command, and calls the following methods on it:

Master-Side RemoteCommand Methods

	remote_update

	Update information about the running command. See below for the format.

	remote_complete

	Signal that the command is complete, either successfully or with a Twisted failure.

Updates

Updates from the slave, sent via
remote_update, are a list of
individual update elements. Each update element is, in turn, a list of the
form [data, 0] where the 0 is present for historical reasons. The data is
a dictionary, with keys describing the contents. The updates are handled by
remoteUpdate.

Updates with different keys can be combined into a single dictionary or
delivered sequentially as list elements, at the slave's option.

To summarize, an updates parameter to
remote_update might look like
this:

[
 [{ 'header' : 'running command..' }, 0],
 [{ 'stdout' : 'abcd', 'stderr' : 'local modifications' }, 0],
 [{ 'log' : ('cmd.log', 'cmd invoked at 12:33 pm\n') }, 0],
 [{ 'rc' : 0 }, 0],
]

Defined Commands

The following commands are defined on the slaves.

shell

Runs a shell command on the slave. This command takes the following arguments:

command

The command to run. If this is a string, will be passed to the system
shell as a string. Otherwise, it must be a list, which will be
executed directly.

workdir

Directory in which to run the command, relative to the builder dir.

env

A dictionary of environment variables to augment or replace the
existing environment on the slave. In this dictionary, PYTHONPATH
is treated specially: it should be a list of path components, rather
than a string, and will be prepended to the existing Python path.

initial_stdin

A string which will be written to the command's standard input before
it is closed.

want_stdout

If false, then no updates will be sent for stdout.

want_stderr

If false, then no updates will be sent for stderr.

usePTY

If true, the command should be run with a PTY (POSIX only). This
defaults to the value specified in the slave's buildbot.tac.

not_really

If true, skip execution and return an update with rc=0.

timeout

Maximum time without output before the command is killed.

maxTime

Maximum overall time from the start before the command is killed.

logfiles

A dictionary specifying logfiles other than stdio. Keys are the logfile
names, and values give the workdir-relative filename of the logfile. Alternately,
a value can be a dictionary; in this case, the dictionary must have a filename
key specifying the filename, and can also have the following keys:

follow

Only follow the file from its current end-of-file, rather that starting
from the beginning.

logEnviron

If false, the command's environment will not be logged.

The shell command sends the following updates:

	stdout

	The data is a bytestring which represents a continuation of the stdout
stream. Note that the bytestring boundaries are not necessarily aligned
with newlines.

	stderr

	Similar to stdout, but for the error stream.

	header

	Similar to stdout, but containing data for a stream of
buildbot-specific metadata.

	rc

	The exit status of the command, where -- in keeping with UNIX tradition --
0 indicates success and any nonzero value is considered a failure. No
further updates should be sent after an rc.

	log

	This update contains data for a logfile other than stdio. The data
associated with the update is a tuple of the log name and the data for that
log. Note that non-stdio logs do not distinguish output, error, and header
streams.

uploadFile

Upload a file from the slave to the master. The arguments are

workdir

The base directory for the filename, relative to the builder's basedir.

slavesrc

Name of the filename to read from., relative to the workdir.

writer

A remote reference to a writer object, described below.

maxsize

Maximum size, in bytes, of the file to write. The operation will fail if
the file exceeds this size.

blocksize

The block size with which to transfer the file.

keepstamp

If true, preserve the file modified and accessed times.

The slave calls a few remote methods on the writer object. First, the
write method is called with a bytestring containing data, until all of the
data has been transmitted. Then, the slave calls the writer's close,
followed (if keepstamp is true) by a call to upload(atime, mtime).

This command sends rc and stderr updates, as defined for the shell
command.

uploadDirectory

Similar to uploadFile, this command will upload an entire directory to the
master, in the form of a tarball. It takes the following arguments:

workdir
slavesrc
writer
maxsize
blocksize

See uploadFile

compress

Compression algorithm to use -- one of None, 'bz2', or 'gz'.

The writer object is treated similarly to the uploadFile command, but after
the file is closed, the slave calls the master's unpack method with no
arguments to extract the tarball.

This command sends rc and stderr updates, as defined for the shell
command.

downloadFile

This command will download a file from the master to the slave. It takes the
following arguments:

workdir

Base directory for the destination filename, relative to the builder basedir.

slavedest

Filename to write to, relative to the workdir.

reader

A remote reference to a reader object, described below.

maxsize

Maximum size of the file.

blocksize

The block size with which to transfer the file.

mode

Access mode for the new file.

The reader object's read(maxsize) method will be called with a maximum
size, which will return no more than that number of bytes as a bytestring. At
EOF, it will return an empty string. Once EOF is received, the slave will call
the remote close method.

This command sends rc and stderr updates, as defined for the shell
command.

mkdir

This command will create a directory on the slave. It will also create any
intervening directories required. It takes the following argument:

dir

Directory to create.

The mkdir command produces the same updates as shell.

rmdir

This command will remove a directory or file on the slave. It takes the following arguments:

dir

Directory to remove.

timeout
maxTime

See shell, above.

The rmdir command produces the same updates as shell.

cpdir

This command will copy a directory from place to place on the slave. It takes the following
arguments:

fromdir

Source directory for the copy operation, relative to the builder's basedir.

todir

Destination directory for the copy operation, relative to the builder's basedir.

timeout
maxTime

See shell, above.

The cpdir command produces the same updates as shell.

stat

This command returns status information about a file or directory. It takes a
single parameter, file, specifying the filename relative to the builder's
basedir.

It produces two status updates:

stat

The return value from Python's os.stat.

rc

0 if the file is found, otherwise 1.

glob

This command finds all pathnames matching a specified pattern that uses shell-style wildcards.
It takes a single parameter, pathname, specifying the pattern to pass to Python's
glob.glob function.

It produces two status updates:

files

The list of matching files returned from glob.glob

rc

0 if the glob.glob does not raise exception, otherwise 1.

listdir

This command reads the directory and returns the list with directory contents. It
takes a single parameter, dir, specifying the directory relative to builder's basedir.

It produces two status updates:

files

The list of files in the directory returned from os.listdir

rc

0 if the os.listdir does not raise exception, otherwise 1.

Source Commands

The source commands (bk, cvs, darcs, git, repo, bzr,
hg, p4, p4sync, and mtn) are deprecated. See the docstrings in
the source code for more information.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

String Encodings

Buildbot expects all strings used internally to be valid Unicode strings - not
bytestrings.

Note that Buildbot rarely feeds strings back into external tools in such a way
that those strings must match. For example, Buildbot does not attempt to
access the filenames specified in a Change. So it is more important to store
strings in a manner that will be most useful to a human reader (e.g., in
logfiles, web status, etc.) than to store them in a lossless format.

Inputs

On input, strings should be decoded, if their encoding is known. Where
necessary, the assumed input encoding should be configurable. In some cases,
such as filenames, this encoding is not known or not well-defined (e.g., a
utf-8 encoded filename in a latin-1 directory). In these cases, the input
mechanisms should make a best effort at decoding, and use e.g., the
errors='replace' option to fail gracefully on un-decodable characters.

Outputs

At most points where Buildbot outputs a string, the target encoding is known.
For example, the web status can encode to utf-8. In cases where it is not
known, it should be configurable, with a safe fallback (e.g., ascii with
errors='replace'. For HTML/XML outputs, consider using
errors='xmlcharrefreplace' instead.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Metrics

New in buildbot 0.8.4 is support for tracking various performance
metrics inside the buildbot master process. Currently these are logged
periodically according to the log_interval configuration
setting of the @ref{Metrics Options} configuration.

If WebStatus is enabled, the metrics data is also available
via /json/metrics.

The metrics subsystem is implemented in
buildbot.process.metrics. It makes use of twisted's logging
system to pass metrics data from all over buildbot's code to a central
MetricsLogObserver object, which is available at
BuildMaster.metrics or via Status.getMetrics().

Metric Events

MetricEvent objects represent individual items to
monitor. There are three sub-classes implemented:

	MetricCountEvent

	Records incremental increase or decrease of some value, or an
absolute measure of some value.

from buildbot.process.metrics import MetricCountEvent

We got a new widget!
MetricCountEvent.log('num_widgets', 1)

We have exactly 10 widgets
MetricCountEvent.log('num_widgets', 10, absolute=True)

	MetricTimeEvent

	Measures how long things take. By default the average of the last
10 times will be reported.

from buildbot.process.metrics import MetricTimeEvent

function took 0.001s
MetricTimeEvent.log('time_function', 0.001)

	MetricAlarmEvent

	Indicates the health of various metrics.

from buildbot.process.metrics import MetricAlarmEvent, ALARM_OK

num_slaves looks ok
MetricAlarmEvent.log('num_slaves', level=ALARM_OK)

Metric Handlers

MetricsHandler objects are responsible for collecting
MetricEvents of a specific type and keeping track of their
values for future reporting. There are MetricsHandler classes
corresponding to each of the MetricEvent types.

Metric Watchers

Watcher objects can be added to MetricsHandlers to be called
when metric events of a certain type are received. Watchers are
generally used to record alarm events in response to count or time
events.

Metric Helpers

	countMethod(name)

	A function decorator that counts how many times the function is
called.

from buildbot.process.metrics import countMethod

@countMethod('foo_called')
def foo():
 return "foo!"

	Timer(name)

	Timer objects can be used to make timing events
easier. When Timer.stop() is called, a
MetricTimeEvent is logged with the elapsed time since
timer.start() was called.

from buildbot.process.metrics import Timer

def foo():
 t = Timer('time_foo')
 t.start()
 try:
 for i in range(1000):
 calc(i)
 return "foo!"
 finally:
 t.stop()

Timer objects also provide a pair of decorators,
startTimer/stopTimer to decorate other functions.

from buildbot.process.metrics import Timer

t = Timer('time_thing')

@t.startTimer
def foo():
 return "foo!"

@t.stopTimer
def bar():
 return "bar!"

foo()
bar()

	timeMethod(name)

	A function decorator that measures how long a function takes to
execute. Note that many functions in buildbot return deferreds, so
may return before all the work they set up has completed. Using an
explicit Timer is better in this case.

from buildbot.process.metrics import timeMethod

@timeMethod('time_foo')
def foo():
 for i in range(1000):
 calc(i)
 return "foo!"

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

Classes

The sections contained here document classes that can be used or subclassed.

Note

Some of this information duplicates information available in the source
code itself. Consider this information authoritative, and the source code
a demonstration of the current implementation which is subject to change.

	BuildFactory

	BuildSetSummaryNotifierMixin

	RemoteCommands

	BuildSteps

	ForceScheduler

	IRenderable

	IProperties

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

 	Classes

BuildFactory

BuildFactory Implementation Note

The default BuildFactory, provided in the
buildbot.process.factory module, contains an internal list of
BuildStep specifications: a list of (step_class, kwargs)
tuples for each. These specification tuples are constructed when the
config file is read, by asking the instances passed to addStep
for their subclass and arguments.

To support config files from buildbot-0.7.5 and earlier,
addStep also accepts the f.addStep(shell.Compile,
command=["make","build"]) form, although its use is discouraged
because then the Compile step doesn't get to validate or
complain about its arguments until build time. The modern
pass-by-instance approach allows this validation to occur while the
config file is being loaded, where the admin has a better chance of
noticing problems.

When asked to create a Build, the BuildFactory puts a copy of
the list of step specifications into the new Build object. When the
Build is actually started, these step specifications are used to
create the actual set of BuildSteps, which are then executed one at a
time. This serves to give each Build an independent copy of each step.

Each step can affect the build process in the following ways:

	If the step's haltOnFailure attribute is True, then a failure
in the step (i.e. if it completes with a result of FAILURE) will cause
the whole build to be terminated immediately: no further steps will be
executed, with the exception of steps with alwaysRun set to
True. haltOnFailure is useful for setup steps upon which the
rest of the build depends: if the CVS checkout or ./configure
process fails, there is no point in trying to compile or test the
resulting tree.

	If the step's alwaysRun attribute is True, then it will always
be run, regardless of if previous steps have failed. This is useful
for cleanup steps that should always be run to return the build
directory or build slave into a good state.

	If the flunkOnFailure or flunkOnWarnings flag is set,
then a result of FAILURE or WARNINGS will mark the build as a whole as
FAILED. However, the remaining steps will still be executed. This is
appropriate for things like multiple testing steps: a failure in any
one of them will indicate that the build has failed, however it is
still useful to run them all to completion.

	Similarly, if the warnOnFailure or warnOnWarnings flag
is set, then a result of FAILURE or WARNINGS will mark the build as
having WARNINGS, and the remaining steps will still be executed. This
may be appropriate for certain kinds of optional build or test steps.
For example, a failure experienced while building documentation files
should be made visible with a WARNINGS result but not be serious
enough to warrant marking the whole build with a FAILURE.

In addition, each Step produces its own results, may create logfiles,
etc. However only the flags described above have any effect on the
build as a whole.

The pre-defined BuildSteps like CVS and Compile have
reasonably appropriate flags set on them already. For example, without
a source tree there is no point in continuing the build, so the
CVS class has the haltOnFailure flag set to True. Look
in buildbot/steps/*.py to see how the other Steps are
marked.

Each Step is created with an additional workdir argument that
indicates where its actions should take place. This is specified as a
subdirectory of the slave builder's base directory, with a default
value of build. This is only implemented as a step argument (as
opposed to simply being a part of the base directory) because the
CVS/SVN steps need to perform their checkouts from the parent
directory.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

 	Classes

BuildSetSummaryNotifierMixin

Some status notifiers will want to report the status of all builds all at once
for a particular buildset, instead of reporting each build individually as it
finishes. In order to do this, the status notifier must wait for all builds to
finish, collect their results, and then report a kind of summary on all of the
collected results. The act of waiting for and collecting the results of all of
the builders is implemented via
BuildSetSummaryNotifierMixin, to be subclassed by a status
notification implementation.

BuildSetSummaryNotifierMixin

	
buildbot.status.buildset.BuildSetSummaryNotifierMixin::

	This class provides some helper methods for implementing a status
notification that provides notifications for all build results for a
buildset at once.

This class provides the following methods:

	
buildbot.status.buildset.summarySubscribe()

	Call this to start receiving sendBuildSetSummary callbacks.
Typically this will be called from the subclass's startService
method.

	
buildbot.status.buildset.summaryUnsubscribe()

	Call this to stop receiving sendBuildSetSummary callbacks.
Typically this will be called from the subclass's stopService
method.

The following methods are hooks to be implemented by the subclass.

	
buildbot.status.buildset.sendBuildSetSummary(buildset, builds)

	

	Parameters:	
	buildset -- A BuildSet object

	builds -- A list of Build objects

This method must be implemented by the subclass. This method is called
when all of the builds for a buildset have finished, and it should
initiate sending a summary status for the buildset.

The following attributes must be provided by the subclass.

	
buildbot.status.buildset.master

	This must point to the BuildMaster object.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

 	Classes

RemoteCommands

Most of the action in build steps consists of performing operations on the
slave. This is accomplished via RemoteCommand and its subclasses.
Each represents a single operation on the slave.

Most data is returned to a command via updates. These updates are described in
detail in Updates.

RemoteCommand

	
class buildbot.process.buildstep.RemoteCommand(remote_command, args, collectStdout=False, ignore_updates=False, decodeRC=dict(0))

	

	Parameters:	
	remote_command (string) -- command to run on the slave

	args (dictionary) -- arguments to pass to the command

	collectStdout -- if True, collect the command's stdout

	ignore_updates -- true to ignore remote updates

	decodeRC -- dictionary associating rc values to buildsteps results constants
(e.g. SUCCESS, FAILURE, WARNINGS)

This class handles running commands, consisting of a command name and
a dictionary of arguments. If true, ignore_updates will suppress any
updates sent from the slave.

This class handles updates for stdout, stderr, and header by
appending them to a stdio logfile, if one is in use. It handles
updates for rc by recording the value in its rc attribute.

Most slave-side commands, even those which do not spawn a new process on
the slave, generate logs and an rc, requiring this class or one of its
subclasses. See Updates for the updates that each
command may send.

	
active

	True if the command is currently running

	
run(step, remote)

	

	Parameters:	
	step -- the buildstep invoking this command

	remote -- a reference to the remote SlaveBuilder
instance

	Returns:	Deferred

Run the command. Call this method to initiate the command; the
returned Deferred will fire when the command is complete. The Deferred
fires with the RemoteCommand instance as its value.

	
interrupt(why)

	

	Parameters:	why (Twisted Failure) -- reason for interrupt

	Returns:	Deferred

This method attempts to stop the running command early. The Deferred
it returns will fire when the interrupt request is received by the
slave; this may be a long time before the command itself completes, at
which time the Deferred returned from run will fire.

	
results()

	

	Returns:	results constant

This method checks the rc against the decodeRC dictionary, and returns results constant

	
didFail()

	

	Returns:	bool

This method returns True if the results() function returns FAILURE

The following methods are invoked from the slave. They should not be
called directly.

	
remote_update(updates)

	

	Parameters:	updates -- new information from the slave

Handles updates from the slave on the running command. See
Updates for the content of the updates. This class
splits the updates out, and handles the ignore_updates option, then
calls remoteUpdate to process the update.

	
remote_complete(failure=None)

	

	Parameters:	failure -- the failure that caused the step to complete, or None
for success

Called by the slave to indicate that the command is complete. Normal
completion (even with a nonzero rc) will finish with no failure; if
failure is set, then the step should finish with status
EXCEPTION.

These methods are hooks for subclasses to add functionality.

	
remoteUpdate(update)

	

	Parameters:	update -- the update to handle

Handle a single update. Subclasses must override this method.

	
remoteComplete(failure)

	

	Parameters:	failure -- the failure that caused the step to complete, or None
for success

	Returns:	Deferred

Handle command completion, performing any necessary cleanup.
Subclasses should override this method. If failure is not None, it
should be returned to ensure proper processing.

	
logs

	A dictionary of LogFile instances
representing active logs. Do not modify this directly -- use
useLog instead.

	
rc

	Set to the return code of the command, after the command has completed.
For compatibility with shell commands, 0 is taken to indicate success,
while nonzero return codes indicate failure.

	
stdout

	If the collectStdout constructor argument is true, then this
attribute will contain all data from stdout, as a single string. This
is helpful when running informational commands (e.g., svnversion),
but is not appropriate for commands that will produce a large amount of
output, as that output is held in memory.

To set up logging, use useLog or useLogDelayed before
starting the command:

	
useLog(log, closeWhenFinished=False, logfileName=None)

	

	Parameters:	
	log -- the LogFile instance to add to.

	closeWhenFinished -- if true, call
finish when the command is
finished.

	logfileName -- the name of the logfile, as given to the slave.
This is stdio for standard streams.

Route log-related updates to the given logfile. Note that stdio is
not included by default, and must be added explicitly. The
logfileName must match the name given by the slave in any log
updates.

	
useLogDelayed(logfileName, activateCallback, closeWhenFinished=False)

	

	Parameters:	
	logfileName -- the name of the logfile, as given to the slave.
This is stdio for standard streams.

	activateCallback -- callback for when the log is added; see below

	closeWhenFinished -- if true, call
finish when the command is
finished.

Similar to useLog, but the logfile is only actually added when
an update arrives for it. The callback, activateCallback, will be
called with the RemoteCommand
instance when the first update for the log is delivered.

With that finished, run the command using the inherited
run method. During the
run, you can inject data into the logfiles with any of these methods:

	
addStdout(data)

	

	Parameters:	data -- data to add to the logfile

Add stdout data to the stdio log.

	
addStderr(data)

	

	Parameters:	data -- data to add to the logfile

Add stderr data to the stdio log.

	
addHeader(data)

	

	Parameters:	data -- data to add to the logfile

Add header data to the stdio log.

	
addToLog(logname, data)

	

	Parameters:	
	logname -- the logfile to receive the data

	data -- data to add to the logfile

Add data to a logfile other than stdio.

	
class buildbot.process.buildstep.RemoteShellCommand(workdir, command, env=None, want_stdout=True, want_stderr=True, timeout=20*60, maxTime=None, sigtermTime=None, logfiles={}, usePTY="slave-config", logEnviron=True, collectStdio=False)

	

	Parameters:	
	workdir -- directory in which command should be executed, relative to
the builder's basedir.

	command (string or list) -- shell command to run

	want_stdout -- If false, then no updates will be sent for stdout.

	want_stderr -- If false, then no updates will be sent for stderr.

	timeout -- Maximum time without output before the command is killed.

	maxTime -- Maximum overall time from the start before the command is
killed.

	sigtermTime -- Try to kill the command with SIGTERM and wait for sigtermTime seconds before firing SIGKILL. If None, SIGTERM will not be fired.

	env -- A dictionary of environment variables to augment or replace the
existing environment on the slave.

	logfiles -- Additional logfiles to request from the slave.

	usePTY -- True to use a PTY, false to not use a PTY; the default value
uses the default configured on the slave.

	logEnviron -- If false, do not log the environment on the slave.

	collectStdout -- If True, collect the command's stdout.

Most of the constructor arguments are sent directly to the slave; see
shell for the details of the formats. The
collectStdout parameter is as described for the parent class.

If shell command contains passwords they can be hidden from log files by passing
them as tuple in command argument. Eg. ['print', ('obfuscated', 'password', 'dummytext')]
is logged as ['print', 'dummytext'].

This class is used by the ShellCommand step, and by steps that
run multiple customized shell commands.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

 	Classes

BuildSteps

There are a few parent classes that are used as base classes for real buildsteps.
This section describes the base classes. The "leaf" classes are described in Build Steps.

BuildStep

	
class buildbot.process.buildstep.BuildStep(name, description, descriptionDone, descriptionSuffix, locks, haltOnFailure, flunkOnWarnings, flunkOnFailure, warnOnWarnings, warnOnFailure, alwaysRun, progressMetrics, useProgress, doStepIf, hideStepIf)

	All constructor arguments must be given as keyword arguments.
Each constructor parameter is copied to the corresponding attribute.

	
name

	The name of the step.

	
description

	The description of the step.

	
descriptionDone

	The description of the step after it has finished.

	
descriptionSuffix

	Any extra information to append to the description.

	
locks

	List of locks for this step; see Interlocks.

	
progressMetrics

	List of names of metrics that should be used to track the progress of this build, and build ETA's for users.
This is generally set in the

	
useProgress

	If true (the default), then ETAs will be calculated for this step using progress metrics.
If the step is known to have unpredictable timing (e.g., an incremental build), then this should be set to false.

	
doStepIf

	A callable or bool to determine whether this step should be executed.
See Common Parameters for details.

	
hideStepIf

	A callable or bool to determine whether this step should be shown in the waterfall and build details pages.
See Common Parameters for details.

The following attributes affect the behavior of the containing build:

	
haltOnFailure

	If true, the build will halt on a failure of this step, and not execute subsequent tests (except those with alwaysRun).

	
flunkOnWarnings

	If true, the build will be marked as a failure if this step ends with warnings.

	
flunkOnFailure

	If true, the build will be marked as a failure if this step fails.

	
warnOnWarnings

	If true, the build will be marked as warnings, or worse, if this step ends with warnings.

	
warnOnFailure

	If true, the build will be marked as warnings, or worse, if this step fails.

	
alwaysRun

	If true, the step will run even if a previous step halts the build with haltOnFailure.

A few important pieces of information are not available when a step is constructed, and are added later.
These are set by the following methods; the order in which these methods are called is not defined.

	
setBuild(build)

	

	Parameters:	build -- the Build instance controlling this step.

This method is called during setup to set the build instance controlling this slave.
Subclasses can override this to get access to the build object as soon as it is available.
The default implementation sets the build attribute.

	
build

	The build object controlling this step.

	
setBuildSlave(build)

	

	Parameters:	build -- the BuildSlave instance on which this step will run.

Similarly, this method is called with the build slave that will run this step.
The default implementation sets the buildslave attribute.

	
buildslave

	The build slave that will run this step.

	
setDefaultWorkdir(workdir)

	

	Parameters:	workdir -- the default workdir, from the build

This method is called at build startup with the default workdir for the build.
Steps which allow a workdir to be specified, but want to override it with the build's default workdir, can use this method to apply the default.

	
setupProgress()

	This method is called during build setup to give the step a chance to set up progress tracking.
It is only called if the build has useProgress set.
There is rarely any reason to override this method.

	
progress

	If the step is tracking progress, this is a StepProgress instance performing that task.

Execution of the step itself is governed by the following methods and attributes.

	
startStep(remote)

	

	Parameters:	remote -- a remote reference to the slave-side
SlaveBuilder instance

	Returns:	Deferred

Begin the step. This is the build's interface to step execution.
Subclasses should override run to implement custom behaviors.

	
run()

	

	Returns:	result via Deferred

Execute the step.
When this method returns (or when the Deferred it returns fires), the step is complete.
The method's return value must be an integer, giving the result of the step -- a constant from buildbot.status.results.
If the method raises an exception or its Deferred fires with failure, then the step will be completed with an EXCEPTION result.
Any other output from the step (logfiles, status strings, URLs, etc.) is the responsibility of the run method.

Subclasses should override this method.
Do not call finished or failed from this method.

	
start()

	

	Returns:	None or SKIPPED,
optionally via a Deferred.

Begin the step.
BuildSteps written before Buildbot-0.9.0 often override this method instead of run, but this approach is deprecated.

When the step is done, it should call finished, with a result -- a constant from buildbot.status.results.
The result will be handed off to the Build.

If the step encounters an exception, it should call failed with a Failure object.

If the step decides it does not need to be run, start can return the constant SKIPPED.
In this case, it is not necessary to call finished directly.

	
finished(results)

	

	Parameters:	results -- a constant from results

A call to this method indicates that the step is finished and the build should analyze the results and perhaps proceed to the next step.
The step should not perform any additional processing after calling this method.
This method must only be called from the (deprecated) start method.

	
failed(failure)

	

	Parameters:	failure -- a Failure instance

Similar to finished, this method indicates that the step is finished, but handles exceptions with appropriate logging and diagnostics.

This method handles BuildStepFailed specially, by calling finished(FAILURE).
This provides subclasses with a shortcut to stop execution of a step by raising this failure in a context where failed will catch it.
This method must only be called from the (deprecated) start method.

	
interrupt(reason)

	

	Parameters:	reason (string or Failure) -- why the build was interrupted

This method is used from various control interfaces to stop a running step.
The step should be brought to a halt as quickly as possible, by cancelling a remote command, killing a local process, etc.
The step must still finish with either finished or failed.

The reason parameter can be a string or, when a slave is lost during step processing, a ConnectionLost failure.

The parent method handles any pending lock operations, and should be called by implementations in subclasses.

	
stopped

	If false, then the step is running. If true, the step is not running, or has been interrupted.

A step can indicate its up-to-the-moment status using a short summary string.
These methods allow step subclasses to produce such summaries.

	
updateSummary()

	Update the summary, calling getCurrentSummary or getResultSummary as appropriate.
New-style build steps should call this method any time the summary may have changed.
This method is debounced, so even calling it for every log line is acceptable.

	
getCurrentSummary()

	

	Returns:	dictionary, optionally via Deferred

Returns a dictionary containing status information for a running step.
The dictionary can a step key with a unicode value giving a summary for display with the step.
This method is only called while the step is running.

New-style build steps should override this method to provide a more interesting summary than the default u"running".

	
getResultSummary()

	

	Returns:	dictionary, optionally via Deferred

Returns a dictionary containing status information for a completed step.
The dictionary can have keys step and build, each with unicode values.
The step key gives a summary for display with the step, while the build key gives a summary for display with the entire build.
The latter should be used sparingly, and include only information that the user would find relevant for the entire build, such as a number of test failures.
Either or both keys can be omitted.

This method is only called while the step is finished.

New-style build steps should override this method to provide a more interesting summary than the default u"running", or to provide any build summary information.

	
describe(done=False)

	

	Parameters:	done -- If true, the step is finished.

	Returns:	list of strings

Describe the step succinctly.
The return value should be a sequence of short strings suitable for display in a horizontally constrained space.

Note

Be careful not to assume that the step has been started in this method.
In relatively rare circumstances, steps are described before they have started.
Ideally, unit tests should be used to ensure that this method is resilient.

Note

This method is not called for new-style steps.
Instead, override getCurrentSummary and getResultSummary.

Build steps have statistics, a simple key/value store of data which can later be aggregated over all steps in a build.
Note that statistics are not preserved after a build is complete.

	
hasStatistic(stat)

	

	Parameters:	stat (string) -- name of the statistic

	Returns:	True if the statistic exists on this step

	
getStatistic(stat, default=None)

	

	Parameters:	
	stat (string) -- name of the statistic

	default -- default value if the statistic does not exist

	Returns:	value of the statistic, or the default value

	
getStatistics()

	

	Returns:	a dictionary of all statistics for this step

	
setStatistic(stat, value)

	

	Parameters:	
	stat (string) -- name of the statistic

	value -- value to assign to the statistic

	Returns:	value of the statistic

Build steps support progress metrics - values that increase roughly linearly during the execution of the step, and can thus be used to calculate an expected completion time for a running step.
A metric may be a count of lines logged, tests executed, or files compiled.
The build mechanics will take care of translating this progress information into an ETA for the user.

	
setProgress(metric, value)

	

	Parameters:	
	metric (string) -- the metric to update

	value (integer) -- the new value for the metric

Update a progress metric.
This should be called by subclasses that can provide useful progress-tracking information.

The specified metric name must be included in progressMetrics.

The following methods are provided as utilities to subclasses.
These methods should only be invoked after the step is started.

	
slaveVersion(command, oldversion=None)

	

	Parameters:	
	command (string) -- command to examine

	oldversion -- return value if the slave does not specify a version

	Returns:	string

Fetch the version of the named command, as specified on the slave.
In practice, all commands on a slave have the same version, but passing command is still useful to ensure that the command is implemented on the slave.
If the command is not implemented on the slave, slaveVersion will return None.

Versions take the form x.y where x and y are integers, and are compared as expected for version numbers.

Buildbot versions older than 0.5.0 did not support version queries; in this case, slaveVersion will return oldVersion.
Since such ancient versions of Buildbot are no longer in use, this functionality is largely vestigial.

	
slaveVersionIsOlderThan(command, minversion)

	

	Parameters:	
	command (string) -- command to examine

	minversion -- minimum version

	Returns:	boolean

This method returns true if command is not implemented on the slave, or if it is older than minversion.

	
getSlaveName()

	

	Returns:	string

Get the name of the buildslave assigned to this step.

Most steps exist to run commands.
While the details of exactly how those commands are constructed are left to subclasses, the execution of those commands comes down to this method:

	
runCommand(command)

	

	Parameters:	command -- RemoteCommand instance

	Returns:	Deferred

This method connects the given command to the step's buildslave and runs it, returning the Deferred from run.

	
addURL(name, url)

	

	Parameters:	
	name -- URL name

	url -- the URL

Add a link to the given url, with the given name to displays of this step.
This allows a step to provide links to data that is not available in the log files.

The BuildStep class provides minimal support for log handling, that is extended by the LoggingBuildStep class.
The following methods provide some useful behaviors.
These methods can be called while the step is running, but not before.

	
addLog(name)

	

	Parameters:	name -- log name

	Returns:	LogFile instance via Deferred

Add a new logfile with the given name to the step, and return the log file instance.

	
getLog(name)

	

	Parameters:	name -- log name

	Returns:	LogFile instance

	Raises:	KeyError if the log is not found

Get an existing logfile by name.

	
addCompleteLog(name, text)

	

	Parameters:	
	name -- log name

	text -- content of the logfile

	Returns:	Deferred

This method adds a new log and sets text as its content.
This is often useful to add a short logfile describing activities performed on the master.
The logfile is immediately closed, and no further data can be added.

	
addHTMLLog(name, html)

	

	Parameters:	
	name -- log name

	html -- content of the logfile

	Returns:	Deferred

Similar to addCompleteLog, this adds a logfile containing pre-formatted HTML, allowing more expressiveness than the text format supported by addCompleteLog.

	
addLogObserver(logname, observer)

	

	Parameters:	
	logname -- log name

	observer -- log observer instance

Add a log observer for the named log.
The named log need not have been added already: the observer will be connected when the log is added.

See Adding LogObservers for more information on log observers.

LoggingBuildStep

	
class buildbot.process.buildstep.LoggingBuildStep(logfiles, lazylogfiles, log_eval_func, name, locks, haltOnFailure, flunkOnWarnings, flunkOnFailure, warnOnWarnings, warnOnFailure, alwaysRun, progressMetrics, useProgress, doStepIf, hideStepIf)

	

	Parameters:	
	logfiles -- see ShellCommand

	lazylogfiles -- see ShellCommand

	log_eval_func -- see ShellCommand

The remaining arguments are passed to the BuildStep constructor.

Warning

Subclasses of this class are always old-style steps.
As such, this class will be removed after Buildbot-0.9.0.
Instead, subclass BuildStep and mix in ShellMixin to get similar behavior.

This subclass of BuildStep is designed to help its subclasses run remote commands that produce standard I/O logfiles.
It:

	tracks progress using the length of the stdout logfile

	provides hooks for summarizing and evaluating the command's result

	supports lazy logfiles

	handles the mechanics of starting, interrupting, and finishing remote commands

	detects lost slaves and finishes with a status of
RETRY

	
logfiles

	The logfiles to track, as described for ShellCommand.
The contents of the class-level logfiles attribute are combined with those passed to the constructor, so subclasses may add log files with a class attribute:

class MyStep(LoggingBuildStep):
 logfiles = dict(debug='debug.log')

Note that lazy logfiles cannot be specified using this method; they must be provided as constructor arguments.

	
startCommand(command)

	

	Parameters:	command -- the RemoteCommand
instance to start

Note

This method permits an optional errorMessages parameter, allowing errors detected early in the command process to be logged.
It will be removed, and its use is deprecated.

Handle all of the mechanics of running the given command.
This sets up all required logfiles, keeps status text up to date, and calls the utility hooks described below.
When the command is finished, the step is finished as well, making this class is unsuitable for steps that run more than one command in sequence.

Subclasses should override start and, after setting up an appropriate command, call this method.

def start(self):
 cmd = RemoteShellCommand(...)
 self.startCommand(cmd, warnings)

To refine the status output, override one or more of the following methods.
The LoggingBuildStep implementations are stubs, so there is no need to call the parent method.

	
commandComplete(command)

	

	Parameters:	command -- the just-completed remote command

This is a general-purpose hook method for subclasses.
It will be called after the remote command has finished, but before any of the other hook functions are called.

	
createSummary(stdio)

	

	Parameters:	stdio -- stdio LogFile

This hook is designed to perform any summarization of the step, based either on the contents of the stdio logfile, or on instance attributes set earlier in the step processing.
Implementations of this method often call e.g., addURL.

	
evaluateCommand(command)

	

	Parameters:	command -- the just-completed remote command

	Returns:	step result from buildbot.status.results

This hook should decide what result the step should have.
The default implementation invokes log_eval_func if it exists, and looks at rc to distinguish SUCCESS from FAILURE.

The remaining methods provide an embarrassment of ways to set the summary of the step that appears in the various status interfaces.
The easiest way to affect this output is to override describe.
If that is not flexible enough, override getText and/or getText2.

	
getText(command, results)

	

	Parameters:	
	command -- the just-completed remote command

	results -- step result from evaluateCommand

	Returns:	a list of short strings

This method is the primary means of describing the step.
The default implementation calls describe, which is usually the easiest method to override, and then appends a string describing the step status if it was not successful.

	
getText2(command, results)

	

	Parameters:	
	command -- the just-completed remote command

	results -- step result from evaluateCommand

	Returns:	a list of short strings

Like getText, this method summarizes the step's result, but it is only called when that result affects the build, either by making it halt, flunk, or end with warnings.

CommandMixin

The runCommand method can run a RemoteCommand instance, but it's no help in building that object or interpreting the results afterward.
This mixin class adds some useful methods for running commands.

This class can only be used in new-style steps.

	
class buildbot.process.buildstep.CommandMixin

	Some remote commands are simple enough that they can boil down to a method call.
Most of these take an abandonOnFailure argument which, if true, will abandon the entire buildstep on command failure.
This is accomplished by raising BuildStepFailed.

These methods all write to the stdio log (generally just for errors).
They do not close the log when finished.

	
runRmdir(dir, abandonOnFailure=True)

	

	Parameters:	
	dir -- directory to remove

	abndonOnFailure -- if true, abandon step on failure

	Returns:	Boolean via Deferred

Remove the given directory, using the rmdir command.
Returns False on failure.

	
runMkdir(dir, abandonOnFailure=True)

	

	Parameters:	
	dir -- directory to create

	abndonOnFailure -- if true, abandon step on failure

	Returns:	Boolean via Deferred

Create the given directory and any parent directories, using the mkdir command.
Returns False on failure.

	
pathExists(path)

	:param path path to test
:returns: Boolean via Deferred

Determine if the given path exists on the slave (in any form - file, directory, or otherwise).
This uses the stat command.

	
glob(path)

	:param path path to test
:returns: list of filenames

Get the list of files matching the given path pattern on the slave.
This uses Python's glob module.
If the glob method fails, it aborts the step.

ShellMixin

Most Buildbot steps run shell commands on the slave, and Buildbot has an impressive array of configuration parameters to control that execution.
The ShellMixin mixin provides the tools to make running shell commands easy and flexible.

This class can only be used in new-style steps.

	
class buildbot.process.buildstep.ShellMixin

	This mixin manages the following step configuration parameters, the contents of which are documented in the manual.
Naturally, all of these are renderable.

..py:attribute:: command
..py:attribute:: workdir
..py:attribute:: env
..py:attribute:: want_stdout
..py:attribute:: want_stderr
..py:attribute:: usePTY
..py:attribute:: logfiles
..py:attribute:: lazylogfiles
..py:attribute:: timeout
..py:attribute:: maxTime
..py:attribute:: logEnviron
..py:attribute:: interruptSignal
..py:attribute:: sigtermTime
..py:attribute:: initialStdin
..py:attribute:: decodeRC

..py:method:: setupShellMixin(constructorArgs, prohibitArgs=[])

:param dict constructorArgs constructor keyword arguments
:param list prohibitArgs list of recognized arguments to reject
:returns: keyword arguments destined for BuildStep

This method is intended to be called from the shell constructor, passed any keyword arguments not otherwise used by the step.
Any attributes set on the instance already (e.g., class-level attributes) are used as defaults.
Attributes named in prohibitArgs are rejected with a configuration error.

The return value should be passed to the BuildStep constructor.

..py:method:: makeRemoteShellCommand(collectStdout=False, collectStderr=False, **overrides)

	param collectStdout:

		if true, the command's stdout wil be available in cmd.stdout on completion

	param collectStderr:

		if true, the command's stderr wil be available in cmd.stderr on completion

	param overrides:

		overrides arguments that might have been passed to setupShellMixin

	returns:	RemoteShellCommand instance via Deferred

This method constructs a RemoteShellCommand instance based on the instance attributes and any supplied overrides.
It must be called while the step is running, as it examines the slave capabilities before creating the command.
It takes care of just about everything:

	Creating log files and associating them with the command

	Merging environment configuration

	Selecting the appropriate workdir configuration

All that remains is to run the command with runCommand.

Exceptions

	
exception buildbot.process.buildstep.BuildStepFailed

	This exception indicates that the buildstep has failed.
It is useful as a way to skip all subsequent processing when a step goes wrong.
It is handled by BuildStep.failed.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

 	Classes

ForceScheduler

The force scheduler has a symbiotic relationship with the web status, so it
deserves some further description.

Parameters

The force scheduler comes with a fleet of parameter classes. This section
contains information to help users or developers who are interested in adding
new parameter types or hacking the existing types.

	
class buildbot.schedulers.forceshed.BaseParameter(name, label, regex, **kwargs)

	This is the base implementation for most parameters, it will check validity,
ensure the arg is present if the required attribute
is set, and implement the default value. It will finally call
updateFromKwargs to process the string(s) from the
HTTP POST.

The BaseParameter constructor converts all keyword arguments
into instance attributes, so it is generally not necessary for subclasses to
implement a constructor.

For custom parameters that set properties, one simple customization point
is getFromKwargs:

	
getFromKwargs(kwargs)

	

	Parameters:	kwargs -- a dictionary of the posted values

Given the passed-in POST parameters, return the value of the property
that should be set.

For more control over parameter parsing, including modifying sourcestamps or
changeids, override the updateFromKwargs function, which is the function
that ForceScheduler invokes for processing:

	
updateFromKwargs(master, properties, changes, sourcestamps, kwargs)

	

	Parameters:	
	master -- the BuildMaster instance

	properties -- a dictionary of properties

	changes -- a list of changeids that will be used to build the
SourceStamp for the forced builds

	sourcestamps -- the SourceStamp dictionary that will be passed to the
build; some parameters modify sourcestamps rather than properties.

	kwargs -- a dictionary of the posted values

This method updates properties, changes, and/or sourcestamps
according to the request. The default implementation is good for many simple
uses, but can be overridden for more complex purposes.

When overriding this function, take all parameters by name (not by position),
and include an **unused catch-all to guard against future changes.

The remaining attributes and methods should be overridden by subclasses, although
BaseParameter provides appropriate defaults.

	
name

	The name of the parameter. This corresponds to the name of the
property that your parameter will set. This name is also used
internally as identifier for http POST arguments

	
label

	The label of the parameter, as displayed to the user. This value
can contain raw HTML.

	
fullName()

	A fully-qualified name that uniquely identifies the parameter in the
scheduler. This name is used internally as the identifier for HTTP
POST arguments. It is a mix of name and the parent's name (in the
case of nested parameters). This field is not modifiable.

	
type

	A list of types that the parameter conforms to. These are used by the
jinja template to create appropriate html form widget. The available
values are visible in master/buildbot/status/web/template/forms.html [https://github.com/buildbot/buildbot/blob/master/master/buildbot/status/web/template/forms.html]
in the force_build_one_scheduler macro.

	
default

	The default value to use if there is no user input. This is also
used to fill in the form presented to the user.

	
required

	If true, an error will be shown to user if there is no input in this
field

	
multiple

	If true, this parameter represents a list of values (e.g. list of
tests to run)

	
regex

	A string that will be compiled as a regex and used to validate the
string value of this parameter. If None, then no validation will
take place.

	
parse_from_args(l)

	return the list of object corresponding to the list or string passed
default function will just call parse_from_arg with the
first argument

	
parse_from_arg(s)

	return the object corresponding to the string passed
default function will just return the unmodified string

Nested Parameters

The NestedParameter class is a container for parameters. The motivating purpose for this feature
is the multiple-codebase configuration, which needs to provide the user with a form to control
the branch (et al) for each codebase independently. Each branch parameter is a string field with name
'branch' and these must be disambiguated.

Each of the child parameters mixes in the parent's name to create the fully qualified fullName. This
allows, for example, each of the 'branch' fields to have a unique name in the POST request. The
NestedParameter handles adding this extra bit to the name to each of the children. When the kwarg
dictionary is posted back, this class also converts the flat POST dictionary into a richer structure
that represents the nested structure.

As illustration, if the nested parameter has the name 'foo', and has children 'bar1' and 'bar2', then the
POST will have entries like "foo-bar1" and "foo-bar2". The nested parameter will translate this into a
dictionary in the 'kwargs' structure, resulting in something like:

kwargs = {
 # ...
 'foo': {
 'bar1': '...',
 'bar2': '...'
 }
}

Arbitrary nesting is allowed and results in a deeper dictionary structure.

Nesting can also be used for presentation purposes. If the name of the NestedParameter is empty, the
nest is "anonymous" and does not mangle the child names. However, in the HTML layout, the nest
will be presented as a logical group.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

 	Classes

IRenderable

	
buildbot.interfaces.IRenderable::

	Providers of this class can be "rendered", based on available properties, when a build is started.

	
getRenderingFor(iprops)

	

	Parameters:	iprops -- the IProperties provider supplying the properties of the build.

Returns the interpretation of the given properties, optionally in a Deferred.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Buildbot Development

 	Classes

IProperties

	
buildbot.interfaces.IProperties::

	Providers of this interface allow get and set access to a build's properties.

	
getProperty(propname, default=None)

	Get a named property, returning the default value if the property is not found.

	
hasProperty(propname)

	Determine whether the named property exists.

	
setProperty(propname, value, source)

	Set a property's value, also specifying the source for this value.

	
getProperties()

	Get a buildbot.process.properties.Properties instance. The
interface of this class is not finalized; where possible, use the other
IProperties methods.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

Release Notes for Buildbot 0.8.9

The following are the release notes for Buildbot 0.8.9. Buildbot 0.8.9 was
released on 14 June, 2014.

Master

Features

	
	The following optional parameters have been added to EC2LatentBuildSlave

	
	Boolean parameter spot_instance, default False, creates a spot instance.

	Float parameter max_spot_price defines the maximum bid for a spot instance.

	List parameter volumes, takes a list of (volume_id, mount_point) tuples.

	String parameter placement is appended to the region parameter, e.g. region='us-west-2', placement='b'
will result in the spot request being placed in us-west-2b.

	Float parameter price_multiplier specifies the percentage bid above the 24-hour average spot price.

	Dict parameter tags specifies AWS tags as key/value pairs to be applied to new instances.

With spot_instance=True, an EC2LatentBuildSlave will attempt to create a spot instance with the provided spot
price, placement, and so on.

	The web hooks now include support for Bitbucket, GitLab and Gitorious.

	The GitHub webhook has been updated to work with v3 of the GitHub webhook API.

	The GitHub webhook can now optionally ignore non-distinct commits (bug #1861 [http://trac.buildbot.net/ticket/1861]).

	The HgPoller and GitPoller now split filenames on newlines, rather than whitespace, so files containing whitespace are handled correctly.

	Add 'pollAtLaunch' flag for polling change sources. This allows a poller to poll immediately on launch and get changes that occurred while it was down.

	Added the BitbucketPullrequestPoller changesource.

	The GitPoller can now be configured to poll all available branches (pull request 1010 [https://github.com/buildbot/buildbot/pull/1010]).

	The P4Source changesource now supports Perforce servers in a different timezone than the buildbot master (pull request 728 [https://github.com/buildbot/buildbot/pull/728]).

	Each Scheduler type can now take a 'reason' argument to customize the reason it uses for triggered builds.

	A new argument createAbsoluteSourceStamps has been added to SingleBranchScheduler for use with multiple codebases.

	A new argument createAbsoluteSourceStamps has been added to Nightly for use with multiple codebases.

	The Periodic scheduler now supports codebases.

	The ForceScheduler now takes a buttonName argument to specify the name of the button on the force-build form.

	Master side source checkout steps now support patches (bug #2098 [http://trac.buildbot.net/ticket/2098]). The Git and Mercurial steps use their inbuilt commands to apply patches (bug #2563 [http://trac.buildbot.net/ticket/2563]).

	Master side source checkout steps now support retry option (bug #2465 [http://trac.buildbot.net/ticket/2465]).

	Master-side source checkout steps now respond to the "stop build" button (bug #2356 [http://trac.buildbot.net/ticket/2356]).

	Git source checkout step now supports reference repositories.

	The Git step now uses the git clean option -f twice, to also remove untracked directories managed by another git repository.
See bug #2560 [http://trac.buildbot.net/ticket/2560].

	The branch and codebase arguments to the Git step are now renderable.

	Gerrit integration with Git Source step on master side (bug #2485 [http://trac.buildbot.net/ticket/2485]).

	P4 source step now supports more advanced options.

	The master-side SVN step now supports authentication for mode=export, fixing bug #2463 [http://trac.buildbot.net/ticket/2463].

	The SVN step will now canonicalize URL's before matching them for better accuracy.

	The SVN step now obfuscates the password in status logs, fixing bug #2468 [http://trac.buildbot.net/ticket/2468].

	SVN source step and ShellCommand now support password obfuscation. (bug #2468 [http://trac.buildbot.net/ticket/2468] and bug #1478 [http://trac.buildbot.net/ticket/1478]).

	CVS source step now checks for "sticky dates" from a previous checkout before updating an existing source directory.

	:Repo now supports a depth flag when initializing the repo. This controls the amount of git history to download.

	The manifestBranch of the bb:step:Repo step is now renderable

	New source step Monotone added on master side.

	New source step Darcs added on master side.

	A new Robocopy step is available for Windows builders (pull request 728 [https://github.com/buildbot/buildbot/pull/728]).

	The attributes description, descriptionDone and descriptionSuffix have been moved from ShellCommand to its superclass BuildStep so that any class that inherits from BuildStep can provide a suitable description of itself.

	A new FlattenList Renderable has been added which can flatten nested lists.

	Added new build steps for VC12, VS2013 and MsBuild12.

	The mode parameter of the VS steps is now renderable (bug #2592 [http://trac.buildbot.net/ticket/2592]).

	The HTTPStep step can make arbitrary HTTP requests from the master, allowing communication with external APIs.
This new feature requires the optional txrequests and requests Python packages.

	A new MultipleFileUpload step was added to allow uploading several files (or directories) in a single step.

	Information about the buildslaves (admin, host, etc) is now persisted in the database and available even if
the slave is not connected.

	Buildslave info can now be retrieved via Interpolate and a new SetSlaveInfo buildstep.

	The GNUAutotools factory now has a reconf option to run autoreconf before ./configure.

	Builder configurations can now include a description, which will appear in the web UI to help humans figure out what the builder does.

	The WebStatus builder page can now filter pending/current/finished builds by property parameters of the form ?property.<name>=<value>.

	The WebStatus StatusResourceBuilder page can now take the maxsearch argument

	The WebStatus has a new authz "view" action that allows you to require users to logged in to view the WebStatus.

	The WebStatus now shows revisions (+ codebase) where it used to simply say "multiple rev".

	The Console view now supports codebases.

	
	The web UI for Builders has been updated:

	
	shows the build 'reason' and 'interested users'

	shows sourcestamp information for builders that use multiple codebases (instead of the generic
"multiple rev" placeholder that was shown before).

	The waterfall and atom/rss feeds can be filtered with the project url paramter.

	The WebStatus Authorization support now includes a view action which can be used to restrict read-only access to the Buildbot instance.

	The web status now has options to cancel some or all pending builds.

	The WebStatus now interprets ANSI color codes in stdio output.

	It is now possible to select categories to show in the waterfall help

	The web status now automatically scrolls output logs (pull request 1078 [https://github.com/buildbot/buildbot/pull/1078]).

	The web UI now supports a PNG Status Resource that can be accessed publicly from for example README.md files or wikis or whatever other resource.
This view produces an image in PNG format with information about the last build for the given builder name or whatever other build number if is passed as an argument to the view.

	Revision links for commits on SouceForge (Allura) are now automatically generated.

	The 'Rebuild' button on the web pages for builds features a dropdown to choose whether to
rebuild from exact revisions or from the same sourcestamps (ie, update branch references)

	Build status can be sent to GitHub.
Depends on txgithub package.
See GitHubStatus and GitHub Commit Status [https://github.com/blog/1227-commit-status-api].

	The IRC bot of IRC will, unless useRevisions is set, shorten
long lists of revisions printed when a build starts; it will only show two,
and the number of additional revisions included in the build.

	A new argument summaryCB has been added to GerritStatusPush, to allow sending one review per buildset. Sending a single "summary" review per buildset is now the default if neither summaryCB nor reviewCB are specified.

	The comments field of changes is no longer limited to 1024 characters on MySQL and Postgres. See bug #2367 [http://trac.buildbot.net/ticket/2367] and pull request 736 [https://github.com/buildbot/buildbot/pull/736].

	HTML log files are no longer stored in status pickles (pull request 1077 [https://github.com/buildbot/buildbot/pull/1077])

	Builds are now retried after a slave is lost (pull request 1049 [https://github.com/buildbot/buildbot/pull/1049]).

	The buildbot status client can now access a build properties via the getProperties call.

	The start, restart, and reconfig commands will now wait for longer than 10 seconds as long as the master continues producing log lines indicating that the configuration is progressing.

	Added new config option protocols which allows to configure multiple protocols on single master.

	RemoteShellCommands can be killed by SIGTERM with the sigtermTime parameter before resorting to SIGKILL (bug #751 [http://trac.buildbot.net/ticket/751]).
If the slave's version is less than 0.8.9, the slave will kill the process with SIGKILL regardless of whether sigtermTime
is supplied.

	Introduce an alternative way to deploy Buildbot and try the pyflakes tutorial
using Docker.

	Added zsh and bash tab-completions support for 'buildbot' command.

	An example of a declarative configuration is included in master/contrib/SimpleConfig.py [https://github.com/buildbot/buildbot/blob/master/master/contrib/SimpleConfig.py], with copious comments.

	Systemd unit files for Buildbot are available in the contrib/ [https://github.com/buildbot/buildbot/blob/master/contrib/] directory.

	We've added some extra checking to make sure that you have a valid locale before starting buildbot (#2608).

Forward Compatibility

In preparation for a more asynchronous implementation of build steps in Buildbot 0.9.0, this version introduces support for new-style steps.
Existing old-style steps will continue to function correctly in Buildbot 0.8.x releases and in Buildbot 0.9.0, but support will be dropped soon afterward.
See New-Style Build Steps for guidance on rewriting existing steps in this new style.
To eliminate ambiguity, the documentation for this version only reflects support for new-style steps.
Refer to the documentation for previous versions for infrormation on old-style steps.

Fixes

	Fixes an issue where GitPoller sets the change branch to refs/heads/master - which isn't compatible with Git (pull request 1069 [https://github.com/buildbot/buildbot/pull/1069]).

	Fixed an issue where the Git and CVS source steps silently changed the workdir to 'build' when the 'copy' method is used.

	The CVS source step now respects the timeout parameter.

	The Git step now uses the git submodule update option --init when updating the submodules of an existing repository,
so that it will receive any newly added submodules.

	The web status no longer relies on the current working directory, which is not set correctly by some initscripts, to find the templates/ directory (bug #2586 [http://trac.buildbot.net/ticket/2586]).

	The Perforce source step uses the correct path separator when the master is on Windows and the build slave is on a POSIX OS (pull request 1114 [https://github.com/buildbot/buildbot/pull/1114]).

	The source steps now correctly interpolate properties in env.

	GerritStatusPush now supports setting scores with Gerrit 2.6 and newer

	The change hook no longer fails when passing unicode to change_hook_auth (pull request 996 [https://github.com/buildbot/buildbot/pull/996]).

	The source steps now correctly interpolate properties in env.

	Whitespace is properly handled for StringParameter, so that appropriate validation errors are raised for required parameters (pull request 1084 [https://github.com/buildbot/buildbot/pull/1084]).

	Fix a rare case where a buildtep might fail from a GeneratorExit exception (pull request 1063 [https://github.com/buildbot/buildbot/pull/1063]).

	Fixed an issue where UTF-8 data in logs caused RSS feed exceptions (bug #951 [http://trac.buildbot.net/ticket/951]).

	Fix an issue with unescaped author names causing invalid RSS feeds (bug #2596 [http://trac.buildbot.net/ticket/2596]).

	Fixed an issue with pubDate format in feeds.

	Fixed an issue where the step text value could cause a TypeError in the build detail page (pull request 1061 [https://github.com/buildbot/buildbot/pull/1061]).

	Fix failures where git clean fails but could be clobbered (pull request 1058 [https://github.com/buildbot/buildbot/pull/1058]).

	Build step now correctly fails when the git clone step fails (pull request 1057 [https://github.com/buildbot/buildbot/pull/1057]).

	Fixed a race condition in slave shutdown (pull request 1019 [https://github.com/buildbot/buildbot/pull/1019]).

	Now correctly unsubscribes StatusPush from status updates when reconfiguring (pull request 997 [https://github.com/buildbot/buildbot/pull/997]).

	Fixes parsing git commit messages that are blank.

	Git no longer fails when work dir exists but isn't a checkout (bug #2531 [http://trac.buildbot.net/ticket/2531]).

	The haltOnFailure and flunkOnFailure attricutes of ShellCommand are now renderable. (:bb:bug 2486).

	The rotateLength and maxRotatedFile arguments are no longer treated as strings in buildbot.tac. This fixes log rotation. The upgrade_master command will notify users if they have this problem.

	Builbot no longer specifies a revision when pulling from a mercurial (bug #438 [http://trac.buildbot.net/ticket/438]).

	The WebStatus no longer incorrectly refers to fields that might not be visible.

	The GerritChangeSource now sets a default author, fixing an exception that occured when Gerrit didn't report an owner name/email.

	Respects the RETRY status when an interrupt occurs.

	Fixes an off-by-one error when the tryclient is finding the current git branch.

	Improve the Mercurial source stamp extraction in the try client.

	Fixes some edge cases in timezone handling for python < 2.7.4 (bug #2522 [http://trac.buildbot.net/ticket/2522]).

	The EC2LatentBuildSlave will now only consider available AMI's.

	Fixes a case where the first build runs on an old slave instead of a new one after reconfig (bug #2507 [http://trac.buildbot.net/ticket/2507]).

	The e-mail address validation for the MailNotifier status receiver has been improved.

	The --db parameter of buildbot create-master is now validated.

	No longer ignores default choice for ForceScheduler list parameters

	Now correctly handles BuilderConfig(..., mergeRequests=False) (bug #2555 [http://trac.buildbot.net/ticket/2555]).

	Now excludes changes from sourcestamps when they aren't in the DB (bug #2554 [http://trac.buildbot.net/ticket/2554]).

	Fixes a compatibility issue with HPCloud in the OpenStack latent slave.

	Allow _ as a valid character in JSONP callback names.

	Fix build start time retrieval in the WebStatus grid view.

	Increase the length of the DB fields changes.comments and buildset_properties.property_value.

Deprecations, Removals, and Non-Compatible Changes

	The slave-side source steps are deprecated in this version of Buildbot, and master-side support will be removed in a future version.
Please convert any use of slave-side steps (imported directly from buildbot.steps.source, rather than from a specific module like buildbot.steps.source.svn) to use master-side steps.

	Both old-style and new-style steps are supported in this version of Buildbot.
Upgrade your steps to new-style now, as support for old-style steps will be dropped after Buildbot-0.9.0.
See New-Style Build Steps for details.
	The LoggingBuildStep class has been deprecated, and support will be removed along with support for old-style steps after the Buildbot-0.9.0 release.
Instead, subclass BuildStep and mix in ShellMixin to get similar behavior.

	slavePortnum option deprecated, please use c['protocols']['pb']['port'] to set up PB port

	The buildbot.process.mtrlogobserver module have been renamed to buildbot.steps.mtrlogobserver.

	The buildmaster now requires at least Twisted-11.0.0.

	The buildmaster now requires at least sqlalchemy-migrate 0.6.1.

	The hgbuildbot Mercurial hook has been moved to contrib/, and does not work with recent versions of Mercurial and Twisted.
The runtimes for these two tools are incompatible, yet hgbuildbot attempts to run both in the same Python interpreter.
Mayhem ensues.

	The try scheduler's --connect=ssh method no longer supports waiting for results (--wait).

	The former buildbot.process.buildstep.RemoteCommand class and its subclasses are now in buildbot.process.remotecommand, although imports from the previous path will continue to work.
Similarly, the former buildbot.process.buildstep.LogObserver class and its subclasses are now in buildbot.process.logobserver, although imports from the previous path will continue to work.

	The undocumented BuildStep method checkDisconnect is deprecated and now does nothing as the handling of disconnects is now handled in the failed method.
Any custom steps adding this method as a callback or errback should no longer do so.

	The build step MsBuild is now called MsBuild4 as multiple versions are now supported. An alias is provided so existing setups will continue to work, but this will be removed in a future release.

Changes for Developers

	The CompositeStepMixin now provides a runGlob method to check for files on the slave that match a given shell-style pattern.

	The BuilderStatus now allows you to pass a filter_fn arguent to generateBuilds.

Slave

Features

	Added zsh and bash tab-completions support for 'buildslave' command.

	RemoteShellCommands accept the new sigtermTime parameter from master. This allows processes to be killed by SIGTERM
before resorting to SIGKILL (bug #751 [http://trac.buildbot.net/ticket/751])

	Commands will now throw a ValueError if mandatory args are not present.

	Added a new remote command GlobPath that can be used to call Python's glob.glob on the slave.

Fixes

	Fixed an issue when buildstep stop() was raising an exception incorrectly if timeout for
buildstep wasn't set or was None (see pull request 753 [https://github.com/buildbot/buildbot/pull/753]) thus keeping watched logfiles open
(this prevented their removal on Windows in subsequent builds).

	Fixed a bug in P4 source step where the timeout parameter was ignored.

	Fixed a bug in P4 source step where using a custom view-spec could result in failed syncs
due to incorrectly generated command-lines.

	The logwatcher will use /usr/xpg4/bin/tail on Solaris, it if is available (pull request 1065 [https://github.com/buildbot/buildbot/pull/1065]).

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the
git log itself:

git log v0.8.8..v0.8.9

Older Versions

Release notes for older versions of Buildbot are available in the master/docs/relnotes/ [https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/] directory of the source tree.
Newer versions are also available here:

	Release Notes for Buildbot v0.8.8

	Release Notes for Buildbot v0.8.7

	Release Notes for Buildbot v0.8.6p1

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Release Notes for Buildbot 0.8.9

Release Notes for Buildbot v0.8.8

The following are the release notes for Buildbot v0.8.8
Buildbot v0.8.8 was released on August 22, 2013

Master

Features

	The MasterShellCommand step now correctly handles environment variables passed as list.

	The master now poll the database for pending tasks when running buildbot in multi-master mode.

	The algorithm to match build requests to slaves has been rewritten in pull request 615 [https://github.com/buildbot/buildbot/pull/615].
The new algorithm automatically takes locks into account, and will not schedule a build only to have it wait on a lock.
The algorithm also introduces a canStartBuild builder configuration option which can be used to prevent a build request being assigned to a slave.

	buildbot stop and buildbot restart now accept --clean to stop or restart the master cleanly (allowing all running builds to complete first).

	The IRC bot now supports clean shutdown and immediate shutdown by using the command 'shutdown'.
To allow the command to function, you must provide allowShutdown=True.

	CopyDirectory has been added.

	BuildslaveChoiceParameter has been added to provide a way to explicitly choose a buildslave
for a given build.

	default.css now wraps preformatted text by default.

	Slaves can now be paused through the web status.

	The latent buildslave support is less buggy, thanks to pull request 646 [https://github.com/buildbot/buildbot/pull/646].

	The treeStableTimer for AnyBranchScheduler now maintains separate timers for separate branches, codebases, projects, and repositories.

	SVN has a new option preferLastChangedRev=True to use the last changed revision for got_revision

	The build request DB connector method getBuildRequests can now filter by branch and repository.

	A new SetProperty step has been added in buildbot.steps.master which can set a property directly without accessing the slave.

	The new LogRenderable step logs Python objects, which can contain renderables, to the logfile.
This is helpful for debugging property values during a build.

	'buildbot try' now has an additional --property option to set properties.
Unlike the existing --properties option, this new option supports setting
only a single property and therefore allows commas to be included in the property
name and value.

	The Git step has a new config option, which accepts a dict of git configuration options to
pass to the low-level git commands. See Git for details.

	In ShellCommand ShellCommand now validates its arguments during config and will identify any invalid arguments before a build is started.

	The list of force schedulers in the web UI is now sorted by name.

	OpenStack-based Latent Buildslave support was added.
See pull request 666 [https://github.com/buildbot/buildbot/pull/666].

	Master-side support for P4 is available, and provides a great deal more flexibility than the old slave-side step.
See pull request 596 [https://github.com/buildbot/buildbot/pull/596].

	Master-side support for Repo is available.
The step parameters changed to camelCase.
repo_downloads, and manifest_override_url properties are no longer hardcoded, but instead consult as default values via renderables.
Renderable are used in favor of callables for syncAllBranches and updateTarball.

	Builder configurations can now include a description, which will appear in the web UI to help humans figure out what the builder does.

	GNUAutoconf and other pre-defined factories now work correctly (bug #2402 [http://trac.buildbot.net/ticket/2402])

	The pubDate in RSS feeds is now rendered correctly (bug #2530 [http://trac.buildbot.net/ticket/2530])

Deprecations, Removals, and Non-Compatible Changes

	The split_file function for SVNPoller may now return a dictionary instead of a tuple.
This allows it to add extra information about a change (such as project or repository).

	The workdir build property has been renamed to builddir.
This change accurately reflects its content; the term "workdir" means something different.
workdir is currently still supported for backwards compatability, but will be removed eventually.

	The Blocker step has been removed.

	Several polling ChangeSources are now documented to take a pollInterval argument, instead of pollinterval.
The old name is still supported.

	StatusReceivers' checkConfig method should no longer take an errors parameter.
It should indicate errors by calling error.

	Build steps now require that their name be a string.
Previously, they would accept anything, but not behave appropriately.

	The web status no longer displays a potentially misleading message, indicating whether the build
can be rebuilt exactly.

	The SetProperty step in buildbot.steps.shell has been renamed to SetPropertyFromCommand.

	The EC2 and libvirt latent slaves have been moved to buildbot.buildslave.ec2 and buildbot.buildslave.libirt respectively.

	Pre v0.8.7 versions of buildbot supported passing keyword arguments to buildbot.process.BuildFactory.addStep, but this was dropped.
Support was added again, while still being deprecated, to ease transition.

Changes for Developers

	Added an optional build start callback to buildbot.status.status_gerrit.GerritStatusPush
This release includes the fix for bug #2536 [http://trac.buildbot.net/ticket/2536].

	An optional startCB callback to GerritStatusPush can be used
to send a message back to the committer.
See the linked documentation for details.

	bb:sched:ChoiceStringParameter has a new method getChoices that can be used to generate
content dynamically for Force scheduler forms.

Slave

Features

	The fix for Twisted bug #5079 is now applied on the slave side, too.
This fixes a perspective broker memory leak in older versions of Twisted.
This fix was added on the master in Buildbot-0.8.4 (see bug #1958 [http://trac.buildbot.net/ticket/1958]).

	The --nodaemon option to buildslave start now correctly prevents the slave from forking before running.

Deprecations, Removals, and Non-Compatible Changes

Details

For a more detailed description of the changes made in this version, see the
git log itself:

git log v0.8.7..v0.8.8

Older Versions

Release notes for older versions of Buildbot are available in the master/docs/relnotes/ [https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/] directory of the source tree.
Newer versions are also available here:

	Release Notes for Buildbot v0.8.7

	Release Notes for Buildbot v0.8.6p1

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Release Notes for Buildbot 0.8.9

Release Notes for Buildbot v0.8.7

The following are the release notes for Buildbot v0.8.7.
Buildbot v0.8.7 was released on September 22, 2012.
Buildbot 0.8.7p1 was released on November 21, 2012.

0.8.7p1

In addition to what's listed below, the 0.8.7p1 release adds the following.

	The SetPropertiesFromEnv step now correctly gets environment variables from the slave, rather than those set on the master.
Also, it logs the changes made to properties.

	The master-side Git source step now doesn't try to clone a branch called HEAD.
This is what git does by default, and specifying it explicitly doesn't work as expected.

	The Git step properly deals with the case when there is a file called FETCH_HEAD
in the checkout.

	Buildbot no longer forks when told not to daemonize.

	Buildbot's startup is now more robust. See bug #1992 [http://trac.buildbot.net/ticket/1992].

	The Trigger step uses the provided list of source stamps exactly, if given, instead of adding them to the sourcestamps of the current build.
In 0.8.7, they were combined with the source stamps for the current build.

	The Trigger step again completely ignores the source stamp of the current build, if alwaysUseLatest is set.
In 0.8.7, this was mistakenly changed to only ignore the specified revision of the source stamp.

	The Triggerable scheduler is again properly passing changes through to the scheduled builds.
See bug #2376 [http://trac.buildbot.net/ticket/2376].

	Web change hooks log errors, allowing debugging.

	The base change hook now properly decodes the provided date.

	CVSMailDir has been fixed.

	Importing buildbot.test no longer causes python to exit, if mock insn't installed.
The fixes pydoc -k when buildbot is installed.

	Mercurial properly updates to the correct branch, when using inrepo branches.

	Buildbot now doesn't fail on invalid UTF-8 in a number of places.

	Many documenation updates and fixes.

Master

Features

	Buildbot now supports building projects composed of multiple codebases. New
schedulers can aggregate changes to multiple codebases into source stamp sets
(with one source stamp for each codebase). Source steps then check out each
codebase as required, and the remainder of the build process proceeds
normally. See the Multiple-Codebase Builds for details.
	The format of the got_revision property has changed for multi-codebase builds.
It is now a dictionary keyed by codebase.

	Source and ShellCommand steps now have an optional descriptionSuffix, a suffix to the
description/descriptionDone values. For example this can help distinguish between
multiple Compile steps that are applied to different codebases.

	The Git step has a new getDescription option, which will run git describe after checkout
normally. See Git for details.

	A new interpolation placeholder Interpolate, with more regular syntax, is available.

	A new ternary substitution operator :? and :#? is available with the Interpolate class.

	IRenderable.getRenderingFor can now return a deferred.

	The Mercurial hook now supports multiple masters. See pull request 436 [https://github.com/buildbot/buildbot/pull/436].

	There's a new poller for Mercurial: HgPoller.

	The new HTPasswdAprAuth uses libaprutil (through ctypes) to validate
the password against the hash from the .htpasswd file. This adds support for
all hash types htpasswd can generate.

	GitPoller has been rewritten.
It now supports multiple branches and can share a directory between multiple pollers.
It is also more resilient to changes in configuration, or in the underlying repository.

	Added a new property httpLoginUrl to buildbot.status.web.authz.Authz
to render a nice Login link in WebStatus for unauthenticated users if
useHttpHeader and httpLoginUrl are set.

	ForceScheduler has been updated:
	support for multiple codebases via the codebases parameter

	NestedParameter to provide a logical grouping of parameters.

	CodebaseParameter to set the branch/revision/repository/project for a codebase

	new HTML/CSS customization points. Each parameter is contained in a row with multiple
'class' attributes associated with them (eg, 'force-string' and 'force-nested') as well as a unique
id to use with Javascript. Explicit line-breaks have been removed from the HTML generator and
are now controlled using CSS.

	The SVNPoller now supports multiple projects and codebases.
See pull request 443 [https://github.com/buildbot/buildbot/pull/443].

	The MailNotifier now takes a callable to calculate the "previous" build for purposes of determining status changes.
See pull request 489 [https://github.com/buildbot/buildbot/pull/489].

	The copy_properties parameter, given a list of properties to copy into the new build request, has been deprecated in favor of explicit use of set_properties.

Deprecations, Removals, and Non-Compatible Changes

	Buildbot master now requires at least Python-2.5 and Twisted-9.0.0.

	Passing a BuildStep subclass (rather than instance) to addStep is no longer supported.
The addStep method now takes exactly one argument.

	Buildbot master requires python-dateutil version 1.5 to support the
Nightly scheduler.

	ForceScheduler has been updated to support multiple codebases.
The branch/revision/repository/project are deprecated; if you have customized these
values, simply provide them as codebases=[CodebaseParameter(name='', ...)].

	The POST URL names for AnyPropertyParameter fields have changed. For example,
'property1name' is now 'property1_name', and 'property1value' is now 'property1_value'.
Please update any bookmarked or saved URL's that used these fields.

	forcesched.BaseParameter API has changed quite a bit and is no longer backwards
compatible. Updating guidelines:
	get_from_post is renamed to getFromKwargs

	update_from_post is renamed to updateFromKwargs. This function's parameters
are now called via named parameters to allow subclasses to ignore values it doesnt use.
Subclasses should add **unused for future compatibility. A new parameter
sourcestampset is provided to allow subclasses to modify the sourcestamp set, and
will probably require you to add the **unused field.

	The parameters to the callable version of build.workdir have changed.
Instead of a single sourcestamp, a list of sourcestamps is passed. Each
sourcestamp in the list has a different codebase

	The undocumented renderable _ComputeRepositoryURL is no longer imported to
buildbot.steps.source. It is still available at
buildbot.steps.source.oldsource.

	IProperties.render now returns a deferred, so any code rendering properties
by hand will need to take this into account.

	baseURL has been removed in SVN to use just repourl - see
bug #2066 [http://trac.buildbot.net/ticket/2066]. Branch info should be provided with Interpolate.

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::branch)s")))

and

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/%%BRANCH%%/project"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::branch)s/project")))

and

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/", defaultBranch="branches/test"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::branch:-branches/test)s")))

	The P4Sync step, deprecated since 0.8.5, has been removed. The P4 step remains.

	The fetch_spec argument to GitPoller is no longer supported.
GitPoller now only downloads branches that it is polling, so specifies a refspec itself.

	The format of the changes produced by SVNPoller has changed: directory pathnames end with a forward slash.
This allows the split_file function to distinguish between files and directories.
Customized split functions may need to be adjusted accordingly.

	FlattenList has been deprecated in favor of Interpolate.
Interpolate doesn't handle functions as keyword arguments.
The following code using WithProperties

from buildbot.process.properties import WithProperties
def determine_foo(props):
 if props.hasProperty('bar'):
 return props['bar']
 elif props.hasProperty('baz'):
 return props['baz']
 return 'qux'
WithProperties('%(foo)s', foo=determine_foo)

can be replaced with

from zope.interface import implementer
from buildbot.interfaces import IRenderable
from buildbot.process.properties import Interpolate
@implementer(IRenderable)
class determineFoo(object):
 def getRenderingFor(self, props):
 if props.hasProperty('bar'):
 return props['bar']
 elif props.hasProperty('baz'):
 return props['baz']
 return 'qux'
Interpolate('%s(kw:foo)s', foo=determineFoo())

Changes for Developers

	BuildStep.start can now optionally return a deferred and any errback will
be handled gracefully. If you use inlineCallbacks, this means that unexpected
exceptions and failures raised will be captured and logged and the build shut
down normally.

	The helper methods getState and setState from BaseScheduler have
been factored into buildbot.util.state.StateMixin for use elsewhere.

Slave

Features

Deprecations, Removals, and Non-Compatible Changes

	The P4Sync step, deprecated since 0.8.5, has been removed. The P4 step remains.

Details

For a more detailed description of the changes made in this version, see the
Git log itself:

git log v0.8.6..v0.8.7

Older Versions

Release notes for older versions of Buildbot are available in the master/docs/relnotes/ [https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/] directory of the source tree.
Starting with version 0.8.6, they are also available under the appropriate version at http://buildbot.net/buildbot/docs.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Release Notes for Buildbot 0.8.9

Release Notes for Buildbot v0.8.6p1

The following are the release notes for Buildbot v0.8.6p1.
Buildbot v0.8.6 was released on March 11, 2012.
Buildbot v0.8.6p1 was released on March 25, 2012.

0.8.6p1

In addition to what's listed below, the 0.8.6p1 release adds the following.

	Builders are no longer displayed in the order they were configured. This was
never intended behavior, and will become impossible in the distributed
architecture planned for Buildbot-0.9.x. As of 0.8.6p1, builders are sorted
naturally: lexically, but with numeric segments sorted numerically.

	Slave properties in the configuration are now handled correctly.

	The web interface buttons to cancel individual builds now appear when
configured.

	The ForceScheduler's properties are correctly updated on reconfig -
bug #2248 [http://trac.buildbot.net/ticket/2248].

	If a slave is lost while waiting for locks, it is properly cleaned up -
bug #2247 [http://trac.buildbot.net/ticket/2247].

	Crashes when adding new steps to a factory in a reconfig are fixed -
bug #2252 [http://trac.buildbot.net/ticket/2252].

	MailNotifier AttributeErrors are fixed - bug #2254 [http://trac.buildbot.net/ticket/2254].

	Cleanup from failed builds is improved - bug #2253 [http://trac.buildbot.net/ticket/2253].

Master

	If you are using the GitHub hook, carefully consider the security
implications of allowing un-authenticated change requests, which can
potentially build arbitrary code. See bug #2186 [http://trac.buildbot.net/ticket/2186].

Deprecations, Removals, and Non-Compatible Changes

	Forced builds now require that a ForceScheduler be defined in the
Buildbot configuration. For compatible behavior, this should look like:

from buildbot.schedulers.forcesched import ForceScheduler
c['schedulers'].append(ForceScheduler(
 name="force",
 builderNames=["b1", "b2", ...]))

Where all of the builder names in the configuration are listed. See the
documentation for the much more flexiblie configuration options now
available.

	This is the last release of Buildbot that will be compatible with Python 2.4.
The next version will minimally require Python-2.5. See bug #2157 [http://trac.buildbot.net/ticket/2157].

	This is the last release of Buildbot that will be compatible with
Twisted-8.x.y. The next version will minimally require Twisted-9.0.0. See
bug #2182 [http://trac.buildbot.net/ticket/2182].

	buildbot start no longer invokes make if a Makefile.buildbot exists.
If you are using this functionality, consider invoking make directly.

	The buildbot sendchange option --username has been removed as
promised in bug #1711 [http://trac.buildbot.net/ticket/1711].

	StatusReceivers' checkConfig method should now take an additional errors
parameter and call its addError
method to indicate errors.

	The gerrit status callback now gets an additional parameter (the master
status). If you use this callback, you will need to adjust its
implementation.

	SQLAlchemy-Migrate version 0.6.0 is no longer supported. See
Buildmaster Requirements.

	Older versions of SQLite which could limp along for previous versions of
Buildbot are no longer supported. The minimum version is 3.4.0, and 3.7.0 or
higher is recommended.

	The master-side Git step now checks out 'HEAD' by default, rather than
master, which translates to the default branch on the upstream repository. See
pull request 301 [https://github.com/buildbot/buildbot/pull/301].

	The format of the repository strings created by hgbuildbot has changed to
contain the entire repository URL, based on the web.baseurl value in
hgrc. To continue the old (incorrect) behavior, set
hgbuildbot.baseurl to an empty string as suggested in the Buildbot
manual.

	Master Side SVN Step has been corrected to properly use
--revision when alwaysUseLatest is set to False when in the
full mode. See bug #2194 [http://trac.buildbot.net/ticket/2194]

	Master Side SVN Step paramater svnurl has been renamed repourl, to
be consistent with other master-side source steps.

	Master Side Mercurial step parameter baseURL has been merged
with repourl parameter. The behavior of the step is already controled by
branchType parameter, so just use a single argument to specify the repository.

	Passing a buildbot.process.buildstep.BuildStep subclass (rather than
instance) to buildbot.process.factory.BuildFactory.addStep has long been
deprecated, and will be removed in version 0.8.7.

	The hgbuildbot tool now defaults to the 'inrepo' branch type. Users who do
not explicitly set a branch type would previously have seen empty branch strings,
and will now see a branch string based on the branch in the repository (e.g.,
default).

Changes for Developers

	The interface for runtime access to the master's configuration has changed
considerably. See Configuration for more details.

	The DB connector methods completeBuildset, completeBuildRequest, and
claimBuildRequest now take an optional complete_at parameter to
specify the completion time explicitly.

	Buildbot now sports sourcestamp sets, which collect multiple sourcestamps
used to generate a single build, thanks to Harry Borkhuis. See
pull request 287 [https://github.com/buildbot/buildbot/pull/287].

	Schedulers no longer have a schedulerid, but rather an objectid. In
a related change, the schedulers table has been removed, along with the
buildbot.db.schedulers.SchedulersConnectorComponent.getSchedulerId
method.

	The Dependent scheduler tracks its upstream buildsets using
buildbot.db.schedulers.StateConnectorComponent, so the
scheduler_upstream_buildsets table has been removed, along with
corresponding (undocumented)
buildbot.db.buildsets.BuildsetsConnector methods.

	Errors during configuration (in particular in BuildStep constructors),
should be reported by calling buildbot.config.error.

Features

	The IRC status bot now display build status in colors by default.
It is controllable and may be disabled with useColors=False in constructor.

	Buildbot can now take advantage of authentication done by a front-end web
server - see pull request 266 [https://github.com/buildbot/buildbot/pull/266].

	Buildbot supports a simple cookie-based login system, so users no longer need
to enter a username and password for every request. See the earlier commits
in pull request 278 [https://github.com/buildbot/buildbot/pull/278].

	The master-side SVN step now has an export method which is similar to
copy, but the build directory does not contain Subversion metdata. (bug #2078 [http://trac.buildbot.net/ticket/2078])

	Property instances will now render any properties in the
default value if necessary. This makes possible constructs like

command=Property('command', default=Property('default-command'))

	Buildbot has a new web hook to handle push notifications from Google Code -
see pull request 278 [https://github.com/buildbot/buildbot/pull/278].

	Revision links are now generated by a flexible runtime conversion configured
by revlink - see pull request 280 [https://github.com/buildbot/buildbot/pull/280].

	Shell command steps will now "flatten" nested lists in the command
argument. This allows substitution of multiple command-line arguments using
properties. See bug #2150 [http://trac.buildbot.net/ticket/2150].

	Steps now take an optional hideStepIf parameter to suppress the step
from the waterfall and build details in the web. (bug #1743 [http://trac.buildbot.net/ticket/1743])

	Trigger steps with waitForFinish=True now receive a URL to
all the triggered builds. This URL is displayed in the waterfall and build
details. See bug #2170 [http://trac.buildbot.net/ticket/2170].

	The master/contrib/fakemaster.py` [https://github.com/buildbot/buildbot/blob/master/master/contrib/fakemaster.py`] script allows you to run arbitrary
commands on a slave by emulating a master. See the file itself for
documentation.

	MailNotifier allows multiple notification modes in the same instance. See
bug #2205 [http://trac.buildbot.net/ticket/2205].

	SVNPoller now allows passing extra arguments via argument extra_args.
See bug #1766 [http://trac.buildbot.net/ticket/1766]

Slave

Deprecations, Removals, and Non-Compatible Changes

	BitKeeper support is in the "Last-Rites" state, and will be removed in the
next version unless a maintainer steps forward.

Features

Details

For a more detailed description of the changes made in this version, see the
Git log itself:

git log buildbot-0.8.5..buildbot-0.8.6

Older Versions

Release notes for older versions of Buildbot are available in the
master/docs/release-notes/ [https://github.com/buildbot/buildbot/blob/master/master/docs/release-notes/] directory of the source tree, or in the archived
documentation for those versions at http://buildbot.net/buildbot/docs.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Release Notes for Buildbot 0.8.9

Release Notes for Buildbot v0.8.7

The following are the release notes for Buildbot v0.8.7.
Buildbot v0.8.7 was released on September 22, 2012.
Buildbot 0.8.7p1 was released on November 21, 2012.

0.8.7p1

In addition to what's listed below, the 0.8.7p1 release adds the following.

	The SetPropertiesFromEnv step now correctly gets environment variables from the slave, rather than those set on the master.
Also, it logs the changes made to properties.

	The master-side Git source step now doesn't try to clone a branch called HEAD.
This is what git does by default, and specifying it explicitly doesn't work as expected.

	The Git step properly deals with the case when there is a file called FETCH_HEAD
in the checkout.

	Buildbot no longer forks when told not to daemonize.

	Buildbot's startup is now more robust. See bug #1992 [http://trac.buildbot.net/ticket/1992].

	The Trigger step uses the provided list of source stamps exactly, if given, instead of adding them to the sourcestamps of the current build.
In 0.8.7, they were combined with the source stamps for the current build.

	The Trigger step again completely ignores the source stamp of the current build, if alwaysUseLatest is set.
In 0.8.7, this was mistakenly changed to only ignore the specified revision of the source stamp.

	The Triggerable scheduler is again properly passing changes through to the scheduled builds.
See bug #2376 [http://trac.buildbot.net/ticket/2376].

	Web change hooks log errors, allowing debugging.

	The base change hook now properly decodes the provided date.

	CVSMailDir has been fixed.

	Importing buildbot.test no longer causes python to exit, if mock insn't installed.
The fixes pydoc -k when buildbot is installed.

	Mercurial properly updates to the correct branch, when using inrepo branches.

	Buildbot now doesn't fail on invalid UTF-8 in a number of places.

	Many documenation updates and fixes.

Master

Features

	Buildbot now supports building projects composed of multiple codebases. New
schedulers can aggregate changes to multiple codebases into source stamp sets
(with one source stamp for each codebase). Source steps then check out each
codebase as required, and the remainder of the build process proceeds
normally. See the Multiple-Codebase Builds for details.
	The format of the got_revision property has changed for multi-codebase builds.
It is now a dictionary keyed by codebase.

	Source and ShellCommand steps now have an optional descriptionSuffix, a suffix to the
description/descriptionDone values. For example this can help distinguish between
multiple Compile steps that are applied to different codebases.

	The Git step has a new getDescription option, which will run git describe after checkout
normally. See Git for details.

	A new interpolation placeholder Interpolate, with more regular syntax, is available.

	A new ternary substitution operator :? and :#? is available with the Interpolate class.

	IRenderable.getRenderingFor can now return a deferred.

	The Mercurial hook now supports multiple masters. See pull request 436 [https://github.com/buildbot/buildbot/pull/436].

	There's a new poller for Mercurial: HgPoller.

	The new HTPasswdAprAuth uses libaprutil (through ctypes) to validate
the password against the hash from the .htpasswd file. This adds support for
all hash types htpasswd can generate.

	GitPoller has been rewritten.
It now supports multiple branches and can share a directory between multiple pollers.
It is also more resilient to changes in configuration, or in the underlying repository.

	Added a new property httpLoginUrl to buildbot.status.web.authz.Authz
to render a nice Login link in WebStatus for unauthenticated users if
useHttpHeader and httpLoginUrl are set.

	ForceScheduler has been updated:
	support for multiple codebases via the codebases parameter

	NestedParameter to provide a logical grouping of parameters.

	CodebaseParameter to set the branch/revision/repository/project for a codebase

	new HTML/CSS customization points. Each parameter is contained in a row with multiple
'class' attributes associated with them (eg, 'force-string' and 'force-nested') as well as a unique
id to use with Javascript. Explicit line-breaks have been removed from the HTML generator and
are now controlled using CSS.

	The SVNPoller now supports multiple projects and codebases.
See pull request 443 [https://github.com/buildbot/buildbot/pull/443].

	The MailNotifier now takes a callable to calculate the "previous" build for purposes of determining status changes.
See pull request 489 [https://github.com/buildbot/buildbot/pull/489].

	The copy_properties parameter, given a list of properties to copy into the new build request, has been deprecated in favor of explicit use of set_properties.

Deprecations, Removals, and Non-Compatible Changes

	Buildbot master now requires at least Python-2.5 and Twisted-9.0.0.

	Passing a BuildStep subclass (rather than instance) to addStep is no longer supported.
The addStep method now takes exactly one argument.

	Buildbot master requires python-dateutil version 1.5 to support the
Nightly scheduler.

	ForceScheduler has been updated to support multiple codebases.
The branch/revision/repository/project are deprecated; if you have customized these
values, simply provide them as codebases=[CodebaseParameter(name='', ...)].

	The POST URL names for AnyPropertyParameter fields have changed. For example,
'property1name' is now 'property1_name', and 'property1value' is now 'property1_value'.
Please update any bookmarked or saved URL's that used these fields.

	forcesched.BaseParameter API has changed quite a bit and is no longer backwards
compatible. Updating guidelines:
	get_from_post is renamed to getFromKwargs

	update_from_post is renamed to updateFromKwargs. This function's parameters
are now called via named parameters to allow subclasses to ignore values it doesnt use.
Subclasses should add **unused for future compatibility. A new parameter
sourcestampset is provided to allow subclasses to modify the sourcestamp set, and
will probably require you to add the **unused field.

	The parameters to the callable version of build.workdir have changed.
Instead of a single sourcestamp, a list of sourcestamps is passed. Each
sourcestamp in the list has a different codebase

	The undocumented renderable _ComputeRepositoryURL is no longer imported to
buildbot.steps.source. It is still available at
buildbot.steps.source.oldsource.

	IProperties.render now returns a deferred, so any code rendering properties
by hand will need to take this into account.

	baseURL has been removed in SVN to use just repourl - see
bug #2066 [http://trac.buildbot.net/ticket/2066]. Branch info should be provided with Interpolate.

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::branch)s")))

and

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/%%BRANCH%%/project"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::branch)s/project")))

and

from buildbot.steps.source.svn import SVN
factory.append(SVN(baseURL="svn://svn.example.org/svn/", defaultBranch="branches/test"))

can be replaced with

from buildbot.process.properties import Interpolate
from buildbot.steps.source.svn import SVN
factory.append(SVN(repourl=Interpolate("svn://svn.example.org/svn/%(src::branch:-branches/test)s")))

	The P4Sync step, deprecated since 0.8.5, has been removed. The P4 step remains.

	The fetch_spec argument to GitPoller is no longer supported.
GitPoller now only downloads branches that it is polling, so specifies a refspec itself.

	The format of the changes produced by SVNPoller has changed: directory pathnames end with a forward slash.
This allows the split_file function to distinguish between files and directories.
Customized split functions may need to be adjusted accordingly.

	FlattenList has been deprecated in favor of Interpolate.
Interpolate doesn't handle functions as keyword arguments.
The following code using WithProperties

from buildbot.process.properties import WithProperties
def determine_foo(props):
 if props.hasProperty('bar'):
 return props['bar']
 elif props.hasProperty('baz'):
 return props['baz']
 return 'qux'
WithProperties('%(foo)s', foo=determine_foo)

can be replaced with

from zope.interface import implementer
from buildbot.interfaces import IRenderable
from buildbot.process.properties import Interpolate
@implementer(IRenderable)
class determineFoo(object):
 def getRenderingFor(self, props):
 if props.hasProperty('bar'):
 return props['bar']
 elif props.hasProperty('baz'):
 return props['baz']
 return 'qux'
Interpolate('%s(kw:foo)s', foo=determineFoo())

Changes for Developers

	BuildStep.start can now optionally return a deferred and any errback will
be handled gracefully. If you use inlineCallbacks, this means that unexpected
exceptions and failures raised will be captured and logged and the build shut
down normally.

	The helper methods getState and setState from BaseScheduler have
been factored into buildbot.util.state.StateMixin for use elsewhere.

Slave

Features

Deprecations, Removals, and Non-Compatible Changes

	The P4Sync step, deprecated since 0.8.5, has been removed. The P4 step remains.

Details

For a more detailed description of the changes made in this version, see the
Git log itself:

git log v0.8.6..v0.8.7

Older Versions

Release notes for older versions of Buildbot are available in the master/docs/relnotes/ [https://github.com/buildbot/buildbot/blob/master/master/docs/relnotes/] directory of the source tree.
Starting with version 0.8.6, they are also available under the appropriate version at http://buildbot.net/buildbot/docs.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Buildbot 0.8.9 documentation

 	Release Notes for Buildbot 0.8.9

Release Notes for Buildbot v0.8.6p1

The following are the release notes for Buildbot v0.8.6p1.
Buildbot v0.8.6 was released on March 11, 2012.
Buildbot v0.8.6p1 was released on March 25, 2012.

0.8.6p1

In addition to what's listed below, the 0.8.6p1 release adds the following.

	Builders are no longer displayed in the order they were configured. This was
never intended behavior, and will become impossible in the distributed
architecture planned for Buildbot-0.9.x. As of 0.8.6p1, builders are sorted
naturally: lexically, but with numeric segments sorted numerically.

	Slave properties in the configuration are now handled correctly.

	The web interface buttons to cancel individual builds now appear when
configured.

	The ForceScheduler's properties are correctly updated on reconfig -
bug #2248 [http://trac.buildbot.net/ticket/2248].

	If a slave is lost while waiting for locks, it is properly cleaned up -
bug #2247 [http://trac.buildbot.net/ticket/2247].

	Crashes when adding new steps to a factory in a reconfig are fixed -
bug #2252 [http://trac.buildbot.net/ticket/2252].

	MailNotifier AttributeErrors are fixed - bug #2254 [http://trac.buildbot.net/ticket/2254].

	Cleanup from failed builds is improved - bug #2253 [http://trac.buildbot.net/ticket/2253].

Master

	If you are using the GitHub hook, carefully consider the security
implications of allowing un-authenticated change requests, which can
potentially build arbitrary code. See bug #2186 [http://trac.buildbot.net/ticket/2186].

Deprecations, Removals, and Non-Compatible Changes

	Forced builds now require that a ForceScheduler be defined in the
Buildbot configuration. For compatible behavior, this should look like:

from buildbot.schedulers.forcesched import ForceScheduler
c['schedulers'].append(ForceScheduler(
 name="force",
 builderNames=["b1", "b2", ...]))

Where all of the builder names in the configuration are listed. See the
documentation for the much more flexiblie configuration options now
available.

	This is the last release of Buildbot that will be compatible with Python 2.4.
The next version will minimally require Python-2.5. See bug #2157 [http://trac.buildbot.net/ticket/2157].

	This is the last release of Buildbot that will be compatible with
Twisted-8.x.y. The next version will minimally require Twisted-9.0.0. See
bug #2182 [http://trac.buildbot.net/ticket/2182].

	buildbot start no longer invokes make if a Makefile.buildbot exists.
If you are using this functionality, consider invoking make directly.

	The buildbot sendchange option --username has been removed as
promised in bug #1711 [http://trac.buildbot.net/ticket/1711].

	StatusReceivers' checkConfig method should now take an additional errors
parameter and call its addError
method to indicate errors.

	The gerrit status callback now gets an additional parameter (the master
status). If you use this callback, you will need to adjust its
implementation.

	SQLAlchemy-Migrate version 0.6.0 is no longer supported. See
Buildmaster Requirements.

	Older versions of SQLite which could limp along for previous versions of
Buildbot are no longer supported. The minimum version is 3.4.0, and 3.7.0 or
higher is recommended.

	The master-side Git step now checks out 'HEAD' by default, rather than
master, which translates to the default branch on the upstream repository. See
pull request 301 [https://github.com/buildbot/buildbot/pull/301].

	The format of the repository strings created by hgbuildbot has changed to
contain the entire repository URL, based on the web.baseurl value in
hgrc. To continue the old (incorrect) behavior, set
hgbuildbot.baseurl to an empty string as suggested in the Buildbot
manual.

	Master Side SVN Step has been corrected to properly use
--revision when alwaysUseLatest is set to False when in the
full mode. See bug #2194 [http://trac.buildbot.net/ticket/2194]

	Master Side SVN Step paramater svnurl has been renamed repourl, to
be consistent with other master-side source steps.

	Master Side Mercurial step parameter baseURL has been merged
with repourl parameter. The behavior of the step is already controled by
branchType parameter, so just use a single argument to specify the repository.

	Passing a buildbot.process.buildstep.BuildStep subclass (rather than
instance) to buildbot.process.factory.BuildFactory.addStep has long been
deprecated, and will be removed in version 0.8.7.

	The hgbuildbot tool now defaults to the 'inrepo' branch type. Users who do
not explicitly set a branch type would previously have seen empty branch strings,
and will now see a branch string based on the branch in the repository (e.g.,
default).

Changes for Developers

	The interface for runtime access to the master's configuration has changed
considerably. See Configuration for more details.

	The DB connector methods completeBuildset, completeBuildRequest, and
claimBuildRequest now take an optional complete_at parameter to
specify the completion time explicitly.

	Buildbot now sports sourcestamp sets, which collect multiple sourcestamps
used to generate a single build, thanks to Harry Borkhuis. See
pull request 287 [https://github.com/buildbot/buildbot/pull/287].

	Schedulers no longer have a schedulerid, but rather an objectid. In
a related change, the schedulers table has been removed, along with the
buildbot.db.schedulers.SchedulersConnectorComponent.getSchedulerId
method.

	The Dependent scheduler tracks its upstream buildsets using
buildbot.db.schedulers.StateConnectorComponent, so the
scheduler_upstream_buildsets table has been removed, along with
corresponding (undocumented)
buildbot.db.buildsets.BuildsetsConnector methods.

	Errors during configuration (in particular in BuildStep constructors),
should be reported by calling buildbot.config.error.

Features

	The IRC status bot now display build status in colors by default.
It is controllable and may be disabled with useColors=False in constructor.

	Buildbot can now take advantage of authentication done by a front-end web
server - see pull request 266 [https://github.com/buildbot/buildbot/pull/266].

	Buildbot supports a simple cookie-based login system, so users no longer need
to enter a username and password for every request. See the earlier commits
in pull request 278 [https://github.com/buildbot/buildbot/pull/278].

	The master-side SVN step now has an export method which is similar to
copy, but the build directory does not contain Subversion metdata. (bug #2078 [http://trac.buildbot.net/ticket/2078])

	Property instances will now render any properties in the
default value if necessary. This makes possible constructs like

command=Property('command', default=Property('default-command'))

	Buildbot has a new web hook to handle push notifications from Google Code -
see pull request 278 [https://github.com/buildbot/buildbot/pull/278].

	Revision links are now generated by a flexible runtime conversion configured
by revlink - see pull request 280 [https://github.com/buildbot/buildbot/pull/280].

	Shell command steps will now "flatten" nested lists in the command
argument. This allows substitution of multiple command-line arguments using
properties. See bug #2150 [http://trac.buildbot.net/ticket/2150].

	Steps now take an optional hideStepIf parameter to suppress the step
from the waterfall and build details in the web. (bug #1743 [http://trac.buildbot.net/ticket/1743])

	Trigger steps with waitForFinish=True now receive a URL to
all the triggered builds. This URL is displayed in the waterfall and build
details. See bug #2170 [http://trac.buildbot.net/ticket/2170].

	The master/contrib/fakemaster.py` [https://github.com/buildbot/buildbot/blob/master/master/contrib/fakemaster.py`] script allows you to run arbitrary
commands on a slave by emulating a master. See the file itself for
documentation.

	MailNotifier allows multiple notification modes in the same instance. See
bug #2205 [http://trac.buildbot.net/ticket/2205].

	SVNPoller now allows passing extra arguments via argument extra_args.
See bug #1766 [http://trac.buildbot.net/ticket/1766]

Slave

Deprecations, Removals, and Non-Compatible Changes

	BitKeeper support is in the "Last-Rites" state, and will be removed in the
next version unless a maintainer steps forward.

Features

Details

For a more detailed description of the changes made in this version, see the
Git log itself:

git log buildbot-0.8.5..buildbot-0.8.6

Older Versions

Release notes for older versions of Buildbot are available in the
master/docs/release-notes/ [https://github.com/buildbot/buildbot/blob/master/master/docs/release-notes/] directory of the source tree, or in the archived
documentation for those versions at http://buildbot.net/buildbot/docs.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Buildbot 0.8.9 documentation

 Buildmaster Configuration Index

 B |
 C |
 D |
 E |
 L |
 M |
 P |
 R |
 S |
 T |
 U |
 V

 			

 		
 B	

 	
 	
 buildbotURL	

 	
 	
 buildCacheSize	

 	
 	
 builders	

 	
 	
 buildHorizon	

 			

 		
 C	

 	
 	
 caches	

 	
 	
 change_source	

 	
 	
 changeCacheSize	

 	
 	
 changeHorizon	

 	
 	
 codebaseGenerator	

 			

 		
 D	

 	
 	
 db	

 	
 	
 db_poll_interval	

 	
 	
 db_url	

 	
 	
 debugPassword	

 			

 		
 E	

 	
 	
 eventHorizon	

 			

 		
 L	

 	
 	
 logCompressionLimit	

 	
 	
 logCompressionMethod	

 	
 	
 logHorizon	

 	
 	
 logMaxSize	

 	
 	
 logMaxTailSize	

 			

 		
 M	

 	
 	
 manhole	

 	
 	
 mergeRequests	

 	
 	
 metrics	

 	
 	
 multiMaster	

 			

 		
 P	

 	
 	
 prioritizeBuilders	

 	
 	
 properties	

 	
 	
 protocols	

 			

 		
 R	

 	
 	
 revlink	

 			

 		
 S	

 	
 	
 schedulers	

 	
 	
 slaves	

 	
 	
 status	

 			

 		
 T	

 	
 	
 title	

 	
 	
 titleURL	

 			

 		
 U	

 	
 	
 user_managers	

 			

 		
 V	

 	
 	
 validation	

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Buildbot 0.8.9 documentation

 Scheduler Index

 A |
 B |
 C |
 D |
 F |
 I |
 N |
 P |
 S |
 T

 			

 		
 A	

 	
 	
 AnyBranchScheduler	

 			

 		
 B	

 	
 	
 BuildslaveChoiceParameter	

 			

 		
 C	

 	
 	
 ChoiceStringParameter	

 			

 		
 D	

 	
 	
 Dependent	

 			

 		
 F	

 	
 	
 ForceScheduler	

 			

 		
 I	

 	
 	
 InheritBuildParameter	

 			

 		
 N	

 	
 	
 Nightly	

 	
 	
 NightlyTriggerable	

 			

 		
 P	

 	
 	
 Periodic	

 			

 		
 S	

 	
 	
 Scheduler	

 	
 	
 SingleBranchScheduler	

 			

 		
 T	

 	
 	
 Triggerable	

 	
 	
 Try_Jobdir	

 	
 	
 Try_Userpass	

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Buildbot 0.8.9 documentation

 Change Source Index

 B |
 C |
 G |
 H |
 P |
 S

 			

 		
 B	

 	
 	
 BitbucketPullrequestPoller	

 	
 	
 BonsaiPoller	

 	
 	
 BzrLaunchpadEmailMaildirSource	

 	
 	
 BzrPoller	

 			

 		
 C	

 	
 	
 Change Hooks	

 	
 	
 CVSMaildirSource	

 			

 		
 G	

 	
 	
 GerritChangeSource	

 	
 	
 GitPoller	

 	
 	
 GoogleCodeAtomPoller	

 			

 		
 H	

 	
 	
 HgPoller	

 			

 		
 P	

 	
 	
 P4Source	

 	
 	
 PBChangeSource	

 			

 		
 S	

 	
 	
 SVNCommitEmailMaildirSource	

 	
 	
 SVNPoller	

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Buildbot 0.8.9 documentation

 Build Step Index

 B |
 C |
 D |
 F |
 G |
 H |
 J |
 L |
 M |
 O |
 P |
 R |
 S |
 T |
 V

 			

 		
 B	

 	
 	
 BK (Slave-Side)	

 	
 	
 BuildEPYDoc	

 	
 	
 Bzr	

 	
 	
 Bzr (Slave-Side)	

 			

 		
 C	

 	
 	
 Compile	

 	
 	
 Configure	

 	
 	
 CopyDirectory	

 	
 	
 CVS	

 	
 	
 CVS (Slave-Side)	

 			

 		
 D	

 	
 	
 Darcs	

 	
 	
 Darcs (Slave-Side)	

 	
 	
 DebCowbuilder	

 	
 	
 DebLintian	

 	
 	
 DebPbuilder	

 	
 	
 DELETE	

 	
 	
 DirectoryUpload	

 			

 		
 F	

 	
 	
 FileDownload	

 	
 	
 FileExists	

 	
 	
 FileUpload	

 			

 		
 G	

 	
 	
 Gerrit	

 	
 	
 GET	

 	
 	
 Git	

 	
 	
 Git (Slave-Side)	

 			

 		
 H	

 	
 	
 HEAD	

 	
 	
 HLint	

 	
 	
 HTTPStep	

 			

 		
 J	

 	
 	
 JSONPropertiesDownload	

 	
 	
 JSONStringDownload	

 			

 		
 L	

 	
 	
 LogRenderable	

 			

 		
 M	

 	
 	
 MakeDirectory	

 	
 	
 MasterShellCommand	

 	
 	
 MaxQ	

 	
 	
 Mercurial	

 	
 	
 Mercurial (Slave-Side)	

 	
 	
 MockBuildSRPM	

 	
 	
 MockRebuild	

 	
 	
 Monotone	

 	
 	
 Monotone (Slave-Side)	

 	
 	
 MsBuild12	

 	
 	
 MsBuild4	

 	
 	
 MTR	

 	
 	
 MultipleFileUpload	

 			

 		
 O	

 	
 	
 OPTIONS	

 			

 		
 P	

 	
 	
 P4	

 	
 	
 P4 (Slave-Side)	

 	
 	
 PerlModuleTest	

 	
 	
 POST	

 	
 	
 PUT	

 	
 	
 PyFlakes	

 	
 	
 PyLint	

 			

 		
 R	

 	
 	
 RemoveDirectory	

 	
 	
 RemovePYCs	

 	
 	
 Repo	

 	
 	
 Repo (Slave-Side)	

 	
 	
 Robocopy	

 	
 	
 RpmBuild	

 	
 	
 RpmLint	

 			

 		
 S	

 	
 	
 SetPropertiesFromEnv	

 	
 	
 SetProperty	

 	
 	
 SetPropertyFromCommand	

 	
 	
 SetSlaveInfo	

 	
 	
 ShellCommand	

 	
 	
 Sphinx	

 	
 	
 StringDownload	

 	
 	
 SubunitShellCommand	

 	
 	
 SVN	

 	
 	
 SVN (Slave-Side)	

 			

 		
 T	

 	
 	
 Test	

 	
 	
 TreeSize	

 	
 	
 Trial	

 	
 	
 Trigger	

 			

 		
 V	

 	
 	
 VC10	

 	
 	
 VC11	

 	
 	
 VC12	

 	
 	
 VC6	

 	
 	
 VC7	

 	
 	
 VC8	

 	
 	
 VC9	

 	
 	
 VCExpress9	

 	
 	
 VS2003	

 	
 	
 VS2005	

 	
 	
 VS2008	

 	
 	
 VS2010	

 	
 	
 VS2012	

 	
 	
 VS2013	

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Buildbot 0.8.9 documentation

 Status Target Index

 G |
 H |
 I |
 M |
 P |
 S |
 W

 			

 		
 G	

 	
 	
 GerritStatusPush	

 	
 	
 GitHubStatus	

 			

 		
 H	

 	
 	
 HttpStatusPush	

 			

 		
 I	

 	
 	
 IRC	

 			

 		
 M	

 	
 	
 MailNotifier	

 			

 		
 P	

 	
 	
 PBListener	

 			

 		
 S	

 	
 	
 StatusPush	

 			

 		
 W	

 	
 	
 WebStatus	

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Buildbot 0.8.9 documentation

 Command Line Index

 C |
 D |
 R |
 S |
 T |
 U

 			

 		
 C	

 	
 	
 create-master	

 	
 	
 create-slave	

 			

 		
 D	

 	
 	
 debugclient	

 			

 		
 R	

 	
 	
 restart (buildbot)	

 	
 	
 restart (buildslave)	

 			

 		
 S	

 	
 	
 sendchange	

 	
 	
 sighup	

 	
 	
 start (buildbot)	

 	
 	
 start (buildslave)	

 	
 	
 statusgui	

 	
 	
 statuslog	

 	
 	
 stop (buildbot)	

 	
 	
 stop (buildslave)	

 			

 		
 T	

 	
 	
 try	

 			

 		
 U	

 	
 	
 user	

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Buildbot 0.8.9 documentation

 Python Module Index

 b

 			

 		
 b	

 	[image: -]
 	
 buildbot	

 	
 	
 buildbot.config	

 	
 	
 buildbot.db.base	

 	
 	
 buildbot.db.buildrequests	

 	
 	
 buildbot.db.builds	

 	
 	
 buildbot.db.buildsets	

 	
 	
 buildbot.db.buildslaves	

 	
 	
 buildbot.db.changes	

 	
 	
 buildbot.db.connector	

 	
 	
 buildbot.db.model	

 	
 	
 buildbot.db.pool	

 	
 	
 buildbot.db.schedulers	

 	
 	
 buildbot.db.sourcestamps	

 	
 	
 buildbot.db.sourcestampsets	

 	
 	
 buildbot.db.state	

 	
 	
 buildbot.db.users	

 	
 	
 buildbot.process.buildstep	

 	
 	
 buildbot.schedulers.forceshed	

 	
 	
 buildbot.status.results	

 	
 	
 buildbot.steps.source	

 	
 	
 buildbot.util	

 	
 	
 buildbot.util.bbcollections	

 	
 	
 buildbot.util.debounce	

 	
 	
 buildbot.util.eventual	

 	
 	
 buildbot.util.identifiers	

 	
 	
 buildbot.util.json	

 	
 	
 buildbot.util.lru	

 	
 	
 buildbot.util.maildir	

 	
 	
 buildbot.util.misc	

 	
 	
 buildbot.util.netstrings	

 	
 	
 buildbot.util.sautils	

 	
 	
 buildbot.util.state	

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Buildbot 0.8.9 documentation

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

Symbols

 	

 	
 --allow-shutdown

 	

 	buildslave-create-slave command line option

 	
 --keepalive

 	

 	buildslave-create-slave command line option

 	
 --log-count

 	

 	buildslave-create-slave command line option

 	
 --log-size

 	

 	buildslave-create-slave command line option

 	

 	
 --maxdelay

 	

 	buildslave-create-slave command line option

 	
 --no-logrotate

 	

 	buildslave-create-slave command line option

 	
 --umask

 	

 	buildslave-create-slave command line option

 	
 --usepty

 	

 	buildslave-create-slave command line option

A

 	

 	active (buildbot.process.buildstep.RemoteCommand attribute)

 	addBuild() (buildbot.db.builds.BuildsConnectorComponent method)

 	addBuildset() (buildbot.db.buildsets.BuildsetsConnectorComponent method)

 	addChange() (buildbot.db.changes.ChangesConnectorComponent method)

 	addCompleteLog() (buildbot.process.buildstep.BuildStep method)

 	addError() (buildbot.config.ConfigErrors method)

 	addHeader() (buildbot.process.buildstep.RemoteCommand method)

 	addHTMLLog() (buildbot.process.buildstep.BuildStep method)

 	addLog() (buildbot.process.buildstep.BuildStep method)

 	addLogObserver() (buildbot.process.buildstep.BuildStep method)

 	addSourceStamp() (buildbot.db.sourcestamps.SourceStampsConnectorComponent method)

 	

 	addSourceStampSet() (buildbot.db.sourcestampsets.SourceStampSetsConnectorComponent method)

 	addStderr() (buildbot.process.buildstep.RemoteCommand method)

 	addStdout() (buildbot.process.buildstep.RemoteCommand method)

 	addToLog() (buildbot.process.buildstep.RemoteCommand method)

 	addURL

 	addURL() (buildbot.process.buildstep.BuildStep method)

 	AlreadyClaimedError

 	alwaysRun (buildbot.process.buildstep.BuildStep attribute)

 	AnyBranchScheduler Scheduler

 	asyncSleep() (in module buildbot.util)

 	AWS EC2

B

 	

 	BaseParameter (class in buildbot.schedulers.forceshed)

 	BasicBuildFactory

 	BasicSVN

 	bdict

 	bid

 	BitbucketPullrequestPoller Change Source

 	BK (Slave-Side) Build Step

 	BonsaiPoller Change Source

 	brdict

 	brid

 	bsdict

 	bsid

 	build (buildbot.process.buildstep.BuildStep attribute)

 	Build Factory

 	

 	BasicBuildFactory

 	BasicSVN

 	CPAN

 	Distutils

 	GNUAutoconf

 	QuickBuildFactory

 	Trial

 	
 Build Slaves

 	

 	limiting concurrency

 	
 Build Steps

 	

 	BK (Slave-Side)

 	BuildEPYDoc

 	Bzr

 	Bzr (Slave-Side)

 	CVS

 	CVS (Slave-Side)

 	Compile

 	Configure

 	CopyDirectory

 	DELETE

 	Darcs

 	Darcs (Slave-Side)

 	DebCowbuilder

 	DebLintian

 	DebPbuilder

 	DirectoryUpload

 	FileDownload

 	FileExists

 	FileUpload

 	GET

 	Gerrit

 	Git

 	Git (Slave-Side)

 	HEAD

 	HLint

 	HTTPStep

 	JSONPropertiesDownload

 	JSONStringDownload

 	LogRenderable

 	MTR

 	MakeDirectory

 	MasterShellCommand

 	MaxQ

 	Mercurial

 	Mercurial (Slave-Side)

 	MockBuildSRPM

 	MockRebuild

 	Monotone

 	Monotone (Slave-Side)

 	MsBuild12

 	MsBuild4

 	MultipleFileUpload

 	OPTIONS

 	P4

 	P4 (Slave-Side)

 	POST

 	PUT

 	PerlModuleTest

 	PyFlakes

 	PyLint

 	RemoveDirectory

 	RemovePYCs

 	Repo

 	Repo (Slave-Side)

 	Robocopy

 	RpmBuild

 	RpmLint

 	SVN

 	SVN (Slave-Side)

 	SetPropertiesFromEnv

 	SetProperty

 	SetPropertyFromCommand

 	SetSlaveInfo

 	ShellCommand

 	Sphinx

 	StringDownload

 	SubunitShellCommand

 	Test

 	TreeSize

 	Trial

 	Trigger

 	VC10

 	VC11

 	VC12

 	VC6

 	VC7

 	VC8

 	VC9

 	VCExpress9

 	VS2003

 	VS2005

 	VS2008

 	VS2010

 	VS2012

 	VS2013

 	buildbot.changes.base.ChangeSource (built-in class)

 	buildbot.changes.base.PollingChangeSource (built-in class)

 	buildbot.changes.bitbucket.BitbucketPullrequestPoller (built-in class)

 	buildbot.changes.gerritchangesource.GerritChangeSource (built-in class)

 	buildbot.changes.mail.BzrLaunchpadEmailMaildirSource (built-in class)

 	buildbot.changes.mail.CVSMaildirSource (built-in class)

 	buildbot.changes.mail.SVNCommitEmailMaildirSource (built-in class)

 	buildbot.changes.pb.PBChangeSource (built-in class)

 	buildbot.changes.svnpoller.SVNPoller (built-in class)

 	buildbot.config (module)

 	buildbot.db.base (module)

 	buildbot.db.buildrequests (module)

 	buildbot.db.builds (module)

 	buildbot.db.buildsets (module)

 	buildbot.db.buildslaves (module)

 	buildbot.db.changes (module)

 	buildbot.db.connector (module)

 	buildbot.db.model (module)

 	buildbot.db.pool (module)

 	buildbot.db.schedulers (module)

 	buildbot.db.sourcestamps (module)

 	buildbot.db.sourcestampsets (module)

 	buildbot.db.state (module)

 	buildbot.db.users (module)

 	buildbot.process.buildstep (module)

 	buildbot.process.buildstep.CommandMixin (class in buildbot.process.buildstep)

 	buildbot.process.buildstep.ShellMixin (class in buildbot.process.buildstep)

 	buildbot.process.factory.BasicBuildFactory (built-in class)

 	buildbot.process.factory.BasicSVN (built-in class)

 	buildbot.process.factory.CPAN (built-in class)

 	buildbot.process.factory.Distutils (built-in class)

 	buildbot.process.factory.GNUAutoconf (built-in class)

 	buildbot.process.factory.QuickBuildFactory (built-in class)

 	buildbot.process.factory.Trial (built-in class)

 	buildbot.schedulers.forceshed (module)

 	buildbot.schedulers.timed.NightlyTriggerable (built-in class)

 	buildbot.status.client.PBListener (built-in class)

 	buildbot.status.github.GitHubStatus (built-in class)

 	buildbot.status.logfile.LogFile (built-in class)

 	buildbot.status.mail.MailNotifier (built-in class)

 	buildbot.status.results (module)

 	buildbot.status.status_gerrit.GerritStatusPush (built-in class)

 	buildbot.status.status_push.StatusPush (built-in class)

 	buildbot.status.web.baseweb.WebStatus (built-in class)

 	buildbot.status.words.IRC (built-in class)

 	buildbot.steps.master.LogRenderable (class in buildbot.steps.source)

 	buildbot.steps.master.MasterShellCommand (class in buildbot.steps.source)

 	buildbot.steps.master.SetProperty (class in buildbot.steps.source)

 	buildbot.steps.master.SetSlaveInfo (class in buildbot.steps.source)

 	buildbot.steps.mswin.Robocopy (class in buildbot.steps.source)

 	buildbot.steps.python.BuildEPYDoc (class in buildbot.steps.source)

 	buildbot.steps.python.PyFlakes (class in buildbot.steps.source)

 	buildbot.steps.python.Sphinx (class in buildbot.steps.source)

 	

 	buildbot.steps.python_twisted.RemovePYCs (class in buildbot.steps.source)

 	buildbot.steps.python_twisted.Trial (class in buildbot.steps.source)

 	buildbot.steps.shell.Configure (class in buildbot.steps.source)

 	buildbot.steps.shell.SetPropertyFromCommand (class in buildbot.steps.source)

 	buildbot.steps.shell.ShellCommand (class in buildbot.steps.source)

 	buildbot.steps.slave.SetPropertiesFromEnv (class in buildbot.steps.source)

 	buildbot.steps.source (module)

 	buildbot.steps.source.bzr.Bzr (class in buildbot.steps.source)

 	buildbot.steps.source.cvs.CVS (class in buildbot.steps.source)

 	buildbot.steps.source.darcs.Darcs (class in buildbot.steps.source)

 	buildbot.steps.source.gerrit.Gerrit (class in buildbot.steps.source)

 	buildbot.steps.source.git.Git (class in buildbot.steps.source)

 	buildbot.steps.source.mercurial.Mercurial (class in buildbot.steps.source)

 	buildbot.steps.source.mtn.Monotone (class in buildbot.steps.source)

 	buildbot.steps.source.p4.P4 (class in buildbot.steps.source)

 	buildbot.steps.source.Repo (class in buildbot.steps.source)

 	buildbot.steps.source.repo.Repo (class in buildbot.steps.source)

 	buildbot.steps.source.repo.RepoDownloadsFromChangeSource (class in buildbot.steps.source)

 	buildbot.steps.source.repo.RepoDownloadsFromProperties (class in buildbot.steps.source)

 	buildbot.steps.source.svn.SVN (class in buildbot.steps.source)

 	buildbot.steps.subunit.SubunitShellCommand (class in buildbot.steps.source)

 	buildbot.steps.transfer.DirectoryUpload (class in buildbot.steps.source)

 	buildbot.steps.transfer.FileDownload (class in buildbot.steps.source)

 	buildbot.steps.transfer.FileUpload (class in buildbot.steps.source)

 	buildbot.steps.transfer.JSONPropertiesDownload (class in buildbot.steps.source)

 	buildbot.steps.transfer.JSONStringDownload (class in buildbot.steps.source)

 	buildbot.steps.transfer.MultipleFileUpload (class in buildbot.steps.source)

 	buildbot.steps.transfer.StringDownload (class in buildbot.steps.source)

 	buildbot.util (module)

 	buildbot.util.bbcollections (module)

 	buildbot.util.debounce (module)

 	buildbot.util.eventual (module)

 	buildbot.util.identifiers (module)

 	buildbot.util.json (module)

 	buildbot.util.lru (module)

 	buildbot.util.maildir (module)

 	buildbot.util.misc (module)

 	buildbot.util.netstrings (module)

 	buildbot.util.sautils (module)

 	buildbot.util.state (module)

 	buildbotURL (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	buildCacheSize (Buildmaster Config)

 	builddir (buildbot.config.BuilderConfig attribute)

 	BuildEPYDoc Build Step

 	BuilderConfig (class in buildbot.config)

 	
 Builders

 	

 	priority, [1]

 	builders (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	buildHorizon (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	
 Buildmaster Config

 	

 	buildCacheSize

 	buildHorizon

 	buildbotURL

 	builders

 	caches

 	changeCacheSize

 	changeHorizon

 	change_source

 	codebaseGenerator

 	db

 	db_poll_interval

 	db_url

 	debugPassword

 	eventHorizon

 	logCompressionLimit

 	logCompressionMethod

 	logHorizon

 	logMaxSize

 	logMaxTailSize

 	manhole

 	mergeRequests

 	metrics

 	multiMaster

 	prioritizeBuilders

 	properties

 	protocols

 	revlink

 	schedulers

 	slaves

 	status

 	title

 	titleURL

 	user_managers

 	validation

 	
 BuildRequests

 	

 	DB Connector Component

 	BuildRequestsConnectorComponent (class in buildbot.db.buildrequests)

 	
 Builds

 	

 	DB Connector Component

 	merging, [1], [2], [3]

 	priority, [1]

 	BuildsConnectorComponent (class in buildbot.db.builds)

 	
 Buildsets

 	

 	DB Connector Component

 	BuildsetsConnectorComponent (class in buildbot.db.buildsets)

 	buildslave (buildbot.process.buildstep.BuildStep attribute)

 	
 buildslave-create-slave command line option

 	

 	--allow-shutdown

 	--keepalive

 	--log-count

 	--log-size

 	--maxdelay

 	--no-logrotate

 	--umask

 	--usepty

 	BuildslaveChoiceParameter Scheduler

 	
 BuildSlaves

 	

 	AWS EC2

 	DB Connector Component

 	latent

 	libvirt

 	BuildslavesConnectorComponent (class in buildbot.db.buildslaves)

 	BuildStep (class in buildbot.process.buildstep)

 	Buildstep Parameter

 	

 	alwaysRun

 	description

 	descriptionDone

 	descriptionSuffix

 	doStepIf

 	flunkOnFailure

 	flunkOnWarnings

 	haltOnFailure

 	hideStepIf

 	locks

 	warnOnFailure

 	warnOnWarnings

 	BuildStep URLs

 	BuildStepFailed

 	Bzr (Slave-Side) Build Step

 	Bzr Build Step

 	BzrLaunchpadEmailMaildirSource Change Source

 	BzrPoller Change Source

C

 	

 	cached() (in module buildbot.db.base)

 	caches (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	canStartBuild (buildbot.config.BuilderConfig attribute)

 	category (buildbot.config.BuilderConfig attribute)

 	Change Hooks Change Source

 	Change Sources

 	

 	BitbucketPullrequestPoller

 	BonsaiPoller

 	BzrLaunchpadEmailMaildirSource

 	BzrPoller

 	CVSMaildirSource

 	Change Hooks

 	GerritChangeSource

 	GitPoller

 	GoogleCodeAtomPoller

 	HgPoller

 	P4Source

 	PBChangeSource

 	SVNCommitEmailMaildirSource

 	SVNPoller

 	change_source (Buildmaster Config)

 	change_sources (buildbot.config.MasterConfig attribute)

 	changeCacheSize (Buildmaster Config)

 	changeHorizon (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	changeid

 	
 Changes

 	

 	DB Connector Component

 	ChangesConnectorComponent (class in buildbot.db.changes)

 	chdict

 	ChoiceStringParameter Scheduler

 	claimBuildRequests() (buildbot.db.buildrequests.BuildRequestsConnectorComponent method)

 	classifyChanges() (buildbot.db.schedulers.SchedulersConnectorComponent method)

 	

 	codebaseGenerator (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	
 Command Line Subcommands

 	

 	create-master

 	create-slave

 	debugclient

 	restart (buildbot)

 	restart (buildslave)

 	sendchange

 	sighup

 	start (buildbot)

 	start (buildslave)

 	statusgui

 	statuslog

 	stop (buildbot)

 	stop (buildslave)

 	try

 	user

 	commandComplete() (buildbot.process.buildstep.LoggingBuildStep method)

 	ComparableMixin (class in buildbot.util)

 	Compile Build Step

 	completeBuildRequests() (buildbot.db.buildrequests.BuildRequestsConnectorComponent method)

 	completeBuildset() (buildbot.db.buildsets.BuildsetsConnectorComponent method)

 	ConfigErrors

 	Configure Build Step

 	CopyDirectory Build Step

 	CPAN

 	create-master Command Line Subcommand

 	create-slave Command Line Subcommand

 	createSummary() (buildbot.process.buildstep.LoggingBuildStep method)

 	CVS (Slave-Side) Build Step

 	CVS Build Step

 	CVSMaildirSource Change Source

D

 	

 	Darcs (Slave-Side) Build Step

 	Darcs Build Step

 	datetime2epoch() (in module buildbot.util)

 	db (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	(buildbot.db.base.DBConnectorComponent attribute)

 	
 DB Connector Component

 	

 	BuildRequests

 	BuildSlaves

 	Builds

 	Buildsets

 	Changes

 	Schedulers

 	SourceStampSets

 	SourceStamps

 	State

 	Users

 	db_poll_interval (Buildmaster Config)

 	db_url (Buildmaster Config)

 	DBConnector (class in buildbot.db.connector)

 	DBConnectorComponent (class in buildbot.db.base)

 	DBThreadPool (class in buildbot.db.pool)

 	DebCowbuilder Build Step

 	DebLintian Build Step

 	Debouncer (class in buildbot.util.debounce)

 	DebPbuilder Build Step

 	debugclient Command Line Subcommand

 	debugPassword (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	

 	default (buildbot.schedulers.forceshed.BaseParameter attribute)

 	defaultdict (class in buildbot.util.bbcollections)

 	deferredLocked() (in module buildbot.util.misc)

 	DELETE Build Step

 	Dependent Scheduler

 	describe() (buildbot.process.buildstep.BuildStep method)

 	description (buildbot.config.BuilderConfig attribute)

 	

 	(buildbot.process.buildstep.BuildStep attribute)

 	descriptionDone (buildbot.process.buildstep.BuildStep attribute)

 	descriptionSuffix (buildbot.process.buildstep.BuildStep attribute)

 	didFail() (buildbot.process.buildstep.RemoteCommand method)

 	diffSets() (in module buildbot.util)

 	DirectoryUpload Build Step

 	Distutils

 	do() (buildbot.db.pool.DBThreadPool method)

 	do_with_engine() (buildbot.db.pool.DBThreadPool method)

 	doStepIf (buildbot.process.buildstep.BuildStep attribute)

E

 	

 	
 email

 	

 	MailNotifier

 	env (buildbot.config.BuilderConfig attribute)

 	
 environment variable

 	

 	HOME

 	INCLUDE

 	LIB

 	P4PASSWD

 	P4PORT

 	P4USER

 	PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

 	TMP

 	epoch2datetime() (in module buildbot.util)

 	error() (in module buildbot.config)

 	

 	errors (buildbot.config.ConfigErrors attribute)

 	evaluateCommand() (buildbot.process.buildstep.LoggingBuildStep method)

 	eventHorizon (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	eventually() (in module buildbot.util.eventual)

 	EXCEPTION (in module buildbot.status.results)

F

 	

 	factory (buildbot.config.BuilderConfig attribute)

 	failed() (buildbot.process.buildstep.BuildStep method)

 	FAILURE (in module buildbot.status.results)

 	feed() (buildbot.util.netstrings.NetstringParser method)

 	File Transfer

 	FileDownload Build Step

 	FileExists Build Step

 	FileUpload Build Step

 	findUserByAttr() (buildbot.db.users.UsersConnectorComponent method)

 	finishBuilds() (buildbot.db.builds.BuildsConnectorComponent method)

 	finished() (buildbot.process.buildstep.BuildStep method)

 	

 	fireEventually() (in module buildbot.util.eventual)

 	flatten() (in module buildbot.util)

 	flunkOnFailure (buildbot.process.buildstep.BuildStep attribute)

 	flunkOnWarnings (buildbot.process.buildstep.BuildStep attribute)

 	flushEventualQueue() (in module buildbot.util.eventual)

 	Forced Builds

 	forceIdentifier() (in module buildbot.util.identifiers)

 	ForceScheduler Scheduler

 	formatInterval() (in module buildbot.util)

 	fullName() (buildbot.schedulers.forceshed.BaseParameter method)

G

 	

 	Gerrit Build Step

 	
 Gerrit integration

 	

 	Git (Slave-Side) Build Step

 	Repo (Slave-Side) Build Step

 	Repo Build Step

 	GerritChangeSource Change Source

 	GerritStatusPush Status Target

 	GET Build Step

 	get() (in module buildbot.util.lru)

 	getBuild() (buildbot.db.builds.BuildsConnectorComponent method)

 	getBuildRequest() (buildbot.db.buildrequests.BuildRequestsConnectorComponent method)

 	getBuildRequests() (buildbot.db.buildrequests.BuildRequestsConnectorComponent method)

 	getBuildset() (buildbot.db.buildsets.BuildsetsConnectorComponent method)

 	getBuildsetProperties() (buildbot.db.buildsets.BuildsetsConnectorComponent method)

 	getBuildsets() (buildbot.db.buildsets.BuildsetsConnectorComponent method)

 	getBuildsForRequest() (buildbot.db.builds.BuildsConnectorComponent method)

 	getBuildslaveByName() (buildbot.db.buildslaves.BuildslavesConnectorComponent method)

 	getBuildslaves() (buildbot.db.buildslaves.BuildslavesConnectorComponent method)

 	getChange() (buildbot.db.changes.ChangesConnectorComponent method)

 	getChangeClassifications() (buildbot.db.schedulers.SchedulersConnectorComponent method)

 	getChangeUids() (buildbot.db.changes.ChangesConnectorComponent method)

 	getCurrentSummary() (buildbot.process.buildstep.BuildStep method)

 	getFromKwargs() (buildbot.schedulers.forceshed.BaseParameter method)

 	getLatestChangeid() (buildbot.db.changes.ChangesConnectorComponent method)

 	getLog() (buildbot.process.buildstep.BuildStep method)

 	getObjectId() (buildbot.db.state.StateConnectorComponent method)

 	

 	getProperties()

 	getProperty()

 	getRecentChanges() (buildbot.db.changes.ChangesConnectorComponent method)

 	getRenderingFor()

 	getResultSummary() (buildbot.process.buildstep.BuildStep method)

 	getSlaveName() (buildbot.process.buildstep.BuildStep method)

 	getSourceStamp() (buildbot.db.sourcestamps.SourceStampsConnectorComponent method)

 	getSourceStamps() (buildbot.db.sourcestamps.SourceStampsConnectorComponent method)

 	getState() (buildbot.db.state.StateConnectorComponent method)

 	

 	(buildbot.util.state.StateMixin method), [1]

 	getStatistic() (buildbot.process.buildstep.BuildStep method)

 	getStatistics() (buildbot.process.buildstep.BuildStep method)

 	getText() (buildbot.process.buildstep.LoggingBuildStep method)

 	getText2() (buildbot.process.buildstep.LoggingBuildStep method)

 	getUser() (buildbot.db.users.UsersConnectorComponent method)

 	getUserByUsername() (buildbot.db.users.UsersConnectorComponent method)

 	getUsers() (buildbot.db.users.UsersConnectorComponent method)

 	Git (Slave-Side) Build Step

 	

 	Gerrit integration

 	Git Build Step

 	GitHubStatus Status Target

 	GitPoller Change Source

 	glob() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin method)

 	GNUAutoconf

 	GoogleCodeAtomPoller Change Source

H

 	

 	haltOnFailure (buildbot.process.buildstep.BuildStep attribute)

 	hasProperty()

 	hasStatistic() (buildbot.process.buildstep.BuildStep method)

 	HEAD Build Step

 	HgPoller Change Source

 	hideStepIf (buildbot.process.buildstep.BuildStep attribute)

 	

 	hits (in module buildbot.util.lru)

 	HLint Build Step

 	HOME

 	HTTP Requests

 	HttpStatusPush Status Target

 	HTTPStep Build Step

I

 	

 	identifierToUid() (buildbot.db.users.UsersConnectorComponent method)

 	in_reactor() (in module buildbot.util)

 	INCLUDE

 	incrementIdentifier() (in module buildbot.util.identifiers)

 	InheritBuildParameter Scheduler

 	InsertFromSelect (class in buildbot.util.sautils)

 	

 	interrupt() (buildbot.process.buildstep.BuildStep method)

 	

 	(buildbot.process.buildstep.RemoteCommand method)

 	inv() (in module buildbot.util.lru)

 	IRC

 	IRC Status Target

 	is_current() (buildbot.db.model.Model method)

 	isIdentifier() (in module buildbot.util.identifiers)

J

 	

 	JSONPropertiesDownload Build Step

 	

 	JSONStringDownload Build Step

K

 	

 	KeyedSets (class in buildbot.util.bbcollections)

L

 	

 	label (buildbot.schedulers.forceshed.BaseParameter attribute)

 	LIB

 	libvirt

 	links

 	loadConfig() (buildbot.config.MasterConfig class method)

 	locks (buildbot.config.BuilderConfig attribute)

 	

 	(buildbot.process.buildstep.BuildStep attribute)

 	logCompressionLimit (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	logCompressionMethod (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	

 	logfiles (buildbot.process.buildstep.LoggingBuildStep attribute)

 	LoggingBuildStep (class in buildbot.process.buildstep)

 	logHorizon (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	logMaxSize (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	logMaxTailSize (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	LogRenderable Build Step

 	logs (buildbot.process.buildstep.RemoteCommand attribute)

M

 	

 	MaildirService (class in buildbot.util.maildir)

 	MailNotifier Status Target

 	MakeDirectory Build Step

 	makeList() (in module buildbot.util)

 	Manhole

 	manhole (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	master (buildbot.util.state.StateMixin attribute)

 	

 	(in module buildbot.status.buildset)

 	MasterConfig (class in buildbot.config)

 	MasterShellCommand Build Step

 	max_size (in module buildbot.util.lru)

 	MaxQ Build Step

 	Mercurial (Slave-Side) Build Step

 	Mercurial Build Step

 	mergeRequests (buildbot.config.BuilderConfig attribute)

 	

 	(Buildmaster Config)

 	(buildbot.config.MasterConfig attribute)

 	messageReceived() (buildbot.util.maildir.MaildirService method)

 	metadata (buildbot.db.model.Model attribute)

 	

 	method() (in module buildbot.util.debounce)

 	metrics (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	misses (in module buildbot.util.lru)

 	MockBuildSRPM Build Step

 	MockRebuild Build Step

 	Model (class in buildbot.db.model)

 	Monotone (Slave-Side) Build Step

 	Monotone Build Step

 	moveToCurDir() (buildbot.util.maildir.MaildirService method)

 	MsBuild12 Build Step

 	MsBuild4 Build Step

 	MTR Build Step

 	multiMaster (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	multiple (buildbot.schedulers.forceshed.BaseParameter attribute)

 	MultipleFileUpload Build Step

 	MySQL

 	

 	limitations, [1], [2], [3], [4]

N

 	

 	name (buildbot.config.BuilderConfig attribute)

 	

 	(buildbot.process.buildstep.BuildStep attribute)

 	(buildbot.schedulers.forceshed.BaseParameter attribute)

 	(buildbot.util.state.StateMixin attribute)

 	naturalSort() (in module buildbot.util)

 	NetstringParser (class in buildbot.util.netstrings)

 	nextBuild (buildbot.config.BuilderConfig attribute)

 	nextSlave (buildbot.config.BuilderConfig attribute)

 	Nightly Scheduler

 	

 	NightlyTriggerable Scheduler

 	none_or_str() (in module buildbot.util)

 	NotABranch (in module buildbot.util)

 	NotClaimedError

 	now() (in module buildbot.util)

O

 	

 	objdict

 	objectid, [1]

 	

 	OPTIONS Build Step

P

 	

 	P4 (Slave-Side) Build Step

 	P4 Build Step

 	P4PASSWD

 	P4PORT

 	P4Source Change Source

 	P4USER

 	parse_from_arg() (buildbot.schedulers.forceshed.BaseParameter method)

 	parse_from_args() (buildbot.schedulers.forceshed.BaseParameter method)

 	PATH, [1], [2], [3], [4], [5], [6], [7], [8], [9]

 	pathExists() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin method)

 	PBChangeSource Change Source

 	PBListener Status Target

 	Periodic Scheduler

 	PerlModuleTest Build Step

 	POST Build Step

 	

 	Postgres

 	prioritizeBuilders (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	priority (buildbot.config.ReconfigurableServiceMixin attribute)

 	progress (buildbot.process.buildstep.BuildStep attribute)

 	progressMetrics (buildbot.process.buildstep.BuildStep attribute)

 	Properties, [1]

 	

 	Common Properties

 	IProperties

 	IRenderable

 	Interpolate

 	JSONPropertiesDownload

 	Property

 	Renderer

 	WithProperties

 	branch

 	builder

 	buildername

 	buildnumber

 	from GerritChangeSource

 	from buildslave

 	from forced build

 	from scheduler

 	from steps

 	global

 	got_revision

 	scheduler

 	slavename

 	tree-size-KiB

 	triggering schedulers

 	warnings-count

 	workdir

 	properties (buildbot.config.BuilderConfig attribute)

 	

 	(Buildmaster Config)

 	(buildbot.config.MasterConfig attribute)

 	protocols (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	PUT Build Step

 	put() (in module buildbot.util.lru)

 	PyFlakes Build Step

 	PyLint Build Step

 	
 Python Enhancement Proposals

 	

 	PEP 328

 	PYTHONPATH, [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

Q

 	

 	QuickBuildFactory

R

 	

 	rc (buildbot.process.buildstep.RemoteCommand attribute)

 	reclaimBuildRequests() (buildbot.db.buildrequests.BuildRequestsConnectorComponent method)

 	reconfigService() (buildbot.config.ReconfigurableServiceMixin method)

 	ReconfigurableServiceMixin (class in buildbot.config)

 	refhits (in module buildbot.util.lru)

 	regex (buildbot.schedulers.forceshed.BaseParameter attribute)

 	remote_complete() (buildbot.process.buildstep.RemoteCommand method)

 	remote_update() (buildbot.process.buildstep.RemoteCommand method)

 	RemoteCommand (class in buildbot.process.buildstep)

 	remoteComplete() (buildbot.process.buildstep.RemoteCommand method)

 	RemoteShellCommand (class in buildbot.process.buildstep)

 	remoteUpdate() (buildbot.process.buildstep.RemoteCommand method)

 	RemoveDirectory Build Step

 	RemovePYCs Build Step

 	removeUser() (buildbot.db.users.UsersConnectorComponent method)

 	

 	Repo (Slave-Side) Build Step

 	

 	Gerrit integration

 	Repo Build Step

 	

 	Gerrit integration

 	required (buildbot.schedulers.forceshed.BaseParameter attribute)

 	restart (buildbot) Command Line Subcommand

 	

 	(buildslave)

 	Results (in module buildbot.status.results)

 	results() (buildbot.process.buildstep.RemoteCommand method)

 	RETRY (in module buildbot.status.results)

 	revlink (Buildmaster Config)

 	Robocopy Build Step

 	RpmBuild Build Step

 	RpmLint Build Step

 	run() (buildbot.process.buildstep.BuildStep method)

 	

 	(buildbot.process.buildstep.RemoteCommand method)

 	runCommand() (buildbot.process.buildstep.BuildStep method)

 	runMkdir() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin method)

 	runRmdir() (buildbot.process.buildstep.buildbot.process.buildstep.CommandMixin method)

S

 	

 	sa_version() (in module buildbot.util.sautils)

 	safeTranslate() (in module buildbot.util)

 	Scheduler Scheduler

 	
 Schedulers

 	

 	AnyBranchScheduler

 	BuildslaveChoiceParameter

 	ChoiceStringParameter

 	DB Connector Component

 	Dependent

 	ForceScheduler

 	InheritBuildParameter

 	Nightly

 	NightlyTriggerable

 	Periodic

 	Scheduler

 	SingleBranchScheduler

 	Triggerable

 	Try_Jobdir

 	Try_Userpass

 	schedulers (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	SchedulersConnectorComponent (class in buildbot.db.schedulers)

 	sendBuildSetSummary() (in module buildbot.status.buildset)

 	sendchange Command Line Subcommand

 	SerializedInvocation (class in buildbot.util.misc)

 	setBasedir() (buildbot.util.maildir.MaildirService method)

 	setBuild() (buildbot.process.buildstep.BuildStep method)

 	setBuildSlave() (buildbot.process.buildstep.BuildStep method)

 	setDefaultWorkdir() (buildbot.process.buildstep.BuildStep method)

 	setProgress() (buildbot.process.buildstep.BuildStep method)

 	SetPropertiesFromEnv Build Step

 	SetProperty Build Step

 	setProperty()

 	SetPropertyFromCommand Build Step

 	SetSlaveInfo Build Step

 	setState() (buildbot.db.state.StateConnectorComponent method)

 	setStatistic() (buildbot.process.buildstep.BuildStep method)

 	setupProgress() (buildbot.process.buildstep.BuildStep method)

 	ShellCommand Build Step

 	sighup Command Line Subcommand

 	SingleBranchScheduler Scheduler

 	SKIPPED (in module buildbot.status.results)

 	slavebuilddir (buildbot.config.BuilderConfig attribute)

 	slavenames (buildbot.config.BuilderConfig attribute)

 	slaves (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	slaveVersion() (buildbot.process.buildstep.BuildStep method)

 	slaveVersionIsOlderThan() (buildbot.process.buildstep.BuildStep method)

 	
 SourceStamps

 	

 	DB Connector Component

 	SourceStampsConnectorComponent (class in buildbot.db.sourcestamps)

 	

 	
 SourceStampSets

 	

 	DB Connector Component

 	SourceStampSetsConnectorComponent (class in buildbot.db.sourcestampsets)

 	Sphinx Build Step

 	SQLite

 	

 	limitations, [1]

 	ssdict

 	ssid

 	start (buildbot) Command Line Subcommand

 	

 	(buildslave)

 	start() (buildbot.process.buildstep.BuildStep method)

 	

 	(buildbot.util.debounce.Debouncer method)

 	startCommand() (buildbot.process.buildstep.LoggingBuildStep method)

 	startStep() (buildbot.process.buildstep.BuildStep method)

 	
 State

 	

 	DB Connector Component

 	StateConnectorComponent (class in buildbot.db.state)

 	StateMixin (class in buildbot.util.state)

 	status (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	
 Status Targets

 	

 	GerritStatusPush

 	GitHubStatus

 	HttpStatusPush

 	IRC

 	MailNotifier

 	PBListener

 	StatusPush

 	WebStatus

 	statusgui Command Line Subcommand

 	statuslog Command Line Subcommand

 	StatusPush Status Target

 	stdout (buildbot.process.buildstep.RemoteCommand attribute)

 	stop (buildbot) Command Line Subcommand

 	

 	(buildslave)

 	stop() (buildbot.util.debounce.Debouncer method)

 	stopped (buildbot.process.buildstep.BuildStep attribute)

 	StringDownload Build Step

 	strings (buildbot.util.netstrings.NetstringParser attribute)

 	SubunitShellCommand Build Step

 	SUCCESS (in module buildbot.status.results)

 	summarySubscribe() (in module buildbot.status.buildset)

 	summaryUnsubscribe() (in module buildbot.status.buildset)

 	SVN (Slave-Side) Build Step

 	SVN Build Step

 	SVNCommitEmailMaildirSource Change Source

 	SVNPoller Change Source

T

 	

 	Test Build Step

 	title (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	titleURL (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	TMP

 	TreeSize Build Step

 	Trial

 	Trial Build Step

 	

 	Trigger Build Step

 	Triggerable Scheduler

 	Triggers

 	try Command Line Subcommand

 	Try_Jobdir Scheduler

 	Try_Userpass Scheduler

 	type (buildbot.schedulers.forceshed.BaseParameter attribute)

U

 	

 	unclaimBuildRequests() (buildbot.db.buildrequests.BuildRequestsConnectorComponent method)

 	unclaimExpiredRequests() (buildbot.db.buildrequests.BuildRequestsConnectorComponent method)

 	unsupported format character

 	updateBuildslave() (buildbot.db.buildslaves.BuildslavesConnectorComponent method)

 	updateFromKwargs() (buildbot.schedulers.forceshed.BaseParameter method)

 	updateSummary() (buildbot.process.buildstep.BuildStep method)

 	updateUser() (buildbot.db.users.UsersConnectorComponent method)

 	upgrade() (buildbot.db.model.Model method)

 	

 	useLog() (buildbot.process.buildstep.RemoteCommand method)

 	useLogDelayed() (buildbot.process.buildstep.RemoteCommand method)

 	useProgress (buildbot.process.buildstep.BuildStep attribute)

 	user Command Line Subcommand

 	user_managers (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	
 Users

 	

 	DB Connector Component

 	UsersConnectorComponent (class in buildbot.db.users)

 	UTC (in module buildbot.util)

V

 	

 	validation (buildbot.config.MasterConfig attribute)

 	

 	(Buildmaster Config)

 	VC10 Build Step

 	VC11 Build Step

 	VC12 Build Step

 	VC6 Build Step

 	VC7 Build Step

 	VC8 Build Step

 	VC9 Build Step

 	VCExpress9 Build Step

 	

 	Visual C++

 	Visual Studio

 	VS2003 Build Step

 	VS2005 Build Step

 	VS2008 Build Step

 	VS2010 Build Step

 	VS2012 Build Step

 	VS2013 Build Step

W

 	

 	WARNINGS (in module buildbot.status.results)

 	warnOnFailure (buildbot.process.buildstep.BuildStep attribute)

 	warnOnWarnings (buildbot.process.buildstep.BuildStep attribute)

 	

 	WebStatus Status Target

 	worst_status() (in module buildbot.status.results)

 Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

 _static/comment.png

_static/header-text-transparent.png
eBuildbot

_static/minus.png

_static/comment-close.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Buildbot 0.8.9 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright Buildbot Team Members.
 Created using Sphinx 1.2.2.

_static/down.png

_static/ajax-loader.gif

_static/plus.png

_images/index.png

_images/force-build.png

_images/irc-testrun.png
No Pending Butd Requests

—C—1

_images/success_normal.png
b s
build ‘success;

_images/runtests-success.png

_images/waterfall-empty.png
P o D

