

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 This is the BuildBot documentation for Buildbot version 0.8.7-61-g6a0fea1.

If you are evaluating Buildbot and would like to get started quickly, start
with the Tutorial. Regular users of Buildbot should
consult the Manual, and those wishing to modify Buildbot
directly will want to be familiar with the Developer's Documentation.

Table Of Contents

	Buildbot Tutorial
	First Run

	A Quick Tour

	Buildbot Manual
	Introduction

	Installation

	Concepts

	Configuration

	Customization

	Command-line Tool

	Resources

	Buildbot Development
	Master Organization

	Definitions

	Buildbot Coding Style

	Buildbot's Test Suite

	Configuration

	Error Handling

	Reconfiguration

	Utilities

	Database

	Build Result Codes

	File Formats

	Web Status

	Master-Slave API

	String Encodings

	Metrics

	Classes

	Release Notes for Buildbot 0.8.7-61-g6a0fea1
	Master

	Slave

	Details

	Older Versions

Indices and Tables

	Index

	Buildmaster Configuration Index

	Scheduler Index

	Change Source Index

	Build Step Index

	Status Target Index

	Command Line Index

	Module Index

	Search Page

Copyright

Copyright Buildbot Team Members

Copying and distribution of this file, with or without modification, are
permitted in any medium without royalty provided the copyright notice and this
notice are preserved.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Buildbot Manual

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 This is the BuildBot manual for Buildbot version 0.8.7-61-g6a0fea1.

Buildbot Manual

	Introduction
	History and Philosophy

	System Architecture

	Control Flow

	Installation
	Buildbot Components

	Requirements

	Installing the code

	Running Buildbot's Tests (optional)

	Creating a buildmaster

	Upgrading an Existing Buildmaster

	Creating a buildslave

	Upgrading an Existing Buildslave

	Launching the daemons

	Logfiles

	Shutdown

	Maintenance

	Troubleshooting

	Concepts
	Source Stamps

	Version Control Systems

	Changes

	Scheduling Builds

	BuildSets

	BuildRequests

	Builders

	Build Factories

	Build Slaves

	Builds

	Users

	Build Properties

	Multiple-Codebase Builds

	Configuration
	Configuring Buildbot

	Global Configuration

	Change Sources

	Schedulers

	Buildslaves

	Builder Configuration

	Build Factories

	Properties

	Build Steps

	Interlocks

	Status Targets

	Customization
	Programmatic Configuration Generation

	Merge Request Functions

	Builder Priority Functions

	Build Priority Functions

	Customizing SVNPoller

	Writing Change Sources

	Writing a New Latent Buildslave Implementation

	Custom Build Classes

	Factory Workdir Functions

	Writing New BuildSteps

	Writing New Status Plugins

	Command-line Tool
	buildbot

	buildslave

	Resources

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Concepts

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

Concepts

This chapter defines some of the basic concepts that the Buildbot
uses. You'll need to understand how the Buildbot sees the world to
configure it properly.

Source Stamps

Source code comes from respositories, provided by version control systems.
Repositories are generally identified by URLs, e.g., git://github.com/buildbot/buildbot.git.

In these days of distribtued version control systems, the same codebase may appear in mutiple repositories.
For example, https://github.com/mozilla/mozilla-central and http://hg.mozilla.org/mozilla-release both contain the Firefox codebase, although not exactly the same code.

Many projects are built from multiple codebases.
For example, a company may build several applications based on the same core library.
The "app" codebase and the "core" codebase are in separate repositories, but are compiled together and constitute a single project.
Changes to either codebase should cause a rebuild of the application.

Most version control systems define some sort of revision that can be used (sometimes in combination with a branch) to uniquely specify a particular version of the source code.

To build a project, Buildbot needs to know exactly which version of each codebase it should build.
It uses a source stamp to do so for each codebase; the collection of sourcestamps required for a project is called a source stamp set.

Version Control Systems

Buildbot supports a significant number of version control systems, so it treats them abstractly.

For purposes of deciding when to perform builds, Buildbot's change sources monitor repositories, and represent any updates to those repositories as changes.
These change sources fall broadly into two categories: pollers which periodically check the repository for updates; and hooks, where the repository is configured to notify Buildbot whenever an update occurs.

This concept does not map perfectly to every version control system.
For example, for CVS Buildbot must guess that version updates made to multiple files within a short time represent a single change; for DVCS's like Git, Buildbot records a change when a commit is pushed to the monitored repository, not when it is initially committed.
We assume that the Changes arrive at the master in the same order in which they are committed to the repository.

When it comes time to actually perform a build, a scheduler prepares a source stamp set, as described above, based on its configuration.
When the build begins, one or more source steps use the information in the source stamp set to actually check out the source code, using the normal VCS commands.

Tree Stability

Changes tend to arrive at a buildmaster in bursts.
In many cases, these bursts of changes are meant to be taken together.
For example, a developer may have pushed multiple commits to a DVCS that comprise the same new feature or bugfix.
To avoid trying to build every change, Buildbot supports the notion of tree stability, by waiting for a burst of changes to finish before starting to schedule builds.
This is implemented as a timer, with builds not scheduled until no changes have occurred for the duration of the timer.

How Different VC Systems Specify Sources

For CVS, the static specifications are repository and
module. In addition to those, each build uses a timestamp (or
omits the timestamp to mean the latest) and branch tag
(which defaults to HEAD). These parameters collectively specify a set
of sources from which a build may be performed.

Subversion [http://subversion.tigris.org], combines the
repository, module, and branch into a single Subversion URL
parameter. Within that scope, source checkouts can be specified by a
numeric revision number (a repository-wide
monotonically-increasing marker, such that each transaction that
changes the repository is indexed by a different revision number), or
a revision timestamp. When branches are used, the repository and
module form a static baseURL, while each build has a
revision number and a branch (which defaults to a
statically-specified defaultBranch). The baseURL and
branch are simply concatenated together to derive the
svnurl to use for the checkout.

Perforce [http://www.perforce.com/] is similar. The server
is specified through a P4PORT parameter. Module and branch
are specified in a single depot path, and revisions are
depot-wide. When branches are used, the p4base and
defaultBranch are concatenated together to produce the depot
path.

Bzr [http://bazaar-vcs.org] (which is a descendant of
Arch/Bazaar, and is frequently referred to as "Bazaar") has the same
sort of repository-vs-workspace model as Arch, but the repository data
can either be stored inside the working directory or kept elsewhere
(either on the same machine or on an entirely different machine). For
the purposes of Buildbot (which never commits changes), the repository
is specified with a URL and a revision number.

The most common way to obtain read-only access to a bzr tree is via
HTTP, simply by making the repository visible through a web server
like Apache. Bzr can also use FTP and SFTP servers, if the buildslave
process has sufficient privileges to access them. Higher performance
can be obtained by running a special Bazaar-specific server. None of
these matter to the buildbot: the repository URL just has to match the
kind of server being used. The repoURL argument provides the
location of the repository.

Branches are expressed as subdirectories of the main central
repository, which means that if branches are being used, the BZR step
is given a baseURL and defaultBranch instead of getting
the repoURL argument.

Darcs [http://darcs.net/] doesn't really have the
notion of a single master repository. Nor does it really have
branches. In Darcs, each working directory is also a repository, and
there are operations to push and pull patches from one of these
repositories to another. For the Buildbot's purposes, all you
need to do is specify the URL of a repository that you want to build
from. The build slave will then pull the latest patches from that
repository and build them. Multiple branches are implemented by using
multiple repositories (possibly living on the same server).

Builders which use Darcs therefore have a static repourl which
specifies the location of the repository. If branches are being used,
the source Step is instead configured with a baseURL and a
defaultBranch, and the two strings are simply concatenated
together to obtain the repository's URL. Each build then has a
specific branch which replaces defaultBranch, or just uses the
default one. Instead of a revision number, each build can have a
context, which is a string that records all the patches that are
present in a given tree (this is the output of darcs changes
--context, and is considerably less concise than, e.g. Subversion's
revision number, but the patch-reordering flexibility of Darcs makes
it impossible to provide a shorter useful specification).

Mercurial [http://selenic.com/mercurial] is like Darcs, in that
each branch is stored in a separate repository. The repourl,
baseURL, and defaultBranch arguments are all handled the
same way as with Darcs. The revision, however, is the hash
identifier returned by hg identify.

Git [http://git.or.cz/] also follows a decentralized model, and
each repository can have several branches and tags. The source Step is
configured with a static repourl which specifies the location
of the repository. In addition, an optional branch parameter
can be specified to check out code from a specific branch instead of
the default master branch. The revision is specified as a SHA1
hash as returned by e.g. git rev-parse. No attempt is made
to ensure that the specified revision is actually a subset of the
specified branch.

Monotone [http://www.monotone.ca/] is another that follows a
decentralized model where each repository can have several branches and
tags. The source Step is configured with static repourl and
branch parameters, which specifies the location of the
repository and the branch to use. The revision is specified as a
SHA1 hash as returned by e.g. mtn automate select w:. No
attempt is made to ensure that the specified revision is actually a
subset of the specified branch.

Changes

Who

Each Change has a who attribute, which specifies which developer is
responsible for the change. This is a string which comes from a namespace
controlled by the VC repository. Frequently this means it is a username on the
host which runs the repository, but not all VC systems require this. Each
StatusNotifier will map the who attribute into something appropriate for
their particular means of communication: an email address, an IRC handle, etc.

This who attribute is also parsed and stored into Buildbot's database (see
User Objects). Currently, only who attributes in Changes from
git repositories are translated into user objects, but in the future all
incoming Changes will have their who parsed and stored.

Files

It also has a list of files, which are just the tree-relative
filenames of any files that were added, deleted, or modified for this
Change. These filenames are used by the fileIsImportant
function (in the Scheduler) to decide whether it is worth triggering a
new build or not, e.g. the function could use the following function
to only run a build if a C file were checked in:

def has_C_files(change):
 for name in change.files:
 if name.endswith(".c"):
 return True
 return False

Certain BuildSteps can also use the list of changed files
to run a more targeted series of tests, e.g. the
python_twisted.Trial step can run just the unit tests that
provide coverage for the modified .py files instead of running the
full test suite.

Comments

The Change also has a comments attribute, which is a string containing any checkin comments.

Project

The project attribute of a change or source stamp describes the project to which it corresponds, as a short human-readable string.
This is useful in cases where multiple independent projects are built on the same buildmaster.
In such cases, it can be used to control which builds are scheduled for a given commit, and to limit status displays to only one project.

Repository

This attibute specifies the repository in which this change occurred.
In the case of DVCS's, this information may be required to check out the committed source code.
However, using the repository from a change has security risks: if Buildbot is configured to blidly trust this information, then it may easily be tricked into building arbitrary source code, potentially compromising the buildslaves and the integrity of subsequent builds.

Codebase

This attribute specifies the codebase to which this change was made.
As described above, multiple repositories may contain the same codebase.
A change's codebase is usually determined by the bb:cfg:codebaseGenerator configuration.
By default the codebase is ''; this value is used automatically for single-codebase configurations.

Revision

Each Change can have a revision attribute, which describes how
to get a tree with a specific state: a tree which includes this Change
(and all that came before it) but none that come after it. If this
information is unavailable, the revision attribute will be
None. These revisions are provided by the ChangeSource.

Revisions are always strings.

	CVS

	revision is the seconds since the epoch as an integer.

	SVN

	revision is the revision number

	Darcs

	revision is a large string, the output of darcs changes --context

	Mercurial

	revision is a short string (a hash ID), the output of hg identify

	P4

	revision is the transaction number

	Git

	revision is a short string (a SHA1 hash), the output of e.g.
git rev-parse

Branches

The Change might also have a branch attribute. This indicates
that all of the Change's files are in the same named branch. The
Schedulers get to decide whether the branch should be built or not.

For VC systems like CVS, Git and Monotone the branch
name is unrelated to the filename. (that is, the branch name and the
filename inhabit unrelated namespaces). For SVN, branches are
expressed as subdirectories of the repository, so the file's
svnurl is a combination of some base URL, the branch name, and the
filename within the branch. (In a sense, the branch name and the
filename inhabit the same namespace). Darcs branches are
subdirectories of a base URL just like SVN. Mercurial branches are the
same as Darcs.

	CVS

	branch='warner-newfeature', files=['src/foo.c']

	SVN

	branch='branches/warner-newfeature', files=['src/foo.c']

	Darcs

	branch='warner-newfeature', files=['src/foo.c']

	Mercurial

	branch='warner-newfeature', files=['src/foo.c']

	Git

	branch='warner-newfeature', files=['src/foo.c']

	Monotone

	branch='warner-newfeature', files=['src/foo.c']

Change Properties

A Change may have one or more properties attached to it, usually specified
through the Force Build form or sendchange. Properties are discussed
in detail in the Build Properties section.

Scheduling Builds

Each Buildmaster has a set of Scheduler objects, each of which
gets a copy of every incoming Change. The Schedulers are responsible
for deciding when Builds should be run. Some Buildbot installations
might have a single Scheduler, while others may have several, each for
a different purpose.

For example, a quick scheduler might exist to give immediate
feedback to developers, hoping to catch obvious problems in the code
that can be detected quickly. These typically do not run the full test
suite, nor do they run on a wide variety of platforms. They also
usually do a VC update rather than performing a brand-new checkout
each time.

A separate full scheduler might run more comprehensive tests, to
catch more subtle problems. configured to run after the quick scheduler, to give
developers time to commit fixes to bugs caught by the quick scheduler before
running the comprehensive tests. This scheduler would also feed multiple
Builders.

Many schedulers can be configured to wait a while after seeing a source-code
change - this is the tree stable timer. The timer allows multiple commits to
be "batched" together. This is particularly useful in distributed version
control systems, where a developer may push a long sequence of changes all at
once. To save resources, it's often desirable only to test the most recent
change.

Schedulers can also filter out the changes they are interested in, based on a
number of criteria. For example, a scheduler that only builds documentation
might skip any changes that do not affect the documentation. Schedulers can
also filter on the branch to which a commit was made.

There is some support for configuring dependencies between builds - for
example, you may want to build packages only for revisions which pass all of
the unit tests. This support is under active development in Buildbot, and is
referred to as "build coordination".

Periodic builds (those which are run every N seconds rather than after
new Changes arrive) are triggered by a special Periodic
Scheduler subclass.

Each Scheduler creates and submits BuildSet objects to the
BuildMaster, which is then responsible for making sure the
individual BuildRequests are delivered to the target
Builders.

Scheduler instances are activated by placing them in the
c['schedulers'] list in the buildmaster config file. Each
Scheduler has a unique name.

BuildSets

A BuildSet is the name given to a set of Builds that all
compile/test the same version of the tree on multiple Builders. In
general, all these component Builds will perform the same sequence of
Steps, using the same source code, but on different platforms or
against a different set of libraries.

The BuildSet is tracked as a single unit, which fails if any of
the component Builds have failed, and therefore can succeed only if
all of the component Builds have succeeded. There are two kinds
of status notification messages that can be emitted for a BuildSet:
the firstFailure type (which fires as soon as we know the
BuildSet will fail), and the Finished type (which fires once
the BuildSet has completely finished, regardless of whether the
overall set passed or failed).

A BuildSet is created with set of one or more source stamp tuples of
(branch, revision, changes, patch), some of which may be None, and a
list of Builders on which it is to be run. They are then given to the
BuildMaster, which is responsible for creating a separate
BuildRequest for each Builder.

There are a couple of different likely values for the
SourceStamp:

	(revision=None, changes=CHANGES, patch=None)

	This is a SourceStamp used when a series of Changes have
triggered a build. The VC step will attempt to check out a tree that
contains CHANGES (and any changes that occurred before CHANGES, but
not any that occurred after them.)

	(revision=None, changes=None, patch=None)

	This builds the most recent code on the default branch. This is the
sort of SourceStamp that would be used on a Build that was
triggered by a user request, or a Periodic scheduler. It is also
possible to configure the VC Source Step to always check out the
latest sources rather than paying attention to the Changes in the
SourceStamp, which will result in same behavior as this.

	(branch=BRANCH, revision=None, changes=None, patch=None)

	This builds the most recent code on the given BRANCH. Again, this is
generally triggered by a user request or Periodic build.

	(revision=REV, changes=None, patch=(LEVEL, DIFF, SUBDIR_ROOT))

	This checks out the tree at the given revision REV, then applies a
patch (using patch -pLEVEL <DIFF) from inside the relative
directory SUBDIR_ROOT. Item SUBDIR_ROOT is optional and defaults to the
builder working directory. The try command creates this kind of
SourceStamp. If patch is None, the patching step is
bypassed.

The buildmaster is responsible for turning the BuildSet into a
set of BuildRequest objects and queueing them on the
appropriate Builders.

BuildRequests

A BuildRequest is a request to build a specific set of source
code (specified by one ore more source stamps) on a single Builder.
Each Builder runs the BuildRequest as soon as it can (i.e.
when an associated buildslave becomes free). BuildRequests are
prioritized from oldest to newest, so when a buildslave becomes free, the
Builder with the oldest BuildRequest is run.

The BuildRequest contains one SourceStamp specification per codebase.
The actual process of running the build (the series of Steps that will
be executed) is implemented by the Build object. In this future
this might be changed, to have the Build define what
gets built, and a separate BuildProcess (provided by the
Builder) to define how it gets built.

The BuildRequest may be mergeable with other compatible
BuildRequests. Builds that are triggered by incoming Changes
will generally be mergeable. Builds that are triggered by user requests are generally not,
unless they are multiple requests to build the latest sources of the same branch.
A merge of buildrequests is performed per codebase, thus on changes having the same codebase.

Builders

The Buildmaster runs a collection of Builders, each of which handles a single
type of build (e.g. full versus quick), on one or more build slaves. Builders
serve as a kind of queue for a particular type of build. Each Builder gets a
separate column in the waterfall display. In general, each Builder runs
independently (although various kinds of interlocks can cause one Builder to
have an effect on another).

Each builder is a long-lived object which controls a sequence of Builds.
Each Builder is created when the config file is first parsed, and lives forever
(or rather until it is removed from the config file). It mediates the
connections to the buildslaves that do all the work, and is responsible for
creating the Build objects - Builds.

Each builder gets a unique name, and the path name of a directory where it gets
to do all its work (there is a buildmaster-side directory for keeping status
information, as well as a buildslave-side directory where the actual
checkout/compile/test commands are executed).

Build Factories

A builder also has a BuildFactory, which is responsible for creating new Build
instances: because the Build instance is what actually performs each build,
choosing the BuildFactory is the way to specify what happens each time a build
is done (Builds).

Build Slaves

Each builder is associated with one of more BuildSlaves. A builder which is
used to perform Mac OS X builds (as opposed to Linux or Solaris builds) should
naturally be associated with a Mac buildslave.

If multiple buildslaves are available for any given builder, you will
have some measure of redundancy: in case one slave goes offline, the
others can still keep the Builder working. In addition, multiple
buildslaves will allow multiple simultaneous builds for the same
Builder, which might be useful if you have a lot of forced or try
builds taking place.

If you use this feature, it is important to make sure that the
buildslaves are all, in fact, capable of running the given build. The
slave hosts should be configured similarly, otherwise you will spend a
lot of time trying (unsuccessfully) to reproduce a failure that only
occurs on some of the buildslaves and not the others. Different
platforms, operating systems, versions of major programs or libraries,
all these things mean you should use separate Builders.

Builds

A build is a single compile or test run of a particular version of the source
code, and is comprised of a series of steps. It is ultimately up to you what
constitutes a build, but for compiled software it is generally the checkout,
configure, make, and make check sequence. For interpreted projects like Python
modules, a build is generally a checkout followed by an invocation of the
bundled test suite.

A BuildFactory describes the steps a build will perform. The builder which
starts a build uses its configured build factory to determine the build's
steps.

Users

Buildbot has a somewhat limited awareness of users. It assumes
the world consists of a set of developers, each of whom can be
described by a couple of simple attributes. These developers make
changes to the source code, causing builds which may succeed or fail.

Users also may have different levels of authorization when issuing Buildbot
commands, such as forcing a build from the web interface or from an IRC channel
(see WebStatus and IRC).

Each developer is primarily known through the source control system. Each
Change object that arrives is tagged with a who field that
typically gives the account name (on the repository machine) of the user
responsible for that change. This string is displayed on the HTML status
pages and in each Build's blamelist.

To do more with the User than just refer to them, this username needs to be
mapped into an address of some sort. The responsibility for this mapping is
left up to the status module which needs the address. In the future, the
responsbility for managing users will be transferred to User Objects.

The who fields in git Changes are used to create User Objects,
which allows for more control and flexibility in how Buildbot manages users.

User Objects

User Objects allow Buildbot to better manage users throughout its various
interactions with users (see Change Sources and Status Targets).
The User Objects are stored in the Buildbot database and correlate the various
attributes that a user might have: irc, git, etc.

Changes

Incoming Changes all have a who attribute attached to them that specifies
which developer is responsible for that Change. When a Change is first
rendered, the who attribute is parsed and added to the database if it
doesn't exist or checked against an existing user. The who attribute is
formatted in different ways depending on the version control system that the
Change came from.

	git

	who attributes take the form Full Name <Email>.

	svn

	who attributes are of the form Username.

	hg

	who attributes are free-form strings, but usually adhere to similar
conventions as git attributes (Full Name <Email>).

	cvs

	who attributes are of the form Username.

	darcs

	who attributes contain an Email and may also include a Full Name
like git attributes.

	bzr

	who attributes are free-form strings like hg, and can include a
Username, Email, and/or Full Name.

Tools

For managing users manually, use the buildbot user command, which allows
you to add, remove, update, and show various attributes of users in the Buildbot
database (see Command-line Tool).

To show all of the users in the database in a more pretty manner, use the users page in
the WebStatus.

Uses

Correlating the various bits and pieces that Buildbot views as users also means
that one attribute of a user can be translated into another. This provides a
more complete view of users throughout Buildbot.

One such use is being able to find email addresses based on a set of Builds
to notify users through the MailNotifier. This process is explained
more clearly in :ref:Email-Addresses.

Another way to utilize User Objects is through UsersAuth for web authentication
(see WebStatus). To use UsersAuth, you need to
set a bb_username and bb_password via the buildbot user command line tool
to check against. The password will be encrypted before storing in the database
along with other user attributes.

Doing Things With Users

Each change has a single user who is responsible for it. Most builds have a set
of changes: the build generally represents the first time these changes have
been built and tested by the Buildbot. The build has a blamelist that is
the union of the users responsible for all the build's changes. If the build
was created by a Try Schedulers this list will include the submitter of the try
job, if known.

The build provides a list of users who are interested in the build -- the
interested users. Usually this is equal to the blamelist, but may also be
expanded, e.g., to include the current build sherrif or a module's maintainer.

If desired, the buildbot can notify the interested users until the problem is
resolved.

Email Addresses

The MailNotifier is a status target which can send email
about the results of each build. It accepts a static list of email
addresses to which each message should be delivered, but it can also
be configured to send mail to the Build's Interested Users. To do
this, it needs a way to convert User names into email addresses.

For many VC systems, the User Name is actually an account name on the
system which hosts the repository. As such, turning the name into an
email address is a simple matter of appending
@repositoryhost.com. Some projects use other kinds of mappings
(for example the preferred email address may be at project.org
despite the repository host being named cvs.project.org), and some
VC systems have full separation between the concept of a user and that
of an account on the repository host (like Perforce). Some systems
(like Git) put a full contact email address in every change.

To convert these names to addresses, the MailNotifier uses an EmailLookup
object. This provides a getAddress method which accepts a name and
(eventually) returns an address. The default MailNotifier
module provides an EmailLookup which simply appends a static string,
configurable when the notifier is created. To create more complex behaviors
(perhaps using an LDAP lookup, or using finger on a central host to
determine a preferred address for the developer), provide a different object
as the lookup argument.

If an EmailLookup object isn't given to the MailNotifier, the MailNotifier
will try to find emails through User Objects. This will work the
same as if an EmailLookup object was used if every user in the Build's
Interested Users list has an email in the database for them. If a user
whose change led to a Build doesn't have an email attribute, that user
will not receive an email. If extraRecipients is given, those users
are still sent mail when the EmailLookup object is not specified.

In the future, when the Problem mechanism has been set up, the Buildbot
will need to send mail to arbitrary Users. It will do this by locating a
MailNotifier-like object among all the buildmaster's status targets, and
asking it to send messages to various Users. This means the User-to-address
mapping only has to be set up once, in your MailNotifier, and every email
message the buildbot emits will take advantage of it.

IRC Nicknames

Like MailNotifier, the buildbot.status.words.IRC class
provides a status target which can announce the results of each build. It
also provides an interactive interface by responding to online queries
posted in the channel or sent as private messages.

In the future, the buildbot can be configured map User names to IRC
nicknames, to watch for the recent presence of these nicknames, and to
deliver build status messages to the interested parties. Like
MailNotifier does for email addresses, the IRC object
will have an IRCLookup which is responsible for nicknames. The
mapping can be set up statically, or it can be updated by online users
themselves (by claiming a username with some kind of buildbot: i am
user warner commands).

Once the mapping is established, the rest of the buildbot can ask the
IRC object to send messages to various users. It can report on
the likelihood that the user saw the given message (based upon how long the
user has been inactive on the channel), which might prompt the Problem
Hassler logic to send them an email message instead.

These operations and authentication of commands issued by particular
nicknames will be implemented in User Objects.

Live Status Clients

The Buildbot also offers a desktop status client interface which can display
real-time build status in a GUI panel on the developer's desktop.

Build Properties

Each build has a set of Build Properties, which can be used by its
build steps to modify their actions. These properties, in the form of
key-value pairs, provide a general framework for dynamically altering
the behavior of a build based on its circumstances.

Properties form a simple kind of variable in a build. Some properties are set
when the build starts, and properties can be changed as a build progresses --
properties set or changed in one step may be accessed in subsequent steps.
Property values can be numbers, strings, lists, or dictionaries - basically,
anything that can be represented in JSON.

Properties are very flexible, and can be used to implement all manner
of functionality. Here are some examples:

Most Source steps record the revision that they checked out in
the got_revision property. A later step could use this
property to specify the name of a fully-built tarball, dropped in an
easily-acessible directory for later testing.

Note

In builds with more than one codebase, the got_revision property is a dictionary, keyed by codebase.

Some projects want to perform nightly builds as well as bulding in response to
committed changes. Such a project would run two schedulers, both pointing to
the same set of builders, but could provide an is_nightly property so
that steps can distinguish the nightly builds, perhaps to run more
resource-intensive tests.

Some projects have different build processes on different systems.
Rather than create a build factory for each slave, the steps can use
buildslave properties to identify the unique aspects of each slave
and adapt the build process dynamically.

Multiple-Codebase Builds

What if an end-product is composed of code from several codebases?
Changes may arrive from different repositories within the tree-stable-timer period.
Buildbot will not only use the source-trees that contain changes but also needs the remaining source-trees to build the complete product.

For this reason a Scheduler can be configured to base a build on a set of several source-trees that can (partly) be overidden by the information from incoming Changes.

As descibed above, the source for each codebase is identified by a source stamp, containing its repository, branch and revision.
A full build set will specify a source stamp set describing the source to use for each codebase.

Configuring all of this takes a coordinated approach. A complete multiple repository configuration consists of:

	a codebase generator

Every relevant change arriving from a VC must contain a codebase.
This is done by a codebaseGenerator that is defined in the configuration.
Most generators examine the repository of a change to determine its codebase, using project-specific rules.

	some schedulers

Each scheduler has to be configured with a set of all required codebases to build a product.
These codebases indicate the set of required source-trees.
In order for the scheduler to be able to produce a complete set for each build, the configuration can give a default repository, branch, and revision for each codebase.
When a scheduler must generate a source stamp for a codebase that has received no changes, it applies these default values.

	multiple source steps - one for each codebase

A Builders's build factory must include a source step for each codebase.
Each of the source steps has a codebase attribute which is used to select an appropriate source stamp from the source stamp set for a build.
This information comes from the arrived changes or from the scheduler's configured default values.

Warning

Defining a codebaseGenerator that returns non-empty (not '') codebases will change the behavior of all the schedulers.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Global Configuration

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Global Configuration

The keys in this section affect the operations of the buildmaster globally.

Database Specification

Buildbot requires a connection to a database to maintain certain state information, such as tracking pending build requests.
In the default configuration Buildbot uses a file-based SQLite database, stored in the state.sqlite file of the master's base directory.
Override this configuration with the db_url parameter.

Buildbot accepts a database configuration in a dictionary named db.
All keys are optional:

c['db'] = {
 'db_url' : 'sqlite:///state.sqlite',
 'db_poll_interval' : 30,
}

The db_url key indicates the database engine to use.
The format of this parameter is completely documented at http://www.sqlalchemy.org/docs/dialects/, but is generally of the form:

driver://[username:password@]host:port/database[?args]

The optional db_poll_interval specifies the interval, in seconds, between checks for pending tasks in the database.
This parameter is generally only usful in multi-master mode. See Multi-master mode.

These parameters can be specified directly in the configuration dictionary, as c['db_url'] and c['db_poll_interval'], although this method is deprecated.

The following sections give additional information for particular database backends:

SQLite

For sqlite databases, since there is no host and port, relative paths are specified with sqlite:/// and absolute paths with sqlite:////.
Examples:

c['db_url'] = "sqlite:///state.sqlite"

SQLite requires no special configuration.

If Buildbot produces "database is locked" exceptions, try adding serialize_access=1 to the DB URL as a workaround:

c['db_url'] = "sqlite:///state.sqlite?serialize_access=1"

and please file a bug at http://trac.buildbot.net.

MySQL

c['db_url'] = "mysql://user:pass@somehost.com/database_name?max_idle=300"

The max_idle argument for MySQL connections is unique to Buildbot, and should be set to something less than the wait_timeout configured for your server.
This controls the SQLAlchemy pool_recycle parameter, which defaults to no timeout.
Setting this parameter ensures that connections are closed and re-opened after the configured amount of idle time.
If you see errors such as _mysql_exceptions.OperationalError: (2006, 'MySQL server has gone away'), this means your max_idle setting is probably too high.
show global variables like 'wait_timeout'; will show what the currently configured wait_timeout is on your MySQL server.

Buildbot requires use_unique=True and charset=utf8, and will add them automatically, so they do not need to be specified in db_url.

MySQL defaults to the MyISAM storage engine, but this can be overridden with the storage_engine URL argument.

Note that, because of InnoDB's extremely short key length limitations, it cannot be used to run Buildbot.
See http://bugs.mysql.com/bug.php?id=4541 for more information.

Buildbot uses temporary tables internally to manage large transactions.

 Buildslaves

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Buildslaves

The slaves configuration key specifies a list of known buildslaves.
In the common case, each buildslave is defined by an instance of the
BuildSlave class. It represents a standard, manually started machine
that will try to connect to the buildbot master as a slave. Buildbot also
supports "on-demand", or latent, buildslaves, which allow buildbot to
dynamically start and stop buildslave instances.

A BuildSlave instance is created with a slavename and a
slavepassword. These are the same two values that need to be provided to
the buildslave administrator when they create the buildslave.

The slavename must be unique, of course. The password exists to
prevent evildoers from interfering with the buildbot by inserting
their own (broken) buildslaves into the system and thus displacing the
real ones.

Buildslaves with an unrecognized slavename or a non-matching password will be
rejected when they attempt to connect, and a message describing the problem
will be written to the log file (see Logfiles).

A configuration for two slaves would look like:

from buildbot.buildslave import BuildSlave
c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd'),
 BuildSlave('bot-bsd', 'bsdpasswd'),
]

BuildSlave Options

BuildSlave objects can also be created with an optional
properties argument, a dictionary specifying properties that
will be available to any builds performed on this slave. For example:

c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 properties={ 'os':'solaris' }),
]

The BuildSlave constructor can also take an optional
max_builds parameter to limit the number of builds that it
will execute simultaneously:

c['slaves'] = [
 BuildSlave("bot-linux", "linuxpassword", max_builds=2)
]

Master-Slave TCP Keepalive

By default, the buildmaster sends a simple, non-blocking message to each slave
every hour. These keepalives ensure that traffic is flowing over the
underlying TCP connection, allowing the system's network stack to detect any
problems before a build is started.

The interval can be modified by specifying the interval in seconds using the
keepalive_interval parameter of BuildSlave:

c['slaves'] = [
 BuildSlave('bot-linux', 'linuxpasswd',
 keepalive_interval=3600),
]

The interval can be set to None to disable this functionality
altogether.

When Buildslaves Go Missing

Sometimes, the buildslaves go away. One very common reason for this is
when the buildslave process is started once (manually) and left
running, but then later the machine reboots and the process is not
automatically restarted.

If you'd like to have the administrator of the buildslave (or other
people) be notified by email when the buildslave has been missing for
too long, just add the notify_on_missing= argument to the
BuildSlave definition. This value can be a single email
address, or a list of addresses:

c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 notify_on_missing="bob@example.com"),
]

By default, this will send email when the buildslave has been
disconnected for more than one hour. Only one email per
connection-loss event will be sent. To change the timeout, use
missing_timeout= and give it a number of seconds (the default
is 3600).

You can have the buildmaster send email to multiple recipients: just
provide a list of addresses instead of a single one:

c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 notify_on_missing=["bob@example.com",
 "alice@example.org"],
 missing_timeout=300, # notify after 5 minutes
),
]

The email sent this way will use a MailNotifier (see
MailNotifier) status target, if one is configured. This provides a
way for you to control the from address of the email, as well as the
relayhost (aka smarthost) to use as an SMTP server. If no
MailNotifier is configured on this buildmaster, the buildslave-missing
emails will be sent using a default configuration.

Note that if you want to have a MailNotifier for buildslave-missing
emails but not for regular build emails, just create one with
builders=[], as follows:

from buildbot.status import mail
m = mail.MailNotifier(fromaddr="buildbot@localhost", builders=[],
 relayhost="smtp.example.org")
c['status'].append(m)

from buildbot.buildslave import BuildSlave
c['slaves'] = [
 BuildSlave('bot-solaris', 'solarispasswd',
 notify_on_missing="bob@example.com"),
]

Latent Buildslaves

The standard buildbot model has slaves started manually. The previous section
described how to configure the master for this approach.

Another approach is to let the buildbot master start slaves when builds are
ready, on-demand. Thanks to services such as Amazon Web Services' Elastic
Compute Cloud ("AWS EC2"), this is relatively easy to set up, and can be
very useful for some situations.

The buildslaves that are started on-demand are called "latent" buildslaves.
As of this writing, buildbot ships with an abstract base class for building
latent buildslaves, and a concrete implementation for AWS EC2 and for libvirt.

Common Options

The following options are available for all latent buildslaves.

	build_wait_timeout

	This option allows you to specify how long a latent slave should wait after
a build for another build before it shuts down. It defaults to 10 minutes.
If this is set to 0 then the slave will be shut down immediately. If it is
less than 0 it will never automatically shutdown.

Amazon Web Services Elastic Compute Cloud ("AWS EC2")

EC2 [http://aws.amazon.com/ec2/] is a web service that allows you to
start virtual machines in an Amazon data center. Please see their website for
details, incuding costs. Using the AWS EC2 latent buildslaves involves getting
an EC2 account with AWS and setting up payment; customizing one or more EC2
machine images ("AMIs") on your desired operating system(s) and publishing
them (privately if needed); and configuring the buildbot master to know how to
start your customized images for "substantiating" your latent slaves.

Get an AWS EC2 Account

To start off, to use the AWS EC2 latent buildslave, you need to get an AWS
developer account and sign up for EC2. Although Amazon often changes this
process, these instructions should help you get started:

	Go to http://aws.amazon.com/ and click to "Sign Up Now" for an AWS account.

	Once you are logged into your account, you need to sign up for EC2.
Instructions for how to do this have changed over time because Amazon changes
their website, so the best advice is to hunt for it. After signing up for EC2,
it may say it wants you to upload an x.509 cert. You will need this to create
images (see below) but it is not technically necessary for the buildbot master
configuration.

	You must enter a valid credit card before you will be able to use EC2. Do that
under 'Payment Method'.

	Make sure you're signed up for EC2 by going to 'Your Account'->'Account
Activity' and verifying EC2 is listed.

Create an AMI

Now you need to create an AMI and configure the master. You may need to
run through this cycle a few times to get it working, but these instructions
should get you started.

Creating an AMI is out of the scope of this document. The
EC2 Getting Started Guide [http://docs.amazonwebservices.com/AWSEC2/latest/GettingStartedGuide/]
is a good resource for this task. Here are a few additional hints.

	When an instance of the image starts, it needs to automatically start a
buildbot slave that connects to your master (to create a buildbot slave,
Creating a buildslave; to make a daemon,
Launching the daemons).

	You may want to make an instance of the buildbot slave, configure it as a
standard buildslave in the master (i.e., not as a latent slave), and test and
debug it that way before you turn it into an AMI and convert to a latent
slave in the master.

Configure the Master with an EC2LatentBuildSlave

Now let's assume you have an AMI that should work with the
EC2LatentBuildSlave. It's now time to set up your buildbot master
configuration.

You will need some information from your AWS account: the Access Key Id and
the Secret Access Key. If you've built the AMI yourself, you probably
already are familiar with these values. If you have not, and someone has
given you access to an AMI, these hints may help you find the necessary
values:

	While logged into your AWS account, find the "Access Identifiers" link (either
on the left, or via "Your Account" -> "Access Identifiers".

	On the page, you'll see alphanumeric values for "Your Access Key Id:" and
"Your Secret Access Key:". Make a note of these. Later on, we'll call the
first one your identifier and the second one your secret_identifier.

When creating an EC2LatentBuildSlave in the buildbot master configuration,
the first three arguments are required. The name and password are the first
two arguments, and work the same as with normal buildslaves. The next
argument specifies the type of the EC2 virtual machine (available options as
of this writing include m1.small, m1.large, m1.xlarge, c1.medium,
and c1.xlarge; see the EC2 documentation for descriptions of these
machines).

Here is the simplest example of configuring an EC2 latent buildslave. It
specifies all necessary remaining values explicitly in the instantiation.

from buildbot.ec2buildslave import EC2LatentBuildSlave
c['slaves'] = [EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 ami='ami-12345',
 identifier='publickey',
 secret_identifier='privatekey'
)]

The ami argument specifies the AMI that the master should start. The
identifier argument specifies the AWS Access Key Id, and the
secret_identifier specifies the AWS Secret Access Key. Both the AMI and
the account information can be specified in alternate ways.

Note

Whoever has your identifier and secret_identifier values can request
AWS work charged to your account, so these values need to be carefully
protected. Another way to specify these access keys is to put them in a
separate file. You can then make the access privileges stricter for this
separate file, and potentially let more people read your main configuration
file.

By default, you can make an .ec2 directory in the home folder of the user
running the buildbot master. In that directory, create a file called aws_id.
The first line of that file should be your access key id; the second line
should be your secret access key id. Then you can instantiate the build slave
as follows.

from buildbot.ec2buildslave import EC2LatentBuildSlave
c['slaves'] = [EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 ami='ami-12345')]

If you want to put the key information in another file, use the
aws_id_file_path initialization argument.

Previous examples used a particular AMI. If the Buildbot master will be
deployed in a process-controlled environment, it may be convenient to
specify the AMI more flexibly. Rather than specifying an individual AMI,
specify one or two AMI filters.

In all cases, the AMI that sorts last by its location (the S3 bucket and
manifest name) will be preferred.

One available filter is to specify the acceptable AMI owners, by AWS account
number (the 12 digit number, usually rendered in AWS with hyphens like
"1234-5678-9012", should be entered as in integer).

from buildbot.ec2buildslave import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 valid_ami_owners=[11111111111,
 22222222222],
 identifier='publickey',
 secret_identifier='privatekey'
)

The other available filter is to provide a regular expression string that
will be matched against each AMI's location (the S3 bucket and manifest name).

from buildbot.ec2buildslave import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave(
 'bot1', 'sekrit', 'm1.large',
 valid_ami_location_regex=r'buildbot\-.*/image.manifest.xml',
 identifier='publickey', secret_identifier='privatekey')

The regular expression can specify a group, which will be preferred for the
sorting. Only the first group is used; subsequent groups are ignored.

from buildbot.ec2buildslave import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave(
 'bot1', 'sekrit', 'm1.large',
 valid_ami_location_regex=r'buildbot\-.*\-(.*)/image.manifest.xml',
 identifier='publickey', secret_identifier='privatekey')

If the group can be cast to an integer, it will be. This allows 10 to sort
after 1, for instance.

from buildbot.ec2buildslave import EC2LatentBuildSlave
bot1 = EC2LatentBuildSlave(
 'bot1', 'sekrit', 'm1.large',
 valid_ami_location_regex=r'buildbot\-.*\-(\d+)/image.manifest.xml',
 identifier='publickey', secret_identifier='privatekey')

In addition to using the password as a handshake between the master and the
slave, you may want to use a firewall to assert that only machines from a
specific IP can connect as slaves. This is possible with AWS EC2 by using
the Elastic IP feature. To configure, generate a Elastic IP in AWS, and then
specify it in your configuration using the elastic_ip argument.

from buildbot.ec2buildslave import EC2LatentBuildSlave
c['slaves'] = [EC2LatentBuildSlave('bot1', 'sekrit', 'm1.large',
 'ami-12345',
 identifier='publickey',
 secret_identifier='privatekey',
 elastic_ip='208.77.188.166'
)]

The EC2LatentBuildSlave supports all other configuration from the standard
BuildSlave. The missing_timeout and notify_on_missing specify how long
to wait for an EC2 instance to attach before considering the attempt to have
failed, and email addresses to alert, respectively. missing_timeout
defaults to 20 minutes.

keypair_name and security_name allow you to specify different names for
these AWS EC2 values. They both default to latent_buildbot_slave.

Libvirt

libvirt [http://www.libvirt.org/] is a virtualization API for interacting
with the virtualization capabilities of recent versions of Linux and other OSes.
It is LGPL and comes with a stable C API, and python bindings.

This means we know have an API which when tied to buildbot allows us to have slaves
that run under Xen, QEMU, KVM, LXC, OpenVZ, User Mode Linux, VirtualBox and VMWare.

The libvirt code in Buildbot was developed against libvirt 0.7.5 on Ubuntu Lucid. It
is used with KVM to test python code on Karmic VM's, but obviously isn't limited to that.
Each build is run on a new VM, images are temporary and thrown away after each build.

Setting up libvirt

We won't show you how to set up libvirt as it is quite different on each platform,
but there are a few things you should keep in mind.

	If you are running on Ubuntu, your master should run Lucid. Libvirt and apparmor are
buggy on Karmic.

	If you are using the system libvirt, your buildbot master user will need to be in the
libvirtd group.

	If you are using KVM, your buildbot master user will need to be in the KVM group.

	You need to think carefully about your virtual network first. Will NAT be enough?
What IP will my VM's need to connect to for connecting to the master?

Configuring your base image

You need to create a base image for your builds that has everything needed to build
your software. You need to configure the base image with a buildbot slave that is configured
to connect to the master on boot.

Because this image may need updating a lot, we strongly suggest scripting its creation.

If you want to have multiple slaves using the same base image it can be annoying to duplicate
the image just to change the buildbot credentials. One option is to use libvirt's DHCP
server to allocate an identity to the slave: DHCP sets a hostname, and the slave takes its
identity from that.

Doing all this is really beyond the scope of the manual, but there is a vmbuilder script
and a network.xml file to create such a DHCP server in
contrib/ (Contrib Scripts)
that should get you started:

sudo apt-get install ubuntu-vm-builder
sudo contrib/libvirt/vmbuilder

Should create an ubuntu/ folder with a suitable image in it.

virsh net-define contrib/libvirt/network.xml
virsh net-start buildbot-network

Should set up a KVM compatible libvirt network for your buildbot VM's to run on.

Configuring your Master

If you want to add a simple on demand VM to your setup, you only need the following. We
set the username to minion1, the password to sekrit. The base image is called base_image
and a copy of it will be made for the duration of the VM's life. That copy will be thrown
away every time a build is complete.

from buildbot.libvirtbuildslave import LibVirtBuildSlave
c['slaves'] = [LibVirtBuildSlave('minion1', 'sekrit',
 '/home/buildbot/images/minion1', '/home/buildbot/images/base_image')]

You can use virt-manager to define minion1 with the correct hardware. If you don't, buildbot
won't be able to find a VM to start.

LibVirtBuildSlave accepts the following arguments:

	name

	Both a buildbot username and the name of the virtual machine

	password

	A password for the buildbot to login to the master with

	hd_image

	The path to a libvirt disk image, normally in qcow2 format when using KVM.

	base_image

	If given a base image, buildbot will clone it every time it starts a VM.
This means you always have a clean environment to do your build in.

	xml

	If a VM isn't predefined in virt-manager, then you can instead provide XML
like that used with virsh define. The VM will be created
automatically when needed, and destroyed when not needed any longer.

Dangers with Latent Buildslaves

Any latent build slave that interacts with a for-fee service, such as the
EC2LatentBuildSlave, brings significant risks. As already identified, the
configuration will need access to account information that, if obtained by a
criminal, can be used to charge services to your account. Also, bugs in the
buildbot software may lead to unnecessary charges. In particular, if the
master neglects to shut down an instance for some reason, a virtual machine
may be running unnecessarily, charging against your account. Manual and/or
automatic (e.g. nagios with a plugin using a library like boto)
double-checking may be appropriate.

A comparatively trivial note is that currently if two instances try to attach
to the same latent buildslave, it is likely that the system will become
confused. This should not occur, unless, for instance, you configure a normal
build slave to connect with the authentication of a latent buildbot. If this
situation does occurs, stop all attached instances and restart the master.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Properties

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

 	Configuration

Properties

Build properties are a generalized way to provide configuration information to
build steps; see Build Properties for the conceptual overview of
properties.

Some build properties come from external sources and are set before the build
begins; others are set during the build, and available for later steps. The
sources for properties are:

	global configuration -- These properties apply to all
builds.

	schedulers -- A scheduler can specify
properties that become available to all builds it starts.

	changes -- A change can have properties attached to
it, supplying extra information gathered by the change source. This is most
commonly used with the sendchange command.

	forced builds -- The "Force Build" form allows users
to specify properties

	buildslaves -- A buildslave can pass properties on to
the builds it performs.

	builds -- A build automatically sets a
number of properties on itself.

	builders -- A builder can set properties on all the
builds it runs.

	steps -- The steps of a build can set properties that are available to subsequent steps.
In particular, source steps set the got_revision property.

If the same property is supplied in multiple places, the final appearance takes
precedence. For example, a property set in a builder configuration will
override one supplied by a scheduler.

Properties are stored internally in JSON format, so they are limited to basic
types of data: numbers, strings, lists, and dictionaries.

Common Build Properties

The following build properties are set when the build is started, and
are available to all steps.

	got_revision

	This property is set when a Source step checks out the source tree, and provides the revision that was actually obtained from the VC system.
In general this should be the same as revision, except for non-absolute sourcestamps, where got_revision indicates what revision was current when the checkout was performed.
This can be used to rebuild the same source code later.

Note

For some VC systems (Darcs in particular), the revision is a
large string containing newlines, and is not suitable for interpolation
into a filename.

For multi-codebase builds (where codebase is not the default ''), this property is a dictionary, keyed by codebase.

	buildername

	This is a string that indicates which Builder the build was a part of.
The combination of buildername and buildnumber uniquely identify a
build.

	buildnumber

	Each build gets a number, scoped to the Builder (so the first build
performed on any given Builder will have a build number of 0). This
integer property contains the build's number.

	slavename

	This is a string which identifies which buildslave the build is
running on.

	scheduler

	If the build was started from a scheduler, then this property will
contain the name of that scheduler.

	workdir

	The absolute path of the base working directory on the slave, of the current
builder.

For single codebase builds, where the codebase is '', the following Source Stamp Attributes are also available as properties: branch, revision, repository, and project .

Source Stamp Attributes

branch
revision
repository
project
codebase

For details of these attributes see Concepts.

changes

This attribute is a list of dictionaries reperesnting the changes that make up this sourcestamp.

has_patch
patch_level
patch_body
patch_subdir
patch_author
patch_comment

These attributes are set if the source stamp was created by a try scheduler.

Using Properties in Steps

For the most part, properties are used to alter the behavior of build steps
during a build. This is done by annotating the step definition in
master.cfg with placeholders. When the step is executed, these
placeholders will be replaced using the current values of the build properties.

Note

Properties are defined while a build is in progress; their values are
not available when the configuration file is parsed. This can sometimes
confuse newcomers to Buildbot! In particular, the following is a common error:

if Property('release_train') == 'alpha':
 f.addStep(...)

This does not work because the value of the property is not available when
the if statement is executed. However, Python will not detect this as
an error - you will just never see the step added to the factory.

You can use build properties in most step paramaters. Please file bugs for any
parameters which do not accept properties.

Property

The simplest form of annotation is to wrap the property name with
Property:

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import Property

f.addStep(ShellCommand(command=['echo', 'buildername:', Property('buildername')]))

You can specify a default value by passing a default keyword argument:

f.addStep(ShellCommand(command=['echo', 'warnings:',
 Property('warnings', default='none')]))

The default value is used when the property doesn't exist, or when the value is
something Python regards as False. The defaultWhenFalse argument can be
set to False to force buildbot to use the default argument only if the
parameter is not set:

f.addStep(ShellCommand(command=['echo', 'warnings:',
 Property('warnings', default='none', defaultWhenFalse=False)]))

The default value can reference other properties, e.g.,

command=Property('command', default=Property('default-command'))

Interpolate

Property can only be used to replace an entire argument: in the
example above, it replaces an argument to echo. Often, properties need to
be interpolated into strings, instead. The tool for that job is
Interpolate.

The more common pattern is to use python dictionary-style string interpolation by using the %(prop:<propname>)s syntax.
In this form, the property name goes in the parentheses, as above.
A common mistake is to omit the trailing "s", leading to a rather obscure error from Python ("ValueError: unsupported format character").

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import Interpolate
f.addStep(ShellCommand(command=['make', Interpolate('REVISION=%(prop:got_revision)s'),
 'dist']))

This example will result in a make command with an argument like
REVISION=12098.

The syntax of dictionary-style interpolation is a selector, followed by a colon, followed by a selector specific key, optionally followed by a colon and a string indicating how to interpret the value produced by the key.

The following selectors are supported.

	prop

	The key is the name of a property.

	src

	The key is a codebase and source stamp attribute, seperated by a colon.

	kw

	The key refers to a keyword argument passed to Interpolate.

The following ways of interpreting the value are available.

	-replacement

	If the key exists, substitute its value; otherwise,
substitute replacement. replacement may be empty
(%(prop:propname:-)s). This is the default.

	~replacement

	Like -replacement, but only substitutes the value
of the key if it is something Python regards as True.
Python considers None, 0, empty lists, and the empty string to be
false, so such values will be replaced by replacement.

	+replacement

	If the key exists, substitute replacement; otherwise,
substitute an empty string.

?|sub_if_exists|sub_if_missing

	#?|sub_if_true|sub_if_false

	Ternary substitution, depending on either the key being present (with
?, similar to +) or being True (with #?, like ~).
Notice that there is a pipe immediately following the question mark and
between the two substitution alternatives. The character that follows the
question mark is used as the delimeter between the two alternatives. In the
above examples, it is a pipe, but any character other than (can be used.

Although these are similar to shell substitutions, no other substitutions are currently supported.

Example

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import Interpolate
f.addStep(ShellCommand(command=['make', Interpolate('REVISION=%(prop:got_revision:-%(src::revision:-unknown)s)s')
 'dist']))

In addition, Interpolate supports using positional string interpolation.
Here, %s is used as a placeholder, and the substitutions (which may themselves be placeholders), are given as subsequent arguments:

.. note:

Like python, you can use either positional interpolation or
dictionary-style interpolation, not both. Thus you cannot use a string
like Interpolate("foo-%(src::revision)s-%s", "branch").

Renderer

While Interpolate can handle many simple cases, and even some common conditionals, more complex cases are best handled with Python code.
The renderer decorator creates a renderable object that will be replaced with the result of the function, called when the step it's passed to begins.
The function receives an IProperties object, which it can use to examine the values of any and all properties. For example:

 @properties.renderer
 def makeCommand(props):
 command = ['make']
 cpus = props.getProperty('CPUs')
 if cpus:
 command += ['-j', str(cpus+1)]
 else:
 command += ['-j', '2']
 command += ['all']
 return command
f.addStep(ShellCommand(command=makeCommand))

You can think of renderer as saying "call this function when the step starts".

WithProperties

Warning

This placeholder is deprecated. It is an older version of Interpolate.
It exists for compatability with older configs.

The simplest use of this class is with positional string interpolation. Here,
%s is used as a placeholder, and property names are given as subsequent
arguments:

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import WithProperties
f.addStep(ShellCommand(
 command=["tar", "czf",
 WithProperties("build-%s-%s.tar.gz", "branch", "revision"),
 "source"]))

If this BuildStep were used in a tree obtained from Git, it would
create a tarball with a name like
build-master-a7d3a333db708e786edb34b6af646edd8d4d3ad9.tar.gz.

The more common pattern is to use python dictionary-style string interpolation
by using the %(propname)s syntax. In this form, the property name goes in
the parentheses, as above. A common mistake is to omit the trailing "s",
leading to a rather obscure error from Python ("ValueError: unsupported format
character").

from buildbot.steps.shell import ShellCommand
from buildbot.process.properties import WithProperties
f.addStep(ShellCommand(command=['make', WithProperties('REVISION=%(got_revision)s'),
 'dist']))

This example will result in a make command with an argument like
REVISION=12098.

The dictionary-style interpolation supports a number of more advanced
syntaxes in the parentheses.

	propname:-replacement

	If propname exists, substitute its value; otherwise,
substitute replacement. replacement may be empty
(%(propname:-)s)

	propname:~replacement

	Like propname:-replacement, but only substitutes the value
of property propname if it is something Python regards as True.
Python considers None, 0, empty lists, and the empty string to be
false, so such values will be replaced by replacement.

	propname:+replacement

	If propname exists, substitute replacement; otherwise,
substitute an empty string.

Although these are similar to shell substitutions, no other
substitutions are currently supported, and replacement in the
above cannot contain more substitutions.

Note: like python, you can use either positional interpolation or
dictionary-style interpolation, not both. Thus you cannot use a string like
WithProperties("foo-%(revision)s-%s", "branch").

Custom Renderables

If the options described above are not sufficient, more complex substitutions can be achieved by writting custom renderables.

Renderables are objects providing the IRenderable interface.
That interface is simple - objects must provide a getRenderingFor method.
The method should take one argument - an IProperties provider - and should return a string.
Pass instances of the class anywhere other renderables are accepted.
For example:

class DetermineFoo(object):
 implements(IRenderable)
 def getRenderingFor(self, props)
 if props.hasProperty('bar'):
 return props['bar']
 elif props.hasProperty('baz'):
 return props['baz']
 return 'qux'
ShellCommand(command=['echo', DetermineFoo()])

or, more practically,

class Now(object):
 implements(IRenderable)
 def getRenderingFor(self, props)
 return time.clock()
ShellCommand(command=['make', Interpolate('TIME=%(kw:now)', now=Now())])

This is equivalent to:

@renderer
def now(props):
 return time.clock()
ShellCommand(command=['make', Interpolate('TIME=%(kw:now)', now=now)])

Note that a custom renderable must be instantiated (and its constructor can take whatever arguments you'd like), whereas a renderer can be used directly.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Command-line Tool

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Manual

Command-line Tool

This section describes command-line tools available after buildbot
installation. Since version 0.8 the one-for-all buildbot
command-line tool was divided into two parts namely buildbot
and buildslave. The last one was separated from main
command-line tool to minimize dependencies required for running a
buildslave while leaving all other functions to buildbot tool.

Every command-line tool has a list of global options and a set of commands
which have their own options. One can run these tools in the following way:

buildbot [global options] command [command options]
buildslave [global options] command [command options]

The buildbot command is used on the master, while buildslave is used on
the slave. Global options are the same for both tools which perform the
following actions:

	
--help
	Print general help about available commands and global options and exit.
All subsequent arguments are ignored.

	
--verbose
	Set verbose output.

	
--version
	Print current buildbot version and exit. All subsequent arguments are
ignored.

You can get help on any command by specifying --help as a
command option:

buildbot @var{command} --help

You can also use manual pages for buildbot and
buildslave for quick reference on command-line options.

The remainder of this section describes each buildbot command. See
Command Line Index for a full list.

buildbot

The buildbot command-line tool can be used to start or stop a
buildmaster or buildbot, and to interact with a running buildmaster.
Some of its subcommands are intended for buildmaster admins, while
some are for developers who are editing the code that the buildbot is
monitoring.

Administrator Tools

The following buildbot sub-commands are intended for
buildmaster administrators:

create-master

buildbot create-master -r {BASEDIR}

This creates a new directory and populates it with files that allow it to be used as a buildmaster's base directory.

You will usually want to use the -r option to create a relocatable buildbot.tac.
This allows you to move the master directory without editing this file.

start

buildbot start [--nodaemon] {BASEDIR}

This starts a buildmaster which was already created in the given base directory.
The daemon is launched in the background, with events logged to a file named twistd.log.

The --nodaemon option instructs Buildbot to skip daemonizing.
The process will start in the foreground.
It will only return to the command-line when it is stopped.

restart

buildbot restart [--nodaemon] {BASEDIR}

Restart the buildmaster.
This is equivalent to stop followed by start
The --nodaemon option has the same meaning as for start.

stop

buildbot stop {BASEDIR}

This terminates the daemon (either buildmaster or buildslave) running in the given directory.

sighup

buildbot sighup {BASEDIR}

This sends a SIGHUP to the buildmaster running in the given directory, which causes it to re-read its master.cfg file.

Developer Tools

These tools are provided for use by the developers who are working on
the code that the buildbot is monitoring.

statuslog

buildbot statuslog --master {MASTERHOST}:{PORT}

This command starts a simple text-based status client, one which just
prints out a new line each time an event occurs on the buildmaster.

The --master option provides the location of the
buildbot.status.client.PBListener status port, used to deliver
build information to realtime status clients. The option is always in
the form of a string, with hostname and port number separated by a
colon (HOSTNAME:PORTNUM). Note that this port is not the
same as the slaveport (although a future version may allow the same
port number to be used for both purposes). If you get an error message
to the effect of Failure: twisted.cred.error.UnauthorizedLogin:,
this may indicate that you are connecting to the slaveport rather than
a PBListener port.

The --master option can also be provided by the
masterstatus name in .buildbot/options
(see .buildbot config directory).

statusgui

If you have set up a PBListener, you will be able
to monitor your Buildbot using a simple Gtk+ application invoked with
the buildbot statusgui command:

buildbot statusgui --master {MASTERHOST}:{PORT}

This command starts a simple Gtk+-based status client, which contains a few
boxes for each Builder that change color as events occur. It uses the same
--master argument and masterstatus option as the
buildbot statuslog command (statuslog).

try

This lets a developer to ask the question What would happen if I
committed this patch right now?. It runs the unit test suite (across
multiple build platforms) on the developer's current code, allowing
them to make sure they will not break the tree when they finally
commit their changes.

The buildbot try command is meant to be run from within a
developer's local tree, and starts by figuring out the base revision
of that tree (what revision was current the last time the tree was
updated), and a patch that can be applied to that revision of the tree
to make it match the developer's copy. This (revision, patch) pair is
then sent to the buildmaster, which runs a build with that
SourceStamp. If you want, the tool will emit status messages as the
builds run, and will not terminate until the first failure has been
detected (or the last success).

There is an alternate form which accepts a pre-made patch file
(typically the output of a command like svn diff). This --diff
form does not require a local tree to run from. See try --diff concerning
the --diff command option.

For this command to work, several pieces must be in place: the
Try_Jobdir or :Try_Userpass, as well as some client-side
configuration.

Locating the master

The try command needs to be told how to connect to the
try scheduler, and must know which of the authentication
approaches described above is in use by the buildmaster. You specify
the approach by using --connect=ssh or --connect=pb
(or try_connect = 'ssh' or try_connect = 'pb' in
.buildbot/options).

For the PB approach, the command must be given a --master
argument (in the form HOST:PORT) that points to TCP port that you
picked in the Try_Userpass scheduler. It also takes a
--username and --passwd pair of arguments that match
one of the entries in the buildmaster's userpass list. These
arguments can also be provided as try_master,
try_username, and try_password entries in the
.buildbot/options file.

For the SSH approach, the command must be given --host and
--username, to get to the buildmaster host. It must also be given
--jobdir, which points to the inlet directory configured
above. The jobdir can be relative to the user's home directory, but
most of the time you will use an explicit path like
~buildbot/project/trydir. These arguments can be provided in
.buildbot/options as try_host, try_username,
try_password, and try_jobdir.

The SSH approach also provides a --buildbotbin argument to
allow specification of the buildbot binary to run on the
buildmaster. This is useful in the case where buildbot is installed in
a virtualenv on the buildmaster
host, or in other circumstances where the buildbot command is not on
the path of the user given by --username. The
--buildbotbin argument can be provided in
.buildbot/options as try_buildbotbin

Finally, the SSH approach needs to connect to a PBListener
status port, so it can retrieve and report the results of the build
(the PB approach uses the existing connection to retrieve status
information, so this step is not necessary). This requires a
--masterstatus argument, or a try_masterstatus entry in
.buildbot/options, in the form of a HOSTNAME:PORT
string.

The following command line arguments are deprecated, but retained for
backward compatibility:

	
--tryhost
	is replaced by --host

	
--trydir
	is replaced by --jobdir

	
--master
	is replaced by --masterstatus

Likewise, the following .buildbot/options file entries are
deprecated, but retained for backward compatibility:

	try_dir is replaced by try_jobdir

	masterstatus is replaced by try_masterstatus

Choosing the Builders

A trial build is performed on multiple Builders at the same time, and
the developer gets to choose which Builders are used (limited to a set
selected by the buildmaster admin with the TryScheduler's
builderNames= argument). The set you choose will depend upon
what your goals are: if you are concerned about cross-platform
compatibility, you should use multiple Builders, one from each
platform of interest. You might use just one builder if that platform
has libraries or other facilities that allow better test coverage than
what you can accomplish on your own machine, or faster test runs.

The set of Builders to use can be specified with multiple
--builder arguments on the command line. It can also be
specified with a single try_builders option in
.buildbot/options that uses a list of strings to specify all
the Builder names:

try_builders = ["full-OSX", "full-win32", "full-linux"]

If you are using the PB approach, you can get the names of the builders
that are configured for the try scheduler using the get-builder-names
argument:

buildbot try --get-builder-names --connect=pb --master=... --username=... --passwd=...

Specifying the VC system

The try command also needs to know how to take the
developer's current tree and extract the (revision, patch)
source-stamp pair. Each VC system uses a different process, so you
start by telling the try command which VC system you are
using, with an argument like --vc=cvs or --vc=git.
This can also be provided as try_vc in
.buildbot/options.

The following names are recognized: bzr cvs darcs hg
git mtn p4 svn

Finding the top of the tree

Some VC systems (notably CVS and SVN) track each directory
more-or-less independently, which means the try command
needs to move up to the top of the project tree before it will be able
to construct a proper full-tree patch. To accomplish this, the
try command will crawl up through the parent directories
until it finds a marker file. The default name for this marker file is
.buildbot-top, so when you are using CVS or SVN you should
touch .buildbot-top from the top of your tree before running
buildbot try. Alternatively, you can use a filename like
ChangeLog or README, since many projects put one of
these files in their top-most directory (and nowhere else). To set
this filename, use --topfile=ChangeLog, or set it in the
options file with try_topfile = 'ChangeLog'.

You can also manually set the top of the tree with
--topdir=~/trees/mytree, or try_topdir =
'~/trees/mytree'. If you use try_topdir, in a
.buildbot/options file, you will need a separate options file
for each tree you use, so it may be more convenient to use the
try_topfile approach instead.

Other VC systems which work on full projects instead of individual
directories (darcs, mercurial, git, monotone) do not require
try to know the top directory, so the --try-topfile
and --try-topdir arguments will be ignored.

If the try command cannot find the top directory, it will
abort with an error message.

The following command line arguments are deprecated, but retained for
backward compatibility:

	--try-topdir is replaced by --topdir

	--try-topfile is replaced by --topfile

Determining the branch name

Some VC systems record the branch information in a way that try
can locate it. For the others, if you are using something other than
the default branch, you will have to tell the buildbot which branch
your tree is using. You can do this with either the --branch
argument, or a try_branch entry in the
.buildbot/options file.

Determining the revision and patch

Each VC system has a separate approach for determining the tree's base
revision and computing a patch.

	CVS

	try pretends that the tree is up to date. It converts the
current time into a -D time specification, uses it as the base
revision, and computes the diff between the upstream tree as of that
point in time versus the current contents. This works, more or less,
but requires that the local clock be in reasonably good sync with the
repository.

	SVN

	try does a svn status -u to find the latest
repository revision number (emitted on the last line in the Status
against revision: NN message). It then performs an svn diff
-rNN to find out how your tree differs from the repository version,
and sends the resulting patch to the buildmaster. If your tree is not
up to date, this will result in the try tree being created with
the latest revision, then backwards patches applied to bring it
back to the version you actually checked out (plus your actual
code changes), but this will still result in the correct tree being
used for the build.

	bzr

	try does a bzr revision-info to find the base revision,
then a bzr diff -r$base.. to obtain the patch.

	Mercurial

	hg parents --template '{node}\n' emits the full revision id (as opposed to
the common 12-char truncated) which is a SHA1 hash of the current
revision's contents. This is used as the base revision.
hg diff then provides the patch relative to that
revision. For try to work, your working directory must only
have patches that are available from the same remotely-available
repository that the build process' source.Mercurial will use.

	Perforce

	try does a p4 changes -m1 ... to determine the latest
changelist and implicitly assumes that the local tree is synched to this
revision. This is followed by a p4 diff -du to obtain the patch.
A p4 patch differs sligtly from a normal diff. It contains full depot
paths and must be converted to paths relative to the branch top. To convert
the following restriction is imposed. The p4base (see P4Source)
is assumed to be //depot

	Darcs

	try does a darcs changes --context to find the list
of all patches back to and including the last tag that was made. This text
file (plus the location of a repository that contains all these
patches) is sufficient to re-create the tree. Therefore the contents
of this context file are the revision stamp for a
Darcs-controlled source tree. It then does a darcs diff -u
to compute the patch relative to that revision.

	Git

	git branch -v lists all the branches available in the local
repository along with the revision ID it points to and a short summary
of the last commit. The line containing the currently checked out
branch begins with * (star and space) while all the others start
with (two spaces). try scans for this line and extracts
the branch name and revision from it. Then it generates a diff against
the base revision.

	Monotone

	mtn automate get_base_revision_id emits the full revision id
which is a SHA1 hash of the current revision's contents. This is used as
the base revision.
mtn diff then provides the patch relative to that
revision. For try to work, your working directory must
only have patches that are available from the same
remotely-available repository that the build process'
source.Monotone will use.

patch information

You can provide the --who=dev to designate who is running the
try build. This will add the dev to the Reason field on the try
build's status web page. You can also set try_who = dev in the
.buildbot/options file. Note that --who=dev will not
work on version 0.8.3 or earlier masters.

Similarly, --comment=COMMENT will specify the comment for the patch,
which is also displayed in the patch information. The corresponding
config-file option is try_comment.

Waiting for results

If you provide the --wait option (or try_wait = True
in .buildbot/options), the buildbot try command will
wait until your changes have either been proven good or bad before
exiting. Unless you use the --quiet option (or
try_quiet=True), it will emit a progress message every 60
seconds until the builds have completed.

try --diff

Sometimes you might have a patch from someone else that you want to
submit to the buildbot. For example, a user may have created a patch
to fix some specific bug and sent it to you by email. You've inspected
the patch and suspect that it might do the job (and have at least
confirmed that it doesn't do anything evil). Now you want to test it
out.

One approach would be to check out a new local tree, apply the patch,
run your local tests, then use buildbot try to run the tests on
other platforms. An alternate approach is to use the buildbot
try --diff form to have the buildbot test the patch without using a
local tree.

This form takes a --diff argument which points to a file that
contains the patch you want to apply. By default this patch will be
applied to the TRUNK revision, but if you give the optional
--baserev argument, a tree of the given revision will be used
as a starting point instead of TRUNK.

You can also use buildbot try --diff=- to read the patch
from stdin.

Each patch has a patchlevel associated with it. This indicates the
number of slashes (and preceding pathnames) that should be stripped
before applying the diff. This exactly corresponds to the -p
or --strip argument to the patch utility. By
default buildbot try --diff uses a patchlevel of 0, but you
can override this with the -p argument.

When you use --diff, you do not need to use any of the other
options that relate to a local tree, specifically --vc,
--try-topfile, or --try-topdir. These options will
be ignored. Of course you must still specify how to get to the
buildmaster (with --connect, --tryhost, etc).

Other Tools

These tools are generally used by buildmaster administrators.

sendchange

This command is used to tell the buildmaster about source changes. It
is intended to be used from within a commit script, installed on the
VC server. It requires that you have a PBChangeSource
(PBChangeSource) running in the buildmaster (by being set in
c['change_source']).

buildbot sendchange --master {MASTERHOST}:{PORT} --auth {USER}:{PASS}
 --who {USER} {FILENAMES..}

The auth option specifies the credentials to use to connect to the
master, in the form user:pass. If the password is omitted, then
sendchange will prompt for it. If both are omitted, the old default (username
"change" and password "changepw") will be used. Note that this password is
well-known, and should not be used on an internet-accessible port.

The master and username arguments can also be given in the
options file (see .buildbot config directory). There are other (optional)
arguments which can influence the Change that gets submitted:

	
--branch
	(or option branch) This provides the (string) branch specifier. If
omitted, it defaults to None, indicating the default branch. All files
included in this Change must be on the same branch.

	
--category
	(or option category) This provides the (string) category specifier. If
omitted, it defaults to None, indicating no category. The category property
can be used by Schedulers to filter what changes they listen to.

	
--project
	(or option project) This provides the (string) project to which this
change applies, and defaults to ''. The project can be used by schedulers to
decide which builders should respond to a particular change.

	
--repository
	(or option repository) This provides the repository from which this
change came, and defaults to ''.

	
--revision
	This provides a revision specifier, appropriate to the VC system in use.

	
--revision_file

		This provides a filename which will be opened and the contents used as
the revision specifier. This is specifically for Darcs, which uses the
output of darcs changes --context as a revision specifier.
This context file can be a couple of kilobytes long, spanning a couple
lines per patch, and would be a hassle to pass as a command-line
argument.

	
--property
	This parameter is used to set a property on the Change generated by sendchange.
Properties are specified as a name:value pair, separated by a colon. You may
specify many properties by passing this parameter multiple times.

	
--comments
	This provides the change comments as a single argument. You may want
to use --logfile instead.

	
--logfile
	This instructs the tool to read the change comments from the given
file. If you use - as the filename, the tool will read the
change comments from stdin.

	
--encoding
	Specifies the character encoding for all other parameters,
defaulting to 'utf8'.

	
--vc
	Specifies which VC system the Change is coming from, one of: cvs,
svn, darcs, hg, bzr, git, mtn, or p4.
Defaults to None.

debugclient

buildbot debugclient --master {MASTERHOST}:{PORT} --passwd {DEBUGPW}

This launches a small Gtk+/Glade-based debug tool, connecting to the
buildmaster's debug port. This debug port shares the same port
number as the slaveport (see Setting the PB Port for Slaves), but the
debugPort is only enabled if you set a debug password in the
buildmaster's config file (see Debug Options). The
--passwd option must match the c['debugPassword']
value.

--master can also be provided in .debug/options by the
master key. --passwd can be provided by the
debugPassword key. See .buildbot config directory.

The Connect button must be pressed before any of the other
buttons will be active. This establishes the connection to the
buildmaster. The other sections of the tool are as follows:

	Reload .cfg

	Forces the buildmaster to reload its master.cfg file. This is
equivalent to sending a SIGHUP to the buildmaster, but can be done
remotely through the debug port. Note that it is a good idea to be
watching the buildmaster's twistd.log as you reload the config
file, as any errors which are detected in the config file will be
announced there.

	Rebuild .py

	(not yet implemented). The idea here is to use Twisted's rebuild
facilities to replace the buildmaster's running code with a new
version. Even if this worked, it would only be used by buildbot
developers.

	poke IRC

	This locates a words.IRC status target and causes it to emit a
message on all the channels to which it is currently connected. This
was used to debug a problem in which the buildmaster lost the
connection to the IRC server and did not attempt to reconnect.

	Commit

	This allows you to inject a Change, just as if a real one had been
delivered by whatever VC hook you are using. You can set the name of
the committed file and the name of the user who is doing the commit.
Optionally, you can also set a revision for the change. If the
revision you provide looks like a number, it will be sent as an
integer, otherwise it will be sent as a string.

	Force Build

	This lets you force a Builder (selected by name) to start a build of
the current source tree.

	Currently

	(obsolete). This was used to manually set the status of the given
Builder, but the status-assignment code was changed in an incompatible
way and these buttons are no longer meaningful.

user

Note that in order to use this command, you need to configure a
CommandlineUserManager instance in your master.cfg file, which is
explained in Users Options.

This command allows you to manage users in buildbot's database.
No extra requirements are needed to use this command, aside from
the Buildmaster running. For details on how Buildbot manages users,
see Users.

	
--master
	The user command can be run virtually anywhere
provided a location of the running buildmaster. The master
argument is of the form {MASTERHOST}:{PORT}.

	
--username
	PB connection authentication that should match the arguments to
CommandlineUserManager.

	
--passwd
	PB connection authentication that should match the arguments to
CommandlineUserManager.

	
--op
	There are four supported values for the op argument:
add, update, remove, and
get. Each are described in full in the following sections.

	
--bb_username
	Used with the update option, this sets the user's username
for web authentication in the database. It requires bb_password
to be set along with it.

	
--bb_password
	Also used with the update option, this sets the password
portion of a user's web authentication credentials into the database.
The password is first encrypted prior to storage for security reasons.

	
--ids
	When working with users, you need to be able to refer to them by
unique identifiers to find particular users in the database. The
ids option lets you specify a comma separated list of these
identifiers for use with the user command.

The ids option is used only when using remove
or show.

	
--info
	Users are known in buildbot as a collection of attributes tied
together by some unique identifier (see Users). These
attributes are specified in the form {TYPE}={VALUE} when
using the info option. These {TYPE}={VALUE} pairs
are specified in a comma separated list, so for example:

--info=svn=jschmo,git='Joe Schmo <joe@schmo.com>'

The info option can be specified multiple times in the
user command, as each specified option will be interpreted
as a new user. Note that info is only used with add
or with update, and whenever you use update you need
to specify the identifier of the user you want to update. This is done
by prepending the info arguments with {ID:}. If we were
to update 'jschmo' from the previous example, it would look like this:

--info=jschmo:git='Joseph Schmo <joe@schmo.com>'

Note that --master, --username, --passwd, and
--op are always required to issue the user command.

The --master, --username, and --passwd options
can be specified in the option file with keywords user_master,
user_username, and user_passwd, respectively. If
user_master is not specified, then master from the options
file will be used instead.

Below are examples of how each command should look. Whenever a
user command is successful, results will be shown
to whoever issued the command.

For add:

buildbot user --master={MASTERHOST} --op=add \
 --username={USER} --passwd={USERPW} \
 --info={TYPE}={VALUE},...

For update:

buildbot user --master={MASTERHOST} --op=update \
 --username={USER} --passwd={USERPW} \
 --info={ID}:{TYPE}={VALUE},...

For remove:

buildbot user --master={MASTERHOST} --op=remove \
 --username={USER} --passwd={USERPW} \
 --ids={ID1},{ID2},...

For get:

buildbot user --master={MASTERHOST} --op=get \
 --username={USER} --passwd={USERPW} \
 --ids={ID1},{ID2},...

A note on update: when updating the bb_username
and bb_password, the info doesn't need to have
additional {TYPE}={VALUE} pairs to update and can just take
the {ID} portion.

.buildbot config directory

Many of the buildbot tools must be told how to contact the
buildmaster that they interact with. This specification can be
provided as a command-line argument, but most of the time it will be
easier to set them in an options file. The buildbot
command will look for a special directory named .buildbot,
starting from the current directory (where the command was run) and
crawling upwards, eventually looking in the user's home directory. It
will look for a file named options in this directory, and will
evaluate it as a python script, looking for certain names to be set.
You can just put simple name = 'value' pairs in this file to
set the options.

For a description of the names used in this file, please see the
documentation for the individual buildbot sub-commands. The
following is a brief sample of what this file's contents could be.

for status-reading tools
masterstatus = 'buildbot.example.org:12345'
for 'sendchange' or the debug port
master = 'buildbot.example.org:18990'
debugPassword = 'eiv7Po'

Note carefully that the names in the options file usually do not match
the command-line option name.

	masterstatus

	Equivalent to --master for statuslog and statusgui, this
gives the location of the client.PBListener status port.

	master

	Equivalent to --master for debugclient and sendchange.
This option is used for two purposes. It is the location of the
debugPort for debugclient and the location of the
pb.PBChangeSource for `sendchange. Generally these are the
same port.

	debugPassword

	Equivalent to --passwd for debugclient.

Important

This value must match the value of debugPassword, used to
protect the debug port, for the debugclient command.

	username

	Equivalent to --username for the sendchange command.

	branch

	Equivalent to --branch for the sendchange command.

	category

	Equivalent to --category for the sendchange command.

	try_connect

	Equivalent to --connect, this specifies how the try command should
deliver its request to the buildmaster. The currently accepted values are
ssh and pb.

	try_builders

	Equivalent to --builders, specifies which builders should be used for
the try build.

	try_vc

	Equivalent to --vc for try, this specifies the version control
system being used.

	try_branch

	Equivlanent to --branch, this indicates that the current tree is on a
non-trunk branch.

try_topdir

	try_topfile

	Use try_topdir, equivalent to --try-topdir, to explicitly
indicate the top of your working tree, or try_topfile, equivalent to
--try-topfile to name a file that will only be found in that top-most
directory.

try_host

try_username

	try_dir

	When try_connect is ssh, the command will use try_host for
--tryhost, try_username for --username, and try_dir
for --trydir. Apologies for the confusing presence and absence of
'try'.

try_username

try_password

	try_master

	Similarly, when try_connect is pb, the command will pay attention to
try_username for --username, try_password for
--passwd, and try_master for --master.

try_wait

	masterstatus

	try_wait and masterstatus (equivalent to --wait and
master, respectively) are used to ask the try command to wait for
the requested build to complete.

buildslave

buildslave command-line tool is used for buildslave management
only and does not provide any additional functionality. One can create,
start, stop and restart the buildslave.

create-slave

This creates a new directory and populates it with files that let it
be used as a buildslave's base directory. You must provide several
arguments, which are used to create the initial buildbot.tac
file.

The -r option is advisable here, just like for create-master.

buildslave create-slave -r {BASEDIR} {MASTERHOST}:{PORT} {SLAVENAME} {PASSWORD}

The create-slave options are described in Buildslave Options.

start

This starts a buildslave which was already created in the given base
directory. The daemon is launched in the background, with events logged
to a file named twistd.log.

buildslave start [--nodaemon] BASEDIR

The --nodaemon option instructs Buildbot to skip daemonizing. The
process will start in the foreground. It will only return to the command-line
when it is stopped.

restart

buildslave restart [--nodaemon] BASEDIR

This restarts a buildslave which is already running.
It is equivalent to a stop followed by a start.

The --nodaemon option has the same meaning as for start.

stop

This terminates the daemon buildslave running in the given directory.

buildbot stop BASEDIR

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Buildbot Development

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

Buildbot Development

This chapter is the official repository for the collected wisdom of the
Buildbot hackers. It is intended both for developers writing patches that will
be included in Buildbot itself, and for advanced users who wish to customize
Buildbot.

	Master Organization
	Buildmaster Service Hierarchy

	Definitions
	Repository

	Project

	Version Control Comparison

	Buildbot Coding Style
	Symbol Names

	Twisted Idioms

	Buildbot's Test Suite
	Suites

	Mixins

	Fakes

	Good Tests

	Configuration
	Builder Configuration

	Error Handling

	Reconfiguration
	Reconfigurable Services

	Change Sources

	Schedulers

	Slaves

	User Managers

	Status Receivers

	Utilities
	buildbot.util.lru

	buildbot.util.bbcollections

	buildbot.util.eventual

	buildbot.util.json

	buildbot.util.maildir

	buildbot.util.misc

	buildbot.util.netstrings

	buildbot.util.sautils

	buildbot.util.subscription

	buildbot.util.croniter

	buildbot.util.state

	Database
	Database Overview

	Schema

	API

	Writing Database Connector Methods

	Modifying the Database Schema

	Database Compatibility Notes

	Build Result Codes

	File Formats
	Log File Format

	Web Status
	Jinja Web Templates

	Web Authorization Framework

	Master-Slave API
	Connection

	Build Slaves

	Setup

	Pinging

	Building

	Slave Builders

	Commands

	Updates

	String Encodings
	Inputs

	Outputs

	Metrics
	Metric Events

	Metric Handlers

	Metric Watchers

	Metric Helpers

	Classes
	BuildFactory

	RemoteCommands

	BuildSteps

	ForceScheduler

	IRenderable

	IProperties

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Master Organization

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Development

Master Organization

Buildbot makes heavy use of Twisted Python's support for services - software
modules that can be started and stopped dynamically. Buildbot adds the ability
to reconfigure such services, too - see Reconfiguration.
Twisted arranges services into trees; the following section describes the
service tree on a running master.

Buildmaster Service Hierarchy

The hierarchy begins with the master, a buildbot.master.BuildMaster
instance. Most other services contain a reference to this object in their
master attribute, and in general the appropriate way to access other
objects or services is to begin with self.master and navigate from there.

The master has several child services:

	master.metrics

	A buildbot.process.metrics.MetricLogObserver instance that
handles tracking and reporting on master metrics.

	msater.caches

	A buildbot.process.caches.CacheManager instance that provides
access to object caches.

	master.pbmanager

	A buildbot.pbmanager.PBManager instance that handles incoming
PB connections, potentially on multiple ports, and dispatching those
connections to appropriate components based on the supplied username.

	master.change_svc

	A buildbot.changes.manager.ChangeManager instance that manages
the active change sources, as well as the stream of changes received from
those sources. All active change sources are child services of this instance.

	master.botmaster

	A buildbot.process.botmaster.BotMaster instance that manages
all of the slaves and builders as child services.

The botmaster acts as the parent service for a
buildbot.process.botmaster.BuildRequestDistributor instance (at
master.botmaster.brd) as well as all active slaves
(buildbot.buildslave.AbstractBuildSlave instances) and builders
(buildbot.process.builder.Builder instances).

	master.scheduler_manager

	A buildbot.schedulers.manager.SchedulerManager instance that
manages the active schedulers. All active schedulers are child services of
this instance.

	master.user_manager

	A buildbot.process.users.manager.UserManagerManager instance
that manages access to users. All active user managers are child services
of this instance.

	master.db

	A buildbot.db.connector.DBConnector instance that manages
access to the buildbot database. See Database for more
information.

	master.debug

	A buildbot.process.debug.DebugServices instance that manages
debugging-related access -- the debug client and manhole.

	master.status

	A buildbot.status.master.Status instance that provides access
to all status data. This instance is also the service parent for all
status listeners.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Definitions

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Development

Definitions

Buildbot uses some terms and concepts that have specific meanings.

Repository

See Repository.

Project

See Project.

Version Control Comparison

Buildbot supports a number of version control systems, and they don't all agree
on their terms. This table should help to disambiguate them.

	Name
	Change
	Revision
	Branches

	CVS
	patch [1]
	timestamp
	unnamed

	Subversion
	revision
	integer
	directories

	Git
	commit
	sha1 hash
	named refs

	Mercurial
	changeset
	sha1 hash
	different repos
or (permanently)
named commits

	Darcs
	?
	none [2]
	different repos

	Bazaar
	?
	?
	?

	Perforce
	?
	?
	?

	BitKeeper
	changeset
	?
	different repos

	[1] note that CVS only tracks patches to individual files. Buildbot tries to
recognize coordinated changes to multiple files by correlating change times.

	[2] Darcs does not have a concise way of representing a particular revision
of the source.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Buildbot Coding Style

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Development

Buildbot Coding Style

Symbol Names

Buildbot follows PEP8 [http://www.python.org/dev/peps/pep-0008/] regarding
the formatting of symbol names.

The single exception in naming of functions and methods. Because Buildbot uses
Twisted so heavily, and Twisted uses interCaps, Buildbot methods should do the
same. That is, you should spell methods and functions with the first character
in lower-case, and the first letter of subsequent words capitalized, e.g.,
compareToOther or getChangesGreaterThan. This point is not applied very
consistently in Buildbot, but let's try to be consistent in new code.

Twisted Idioms

Programming with Twisted Python can be daunting. But sticking to a few
well-defined patterns can help avoid surprises.

Prefer to Return Deferreds

If you're writing a method that doesn't currently block, but could conceivably
block sometime in the future, return a Deferred and document that it does so.
Just about anything might block - even getters and setters!

Helpful Twisted Classes

Twisted has some useful, but little-known classes.
Brief descriptions follow, but you should consult the API documentation or source code
for the full details.

	twisted.internet.task.LoopingCall

	Calls an asynchronous function repeatedly at set intervals.

	twisted.application.internet.TimerService

	Similar to t.i.t.LoopingCall, but implemented as a service that will
automatically start and stop the function calls when the service starts and
stops.

Sequences of Operations

Especially in Buildbot, we're often faced with executing a sequence of
operations, many of which may block.

In all cases where this occurs, there is a danger of pre-emption, so exercise
the same caution you would if writing a threaded application.

For simple cases, you can use nested callback functions. For more complex cases, deferredGenerator is appropriate.

Nested Callbacks

First, an admonition: do not create extra class methods that represent the continuations of the first:

def myMethod(self):
 d = ...
 d.addCallback(self._myMethod_2) # BAD!
def _myMethod_2(self, res): # BAD!
 # ...

Invariably, this extra method gets separated from its parent as the code
evolves, and the result is completely unreadable. Instead, include all of the
code for a particular function or method within the same indented block, using
nested functions:

def getRevInfo(revname):
 results = {}
 d = defer.succeed(None)
 def rev_parse(_): # note use of '_' to quietly indicate an ignored parameter
 return utils.getProcessOutput(git, ['rev-parse', revname])
 d.addCallback(rev_parse)
 def parse_rev_parse(res):
 results['rev'] = res.strip()
 return utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b', results['rev']])
 d.addCallback(parse_rev_parse)
 def parse_log(res):
 results['comments'] = res.strip()
 d.addCallback(parse_log)
 def set_results(_):
 return results
 d.addCallback(set_results)
 return d

it is usually best to make the first operation occur within a callback, as the
deferred machinery will then handle any exceptions as a failure in the outer
Deferred. As a shortcut, d.addCallback works as a decorator:

d = defer.succeed(None)
@d.addCallback
def rev_parse(_): # note use of '_' to quietly indicate an ignored parameter
 return utils.getProcessOutput(git, ['rev-parse', revname])

Be careful with local variables. For example, if parse_rev_parse, above,
merely assigned rev = res.strip(), then that variable would be local to
parse_rev_parse and not available in set_results. Mutable variables
(dicts and lists) at the outer function level are appropriate for this purpose.

Note

do not try to build a loop in this style by chaining multiple
Deferreds! Unbounded chaining can result in stack overflows, at least on older
versions of Twisted. Use deferredGenerator instead.

inlineCallbacks

twisted.internet.defer.inlineCallbacks is a great help to writing code
that makes a lot of asynchronous calls, particularly if those calls are made in
loop or conditionals. Refer to the Twisted documentation for the details, but
the style within Buildbot is as follows:

from twisted.internet import defer

@defer.inlineCallbacks
def mymethod(self, x, y):
 xval = yield getSomething(x)

 for z in (yield getZValues()):
 y += z

 if xval > 10:
 defer.returnValue(xval + y)
 return

 self.someOtherMethod()

The key points to notice here:

	Always import defer as a module, not the names within it.

	Use the decorator form of inlineCallbacks

	In most cases, the result of a yield expression should be assigned to a
variable. It can be used in a larger expression, but remember that Python
requires that you enclose the expression in its own set of parentheses.

	Python does not permit returning a value from a generator, so statements like
return xval + y are invalid. Instead, yield the result of
defer.returnValue. Although this function does cause an immediate
function exit, for clarity follow it with a bare return, as in
the example, unless it is the last statement in a function.

The great advantage of inlineCallbacks is that it allows you to use all
of the usual Pythonic control structures in their natural form. In particular,
it is easy to represent a loop, or even nested loops, in this style without
losing any readability.

Note that code using deferredGenerator is no longer acceptable in Buildbot.

Locking

Remember that asynchronous programming does not free you from the need to worry
about concurrency issues. Particularly if you are executing a sequence of
operations, each time you wait for a Deferred, arbitrary other actions can take
place.

In general, you should try to perform actions atomically, but for the rare
situations that require synchronization, the following might be useful:

	twisted.internet.defer.DeferredLock

	buildbot.util.misc.deferredLocked

	buildbot.util.misc.SerializedInvocation

Joining Sequences

It's often the case that you'll want to perform multiple operations in
parallel, and re-join the results at the end. For this purpose, you'll want to
use a DeferredList [http://twistedmatrix.com/documents/current/api/twisted.internet.defer.DeferredList.html]

def getRevInfo(revname):
 results = {}
 finished = dict(rev_parse=False, log=False)

 rev_parse_d = utils.getProcessOutput(git, ['rev-parse', revname])
 def parse_rev_parse(res):
 return res.strip()
 rev_parse_d.addCallback(parse_rev_parse)

 log_d = utils.getProcessOutput(git, ['log', '-1', '--format=%s%n%b', results['rev']]))
 def parse_log(res):
 return res.strip()
 log_d.addCallback(parse_log)

 d = defer.DeferredList([rev_parse_d, log_d], consumeErrors=1, fireOnFirstErrback=1)
 def handle_results(results):
 return dict(rev=results[0][1], log=results[1][1])
 d.addCallback(handle_results)
 return d

Here the deferred list will wait for both rev_parse_d and log_d to
fire, or for one of them to fail. You may attach Callbacks and errbacks to a
DeferredList just as for a deferred.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Buildbot's Test Suite

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Development

Buildbot's Test Suite

Buildbot's tests are under buildbot.test and, for the buildslave,
buildslave.test. Tests for the slave are similar to the master, although
in some cases helpful functionality on the master is not re-implemented on the
slave.

Suites

Tests are divided into a few suites:

	Unit tests (buildbot.test.unit) - these follow unit-testing practices and
attempt to maximally isolate the system under test. Unit tests are the main
mechanism of achieving test coverage, and all new code should be well-covered
by corresponding unit tests.

	Interface tests (buildbot.test.interface). In many cases, Buildbot has
multiple implementations of the same interface -- at least one "real"
implementation and a fake implementation used in unit testing. The interface
tests ensure that these implementations all meet the same standards. This
ensures consistency between implementations, and also ensures that the unit
tests are testing against realistic fakes.

	Integration tests (buildbot.test.integration) - these test combinations
of multiple units. Of necessity, integration tests are incomplete - they
cannot test every condition; difficult to maintain - they tend to be complex
and touch a lot of code; and slow - they usually require considerable setup
and execute a lot of code. As such, use of integration tests is limited to a
few, broad tests to act as a failsafe for the unit and interface tests.

	Regression tests (buildbot.test.regrssions) - these test to prevent
re-occurrence of historical bugs. In most cases, a regression is better
tested by a test in the other suites, or unlike to recur, so this suite tends
to be small.

	Fuzz tests (buildbot.test.fuzz) - these tests run for a long time and
apply randomization to try to reproduce rare or unusual failures. The
Buildbot project does not currently have a framework to run fuzz tests
regularly.

Unit Tests

Every code module should have corresponding unit tests. This is not currently
true of Buildbot, due to a large body of legacy code, but is a goal of the
project. All new code must meet this requirement.

Unit test modules are be named after the package or class they test, replacing
. with _ and omitting the buildbot_. For example,
test_status_web_authz_Authz.py tests the Authz class in
buildbot/status/web/authz.py. Modules with only one class, or a few
trivial classes, can be tested in a single test module. For more complex
situations, prefer to use multiple test modules.

Interface Tests

Interface tests exist to verify that multiple implementations of an interface
meet the same requirements. Note that the name 'interface' should not be
confused with the sparse use of Zope Interfaces in the Buildbot code -- in this
context, an interface is any boundary between testable units.

Ideally, all interfaces, both public and private, should be tested. Certainly,
any public interfaces need interface tests.

Interface test modules are named after the interface they are testing, e.g.,
test_mq.py. They generally begin as follows:

from buildbot.test.util import interfaces
from twistd.trial import unittest

class Tests(interfaces.InterfaceTests):

 # define methods that must be overridden per implementation
 def someSetupMethod(self):
 raise NotImplementedError

 # tests that all implementations must pass
 def test_signature_someMethod(self):
 @self.assertArgSpecMatches(self.systemUnderTest.someMethod)
 def someMethod(self, arg1, arg2):
 pass

 def test_something(self):
 pass # ...

class RealTests(Tests):

 # tests that all *real* implementations must pass
 def test_something_else(self):
 pass # ...

All of the test methods are defined here, segregated into tests that all
implementations must pass, and tests that the fake implementation is not
expected to pass. The test_signature_someMethod test above illustrates the
assertArgSpecMatches decorator, which can be used to compare the argument
specification of a callable with a reference implementation conveniently
written as a nested function.

At the bottom of the test module, a subclass is created for each
implementation, implementing the setup methods that were stubbed out in the
parent classes:

class TestFakeThing(unittest.TestCase, Tests):

 def someSetupMethod(self):
 pass # ...

class TestRealThing(unittest.TestCase, RealTests):

 def someSetupMethod(self):
 pass # ...

For implementations which require optional software, this is the appropriate
place to signal that tests should be skipped when their prerequisites are not
available.

Integration Tests

Integration test modules test several units at once, including their
interactions. In general, they serve as a catch-all for failures and bugs that
were not detected by the unit and interface tests. As such, they should not
aim to be exhaustive, but merely representative.

Integration tests are very difficult to maintain if they reach into the
internals of any part of Buildbot. Where possible, try to use the same means
as a user would to set up, run, and check the results of an integration test.
That may mean writing a master.cfg to be parsed, and checking the
results by examining the database (or fake DB API) afterward.

Regression Tests

Regression tests are even more rare in Buildbot than integration tests. In
many cases, a regression test is not necessary -- either the test is
better-suited as a unit or interface test, or the failure is so specific that a
test will never fail again.

Regression tests tend to be closely tied to the code in which the error
occurred. When that code is refactored, the regression test generally becomes
obsolete, and is deleted.

Fuzz Tests

Fuzz tests generally run for a fixed amount of time, running randomized tests
against a system. They do not run at all during normal runs of the Buildbot
tests, unless BUILDBOT_FUZZ is defined. This is accomplished with something
like the following at the end of each test module:

if 'BUILDBOT_FUZZ' not in os.environ:
 del LRUCacheFuzzer

Mixins

Buildbot provides a number of purpose-specific mixin classes in
master/buildbot/util [https://github.com/buildbot/buildbot/blob/master/master/buildbot/util]. These generally define a set of utility
functions as well as setUpXxx and tearDownXxx methods. These methods
should be called explicitly from your subclass's setUp and tearDown
methods. Note that some of these methods return Deferreds, which should be
handled properly by the caller.

Fakes

Buildbot provides a number of pre-defined fake implementations of internal
interfaces, in master/buildbot/fake [https://github.com/buildbot/buildbot/blob/master/master/buildbot/fake]. These are designed to be used
in unit tests to limit the scope of the test. For example, the fake DB API
eliminates the need to create a real database when testing code that uses the
DB API, and isolates bugs in the system under test from bugs in the real DB
implementation.

The danger of using fakes is that the fake interface and the real interface can
differ. The interface tests exist to solve this problem. All fakes should be
fully tested in an integration test, so that the fakes pass the same tests as
the "real" thing. It is particularly important that the method signatures be
compared.

Good Tests

Bad tests are worse than no tests at all, since they waste developers' time
wondering "was that a spurious failure?" or "what the heck is this test trying
to do?" Buildbot needs good tests. So what makes a good test?

Independent of Time

Tests that depend on wall time will fail. As a bonus, they run very slowly. Do
not use reactor.callLater to wait "long enough" for something to happen.

For testing things that themselves depend on time, consider using
twisted.internet.tasks.Clock. This may mean passing a clock instance to
the code under test, and propagating that instance as necessary to ensure that
all of the code using callLater uses it. Refactoring code for
testability is difficult, but wortwhile.

For testing things that do not depend on time, but for which you cannot detect
the "end" of an operation: add a way to detect the end of the operation!

Clean Code

Make your tests readable. This is no place to skimp on comments! Others will
attempt to learn about the expected behavior of your class by reading the
tests. As a side note, if you use a Deferred chain in your test, write
the callbacks as nested functions, rather than using methods with funny names:

def testSomething(self):
 d = doThisFirst()
 def andThisNext(res):
 pass # ...
 d.addCallback(andThisNext)
 return d

This isolates the entire test into one indented block. It is OK to add methods
for common functionality, but give them real names and explain in detail what
they do.

Good Name

Test method names should follow the pattern test_METHOD_CONDITION
where METHOD is the method being tested, and CONDITION is the
condition under which it's tested. Since we can't always test a single
method, this is not a hard-and-fast rule.

Assert Only One Thing

Where practical, each test should have a single assertion. This may require a
little bit of work to get several related pieces of information into a single
Python object for comparison. The problem with multiple assertions is that, if
the first assertion fails, the remainder are not tested. The test results then
do not tell the entire story.

Prefer Fakes to Mocks

Mock objects are too "compliant", and this often masks errors in the system
under test. For example, a mis-spelled method name on a mock object will not
raise an exception.

Where possible, use one of the pre-written fake objects (see
Fakes) instead of a mock object. Fakes
themselves should be well-tested using interface tests.

Where they are appropriate, Mock objects can be constructed easily using the
aptly-named mock [http://www.voidspace.org.uk/python/mock/] module, which is
a requirement for Buildbot's tests.

Small Tests

The shorter each test is, the better. Test as little code as possible in each test.

It is fine, and in fact encouraged, to write the code under test in such a way
as to facilitate this. As an illustrative example, if you are testing a new
Step subclass, but your tests require instantiating a BuildMaster, you're
probably doing something wrong!

This also applies to test modules. Several short, easily-digested test modules
are preferred over a 1000-line monster.

Isolation

Each test should be maximally independent of other tests. Do not leave files
laying around after your test has finished, and do not assume that some other
test has run beforehand. It's fine to use caching techniques to avoid repeated,
lengthy setup times.

Be Correct

Tests should be as robust as possible, which at a basic level means using the
available frameworks correctly. All Deferreds should have callbacks and be
chained properly. Error conditions should be checked properly. Race conditions
should not exist (see Independent of Time, above).

Be Helpful

Note that tests will pass most of the time, but the moment when they are most
useful is when they fail.

When the test fails, it should produce output that is helpful to the person
chasing it down. This is particularly important when the tests are run
remotely, in which case the person chasing down the bug does not have access to
the system on which the test fails. A test which fails sporadically with no
more information than "AssertionFailed" is a prime candidate for deletion if
the error isn't obvious. Making the error obvious also includes adding comments
describing the ways a test might fail.

Keeping State

Python does not allow assignment to anything but the innermost local scope or
the global scope with the global keyword. This presents a problem when
creating nested functions:

def test_localVariable(self):
 cb_called = False
 def cb():
 cb_called = True
 cb()
 self.assertTrue(cb_called) # will fail!

The cb_called = True assigns to a different variable than
cb_called = False. In production code, it's usually best to work around
such problems, but in tests this is often the clearest way to express the
behavior under test.

The solution is to change something in a common mutable object. While a simple
list can serve as such a mutable object, this leads to code that is hard to
read. Instead, use State:

from buildbot.test.state import State

def test_localVariable(self):
 state = State(cb_called=False)
 def cb():
 state.cb_called = True
 cb()
 self.assertTrue(state.cb_called) # passes

This is almost as readable as the first example, but it actually works.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Configuration

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Development

Configuration

Wherever possible, Buildbot components should access configuration information
as needed from the canonical source, master.config, which is an instance of
MasterConfig. For example, components should not keep a copy of
the buildbotURL locally, as this value may change throughout the lifetime
of the master.

Components which need to be notified of changes in the configuration should be
implemented as services, subclassing ReconfigurableServiceMixin, as
described in Reconfiguration.

	
class buildbot.config.MasterConfig

	The master object makes much of the configuration available from an object
named master.config. Configuration is stored as attributes of this
object. Where possible, other Buildbot components should access this
configuration directly and not cache the configuration values anywhere
else. This avoids the need to ensure that update-from-configuration
methods are called on a reconfig.

Aside from validating the configuration, this class handles any
backward-compatibility issues - renamed parameters, type changes, and so on
- removing those concerns from other parts of Buildbot.

This class may be instantiated directly, creating an entirely default
configuration, or via loadConfig, which will load the
configuration from a config file.

The following attributes are available from this class, representing the
current configuration. This includes a number of global parameters:

	
title

	The title of this buildmaster, from title.

	
titleURL

	The URL corresponding to the title, from titleURL.

	
buildbotURL

	The URL of this buildmaster, for use in constructing WebStatus URLs;
from buildbotURL.

	
changeHorizon

	The current change horizon, from changeHorizon.

	
eventHorizon

	The current event horizon, from eventHorizon.

	
logHorizon

	The current log horizon, from logHorizon.

	
buildHorizon

	The current build horizon, from buildHorizon.

	
logCompressionLimit

	The current log compression limit, from logCompressionLimit.

	
logCompressionMethod

	The current log compression method, from
logCompressionMethod.

	
logMaxSize

	The current log maximum size, from logMaxSize.

	
logMaxTailSize

	The current log maximum size, from logMaxTailSize.

	
properties

	A Properties instance
containing global properties, from properties.

	
mergeRequests

	A callable, or True or False, describing how to merge requests; from
mergeRequests.

	
prioritizeBuilders

	A callable, or None, used to prioritize builders; from
prioritizeBuilders.

	
codebaseGenerator

	A callable, or None, used to determine the codebase from an incomming
Change,
from codebaseGenerator

	
slavePortnum

	The strports specification for the slave (integer inputs are normalized
to a string), or None; based on slavePortnum.

	
multiMaster

	If true, then this master is part of a cluster; based on
multiMaster.

	
debugPassword

	The password for the debug client, or None; from
debugPassword.

	
manhole

	The manhole instance to ues, or None; from manhole.

The remaining attributes contain compound configuration structures, usually
dictionaries:

	
validation

	Validation regular expressions, a dictionary from validation.
It is safe to assume that all expected keys are present.

	
db

	Database specification, a dictionary with keys db_url and
db_poll_interval. It is safe to assume that both keys are
present.

	
metrics

	The metrics configuration from metrics, or an empty
dictionary by default.

	
caches

	The cache configuration, from caches as well as the
deprecated buildCacheSize and changeCacheSize
parameters.

The keys Builds and Caches are always available; other keys
should use config.caches.get(cachename, 1).

	
schedulers

	The dictionary of scheduler instances, by name, from schedulers.

	
builders

	The list of BuilderConfig instances from
builders. Builders specified as dictionaries in the
configuration file are converted to instances.

	
slaves

	The list of BuildSlave instances from
slaves.

	
change_sources

	The list of IChangeSource providers from
change_source.

	
status

	The list of IStatusReceiver providers from
status.

	
user_managers

	The list of user managers providers from user_managers.

Loading of the configuration file is generally triggered by the master,
using the following methods:

	
classmethod loadConfig(basedir, filename)

	

	Parameters:	
	basedir (string) -- directory to which config is relative

	filename (string) -- the configuration file to load

	Raises :	ConfigErrors if any errors occur

	Returns:	new MasterConfig instance

Load the configuration in the given file. Aside from syntax errors,
this will also detect a number of semantic errors such as multiple
schedulers with the same name.

The filename is treated as relative to the basedir, if it is not
absolute.

Builder Configuration

	
class buildbot.config.BuilderConfig([keyword args])

	This class parameterizes configuration of builders; see
Builder Configuration for its arguments. The constructor checks for
errors and applies defaults, and sets the properties described here. Most
are simply copied from the constructor argument of the same name.

Users may subclass this class to add defaults, for example.

	
name

	The builder's name.

	
factory

	The builder's factory.

	
slavenames

	The builder's slave names (a list, regardless of whether the names were
specified with slavename or slavenames).

	
builddir

	The builder's builddir.

	
slavebuilddir

	The builder's slave-side builddir.

	
category

	The builder's category.

	
nextSlave

	The builder's nextSlave callable.

	
locks

	The builder's locks.

	
env

	The builder's environmnet variables.

	
properties

	The builder's properties, as a dictionary.

	
mergeRequests

	The builder's mergeRequests callable.

Error Handling

If any errors are encountered while loading the configuration buildbot.config.error
should be called. This can occur both in the configuration-loading code,
and in the constructors of any objects that are instantiated in the
configuration - change sources, slaves, schedulers, build steps, and so on.

	
buildbot.config.error(error)

	

	Parameters:	error -- error to report

	Raises :	ConfigErrors if called at build-time

This function reports a configuration error. If a config file is being loaded,
then the function merely records ther error, and allows he rest of the configuration
to be loaded. At any other time, it raises ConfigErrors. This is done
so all config erros can be reported, rather than just the first.

	
exception buildbot.config.ConfigErrors([errors])

	

	Parameters:	errors (list) -- errors to report

This exception represents errors in the configuration. It supports
reporting multiple errors to the user simultaneously, e.g., when several
consistency checks fail.

	
errors

	A list of detected errors, each given as a string.

	
addError(msg)

	

	Parameters:	msg (string) -- the message to add

Add another error message to the (presumably not-yet-raised) exception.

Reconfiguration

When the buildmaster receives a signal to beging a reconfig, it re-reads the
configuration file, generating a new MasterConfig instance, and
then notifies all of its child services via the reconfig mechanism described
below. The master ensures that at most one reconfiguration is taking place at
any time.

See Master Organization for the structure of the Buildbot service
tree.

To simplify initialization, a reconfiguration is performed immediately on
master startup. As a result, services only need to implement their
configuration handling once, and can use startService for initialization.

See below for instructions on implementing configuration of common types of
components in Buildbot.

Note

Because Buildbot uses a pure-Python configuration file, it is not possible
to support all forms of reconfiguration. In particular, when the
configuration includes custom subclasses or modules, reconfiguration can
turn up some surprising behaviors due to the dynamic nature of Python. The
reconfig support in Buildbot is intended for "intermediate" uses of the
software, where there are fewer surprises.

Reconfigurable Services

Instances which need to be notified of a change in configuration should be
implemented as Twisted services, and mix in the
ReconfigurableServiceMixin class, overriding the
reconfigService method.

	
class buildbot.config.ReconfigurableServiceMixin

	
	
reconfigService(new_config)

	

	Parameters:	new_config (MasterConfig) -- new master configuration

	Returns:	Deferred

This method notifies the service that it should make any changes
necessary to adapt to the new configuration values given.

This method will be called automatically after a service is started.

It is generally too late at this point to roll back the
reconfiguration, so if possible any errors should be detected in the
MasterConfig implementation. Errors are handled as best as
possible and communicated back to the top level invocation, but such
errors may leave the master in an inconsistent state.
ConfigErrors exceptions will be displayed appropriately to
the user on startup.

Subclasses should always call the parent class's implementation. For
MultiService instances, this will call any child services'
reconfigService methods, as appropriate. This will be done
sequentially, such that the Deferred from one service must fire before
the next service is reconfigured.

	
priority

	Child services are reconfigured in order of decreasing priority. The
default priority is 128, so a service that must be reconfigured before
others should be given a higher priority.

Change Sources

When reconfiguring, there is no method by which Buildbot can determine that a
new ChangeSource represents the same source
as an existing ChangeSource, but with
different configuration parameters. As a result, the change source manager
compares the lists of existing and new change sources using equality, stops any
existing sources that are not in the new list, and starts any new change
sources that do not already exist.

ChangeSource inherits
ComparableMixin, so change sources are compared
based on the attributes described in their compare_attrs.

If a change source does not make reference to any global configuration
parameters, then there is no need to inherit
ReconfigurableServiceMixin, as a simple comparison and
startService and stopService will be sufficient.

If the change source does make reference to global values, e.g., as default
values for its parameters, then it must inherit
ReconfigurableServiceMixin to support the case where the global
values change.

Schedulers

Schedulers have names, so Buildbot can determine whether a scheduler has been
added, removed, or changed during a reconfig. Old schedulers will be stopped,
new schedulers will be started, and both new and existing schedulers will see a
call to reconfigService, if such a
method exists. For backward compatibility, schedulers which do not support
reconfiguration will be stopped, and the new scheduler started, when their
configuration changes.

If, during a reconfiguration, a new and old scheduler's fully qualified class
names differ, then the old class will be stopped and the new class started.
This supports the case when a user changes, for example, a Nightly scheduler to
a Periodic scheduler without changing the name.

Because Buildbot uses BaseScheduler
instances directly in the configuration file, a reconfigured scheduler must
extract its new configuration information from another instance of itself.
BaseScheduler implements a helper method,
findNewSchedulerInstance,
which will return the new instance of the scheduler in the given
MasterConfig object.

Custom Subclasses

Custom subclasses are most often defined directly in the configuration file, or
in a Python module that is reloaded with reload every time the
configuration is loaded. Because of the dynamic nature of Python, this creates
a new object representing the subclass every time the configuration is loaded
-- even if the class definition has not changed.

Note that if a scheduler's class changes in a reconfig, but the scheduler's
name does not, it will still be treated as a reconfiguration of the existing
scheduler. This means that implementation changes in custom scheduler
subclasses will not be activated with a reconfig. This behavior avoids
stopping and starting such schedulers on every reconfig, but can make
development difficult.

One workaround for this is to change the name of the scheduler before each
reconfig - this will cause the old scheduler to be stopped, and the new
scheduler (with the new name and class) to be started.

Slaves

Similar to schedulers, slaves are specified by name, so new and old
configurations are first compared by name, and any slaves to be added or
removed are noted. Slaves for which the fully-qualified class name has changed
are also added and removed. All slaves have their
reconfigService method called.

This method takes care of the basic slave attributes, including changing the PB
registration if necessary. Any subclasses that add configuration parameters
should override reconfigService and
update those parameters. As with Schedulers, because the
AbstractBuildSlave instance is given directly
in the configuration, on reconfig instances must extract the configuration from
a new instance. The
findNewSlaveInstance method
can be used to find the new instance.

User Managers

Since user managers are rarely used, and their purpose is unclear, they are
always stopped and re-started on every reconfig. This may change in figure
versions.

Status Receivers

At every reconfig, all status listeners are stopped and new versions started.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Utilities

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Development

Utilities

Several small utilities are available at the top-level buildbot.util
package.

	
buildbot.util.naturalSort(list)

	

	Parameters:	list -- list of strings

	Returns:	sorted strings

This function sorts strings "naturally", with embedded numbers sorted
numerically. This ordering is good for objects which might have a numeric
suffix, e.g., winslave1, winslave2

	
buildbot.util.formatInterval(interval)

	

	Parameters:	interval -- duration in seconds

	Returns:	human-readable (English) equivalent

This function will return a human-readable string describing a length of
time, given a number of seconds.

	
class buildbot.util.ComparableMixin

	This mixin class adds comparability to a subclass. Use it like this:

class Widget(FactoryProduct, ComparableMixin):
 compare_attrs = ['radius', 'thickness']
 # ...

Any attributes not in compare_attrs will not be considered when
comparing objects. This is particularly useful in implementing buildbot's
reconfig logic, where a simple comparison between the new and existing objects
can determine whether the new object should replace the existing object.

	
buildbot.util.safeTranslate(str)

	

	Parameters:	str -- input string

	Returns:	safe version of the input

This function will filter out some inappropriate characters for filenames;
it is suitable for adapting strings from the configuration for use as
filenames. It is not suitable for use with strings from untrusted sources.

	
buildbot.util.epoch2datetime(epoch)

	

	Parameters:	epoch -- an epoch time (integer)

	Returns:	equivalent datetime object

Convert a UNIX epoch timestamp to a Python datetime object, in the UTC
timezone. Note that timestamps specify UTC time (modulo leap seconds and a
few other minor details).

	
buildbot.util.datetime2epoch(datetime)

	

	Parameters:	datetime -- a datetime object

	Returns:	equivalent epoch time (integer)

Convert an arbitrary Python datetime object into a UNIX epoch timestamp.

	
buildbot.util.UTC

	A datetime.tzinfo subclass representing UTC time. A similar class has
finally been added to Python in version 3.2, but the implementation is simple
enough to include here. This is mostly used in tests to create timezone-aware
datetime objects in UTC:

dt = datetime.datetime(1978, 6, 15, 12, 31, 15, tzinfo=UTC)

	
buildbot.util.diffSets(old, new)

	

	Parameters:	
	old (set or iterable) -- old set

	new (set or iterable) -- new set

	Returns:	a tuple, (removed, added)

This function compares two sets of objects, returning elements that were
added and elements that were removed. This is largely a convenience
function for reconfiguring services.

	
buildbot.util.makeList(input)

	

	Parameters:	input -- a thing

	Returns:	a list of zero or more things

This function is intended to support the many places in Buildbot where the
user can specify either a string or a list of strings, but the
implementation wishes to always consider lists. It converts any string to
a single-element list, None to an empty list, and any iterable to a
list. Input lists are copied, avoiding aliasing issues.

	
buildbot.util.now()

	

	Returns:	epoch time (integer)

Return the current time, using either reactor.seconds or
time.time().

	
buildbot.util.flatten(list)

	

	Parameters:	list -- potentially nested list

	Returns:	flat list

Flatten nested lists into a list containing no other lists. For example:

>>> flatten([[1, 2], 3, [[4]]])
[1, 2, 3, 4]

Note that this looks strictly for lists -- tuples, for example, are not
flattened.

	
buildbot.util.none_or_str(obj)

	

	Parameters:	obj -- input value

	Returns:	string or None

If obj is not None, return its string representation.

	
buildbot.util.NotABranch

	This is a sentinel value used to indicate that no branch is specified. It
is necessary since schedulers and change sources consider None a valid
name for a branch. This is generally used as a default value in a method
signature, and then tested against with is:

if branch is NotABranch:
 pass # ...

	
buildbot.util.in_reactor(fn)

	This decorator will cause the wrapped function to be run in the Twisted
reactor, with the reactor stopped when the function completes. It returns
the result of the wrapped function. If the wrapped function fails, its
traceback will be printed, the reactor halted, and None returned.

buildbot.util.lru

	
LRUCache(miss_fn, max_size=50):

	

	Parameters:	
	miss_fn -- function to call, with key as parameter, for cache misses.
The function should return the value associated with the key argument,
or None if there is no value associated with the key.

	max_size -- maximum number of objects in the cache.

This is a simple least-recently-used cache. When the cache grows beyond
the maximum size, the least-recently used items will be automatically
removed from the cache.

This cache is designed to control memory usage by minimizing duplication of
objects, while avoiding unnecessary re-fetching of the same rows from the
database.

All values are also stored in a weak valued dictionary, even after they
have expired from the cache. This allows values that are used elsewhere in
Buildbot to "stick" in the cache in case they are needed by another
component. Weak references cannot be used for some types, so these types
are not compatible with this class. Note that dictionaries can be weakly
referenced if they are an instance of a subclass of dict.

If the result of the miss_fn is None, then the value is not cached;
this is intended to avoid caching negative results.

This is based on Raymond Hettinger's implementation [http://code.activestate.com/recipes/498245-lru-and-lfu-cache-decorators/],
licensed under the PSF license, which is GPL-compatiblie.

	
buildbot.util.lru.hits

	cache hits so far

	
buildbot.util.lru.refhits

	cache misses found in the weak ref dictionary, so far

	
buildbot.util.lru.misses

	cache misses leading to re-fetches, so far

	
buildbot.util.lru.max_size

	maximum allowed size of the cache

	
buildbot.util.lru.get(key, **miss_fn_kwargs)

	

	Parameters:	
	key -- cache key

	miss_fn_kwargs -- keyword arguments to the miss_fn

	Returns:	value via Deferred

Fetch a value from the cache by key, invoking miss_fn(key,
**miss_fn_kwargs) if the key is not in the cache.

Any additional keyword arguments are passed to the miss_fn as
keyword arguments; these can supply additional information relating to
the key. It is up to the caller to ensure that this information is
functionally identical for each key value: if the key is already in the
cache, the miss_fn will not be invoked, even if the keyword
arguments differ.

	
buildbot.util.lru.put(key, value)

	

	Parameters:	
	key -- key at which to place the value

	value -- value to place there

Update the cache with the given key and value, but only if the key is
already in the cache. The purpose of this method is to insert a new
value into the cache without invoking the miss_fn (e.g., to avoid
unnecessary overhead).

	
buildbot.util.lru.inv()

	Check invariants on the cache. This is intended for debugging
purposes.

	
AsyncLRUCache(miss_fn, max_size=50):

	

	Parameters:	
	miss_fn -- This is the same as the miss_fn for class LRUCache, with
the difference that this function must return a Deferred.

	max_size -- maximum number of objects in the cache.

This class has the same functional interface as LRUCache, but asynchronous
locking is used to ensure that in the common case of multiple concurrent
requests for the same key, only one fetch is performed.

buildbot.util.bbcollections

This package provides a few useful collection objects.

Note

This module used to be named collections, but without absolute
imports (PEP 328 [http://www.python.org/dev/peps/pep-0328]), this precluded using the standard library's
collections module.

	
class buildbot.util.bbcollections.defaultdict

	This is a clone of the Python collections.defaultdict for use in
Python-2.4. In later versions, this is simply a reference to the built-in
defaultdict, so buildbot code can simply use
buildbot.util.collections.defaultdict everywhere.

	
class buildbot.util.bbcollections.KeyedSets

	This is a collection of named sets. In principal, it contains an empty set
for every name, and you can add things to sets, discard things from sets,
and so on.

>>> ks = KeyedSets()
>>> ks['tim'] # get a named set
set([])
>>> ks.add('tim', 'friendly') # add an element to a set
>>> ks.add('tim', 'dexterous')
>>> ks['tim']
set(['friendly', 'dexterous'])
>>> 'tim' in ks # membership testing
True
>>> 'ron' in ks
False
>>> ks.discard('tim', 'friendly')# discard set element
>>> ks.pop('tim') # return set and reset to empty
set(['dexterous'])
>>> ks['tim']
set([])

This class is careful to conserve memory space - empty sets do not occupy
any space.

buildbot.util.eventual

This function provides a simple way to say "please do this later". For example:

from buildbot.util.eventual import eventually
def do_what_I_say(what, where):
 # ...
 return d
eventually(do_what_I_say, "clean up", "your bedroom")

The package defines "later" as "next time the reactor has control", so this is
a good way to avoid long loops that block other activity in the reactor.

	
buildbot.util.eventual.eventually(cb, *args, **kwargs)

	

	Parameters:	
	cb -- callable to invoke later

	args -- args to pass to cb

	kwargs -- kwargs to pass to cb

Invoke the callable cb in a later reactor turn.

Callables given to eventually are guaranteed to be called in the
same order as the calls to eventually -- writing eventually(a);
eventually(b) guarantees that a will be called before b.

Any exceptions that occur in the callable will be logged with
log.err(). If you really want to ignore them, provide a callable that
catches those exceptions.

This function returns None. If you care to know when the callable was
run, be sure to provide a callable that notifies somebody.

	
buildbot.util.eventual.fireEventually(value=None)

	

	Parameters:	value -- value with which the Deferred should fire

	Returns:	Deferred

This function returns a Deferred which will fire in a later reactor turn,
after the current call stack has been completed, and after all other
Deferreds previously scheduled with eventually. The returned
Deferred will never fail.

	
buildbot.util.eventual.flushEventualQueue()

	

	Returns:	Deferred

This returns a Deferred which fires when the eventual-send queue is finally
empty. This is useful for tests and other circumstances where it is useful
to know that "later" has arrived.

buildbot.util.json

This package is just an import of the best available JSON module. Use it
instead of a more complex conditional import of simplejson or
json:

from buildbot.util import json

buildbot.util.maildir

Several Buildbot components make use of maildirs [http://www.courier-mta.org/maildir.html] to hand off messages between
components. On the receiving end, there's a need to watch a maildir for
incoming messages and trigger some action when one arrives.

	
class buildbot.util.maildir.MaildirService(basedir)

	

	param basedir:	(optional) base directory of the maildir

A MaildirService instance watches a maildir for new messages. It
should be a child service of some MultiService instance. When
running, this class uses the linux dirwatcher API (if available) or polls for new
files in the 'new' maildir subdirectory. When it discovers a new
message, it invokes its messageReceived method.

To use this class, subclass it and implement a more interesting
messageReceived function.

	
setBasedir(basedir)

	

	Parameters:	basedir -- base directory of the maildir

If no basedir is provided to the constructor, this method must be
used to set the basedir before the service starts.

	
messageReceived(filename)

	

	Parameters:	filename -- unqualified filename of the new message

This method is called with the short filename of the new message. The
full name of the new file can be obtained with os.path.join(maildir,
'new', filename). The method is un-implemented in the
MaildirService class, and must be implemented in
subclasses.

	
moveToCurDir(filename)

	

	Parameters:	filename -- unqualified filename of the new message

	Returns:	open file object

Call this from messageReceived to start processing the
message; this moves the message file to the 'cur' directory and returns
an open file handle for it.

buildbot.util.misc

	
buildbot.util.misc.deferredLocked(lock)

	

	Parameters:	lock -- a twisted.internet.defer.DeferredLock instance or
a string naming an instance attribute containing one

This is a decorator to wrap an event-driven method (one returning a
Deferred) in an acquire/release pair of a designated
DeferredLock. For simple functions
with a static lock, this is as easy as:

someLock = defer.DeferredLock()
@util.deferredLocked(someLock)
def someLockedFunction():
 # ..
 return d

For class methods which must access a lock that is an instance attribute, the
lock can be specified by a string, which will be dynamically resolved to the
specific instance at runtime:

def __init__(self):
 self.someLock = defer.DeferredLock()

@util.deferredLocked('someLock')
def someLockedFunction():
 # ..
 return d

	
class buildbot.util.misc.SerializedInvocation(method)

	This is a method wrapper that will serialize calls to an asynchronous
method. If a second call occurs while the first call is still executing,
it will not begin until the first call has finished. If multiple calls
queue up, they will be collapsed into a single call. The effect is that
the underlying method is guaranteed to be called at least once after every
call to the wrapper.

Note that if this class is used as a decorator on a method, it will
serialize invocations across all class instances. For synchronization
specific to each instance, wrap the method in the constructor:

def __init__(self):
 self.someMethod = SerializedInovcation(self.someMethod)

Tests can monkey-patch the _quiet method of the class to be notified
when all planned invocations are complete.

buildbot.util.netstrings

Similar to maildirs, netstrings [http://cr.yp.to/proto/netstrings.txt] are
used occasionally in Buildbot to encode data for interchange. While Twisted
supports a basic netstring receiver protocol, it does not have a simple way to
apply that to a non-network situation.

	
class buildbot.util.netstrings.NetstringParser

	This class parses strings piece by piece, either collecting the accumulated
strings or invoking a callback for each one.

	
feed(data)

	

	Parameters:	data -- a portion of netstring-formatted data

	Raises :	twisted.protocols.basic.NetstringParseError

Add arbitrariliy-sized data to the incoming-data buffer. Any
complete netstrings will trigger a call to the
stringReceived method.

Note that this method (like the Twisted class it is based on) cannot
detect a trailing partial netstring at EOF - the data will be silently
ignored.

	
stringReceived(string):

	

	Parameters:	string -- the decoded string

This method is called for each decoded string as soon as it is read
completely. The default implementation appends the string to the
strings attribute, but subclasses can do anything.

	
strings

	The strings decoded so far, if stringReceived is not
overridden.

buildbot.util.sautils

This module contains a few utilities that are not included with SQLAlchemy.

	
class buildbot.util.sautils.InsertFromSelect(table, select)

	

	Parameters:	
	table -- table into which insert should be performed

	select -- select query from which data should be drawn

This class is taken directly from SQLAlchemy's compiler.html [http://www.sqlalchemy.org/docs/core/compiler.html#compiling-sub-elements-of-a-custom-expression-construct],
and allows a Pythonic representation of INSERT INTO .. SELECT ..
queries.

	
buildbot.util.sautils.sa_version()

	Return a 3-tuple representing the SQLAlchemy version. Note that older
versions that did not have a __version__ attribute are represented by
(0,0,0).

buildbot.util.subscription

The classes in the buildbot.util.subscription module are used for
master-local subscriptions. In the near future, all uses of this module will
be replaced with message-queueing implementations that allow subscriptions and
subscribers to span multiple masters.

buildbot.util.croniter

This module is a copy of https://github.com/taichino/croniter, and provides
suport for converting cron-like time specifications into actual times.

buildbot.util.state

The classes in the buildbot.util.subscription module are used for dealing with object state stored in the database.

	
class buildbot.util.state.StateMixin

	This class provides helper methods for accessing the object state stored in the database.

	
name

	This must be set to the name to be used to identifiy this object in the database.

	
master

	This must point to the BuildMaster object.

	
getState(name, default)

	

	Parameters:	
	name -- name of the value to retrieve

	default -- (optional) value to return if name is not present

	Returns:	state value via a Deferred

	Raises:	
	KeyError -- if name is not present and no default is given

	TypeError -- if JSON parsing fails

Get a named state value from the object's state.

	
getState(name, value)

	

	Parameters:	
	name -- the name of the value to change

	value -- the value to set - must be a JSONable object

	returns -- Deferred

	Raises TypeError:

		if JSONification fails

Set a named state value in the object's persistent state.
Note that value must be json-able.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Database

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Development

Database

As of version 0.8.0, Buildbot has used a database as part of its storage
backend. This section describes the database connector classes, which allow
other parts of Buildbot to access the database. It also describes how to
modify the database schema and the connector classes themsleves.

Note

Buildbot is only half-migrated to a database backend. Build and builder
status information is still stored on disk in pickle files. This is
difficult to fix, although work is underway.

Database Overview

All access to the Buildbot database is mediated by database connector classes.
These classes provide a functional, asynchronous interface to other parts of
Buildbot, and encapsulate the database-specific details in a single location in
the codebase.

The connector API, defined below, is a stable API in Buildbot, and can be
called from any other component. Given a master master, the root of the
database connectors is available at master.db, so, for example, the state
connector's getState method is master.db.state.getState.

The connectors all use SQLAlchemy Core [http://www.sqlalchemy.org/docs/index.html] to achieve (almost)
database-independent operation. Note that the SQLAlchemy ORM is not used in
Buildbot. Database queries are carried out in threads, and report their
results back to the main thread via Twisted Deferreds.

Schema

The database schema is maintained with SQLAlchemy-Migrate [http://code.google.com/p/sqlalchemy-migrate/]. This package handles the
details of upgrading users between different schema versions.

The schema itself is considered an implementation detail, and may change
significantly from version to version. Users should rely on the API (below),
rather than performing queries against the database itself.

API

buildrequests

	
exception buildbot.db.buildrequests.AlreadyClaimedError

	Raised when a build request is already claimed, usually by another master.

	
exception buildbot.db.buildrequests.NotClaimedError

	Raised when a build request is not claimed by this master.

	
class buildbot.db.buildrequests.BuildRequestsConnectorComponent

	This class handles the complex process of claiming and unclaiming build
requests, based on a polling model: callers poll for unclaimed requests with
getBuildRequests, then attempt to claim the requests with
claimBuildRequests. The claim can fail if another master has claimed
the request in the interim.

An instance of this class is available at master.db.buildrequests.

Build requests are indexed by an ID referred to as a brid. The contents
of a request are represented as build request dictionaries (brdicts) with
keys

	brid

	buildsetid

	buildername

	priority

	claimed (boolean, true if the request is claimed)

	claimed_at (datetime object, time this request was last claimed)

	mine (boolean, true if the request is claimed by this master)

	complete (boolean, true if the request is complete)

	complete_at (datetime object, time this request was completed)

	
getBuildRequest(brid)

	

	Parameters:	brid -- build request id to look up

	Returns:	brdict or None, via Deferred

Get a single BuildRequest, in the format described above. This method
returns None if there is no such buildrequest. Note that build
requests are not cached, as the values in the database are not fixed.

	
getBuildRequests(buildername=None, complete=None, claimed=None, bsid=None)

	

	Parameters:	
	buildername (string) -- limit results to buildrequests for this builder

	complete -- if true, limit to completed buildrequests; if false,
limit to incomplete buildrequests; if None, do not limit based on
completion.

	claimed -- see below

	bsid -- see below

	Returns:	list of brdicts, via Deferred

Get a list of build requests matching the given characteristics.

Pass all parameters as keyword parameters to allow future expansion.

The claimed parameter can be None (the default) to ignore the
claimed status of requests; True to return only claimed builds,
False to return only unclaimed builds, or "mine" to return only
builds claimed by this master instance. A request is considered
unclaimed if its claimed_at column is either NULL or 0, and it is
not complete. If bsid is specified, then only build requests for
that buildset will be returned.

A build is considered completed if its complete column is 1; the
complete_at column is not consulted.

	
claimBuildRequests(brids[, claimed_at=XX])

	

	Parameters:	
	brids (list) -- ids of buildrequests to claim

	claimed_at (datetime) -- time at which the builds are claimed

	Returns:	Deferred

	Raises :	AlreadyClaimedError

Try to "claim" the indicated build requests for this buildmaster
instance. The resulting deferred will fire normally on success, or
fail with AlreadyClaimedError if any of the build
requests are already claimed by another master instance. In this case,
none of the claims will take effect.

If claimed_at is not given, then the current time will be used.

As of 0.8.5, this method can no longer be used to re-claim build
requests. All given ID's must be unclaimed. Use
reclaimBuildRequests to reclaim.

Note

On database backends that do not enforce referential integrity
(e.g., SQLite), this method will not prevent claims for nonexistent
build requests. On database backends that do not support
transactions (MySQL), this method will not properly roll back any
partial claims made before an AlreadyClaimedError is
generated.

	
reclaimBuildRequests(brids)

	

	Parameters:	brids (list) -- ids of buildrequests to reclaim

	Returns:	Deferred

	Raises :	AlreadyClaimedError

Re-claim the given build requests, updating the timestamp, but checking
that the requsts are owned by this master. The resulting deferred will
fire normally on success, or fail with AlreadyClaimedError if
any of the build requests are already claimed by another master
instance, or don't exist. In this case, none of the reclaims will take
effect.

	
unclaimBuildRequests(brids)

	

	Parameters:	brids (list) -- ids of buildrequests to unclaim

	Returns:	Deferred

Release this master's claim on all of the given build requests. This
will not unclaim requests that are claimed by another master, but will
not fail in this case. The method does not check whether a request is
completed.

	
completeBuildRequests(brids, results[, complete_at=XX])

	

	Parameters:	
	brids (integer) -- build request IDs to complete

	results (integer) -- integer result code

	complete_at (datetime) -- time at which the buildset was completed

	Returns:	Deferred

	Raises :	NotClaimedError

Complete a set of build requests, all of which are owned by this master
instance. This will fail with NotClaimedError if the build
request is already completed or does not exist. If complete_at is
not given, the current time will be used.

	
unclaimExpiredRequests(old)

	

	Parameters:	old (int) -- number of seconds after which a claim is considered old

	Returns:	Deferred

Find any incomplete claimed builds which are older than old
seconds, and clear their claim information.

This is intended to catch builds that were claimed by a master which
has since disappeared. As a side effect, it will log a message if any
requests are unclaimed.

builds

	
class buildbot.db.builds.BuildsConnectorComponent

	This class handles a little bit of information about builds.

Note

The interface for this class will change - the builds table duplicates
some information available in pickles, without including all such
information. Do not depend on this API.

An instance of this class is available at master.db.builds.

Builds are indexed by bid and their contents represented as bdicts
(build dictionaries), with keys

	bid (the build ID, globally unique)

	number (the build number, unique only within this master and builder)

	brid (the ID of the build request that caused this build)

	start_time

	finish_time (datetime objects, or None).

	
getBuild(bid)

	

	Parameters:	bid (integer) -- build id

	Returns:	Build dictionary as above or None, via Deferred

Get a single build, in the format described above. Returns None if
there is no such build.

	
getBuildsForRequest(brid)

	

	Parameters:	brids -- list of build request ids

	Returns:	List of build dictionaries as above, via Deferred

Get a list of builds for the given build request. The resulting build
dictionaries are in exactly the same format as for getBuild.

	
addBuild(brid, number)

	

	Parameters:	
	brid -- build request id

	number -- build number

	Returns:	build ID via Deferred

Add a new build to the db, recorded as having started at the current
time.

	
finishBuilds(bids)

	

	Parameters:	bids (list) -- build ids

	Returns:	Deferred

Mark the given builds as finished, with finish_time set to the
current time. This is done unconditionally, even if the builds are
already finished.

buildsets

	
class buildbot.db.buildsets.BuildsetsConnectorComponent

	This class handles getting buildsets into and out of the database.
Buildsets combine multiple build requests that were triggered together.

An instance of this class is available at master.db.buildsets.

Buildsets are indexed by bsid and their contents represented as bsdicts
(buildset dictionaries), with keys

	bsid

	external_idstring (arbitrary string for mapping builds externally)

	reason (string; reason these builds were triggered)

	sourcestampsetid (source stamp set for this buildset)

	submitted_at (datetime object; time this buildset was created)

	complete (boolean; true if all of the builds for this buildset are complete)

	complete_at (datetime object; time this buildset was completed)

	results (aggregate result of this buildset; see Build Result Codes)

	
addBuildset(sourcestampsetid, reason, properties, builderNames, external_idstring=None)

	

	Parameters:	
	sourcestampsetid (integer) -- id of the SourceStampSet for this buildset

	reason (short unicode string) -- reason for this buildset

	properties (dictionary, where values are tuples of (value, source)) -- properties for this buildset

	builderNames (list of strings) -- builders specified by this buildset

	external_idstring (unicode string) -- external key to identify this buildset; defaults to None

	Returns:	buildset ID and buildrequest IDs, via a Deferred

Add a new Buildset to the database, along with BuildRequests for each
named builder, returning the resulting bsid via a Deferred. Arguments
should be specified by keyword.

The return value is a tuple (bsid, brids) where bsid is the
inserted buildset ID and brids is a dictionary mapping buildernames
to build request IDs.

	
completeBuildset(bsid, results[, complete_at=XX])

	

	Parameters:	
	bsid (integer) -- buildset ID to complete

	results (integer) -- integer result code

	complete_at (datetime) -- time the buildset was completed

	Returns:	Deferred

	Raises :	KeyError if the buildset does not exist or is
already complete

Complete a buildset, marking it with the given results and setting
its completed_at to the current time, if the complete_at
argument is omitted.

	
getBuildset(bsid)

	

	Parameters:	bsid -- buildset ID

	Returns:	bsdict, or None, via Deferred

Get a bsdict representing the given buildset, or None if no such
buildset exists.

Note that buildsets are not cached, as the values in the database are
not fixed.

	
getBuildsets(complete=None)

	

	Parameters:	complete -- if true, return only complete buildsets; if false,
return only incomplete buildsets; if None or omitted, return all
buildsets

	Returns:	list of bsdicts, via Deferred

Get a list of bsdicts matching the given criteria.

	
getBuildsetProperties(buildsetid)

	

	Parameters:	buildsetid -- buildset ID

	Returns:	dictionary mapping property name to value, source, via
Deferred

Return the properties for a buildset, in the same format they were
given to addBuildset.

Note that this method does not distinguish a nonexistent buildset from
a buildset with no properties, and returns {} in either case.

changes

	
class buildbot.db.changes.ChangesConnectorComponent

	This class handles changes in the buildbot database, including pulling
information from the changes sub-tables.

An instance of this class is available at master.db.changes.

Changes are indexed by changeid, and are represented by a chdict, which
has the following keys:

	changeid (the ID of this change)

	author (unicode; the author of the change)

	files (list of unicode; source-code filenames changed)

	comments (unicode; user comments)

	is_dir (deprecated)

	links (list of unicode; links for this change, e.g., to web views,
review)

	revision (unicode string; revision for this change, or None if
unknown)

	when_timestamp (datetime instance; time of the change)

	branch (unicode string; branch on which the change took place, or
None for the "default branch", whatever that might mean)

	category (unicode string; user-defined category of this change, or
None)

	revlink (unicode string; link to a web view of this change)

	properties (user-specified properties for this change, represented as
a dictionary mapping keys to (value, source))

	repository (unicode string; repository where this change occurred)

	project (unicode string; user-defined project to which this change
corresponds)

	
addChange(author=None, files=None, comments=None, is_dir=0, links=None, revision=None, when_timestamp=None, branch=None, category=None, revlink='', properties={}, repository='', project='', uid=None)

	

	Parameters:	
	author (unicode string) -- the author of this change

	files -- a list of filenames that were changed

	comments -- user comments on the change

	is_dir -- deprecated

	links (list of unicode strings) -- a list of links related to this change, e.g., to web
viewers or review pages

	revision (unicode string) -- the revision identifier for this change

	when_timestamp (datetime instance or None) -- when this change occurred, or the current time
if None

	branch (unicode string) -- the branch on which this change took place

	category (unicode string) -- category for this change (arbitrary use by Buildbot
users)

	revlink (unicode string) -- link to a web view of this revision

	properties (dictionary) -- properties to set on this change, where values are
tuples of (value, source). At the moment, the source must be
'Change', although this may be relaxed in later versions.

	repository (unicode string) -- the repository in which this change took place

	project (unicode string) -- the project this change is a part of

	uid (integer) -- uid generated for the change author

	Returns:	new change's ID via Deferred

Add a Change with the given attributes to the database, returning the
changeid via a Deferred. All arguments should be given as keyword
arguments.

The project and repository arguments must be strings; None
is not allowed.

	
getChange(changeid, no_cache=False)

	

	Parameters:	
	changeid -- the id of the change instance to fetch

	no_cache (boolean) -- bypass cache and always fetch from database

	Returns:	chdict via Deferred

Get a change dictionary for the given changeid, or None if no such
change exists.

	
getChangeUids(changeid)

	

	Parameters:	changeid -- the id of the change instance to fetch

	Returns:	list of uids via Deferred

Get the userids associated with the given changeid.

	
getRecentChanges(count)

	

	Parameters:	count -- maximum number of instances to return

	Returns:	list of dictionaries via Deferred, ordered by changeid

Get a list of the count most recent changes, represented as
dictionaries; returns fewer if that many do not exist.

Note

For this function, "recent" is determined by the order of the
changeids, not by when_timestamp. This is most apparent in
DVCS's, where the timestamp of a change may be significantly
earlier than the time at which it is merged into a repository
monitored by Buildbot.

	
getLatestChangeid()

	

	Returns:	changeid via Deferred

Get the most-recently-assigned changeid, or None if there are no
changes at all.

schedulers

	
class buildbot.db.schedulers.SchedulersConnectorComponent

	This class manages the state of the Buildbot schedulers. This state includes
classifications of as-yet un-built changes.

An instance of this class is available at master.db.changes.

Schedulers are identified by a their objectid - see
StateConnectorComponent.

	
classifyChanges(objectid, classifications)

	

	Parameters:	
	objectid -- scheduler classifying the changes

	classifications (dictionary) -- mapping of changeid to boolean, where the boolean
is true if the change is important, and false if it is unimportant

	Returns:	Deferred

Record the given classifications. This method allows a scheduler to
record which changes were important and which were not immediately,
even if the build based on those changes will not occur for some time
(e.g., a tree stable timer). Schedulers should be careful to flush
classifications once they are no longer needed, using
flushChangeClassifications.

	
getChangeClassifications(objectid[, branch])

	

	Parameters:	
	objectid (integer) -- scheduler to look up changes for

	branch (string or None (for default branch)) -- (optional) limit to changes with this branch

	Returns:	dictionary via Deferred

Return the classifications made by this scheduler, in the form of a
dictionary mapping changeid to a boolean, just as supplied to
classifyChanges.

If branch is specified, then only changes on that branch will be
given. Note that specifying branch=None requests changes for the
default branch, and is not the same as omitting the branch argument
altogether.

sourcestamps

	
class buildbot.db.sourcestamps.SourceStampsConnectorComponent

	This class manages source stamps, as stored in the database. Source stamps
are linked to changes. Source stamps with the same sourcestampsetid belong
to the same sourcestampset. Buildsets link to one or more source stamps via
a sourcestampset id.

An instance of this class is available at master.db.sourcestamps.

Source stamps are identified by a ssid, and represented internally as a ssdict, with keys

	ssid

	sourcestampsetid (set to which the sourcestamp belongs)

	branch (branch, or None for default branch)

	revision (revision, or None to indicate the latest revision, in
which case this is a relative source stamp)

	patch_body (body of the patch, or None)

	patch_level (directory stripping level of the patch, or None)

	patch_subdir (subdirectory in which to apply the patch, or None)

	patch_author (author of the patch, or None)

	patch_comment (comment for the patch, or None)

	repository (repository containing the source; never None)

	project (project this source is for; never None)

	changeids (list of changes, by id, that generated this sourcestamp)

Note

Presently, no attempt is made to ensure uniqueness of source stamps, so
multiple ssids may correspond to the same source stamp. This may be fixed
in a future version.

	
addSourceStamp(branch, revision, repository, project, patch_body=None, patch_level=0, patch_author="", patch_comment="", patch_subdir=None, changeids=[])

	

	Parameters:	
	branch (unicode string) --

	revision (unicode string) --

	repository (unicode string) --

	project (string) --

	patch_body (string) -- (optional)

	patch_level (int) -- (optional)

	patch_author (unicode string) -- (optional)

	patch_comment (unicode string) -- (optional)

	patch_subdir (unicode string) -- (optional)

	changeids (list of ints) --

	Returns:	ssid, via Deferred

Create a new SourceStamp instance with the given attributes, and return
its ssid. The arguments all have the same meaning as in an ssdict.
Pass them as keyword arguments to allow for future expansion.

	
getSourceStamp(ssid)

	

	Parameters:	
	ssid -- sourcestamp to get

	no_cache (boolean) -- bypass cache and always fetch from database

	Returns:	ssdict, or None, via Deferred

Get an ssdict representing the given source stamp, or None if no
such source stamp exists.

	
getSourceStamps(sourcestampsetid)

	

	Parameters:	sourcestampsetid (integer) -- identification of the set, all returned sourcestamps belong to this set

	Returns:	sslist of ssdict

Get a set of sourcestamps identified by a set id. The set is returned as
a sslist that contains one or more sourcestamps (represented as ssdicts).
The list is empty if the set does not exist or no sourcestamps belong to the set.

sourcestampset

	
class buildbot.db.sourcestampsets.SourceStampSetsConnectorComponent

	This class is responsible for adding new sourcestampsets to the database.
Build sets link to sourcestamp sets, via their (set) id's.

An instance of this class is available at master.db.sourcestampsets.

Sourcestamp sets are identified by a sourcestampsetid.

	
addSourceStampSet()

	

	Returns:	new sourcestampsetid as integer, via Deferred

Add a new (empty) sourcestampset to the database. The unique identification
of the set is returned as integer. The new id can be used to add
new sourcestamps to the database and as reference in a buildset.

state

	
class buildbot.db.state.StateConnectorComponent

	This class handles maintaining arbitrary key/value state for Buildbot
objects. Each object can store arbitrary key/value pairs, where the values
are any JSON-encodable value. Each pair can be set and retrieved
atomically.

Objects are identified by their (user-visible) name and their
class. This allows, for example, a nightly_smoketest object of class
NightlyScheduler to maintain its state even if it moves between
masters, but avoids cross-contaminating state between different classes
of objects with the same name.

Note that "class" is not interpreted literally, and can be any string that
will uniquely identify the class for the object; if classes are renamed,
they can continue to use the old names.

An instance of this class is available at master.db.state.

Objects are identified by objectid.

	
getObjectId(name, class_name)

	

	Parameters:	
	name -- name of the object

	class_name -- object class name

	Returns:	the objectid, via a Deferred.

Get the object ID for this combination of a name and a class. This
will add a row to the 'objects' table if none exists already.

	
getState(objectid, name[, default])

	

	Parameters:	
	objectid -- objectid on which the state should be checked

	name -- name of the value to retrieve

	default -- (optional) value to return if C{name} is not present

	Returns:	state value via a Deferred

	Raises KeyError:

		if name is not present and no default is given

	Raises :	TypeError if JSON parsing fails

Get the state value for key name for the object with id
objectid.

	
setState(objectid, name, value)

	

	Parameters:	
	objectid -- the objectid for which the state should be changed

	name -- the name of the value to change

	value (JSON-able value) -- the value to set

	returns -- Deferred

	Raises :	TypeError if JSONification fails

Set the state value for name for the object with id objectid,
overwriting any existing value.

users

	
class buildbot.db.users.UsersConnectorComponent

	This class handles Buildbot's notion of users. Buildbot tracks the usual
information about users -- username and password, plus a display name.

The more complicated task is to recognize each user across multiple
interfaces with Buildbot. For example, a user may be identified as
'djmitche' in Subversion, 'dustin@v.igoro.us' in Git, and 'dustin' on IRC.
To support this functionality, each user as a set of attributes, keyed by
type. The findUserByAttr method uses these attributes to match users,
adding a new user if no matching user is found.

Users are identified canonically by uid, and are represented by usdicts (user
dictionaries) with keys

	uid

	identifier (display name for the user)

	bb_username (buildbot login username)

	bb_password (hashed login password)

All attributes are also included in the dictionary, keyed by type. Types
colliding with the keys above are ignored.

	
findUserByAttr(identifier, attr_type, attr_data)

	

	Parameters:	
	identifier -- identifier to use for a new user

	attr_type -- attribute type to search for and/or add

	attr_data -- attribute data to add

	Returns:	userid via Deferred

Get an existing user, or add a new one, based on the given attribute.

This method is intended for use by other components of Buildbot to
search for a user with the given attributes.

Note that identifier is not used in the search for an existing
user. It is only used when creating a new user. The identifier should
be based deterministically on the attributes supplied, in some fashion
that will seem natural to users.

For future compatibility, always use keyword parameters to call this
method.

	
getUser(uid)

	

	Parameters:	
	uid -- user id to look up

	no_cache (boolean) -- bypass cache and always fetch from database

	Returns:	usdict via Deferred

Get a usdict for the given user, or None if no matching user is
found.

	
getUserByUsername(username)

	

	Parameters:	username (string) -- username portion of user credentials

	Returns:	usdict or None via deferred

Looks up the user with the bb_username, returning the usdict or
None if no matching user is found.

	
getUsers()

	

	Returns:	list of partial usdicts via Deferred

Get the entire list of users. User attributes are not included, so the
results are not full userdicts.

	
updateUser(uid=None, identifier=None, bb_username=None, bb_password=None, attr_type=None, attr_data=None)

	

	Parameters:	
	uid (int) -- the user to change

	identifier (string) -- (optional) new identifier for this user

	bb_username (string) -- (optional) new buildbot username

	bb_password (string) -- (optional) new hashed buildbot password

	attr_type (string) -- (optional) attribute type to update

	attr_data (string) -- (optional) value for attr_type

	Returns:	Deferred

Update information about the given user. Only the specified attributes
are updated. If no user with the given uid exists, the method will
return silently.

Note that bb_password must be given if bb_username appears;
similarly, attr_type requires attr_data.

	
removeUser(uid)

	

	Parameters:	uid (int) -- the user to remove

	Returns:	Deferred

Remove the user with the given uid from the database. This will remove
the user from any associated tables as well.

	
identifierToUid(identifier)

	

	Parameters:	identifier (string) -- identifier to search for

	Returns:	uid or None, via Deferred

Fetch a uid for the given identifier, if one exists.

Writing Database Connector Methods

The information above is intended for developers working on the rest of
Buildbot, and treating the database layer as an abstraction. The remainder of
this section describes the internals of the database implementation, and is
intended for developers modifying the schema or adding new methods to the
database layer.

Warning

It's difficult to change the database schema significantly after it has
been released, and very disruptive to users to change the database API.
Consider very carefully the future-proofing of any changes here!

The DB Connector and Components

	
class buildbot.db.connector.DBConnector

	The root of the database connectors, master.db, is a
DBConnector instance. Its main purpose is
to hold reference to each of the connector components, but it also handles
timed cleanup tasks.

If you are adding a new connector component, import its module and create
an instance of it in this class's constructor.

	
class buildbot.db.base.DBConnectorComponent

	This is the base class for connector components.

There should be no need to override the constructor defined by this base
class.

	
db

	A reference to the DBConnector, so that
connector components can use e.g., self.db.pool or
self.db.model. In the unusual case that a connector component
needs access to the master, the easiest path is self.db.master.

Direct Database Access

The connectors all use SQLAlchemy Core [http://www.sqlalchemy.org/docs/index.html] as a wrapper around database
client drivers. Unfortunately, SQLAlchemy is a synchronous library, so some
extra work is required to use it in an asynchronous context like Buildbot.
This is accomplished by deferring all database operations to threads, and
returning a Deferred. The Pool class takes care of
the details.

A connector method should look like this:

def myMethod(self, arg1, arg2):
 def thd(conn):
 q = ... # construct a query
 for row in conn.execute(q):
 ... # do something with the results
 return ... # return an interesting value
 return self.db.pool.do(thd)

Picking that apart, the body of the method defines a function named thd
taking one argument, a Connection object. It then calls
self.db.pool.do, passing the thd function. This function is called in
a thread, and can make blocking calls to SQLAlchemy as desired. The do
method will return a Deferred that will fire with the return value of thd,
or with a failure representing any exceptions raised by thd.

The return value of thd must not be an SQLAlchemy object - in particular,
any ResultProxy
objects must be parsed into lists or other data structures before they are
returned.

Warning

As the name thd indicates, the function runs in a thread. It should
not interact with any other part of Buildbot, nor with any of the Twisted
components that expect to be accessed from the main thread -- the reactor,
Deferreds, etc.

Queries can be constructed using any of the SQLAlchemy core methods, using
tables from Model, and executed with the connection
object, conn.

	
class buildbot.db.pool.DBThreadPool

	
	
do(callable, ...)

	

	Returns:	Deferred

Call callable in a thread, with a Connection object as first
argument. Returns a deferred that will fire with the results of the
callable, or with a failure representing any exception raised during
its execution.

Any additional positional or keyword arguments are passed to
callable.

	
do_with_engine(callable, ...)

	

	Returns:	Deferred

Similar to do, call callable in a thread, but with an
Engine object as
first argument.

This method is only used for schema manipulation, and should not be
used in a running master.

Database Schema

Database connector methods access the database through SQLAlchemy, which
requires access to Python objects represenging the database tables. That is
handled through the model.

	
class buildbot.db.model.Model

	This class contains the canonical description of the buildbot schema, It is
presented in the form of SQLAlchemy Table instances, as class variables. At
runtime, the model is available at master.db.model, so for example the
buildrequests table can be referred to as
master.db.model.buildrequests, and columns are available in its c
attribute.

The source file, master/buildbot/db/model.py [https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py], contains comments
describing each table; that information is not replicated in this
documentation.

Note that the model is not used for new installations or upgrades of the
Buildbot database. See Modifying the Database Schema for more
information.

	
metadata

	The model object also has a metadata attribute containing a
MetaData instance.
Connector methods should not need to access this object. The metadata
is not bound to an engine.

The Model class also defines some migration-related methods:

	
is_current()

	

	Returns:	boolean via Deferred

Returns true if the current database's version is current.

	
upgrade()

	

	Returns:	Deferred

Upgrades the database to the most recent schema version.

Caching

Connector component methods that get an object based on an ID are good
candidates for caching. The cached decorator
makes this automatic:

	
buildbot.db.base.cached(cachename)

	

	Parameters:	cache_name -- name of the cache to use

A decorator for "getter" functions that fetch an object from the database
based on a single key. The wrapped method will only be called if the named
cache does not contain the key.

The wrapped function must take one argument (the key); the wrapper will
take a key plus an optional no_cache argument which, if true, will
cause it to invoke the underlying method even if the key is in the cache.

The resulting method will have a cache attribute which can be used to
access the underlying cache.

In most cases, getter methods return a well-defined dictionary. Unfortunately,
Python does not handle weak references to bare dictionaries, so components must
instantiate a subclass of dict. The whole assembly looks something like
this:

class ThDict(dict):
 pass

class ThingConnectorComponent(base.DBConnectorComponent):

 @base.cached('thdicts')
 def getThing(self, thid):
 def thd(conn):
 ...
 thdict = ThDict(thid=thid, attr=row.attr, ...)
 return thdict
 return self.db.pool.do(thd)

Tests

It goes without saying that any new connector methods must be fully tested!

You will also want to add an in-memory implementation of the methods to the
fake classes in master/budilbot/test/fake/fakedb.py. Non-DB Buildbot code
is tested using these fake implementations in order to isolate that code from
the database code.

Modifying the Database Schema

Changes to the schema are accomplished through migration scripts, supported by
SQLAlchemy-Migrate [http://code.google.com/p/sqlalchemy-migrate/]. In fact,
even new databases are created with the migration scripts -- a new database is
a migrated version of an empty database.

The schema is tracked by a version number, stored in the migrate_version
table. This number is incremented for each change to the schema, and used to
determine whether the database must be upgraded. The master will refuse to run
with an out-of-date database.

To make a change to the schema, first consider how to handle any existing data.
When adding new columns, this may not be necessary, but table refactorings can
be complex and require caution so as not to lose information.

Create a new script in master/buildbot/db/migrate/versions [https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/migrate/versions], following
the numbering scheme already present. The script should have an update
method, which takes an engine as a parameter, and ugprades the database, both
changing the schema and performing any required data migrations. The engine
passed to this parameter is "enhanced" by SQLAlchemy-Migrate, with methods to
handle adding, altering, and dropping columns. See the SQLAlchemy-Migrate
documentation for details.

Next, modify master/buildbot/db/model.py [https://github.com/buildbot/buildbot/blob/master/master/buildbot/db/model.py] to represent the updated
schema. Buildbot's automated tests perform a rudimentary comparison of an
upgraded database with the model, but it is important to check the details -
key length, nullability, and so on can sometimes be missed by the checks. If
the schema and the upgrade scripts get out of sync, bizarre behavior can
result.

Also, adjust the fake database table definitions in
master/buildbot/test/fake/fakedb.py [https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/fake/fakedb.py] according to your changes.

Your upgrade script should have unit tests. The classes in
master/buildbot/test/util/migration.py [https://github.com/buildbot/buildbot/blob/master/master/buildbot/test/util/migration.py] make this straightforward.
Unit test scripts should be named e.g.,
test_db_migrate_versions_015_remove_bad_master_objectid.py.

The master/buildbot/test/integration/test_upgrade.py also tests
upgrades, and will confirm that the resulting database matches the model. If
you encounter implicit indexes on MySQL, that do not appear on SQLite or
Postgres, add them to implied_indexes in
master/buidlbot/db/model.py.

Database Compatibility Notes

Or: "If you thought any database worked right, think again"

Because Buildbot works over a wide range of databases, it is generally limited
to database features present in all supported backends. This section
highlights a few things to watch out for.

In general, Buildbot should be functional on all supported database backends.
If use of a backend adds minor usage restrictions, or cannot implement some
kinds of error checking, that is acceptable if the restrictions are
well-documented in the manual.

The metabuildbot tests Buildbot against all supported databases, so most
compatibility errors will be caught before a release.

Index Length in MySQL

MySQL only supports about 330-character indexes. The actual index length is
1000 bytes, but MySQL uses 3-byte encoding for UTF8 strings. This is a
longstanding bug in MySQL - see "Specified key was too long; max key
length is 1000 bytes" with utf8 [http://bugs.mysql.com/bug.php?id=4541].
While this makes sense for indexes used for record lookup, it limits the
ability to use unique indexes to prevent duplicate rows.

InnoDB has even more severe restrictions on key lengths, which is why the MySQL
implementation requires a MyISAM storage engine.

Transactions in MySQL

Unfortunately, use of the MyISAM storage engine precludes real transactions in
MySQL. transaction.commit() and transaction.rollback() are essentially
no-ops: modifications to data in the database are visible to other users
immediately, and are not reverted in a rollback.

Referential Integrity in SQLite and MySQL

Neither MySQL nor SQLite enforce referential integrity based on foreign keys.
Postgres does enforce, however. If possible, test your changes on Postgres
before committing, to check that tables are added and removed in the proper
order.

Subqueries in MySQL

MySQL's query planner is easily confused by subqueries. For example, a DELETE
query specifying id's that are IN a subquery will not work. The workaround is
to run the subquery directly, and then execute a DELETE query for each returned
id.

If this weakness has a significant peformance impact, it would be acceptable to
conditionalize use of the subquery on the database dialect.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Build Result Codes

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Development

Build Result Codes

Buildbot represents the status of a step, build, or buildset using a set of
numeric constants. From Python, these constants are available in the module
buildbot.status.results, but the values also appear in the database and in
external tools, so the values are fixed.

	
buildbot.status.results.SUCCESS

	Value: 0; color: green; a successful run.

	
buildbot.status.results.WARNINGS

	Value: 1; color: orange; a successful run, with some warnings.

	
buildbot.status.results.FAILURE

	Value: 2; color: red; a failed run, due to problems in the build itself, as
opposed to a Buildbot misconfiguration or bug.

	
buildbot.status.results.SKIPPED

	Value: 3; color: white; a run that was skipped -- usually a step skipped by
doStepIf (see Common Parameters)

	
buildbot.status.results.EXCEPTION

	Value: 4; color: purple; a run that failed due to a problem in Buildbot
itself.

	
buildbot.status.results.RETRY

	Value: 4; color: purple; a run that should be retried, usually due to a
slave disconnection.

	
buildbot.status.results.Results

	A dictionary mapping result codes to their lowercase names.

	
buildbot.status.results.worst_status(a, b)

	This function takes two status values, and returns the "worst" status of
the two. This is used (with exceptions) to aggregate step statuses into
build statuses, and build statuses into buildset statuses.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 File Formats

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Development

File Formats

Log File Format

	
class buildbot.status.logfile.LogFile

	

The master currently stores each logfile in a single file, which may have a
standard compression applied.

The format is a special case of the netstrings protocol - see
http://cr.yp.to/proto/netstrings.txt. The text in each netstring
consists of a one-digit channel identifier followed by the data from that
channel.

The formatting is implemented in the LogFile class in
buildbot/status/logfile.py, and in particular by the merge
method.

 Copyright Buildbot Team Members.
 Created using Sphinx 1.1.3.

 TEST Brought to you by Read the Docs

 	latest

 	v0.8.7

 	v0.8.6p1

 	v0.8.6

 	v0.8.5

 	v0.8.4

 Web Status

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Buildbot 0.8.7-61-g6a0fea1 documentation

 	Buildbot Development

Web Status

Jinja Web Templates

Buildbot uses Jinja2 to render its web interface. The authoritative source for
this templating engine is
its own documentation [http://jinja.pocoo.org/2/documentation/],
of course, but a few no